Science.gov

Sample records for advanced metallographic techniques

  1. Metallographic techniques and microstructures: uranium alloys

    SciTech Connect

    Romig, A.D. Jr.

    1982-08-01

    The techniques used for the metallographic analysis of uranium and its alloys are discussed. Sample preparation and characterization procedures are described for: optical metallography, scanning electron microscopy, electron microprobe analysis, transmission electron microscopy, and scanning transmission electron microscopy. A brief overview of electron optics, electron/sample interactions, signal detectors, and x-ray microanalysis is presented. Typical uranium alloy microstructures observed by these techniques are presented and discussed. The microstructures examined include those produced by the diffusional decomposition of ..gamma..:U-0.75Ti and ..gamma..:U-6Nb, the martensitic decomposition of U-2Mo, U-6Nb, U-0.75Ti and Mulberry, and the aging of quenched U-2Mo.

  2. Metallographic techniques for evaluation of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  3. New metallographic preparation techniques for tantalum and tantalum alloys

    SciTech Connect

    Kelly, A.M.; Bingert, S.R.; Reiswig, R.D.

    1995-09-01

    Two new metallographic techniques have been developed for tantalum and its alloys. The first is a chemical polishing method that can even be used on specimens immediately after grinding on silicon carbide papers. The second is an etching technique that even delineates low-angle grain boundaries, making it particularly suitable for quantitative grain size measurements. It has also been determined that these are suitable for the preparation of a surprisingly large variety of other metals and alloys, including, titanium, tungsten, Ti-6Al-4V, molybdenum, a Zr-Ti-Cu-Ni alloy, a Ti-Ta-Sc alloy, Fansteel 85, and a Hf-Zr alloy to name a few.

  4. A potential metallographic technique for the investigation of pipe bombings.

    PubMed

    Walsh, Graham A; Inal, Osman T; Romero, Van D

    2003-09-01

    This study was conducted in an attempt to develop a metallographic method for the investigation of pipe bombings. Three common pipe materials, ASTM A53 steel, AISI 304L stainless steel, and 6061-T6 aluminum, were shock-loaded using five high explosives and three propellants. The explosives used were ANFO, Composition C4, C6 detasheet, nitroglycerine-based dynamite, and flake TNT. The propellants used were FFFFg black powder. Red Dot smokeless powder, and Turbo Fuel A. The post-blast microstructure, hardness, and, in the case of 304L, transformed martensite content were examined for each test. The damage done to the microstructure was found to increase with increasing detonation velocity of the explosives and increase in pressure generated by the shock-metal interaction. Material hardness and, in the case of 304L, martensite content showed a sharp increase followed by a plateau as the shock pressure and detonation velocity increased.

  5. Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures

    NASA Astrophysics Data System (ADS)

    Khammatov, A.; Belkin, D.; Barbina, N.

    2016-01-01

    Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed.

  6. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    SciTech Connect

    Matlock, David K

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  7. Advanced echocardiographic techniques

    PubMed Central

    Perry, Rebecca

    2015-01-01

    Abstract Echocardiography has advanced significantly since its first clinical use. The move towards more accurate imaging and quantification has driven this advancement. In this review, we will briefly focus on three distinct but important recent advances, three‐dimensional (3D) echocardiography, contrast echocardiography and myocardial tissue imaging. The basic principles of these techniques will be discussed as well as current and future clinical applications. PMID:28191159

  8. Advancement on Visualization Techniques

    DTIC Science & Technology

    1980-10-01

    Aeroa and As ronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA I !ii 1 I This AGARDograph was prepared at the request of the...the fields of science § and technology relating to aerospace for the following purposes: - Exchanging of scientific and technical information...Techniques for providing the pilot visualization have grown rapidly. Technology has developed fron mechanical gauges through electro-mechanical

  9. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  10. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  11. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  12. Techniques in Advanced Language Teaching.

    ERIC Educational Resources Information Center

    Ager, D. E.

    1967-01-01

    For ease of presentation, advanced grammar teaching techniques are briefly considered under the headings of structuralism (belief in the effectiveness of presenting grammar rules) and contextualism (belief in the maximum use by students of what they know in the target language). The structuralist's problem of establishing a syllabus is discussed…

  13. Ultrasonic metal etching for metallographic analysis

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1971-01-01

    Ultrasonic etching delineates microstructural features not discernible in specimens prepared for metallographic analysis by standard chemical etching procedures. Cavitation bubbles in ultrasonically excited water produce preferential damage /etching/ of metallurgical phases or grain boundaries, depending on hardness of metal specimens.

  14. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  15. Advanced techniques for microwave reflectometry

    SciTech Connect

    Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T.; Zhuravlev, V. |; Hartfuss, H.J.; Hirsch, M.; Geist, T.; Segovia, J.; Oramas, J.L.

    1994-12-31

    Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

  16. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  17. Metallographic preparation of Zn-21Al-2Cu alloy for analysis by electron backscatter diffraction (EBSD).

    PubMed

    Rodríguez-Hernández, M G; Martínez-Flores, E E; Torres-Villaseñor, G; Escalera, M Dolores

    2014-08-01

    Samples of Zn-21Al-2Cu alloy (Zinalco) that will be heavily deformed were prepared using five different manual mechanical metallographic methods. Samples were analyzed before tensile testing using the orientation imaging microscopy-electron backscatter diffraction (OIM-EBSD) technique. The effect of type and particle size during the final polishing stages for this material were studied in order to identify a method that produces a flat, damage free surface with a roughness of about 50 nm and clean from oxide layers, thereby producing diffraction patterns with high image quality (IQ) and adequate confidence indexes (CI). Our results show that final polishing with alumina and silica, as was previously suggested by other research groups for alloys that are difficult to prepare or alloys with low melting point, are not suitable for manual metallographic preparation of this alloy. Indexes of IQ and CI can be used to evaluate methods of metallographic preparation of samples studied using the OIM-EBSD technique.

  18. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  19. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  20. Advanced Geophysical Environmental Simulation Techniques

    DTIC Science & Technology

    2007-11-02

    cloud property retrieval algorithms for processing of large multiple-satellite data sets; development and application of improved cloud -phase and... cloud optical property retrieval algorithms; investigation of techniques potentially applicable for retrieval of cloud spatial properties from very...14. SUBJECT TERMS cirrus cloud retrieval satellite meteorology polar-orbiting geostationary 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY

  1. Septoplasty: Basic and Advanced Techniques.

    PubMed

    Most, Sam P; Rudy, Shannon F

    2017-05-01

    Nasal septal deviation is a prevalent problem that can have significant quality of life ramifications. Septoplasty is commonly performed to provide qualitative and quantitative benefit to those with nasal obstruction owing to septal deviation. Although a standard, basic technique is often adequate for individuals with mild to moderate mid to posterior septal deviation, unique challenges arise with caudal septal deviation. Herein, multiple strategies that attempt to address anterior septal deviation are discussed. Anterior septal reconstruction has been shown to be a safe and effective means by which to address severe caudal septal deviation and long-term reduction in preoperative symptoms.

  2. Metallographic cooling rates of L-group ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bennett, Marvin E.; Mcsween, Harry Y., Jr.

    1993-01-01

    Shock metamorphism appears to be a ubiquitous feature in L-group ordinary chondrites. Brecciation and heterogeneous melting obscure much of the early history of this meteorite group and have caused confusion as to whether L chondrites have undergone thermal metamorphism within onion-shell or rubble-pile parent bodies. Employing the most recent shock criteria, we have examined 55 Antarctic and 24 non-Antarctic L chondrites in order to identify those which have been least affected by post-accretional shock. Six low-shock samples (those with shock grade less than S4) of petrographic types L3-L5 were selected from both populations and metallographic cooling rates were obtained following the technique of Willis and Goldstein. All non-Antarctic L6 chondrites inspected were too heavily shocked to be included in this group. However, 4 shocked L6 chondrites were analyzed in order to determine what effects shock may impose on metallographic cooling rates. Metallographic cooling rates were derived by analyzing the cores of taenite grains and then measuring the distance to the nearest grain edge. Taenites were identified using backscatter imaging on a Cameca SX-50 electron microprobe. Using backscatter we were able to locate homogeneous, rust-free, nearly spherical grains. M-shaped profiles taken from grain traverses were also used to help locate the central portions of selected grains. All points which contained phosphorus above detection limits were discarded. Plots of cooling-rate data are summarized and data from the high-shock samples are presented. The lack of coherency of cooling rates for individual samples is indicative of heterogeneous cooling following shock. The data confirms the statement expressed by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Data for the 6 non-Antarctic low-shock samples are also presented. The samples display a general trend in cooling rates. The lowest metamorphic grade

  3. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  4. Advanced techniques for future observations from space

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D.

    1980-01-01

    Advanced remote sensing techniques for the study of global meteorology and the chemistry of the atmosphere are considered. Remote sensing from Spacelab/Shuttle and free-flying satellites will provide the platforms for instrumentation based on advanced technology. Several laser systems are being developed for the measurement of tropospheric winds and pressure, and trace species in the troposphere and stratosphere. In addition, a high-resolution passive infrared sensor shows promise for measuring temperature from sea level up through the stratosphere. Advanced optical and microwave instruments are being developed for wind measurements in the stratosphere and mesosphere. Microwave techniques are also useful for the study of meteorological parameters at the air-sea interface.

  5. Los Alamos upgrade in metallographic capabilities

    SciTech Connect

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    The Los Alamos Wing 9 Hot Cell Facility is in the process of upgrading their metallographic sample preparation and examination capability. The present capability to grind, polish and etch samples from reactor fuels and materials has been in operation for 18 years. Macro photography and alpha and beta-gamma autoradiography are an important part of this capability. Some of the fast breeder reactor experiments have contained sodium as a coolant. Therefore, the capability to distill sodium from some samples scheduled for microstructural examinations is a requirement. Since the reactor fuel samples are highly radioactive and contain plutonium, either as fabricated or as a result of breeding during reactor service, these samples must be handled in shielded hot cells containing alpha boxes to isolate the plutonium and hazardous fission products from personnel and the environment. The present equipment that was designed and built into those alpha boxes has functioned very well for the past 18 years. During that time the technicians have thought of ways to improve the equipment to do the work faster and safer. These ideas and ideas that have been developed during the design of new alpha boxes and new equipment for microstructural sample preparation have provided the concepts for the capability to perform the work faster and maintain the equipment in a safer manner.

  6. Advanced Computational Techniques in Regional Wave Studies

    DTIC Science & Technology

    1990-01-03

    the new GERESS data. The dissertation work emphasized the development and use of advanced computa- tional techniques for studying regional seismic...hand, the possibility of new data sources at regional distances permits using previously ignored signals. Unfortunately, these regional signals will...the Green’s function around this new reference point is containing the propagation effects, and V is the source Gnk(x,t;r,t) - (2) volume where fJk

  7. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  8. Advanced techniques in echocardiography in small animals.

    PubMed

    Chetboul, Valérie

    2010-07-01

    Transthoracic echocardiography has become a major imaging tool for the diagnosis and management of canine and feline cardiovascular diseases. During the last decade, more recent advances in ultrasound technology with the introduction of newer imaging modalities, such as tissue Doppler imaging, strain and strain rate imaging, and 2-dimensional speckle tracking echocardiography, have provided new parameters to assess myocardial performance, including regional myocardial velocities and deformation, ventricular twist, and mechanical synchrony. An outline of these 4 recent ultrasound techniques, their impact on the understanding of right and left ventricular function in small animals, and their application in research and clinical settings are given in this article.

  9. Basic concepts of advanced MRI techniques.

    PubMed

    Pagani, Elisabetta; Bizzi, Alberto; Di Salle, Francesco; De Stefano, Nicola; Filippi, Massimo

    2008-10-01

    An overview is given of magnetic resonance (MR) techniques sensitized to diffusion, flow, magnetization transfer effect, and local field inhomogeneities induced by physiological changes, that can be viewed, in the clinical practice, as advanced because of their challenging implementation and interpretation. These techniques are known as diffusion-weighted, perfusion, magnetization transfer, functional MRI and MR spectroscopy. An important issue is that they can provide quantitative estimates of structural and functional characteristics that are below the voxel resolution. This review does not deal with the basic concepts of the MR physics and the description of the available acquisition and postprocessing methods, but hopefully provides an adequate background to readers and hence facilitate the understanding of the following clinical contributions.

  10. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  11. Advanced techniques in current signature analysis

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Castleberry, K. N.

    1992-02-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and can be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors (approximately 3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed (approximately 20 Hz) and high-frequency vibrational information (greater than 1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable 'smart' CSA instrumentation in the next several years.

  12. Magnesium alloy ingots: Chemical and metallographic analyses

    NASA Astrophysics Data System (ADS)

    Tartaglia, John M.; Swartz, Robert E.; Bentz, Rodney L.; Howard, Jane H.

    2001-11-01

    The quality of a magnesium die casting is likely dependent on the quality of the feed stockingot material. Therefore, both Daimler-Chrysler and General Motors have established quality assurance measures that include analysis of magnesium ingots. These processes include chemical analysis, corrosion testing, fast neutron activation analysis, and metallography. Optical emission spectroscopy, inductively coupled plasma spectroscopy, and gravimetric analysis are several methods for determining the chemical composition of the material. Fast neutron activation analysis, image analysis and energy dispersive X-ray spectroscopy are used to quantify ingot cleanliness. These experimental techniques are described and discussed in this paper, and example case studies are presented for illustration.

  13. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  14. Advanced crystallization techniques of 'solar grade' silicon

    NASA Astrophysics Data System (ADS)

    Gasparini, M.; Calligarich, C.; Rava, P.; Sardi, L.; Alessandri, M.; Redaelli, F.; Pizzini, S.

    Microstructural, electrical and photo-voltaic characteristics of polycrystal line silicon solar cells fabricated with silicon ingots containing 5, 100 and 500 ppmw iron are reported and discussed. All silicon ingots were grown by the directional solidification technique in graphite or special quartz molds and doped intentionally with iron, in order to evaluate the potentiality of the D.S. technique when employed with solar silicon feedstocks. Results indicate that structural breakdown limits the amount of the ingot which is usable for solar cells fabrication, but also that efficiencies in excess of 10 percent are obtained using the 'good' region of the ingot.

  15. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  16. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  17. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  18. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  19. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    SciTech Connect

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V.

    1995-09-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350{degrees}C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed.

  20. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  1. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  2. How metallographic preparation affects the microstructure of WC/Co thermal spray coatings

    SciTech Connect

    Glancy, S.D.

    1994-12-31

    Variations in the metallographic preparation of coatings such as WC/Co can have a significant effect on the resulting microstructure. The main area of concern is the variation of apparent void content (AVC) or porosity. Improper preparation technique will often result in smearing which can mask much of the inherent AVC. Vacuum impregnation of the specimens with an epoxy/fluorescence dye combination makes it possible to differentiate AVC from preparation artifacts. Specimens mounted using this method showed less sensitivity to polishing techniques than those mounted by conventional hot-compression methods. Therefore, it is recommended to vacuum impregnate all specimens that are prone to smearing. Once the true structure of the specimen has been determined, alternate mounting and polishing methods may be implemented as long as the resulting microstructure matches that of the impregnated specimen.

  3. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  4. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  5. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  6. A Specially Constructed Metallograph for Use at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jenkins, Joe E; Buchele, Donald R; Long, Roger A

    1951-01-01

    A Metallographic microscope was developed with provision for heating a specimen to 1800 F in protective atmospheres, that is, vacuum or gas. A special objective was constructed of reflecting elements with an unusually long working distance (7/16 in.) and a high numerical aperture (0.5). Changes in specimen microstructure were observed and recorded on 35-millimeter motion-picture film. The resulting pictures were projected as motion pictures and individual frames were cut and enlargements made for close observation. Structural changes upon heating a 0.35-percent annealed carbon steel and a 5-percent tin phosphor bronze specimen were observed and recorded. Newly formed microstructure were revealed by selective vacuum etching and specimen relief resulting from recrystallization and varying grain orientation.

  7. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  8. Bringing The Web Down to Size: Advanced Search Techniques.

    ERIC Educational Resources Information Center

    Huber, Joe; Miley, Donna

    1997-01-01

    Examines advanced Internet search techniques, focusing on six search engines. Includes a chart comparison of nine search features: "include two words,""exclude one of two words,""exclude mature audience content,""two adjacent words,""exact match,""contains first and neither of two following…

  9. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  10. Genioglossus muscle advancement: A modification of the conventional technique.

    PubMed

    García Vega, José Ramón; de la Plata, María Mancha; Galindo, Néstor; Navarro, Miriam; Díez, Daniel; Láncara, Fernando

    2014-04-01

    Obstructive sleep apnoea syndrome (OSAS) is a pathophysiologic condition associated with fragmented sleep and arousals caused by nocturnal mechanical obstruction of the upper airway. This results in behavioural derangements, such as excessive daytime sleepiness and fatigue, and pathophysiologic derangements that cause morbidities and mortality including hypertension, arrhythmias, myocardial infarction, stroke and sudden death. The genioglossus advancement is a proven technique for the treatment of mild to moderate obstructive sleep apnoea syndrome by relieving airway obstruction at the hypopharyngeal level. In this article, we report a modification of the conventional genioglossus advancement described by Riley and Powell. The modification we describe replaces the bone segment at the mandibular basal bone rather than at the mid area of the symphysis. This means a linear movement that allows a greater advancement and avoids the rotation of the genioglossus muscle. Through this article we will describe the advantages of the surgical technique such as greater effectiveness, stability, more pleasing aesthetic outcome and the reduction of potential complications.

  11. Advanced techniques in safeguarding a conditioning facility for spent fuel

    SciTech Connect

    Rudolf, K.; Weh, R. )

    1992-01-01

    Although reprocessing continues to be the main factor in the waste management of nuclear reactors, the alternative of direct final disposal is currently being developed to the level of industrial applications, based on an agreement between the heads of the federal government and the federal states of Germany. Thus, the Konrad and Gorleben sites are being studied as potential final repositories as is the pilot conditioning facility (PKA) under construction. Discussions on the application of safeguards measures have led to the drafting of an approach that will cover the entire back end of the fuel cycle. The conditioning of fuel prior to direct final disposal represents one element in the overall approach. A modern facility equipped with advanced technology, PKA is a pilot plant with regard to conditioning techniques as well as to safeguards. Therefore, the PKA safeguards approach is expected to facilitate future industrial applications of the conditioning procedure. This cannot be satisfactorily implemented without advanced safeguards techniques. The level of development of the safeguards techniques varies. While advanced camera and seal systems are basically available, the other techniques and methods still require research and development. Feasibility studies and equipment development are geared to providing applicable safeguards techniques in time for commissioning of the PKA.

  12. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  13. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  14. Advanced thermal management techniques for space power electronics

    NASA Astrophysics Data System (ADS)

    Reyes, Angel Samuel

    1992-01-01

    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  15. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  16. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  17. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  18. Strategies and advanced techniques for marine pollution studies

    SciTech Connect

    Giam, C.S.; Dou, H.J.M.

    1986-01-01

    Here is a review of strategies and techniques for evaluating marine pollution by hazardous organic compounds. Geo-chemical considerations such as the relationship between the inputs, atmospheric and estuarine transport, and the outputs, sedimentation and degradation, guide the decision on appropriate approaches to pollution monitoring in the marine environment. The latest instrumental methods and standard protocols for analysis of organic compounds are presented, as well as advances in interpretation and correlation of data made possible by the accessibility of commercial data bases.

  19. Advanced endoscopic ultrasound management techniques for preneoplastic pancreatic cystic lesions

    PubMed Central

    Arshad, Hafiz Muhammad Sharjeel; Bharmal, Sheila; Duman, Deniz Guney; Liangpunsakul, Suthat; Turner, Brian G

    2017-01-01

    Pancreatic cystic lesions can be benign, premalignant or malignant. The recent increase in detection and tremendous clinical variability of pancreatic cysts has presented a significant therapeutic challenge to physicians. Mucinous cystic neoplasms are of particular interest given their known malignant potential. This review article provides a brief but comprehensive review of premalignant pancreatic cystic lesions with advanced endoscopic ultrasound (EUS) management approaches. A comprehensive literature search was performed using PubMed, Cochrane, OVID and EMBASE databases. Preneoplastic pancreatic cystic lesions include mucinous cystadenoma and intraductal papillary mucinous neoplasm. The 2012 International Sendai Guidelines guide physicians in their management of pancreatic cystic lesions. Some of the advanced EUS management techniques include ethanol ablation, chemotherapeutic (paclitaxel) ablation, radiofrequency ablation and cryotherapy. In future, EUS-guided injections of drug-eluting beads and neodymium:yttrium aluminum agent laser ablation is predicted to be an integral part of EUS-guided management techniques. In summary, International Sendai Consensus Guidelines should be used to make a decision regarding management of pancreatic cystic lesions. Advanced EUS techniques are proving extremely beneficial in management, especially in those patients who are at high surgical risk. PMID:27574295

  20. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  1. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  2. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  3. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  4. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  5. Aesthetic Lateral Canthoplasty Using Tarso-Conjunctival Advancement Technique.

    PubMed

    Lee, Eun Jung; Lew, Dae Hyun; Song, Seung Han; Lee, Myung Chul

    2017-01-01

    Reduced horizontal length of the palpebral fissure is a distinctive characteristic of Asian eyelids, and aesthetic lateral canthal lengthening techniques have been performed for a refinement. The aim of this study is to describe a novel lateral canthoplasty using tarso-conjunctival advancement with a lid margin splitting procedure on the upper eyelids and to report the postoperative results. From December 2011 to June 2014, patients who underwent lateral canthoplasty using the tarso-conjunctival advancement procedure for aesthetic purposes were reviewed retrospectively. The predictor variables were grouped into demographic and operative categories. The primary outcome variables were the distances from the mid-pupillary line to the lateral canthus and the horizontal length of the palpebral aperture (distance from the medial to lateral canthus). Data analyses were performed using descriptive and univariate statistics. Patients who showed increment in objective measurements were considered significant. Aesthetic appearance was also evaluated based on pre- and postoperative clinical photographs. A total of 45 patients were enrolled in this study. Both the distance from the mid-pupil to the lateral canthus (ΔDpupil-lateral; 2.78 ± 0.54 mm, P <0.05) and the palpebral aperture horizontal length (ΔDmedial-lateral 2.93 ± 0.81 mm, P <0.05) increased significantly from pre- to postoperative state. All the patients demonstrated satisfactory results aesthetically during the follow-up. The tarso-conjunctival advancement technique for lateral canthoplasty produced satisfactory aesthetic results with an enlarged palpebral aperture. Future research is required to fully delineate the risk of possible complications, including injury to the eyelashes and meibomian glands.

  6. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  7. Advanced Synchrotron Techniques at High Pressure Collaborative Access Team (HPCAT)

    NASA Astrophysics Data System (ADS)

    Shen, G.; Sinogeikin, S. V.; Chow, P.; Kono, Y.; Meng, Y.; Park, C.; Popov, D.; Rod, E.; Smith, J.; Xiao, Y.; Mao, H.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation for studies of structure and materials properties at extreme conditions.. HPCAT consists of four active independent beamlines performing a large range of various experiments at extreme conditions. 16BM-B beamline is dedicated to energy dispersive and white Laue X-ray diffraction. The majority of experiments are performed with a Paris-Edinburgh large volume press (to 7GPa and 2500K) and include amorphous and liquid structure measurement, white beam radiography, elastic sound wave velocity measurement of amorphous solid materials, with viscosity and density measurement of liquid being under development. 16BM-D is a monochromatic diffraction beamline for powder and single crystal diffraction at high pressure and high (resistive heating) / low (cryostats) temperature. The additional capabilities include high-resolution powder diffraction and x-ray absorption near edge structure (XANES) spectroscopy. The insertion device beamline of HPCAT has two undulators in canted mode (operating independently) and LN cooled Si monochromators capable of providing a large range of energies. 16IDB is a microdiffraction beamline mainly focusing on high-pressure powder and single crystal diffraction in DAC at high temperatures (double-sided laser heating and resistive heating) and low temperature (various cryostats). The modern instrumentation allows high-quality diffraction at megabar pressures from light element, fast experiments with pulsed laser heating, fast dynamic experiments with Pilatus detector, and so on. 16ID-D beamline is dedicated to x-ray scattering and spectroscopy research

  8. A Revision of the Metallographic Cooling Rate Method for Meteorites

    NASA Astrophysics Data System (ADS)

    Yang, C.-W.; Williams, D. B.; Goldstein, J. I.

    1995-09-01

    The metallographic cooling rate methods [1][2][3] have been used for some 30 years to determine the cooling rates of the metal phases in meteorites. Of the cooling rate methods that have been used, two valid procedures [4] are the "central Ni content vs. taenite size method [1]" and the "profile matching method [2]". The cooling rate of meteorites is determined by matching numerically calculated data with experimental data measured with the electron probe microanalyzer (EPMA). Both cooling rate methods strongly depend on the accuracy of the numerical calculation of the Ni composition profile in taenite. The numerical calculation is based on diffusion theory, experimentally determined diffusion coefficients and the Fe-Ni (P) phase diagram. _ Recently, the chemistry and microstructure of the metallic phases in meteorites have been investigated by Yang et al. [5] using analytical electron microscopy (AEM) and high resolution scanning electron microscopy (SEM). It has been observed that the final microstructure and Ni composition of the metallic phases are formed by a series of complex phase transformations at low temperatures (<400 degrees C), which can not be explained using the current phase diagram, Reuter et al. [6]. Therefore, a new Fe-Ni phase diagram at low temperatures has been proposed by Yang et al. [5] using the AEM results of metallic phases in meteorites. In the new phase diagram, alpha (low Ni bcc kamacite) and g' (Ni3Fe) phases are in equilibrium at low temperatures. The g" (FeNi, tetrataenite) phase is present as a metastable phase. During the cooling process, first a monotectoid reaction (g1 > a + g2, where g1 is a low Ni paramagnetic fcc taenite and g2 is a high Ni ferromagnetic fcc taenite) occurs at about 400 degrees C, and then at lower temperature (about 345 degrees C) a eutectoid reaction (g2 > a + g', where g' is Ni3Fe) occurs. Because of these low temperature reactions, the computer program which has been used for numerical calculation of the

  9. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  10. Advanced Cytologic Techniques for the Detection of Malignant Pancreatobiliary Strictures

    PubMed Central

    Moreno Luna, Laura E.; Kipp, Benjamin; Halling, Kevin C.; Sebo, Thomas J.; Kremers., Walter K.; Roberts, Lewis R.; Barr Fritcher, Emily G.; Levy, Michael J.; Gores, Gregory J.

    2006-01-01

    Background & Aims Two advanced cytologic techniques for detecting aneuploidy, digital image analysis (DIA) and fluorescence in situ hybridization (FISH) have recently been developed to help identify malignant pancreatobiliary strictures. The aim of this study was to assess the clinical utility of cytology, DIA, and FISH for the identification of malignant pancreatobiliary strictures. Methods Brush cytologic specimens from 233 consecutive patients undergoing ERCP for pancreatobiliary strictures were examined by all three techniques. Strictures were stratified as proximal (n=33) or distal (n=114) based on whether they occurred above or below the cystic duct, respectively. Strictures in patients with PSC (n=86) were analyzed separately. Results Despite the stratification, the performances of the tests were similar. Routine cytology has a low sensitivity (5–20%) but 100% specificity. Because of the high specificity for cytology, we assessed the performance of the other tests when routine cytology was negative. In this clinical context, FISH had an increased sensitivity (35–60%) when assessing for chromosomal gains (polysomy) while preserving the specificity of cytology. The sensitivity and specificity of DIA was intermediate as compared to routine cytology and FISH, but was additive to FISH values demonstrating only trisomy of chromosome 7 or chromosome 3. Conclusions These findings suggest that FISH and DIA increase the sensitivity for the diagnosis of malignant pancreatobiliary tract strictures over that obtained by conventional cytology while maintaining an acceptable specificity. PMID:17030177

  11. Recent Advances in Seismic Wavefront Tracking Techniques and Their Applications

    NASA Astrophysics Data System (ADS)

    Sambridge, M.; Rawlinson, N.; Hauser, J.

    2007-12-01

    In observational seismology, wavefront tracking techniques are becoming increasingly popular as a means of predicting two point traveltimes and their associated paths. Possible applications include reflection migration, earthquake relocation and seismic tomography at a wide variety of scales. Compared with traditional ray based techniques such as shooting and bending, wavefront tracking has the advantage of locating traveltimes between the source and every point in the medium; in many cases, improved efficiency and robustness; and greater potential for tracking multiple arrivals. In this presentation, two wavefront tracking techniques will be considered: the so-called Fast Marching Method (FMM), and a wavefront construction (WFC) scheme. Over the last several years, FMM has become a mature technique in seismology, with a number of improvements to the underlying theory and the release of software tools that allow it to be used in a variety of applications. At its core, FMM is a grid based solver that implicitly tracks a propagating wavefront by seeking finite difference solutions to the eikonal equation along an evolving narrow band. Recent developments include the use of source grid refinement to improve accuracy, the introduction of a multi-stage scheme to allow reflections and refractions to be tracked in layered media, and extension to spherical coordinates. Implementation of these ideas has led to a number of different applications, including teleseismic tomography, wide-angle reflection and refraction tomography, earthquake relocation, and ambient noise imaging using surface waves. The WFC scheme represents the wavefront surface as a set of points in 6-D phase space; these points are advanced in time using local initial value ray tracing in order to form a sequence of wavefront surfaces that fill the model volume. Surface refinement and simplification techniques inspired by recent developments in computer graphics are used to maintain a fixed density of nodes

  12. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    SciTech Connect

    Hanning, F. Engelberg, D.L.

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  13. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted.

  14. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  15. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  16. Pediatric Cardiopulmonary Resuscitation: Advances in Science, Techniques, and Outcomes

    PubMed Central

    Topjian, Alexis A.; Berg, Robert A.; Nadkarni, Vinay M.

    2009-01-01

    More than 25% of children survive to hospital discharge after in-hospital cardiac arrests, and 5% to 10% survive after out-of-hospital cardiac arrests. This review of pediatric cardiopulmonary resuscitation addresses the epidemiology of pediatric cardiac arrests, mechanisms of coronary blood flow during cardiopulmonary resuscitation, the 4 phases of cardiac arrest resuscitation, appropriate interventions during each phase, special resuscitation circumstances, extracorporeal membrane oxygenation cardiopulmonary resuscitation, and quality of cardiopulmonary resuscitation. The key elements of pathophysiology that impact and match the timing, intensity, duration, and variability of the hypoxic-ischemic insult to evidence-based interventions are reviewed. Exciting discoveries in basic and applied-science laboratories are now relevant for specific subpopulations of pediatric cardiac arrest victims and circumstances (eg, ventricular fibrillation, neonates, congenital heart disease, extracorporeal cardiopulmonary resuscitation). Improving the quality of interventions is increasingly recognized as a key factor for improving outcomes. Evolving training strategies include simulation training, just-in-time and just-in-place training, and crisis-team training. The difficult issue of when to discontinue resuscitative efforts is addressed. Outcomes from pediatric cardiac arrests are improving. Advances in resuscitation science and state-of-the-art implementation techniques provide the opportunity for further improvement in outcomes among children after cardiac arrest. PMID:18977991

  17. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  18. Dissecting cell adhesion architecture using advanced imaging techniques

    PubMed Central

    Morton, Penny E

    2011-01-01

    Cell adhesion to extracellular matrix proteins or to other cells is essential for the control of embryonic development, tissue integrity, immune function and wound healing. Adhesions are tightly spatially regulated structures containing over one hundred different proteins that coordinate both dynamics and signaling events at these sites. Extensive biochemical and morphological analysis of adhesion types over the past three decades has greatly improved understanding of individual protein contributions to adhesion signaling and, in some cases, dynamics. However, it is becoming increasingly clear that these diverse macromolecular complexes contain a variety of protein sub-networks, as well as distinct sub-domains that likely play important roles in regulating adhesion behavior. Until recently, resolving these structures, which are often less than a micron in size, was hampered by the limitations of conventional light microscopy. However, recent advances in optical techniques and imaging methods have revealed exciting insight into the intricate control of adhesion structure and assembly. Here we provide an overview of the recent data arising from such studies of cell:matrix and cell:cell contact and an overview of the imaging strategies that have been applied to study the intricacies and hierarchy of proteins within adhesions. PMID:21785274

  19. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  20. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  1. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  2. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  3. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  4. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  5. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  6. A new metallographic procedure for edge retention of enclosed surfaces

    SciTech Connect

    Katz, O.M.

    1994-08-01

    Utilization of a low melting point, metallic alloy that on solidification has provided a reproducible means of preserving edges and accurately measuring deposits on surfaces mounted for metarographic study. In normal laboratory practice the electrically conducting mounting material generates no hazardous waste, needs no special equipment to prepare and is available commercially at a relatively reasonable price. Previous standard edge preservation techniques were found to be 90% inefficient from a time utilization view compared with the new procedure. This new mounting procedure has greatly improved the quality and efficiency of microstructural studies of all materials, especially those on the inside diameters of heat exchanger components. These studies have included reaction products, shallow creep cracks and deposits on tubing, for which the procedure has proved indispensable.

  7. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article.

  8. Advanced rehabilitation techniques for the multi-limb amputee.

    PubMed

    Harvey, Zach T; Loomis, Gregory A; Mitsch, Sarah; Murphy, Ian C; Griffin, Sarah C; Potter, Benjamin K; Pasquina, Paul

    2012-01-01

    Advances in combat casualty care have contributed to unprecedented survival rates of battlefield injuries, challenging the field of rehabilitation to help injured service members achieve maximal functional recovery and independence. Nowhere is this better illustrated than in the care of the multiple-limb amputee. Specialized medical, surgical, and rehabilitative interventions are needed to optimize the care of this unique patient population. This article describes lessons learned at Walter Reed National Military Medical Center Bethesda in providing advanced therapy and prosthetics for combat casualties, but provides guidelines for all providers involved in the care of individuals with amputation.

  9. Advanced froth flotation techniques for fine coal cleaning

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-12-31

    Advanced column flotation cells offer many potential advantages for the treatment of fine coal. The most important of these is the ability to achieve high separation efficiencies using only a single stage of processing. Unfortunately, industrial flotation columns often suffer from poor recovery, low throughput and high maintenance requirements as compared to mechanically-agitated conventional cells. These problems can usually be attributed to poorly-designed air sparging systems. This article examines the problems of air sparging in greater detail and offers useful guidelines for designing bubble generators for industrial flotation columns. The application of these principles in the design of a successful advanced fine coal flotation circuit is also presented.

  10. Analytic Syntax: A Technique for Advanced Level Reading

    ERIC Educational Resources Information Center

    Berman, Ruth

    1975-01-01

    The technique explained here can increase a foreign student's awareness of English grammatical and rhetorical structures. Structural paraphrase is a syntactic reformulation of difficult phrases with minimal vocabulary changes. The technique is illustrated and suggestions are given for class presentation. (CHK)

  11. Metallographic analysis and fire dynamics simulation for electrical fire scene reconstruction.

    PubMed

    Chi, Jen-Hao

    2012-01-01

    This study demonstrated the use of metallographic analysis and NIST's Fire Dynamics Simulator (FDS) program to identify the cause of an actual electrical fire. A severely carbonized steel plate and a cable with a bead were found inside a damaged switchboard from the debris of a factory fire. By metallographic analysis, the copper spatter on the steel plate was found to imply a short circuit has occurred and that this was the probable ignition source of the fire was supported by the presence of a small amount of copper oxide and by the cavities with the tree-like grain microstructures in the bead. The heat estimated to have been released per unit area of the switchboard in question (approximately 236.29 MJ/m(2)) served as key input data for applying the FDS simulation of the blaze. The simulation indicated that thermal insulation polyethylene (PE) played an important role in the rapid fire spread.

  12. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  13. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  14. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  15. Synthesis, Elemental Analysis, and Metallographic Preparation of Lithium (Li)-Silicon (Si) Alloys

    DTIC Science & Technology

    2011-11-01

    Cynthia A. Lundgren, Jan L. Allen, and Jeff Wolfenstine ARL-TR-5818 November 2011 Approved...Metallographic Preparation of Lithium (Li)-Silicon (Si) Alloys Joshua B. Ratchford, Bruce A. Poese, Cynthia A. Lundgren, Jan L. Allen, and Jeff... Cynthia A. Lundgren, Jan L. Allen, and Jeff Wolfenstine 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION

  16. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  17. Advanced Statistical Signal Processing Techniques for Landmine Detection Using GPR

    DTIC Science & Technology

    2014-07-12

    based ground penetrating radars for the detection of subsurface objects that are low in metal content and hard to detect. The derived techniques...penetrating radars for the detection of subsurface objects that are low in metal content and hard to detect. The derived techniques include the exploitation...5.00 4.00 3.00 9.00 T. Glenn, J. Wilson, D. Ho. A MULTIMODAL MATCHING PURSUITS DISSIMILARITY MEASURE APPLIED TO LANDMINE/CLUTTER DISCRIMINATION

  18. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques

    PubMed Central

    Oedit, Amar; Ramautar, Rawi; Hankemeier, Thomas

    2016-01-01

    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid‐liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre‐concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012–November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed. PMID:26864699

  19. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  20. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  1. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1998-09-30

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size on water nuclear spin relaxation, T2, were measured.

  2. Application of Active Learning Techniques to an Advanced Course

    NASA Astrophysics Data System (ADS)

    Knop, R. A.

    2004-05-01

    The New Faculty Workshop provided a wealth of techniques as well as an overriding philosophy for the teaching of undergraduate Physics and Astronomy courses. The focus of the workshop was active learning, summarized in ``Learner-Centered Astronomy Teaching" by Slater & Adams: it's not what you do in class that matters, it's what the students do. Much of the specific focus of the New Faculty Workshop is on teaching the large, introductory Physics classes that many of the faculty present are sure to teach, both algebra-based and calculus-based. Many of these techniques apply directly and with little modification to introductory Astronomy courses. However, little direct attention is given to upper-division undergraduate, or even graduate, courses. In this presentation, I will share my experience in attempting to apply some of the techniques discussed at the New Faculty Workshop to an upper-division course in Galactic Astrophysics at Vanderbilt University during the Spring semester of 2004.

  3. The bumper technique for advancing a large profile microcatheter.

    PubMed

    Kellner, Christopher P; Chartrain, Alexander G; Schwegel, Claire; Oxley, Thomas J; Shoirah, Hazem; Mocco, J

    2017-03-09

    Operators commonly encounter difficulty maneuvering a microcatheter beyond the distal lip of wide neck aneurysms and aneurysms in challenging locations. Few techniques have been described to guide operators in these particular situations. In this case report of a 56-year-old woman with a 16 mm ophthalmic artery aneurysm, the microcatheter continually snagged the distal aneurysm lip, preventing delivery of a flow diverter into the distal parent vessel. In troubleshooting this obstacle, a second microguidewire was introduced alongside the microcatheter and was used to cover the distal lip of the aneurysm to prevent further snagging. The second guidewire successfully deflected the microcatheter into the distal vessel, a technique that we have aptly dubbed the 'bumper technique'.

  4. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  5. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  6. Brain development in preterm infants assessed using advanced MRI techniques.

    PubMed

    Tusor, Nora; Arichi, Tomoki; Counsell, Serena J; Edwards, A David

    2014-03-01

    Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.

  7. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  8. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  9. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  10. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  11. Advances in High-Fidelity Multi-Physics Simulation Techniques

    DTIC Science & Technology

    2008-01-01

    fluid dynamics with other disciplines also yield a large and typically stiff equation set whose numerical solution mandates the development and...and Electromagnetics . . . . . 3 2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Numerical Technique...discrete equivalent of the governing equations . Thus, the values of the solution vector are localized in a pointwise sense at each node of the mesh. This

  12. Single Molecule Techniques for Advanced in situ Hybridization

    SciTech Connect

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E

    2003-02-03

    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  13. Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Qiu, Zhihai; Huang, Zheng

    2012-12-01

    Photodynamic therapy (PDT) is based on the generation of highly reactive singlet oxygen through interactions of photosensitizer, light and molecular oxygen. PDT has become a clinically approved, minimally invasive therapeutic modality for a wide variety of malignant and nonmalignant diseases. The main dosimetric parameters for predicting the PDT efficacy include the delivered light dose, the quantification and photobleaching of the administrated photosensitizer, the tissue oxygen concentration, the amount of singlet oxygen generation and the resulting biological responses. This review article presents the emerging optical techniques that in use or under development for monitoring dosimetric parameters during PDT treatment. Moreover, the main challenges in developing real-time and noninvasive optical techniques for monitoring dosimetric parameters in PDT will be described.

  14. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  15. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  16. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  17. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  18. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  19. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-09-20

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.

  20. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  1. Advanced Techniques for Constrained Internal Coordinate Molecular Dynamics

    PubMed Central

    Wagner, Jeffrey R.; Balaraman, Gouthaman S.; Niesen, Michiel J. M.; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate representation. Freezing high frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed in order to make the CICMD method robust and widely usable. In this paper we have designed a new framework for 1) initializing velocities for non-independent CICMD coordinates, 2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4) cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to fold four proteins to their native topologies. With these advancements we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  2. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion.

  3. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  4. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  5. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  6. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  7. Comparison of three advanced chromatographic techniques for cannabis identification.

    PubMed

    Debruyne, D; Albessard, F; Bigot, M C; Moulin, M

    1994-01-01

    The development of chromatography technology, with the increasing availability of easier-to-use mass spectrometers combined with gas chromatography (GC), the use of diode-array or programmable variable-wavelength ultraviolet absorption detectors in conjunction with high-performance liquid chromatography (HPLC), and the availability of scanners capable of reading thin-layer chromatography (TLC) plates in the ultraviolet and visible regions, has made for easier, quicker and more positive identification of cannabis samples that standard analytical laboratories are occasionally required to undertake in the effort to combat drug addiction. At laboratories that do not possess the technique of GC combined with mass spectrometry, which provides an irrefutable identification, the following procedure involving HPLC or TLC techniques may be used: identification of the chromatographic peaks corresponding to each of the three main cannabis constituents-cannabidiol (CBD), delta-9-tetrahydrocannabinol (delta-9-THC) and cannabinol (CBN)-by comparison with published data in conjunction with a specific absorption spectrum for each of those constituents obtained between 200 and 300 nm. The collection of the fractions corresponding to the three major cannabinoids at the HPLC system outlet and the cross-checking of their identity in the GC process with flame ionization detection can further corroborate the identification and minimize possible errors due to interference.

  8. XII Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, Thomas; Carminati, Federico; Werlen, Monique

    November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666

  9. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  10. Bioactive glass thin films synthesized by advanced pulsed laser techniques

    NASA Astrophysics Data System (ADS)

    Mihailescu, N.; Stan, George E.; Ristoscu, C.; Sopronyi, M.; Mihailescu, Ion N.

    2016-10-01

    Bioactive materials play an increasingly important role in the biomaterials industry, and are extensively used in a range of applications, including biodegradable metallic implants. We report on Bioactive Glasses (BG) films deposition by pulsed laser techniques onto biodegradable substrates. The BG coatings were obtained using a KrF* excimer laser source (λ= 248 nm, τFWHM ≤ 25 ns).Their thickness has been determined by Profilometry measurements, whilst their morphology has been analysed by Scanning Electron Microscopy (SEM). The obtained coatings fairly preserved the targets composition and structure, as revealed by Energy Dispersive X-Ray Spectroscopy, Grazing Incidence X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy analyses.

  11. Advanced Techniques in Musculoskeletal Oncology: Perfusion, Diffusion, and Spectroscopy.

    PubMed

    Teixeira, Pedro A Gondim; Beaumont, Marine; Gabriela, Hossu; Bailiang, Chen; Verhaeghe, Jean-luc; Sirveaux, François; Blum, Alain

    2015-12-01

    The imaging characterization of musculoskeletal tumors can be challenging, and a significant number of lesions remain indeterminate when conventional imaging protocols are used. In recent years, clinical availability of functional imaging methods has increased. Functional imaging has the potential to improve tumor detection, characterization, and follow-up. The most frequently used functional methods are perfusion imaging, diffusion-weighted imaging (DWI), and MR proton spectroscopy (MRS). Each of these techniques has specific protocol requirements and diagnostic pitfalls that need to be acknowledged to avoid misdiagnoses. Additionally, the application of functional methods in the MSK system has various technical issues that need to be addressed to ensure data quality and comparability. In this article, the application of contrast-enhanced perfusion imaging, DWI, and MRS for the evaluation of bone and soft tissue tumors is discussed, with emphasis on acquisition protocols, technical difficulties, and current clinical indications.

  12. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  13. Advances in techniques for assessment of microalgal lipids.

    PubMed

    Challagulla, Vineela; Nayar, Sasi; Walsh, Kerry; Fabbro, Larelle

    2016-07-15

    Microalgae are a varied group of organisms with considerable commercial potential as sources of various biochemicals, storage molecules and metabolites such as lipids, sugars, amino acids, pigments and toxins. Algal lipids can be processed to bio-oils and biodiesel. The conventional method to estimate algal lipids is based on extraction using solvents and quantification by gravimetry or chromatography. Such methods are time consuming, use hazardous chemicals and are labor intensive. For rapid screening of prospective algae or for management decisions (e.g. decision on timing of harvest), a rapid, high throughput, reliable, accurate, cost effective and preferably nondestructive analytical technique is desirable. This manuscript reviews the application of fluorescent lipid soluble dyes (Nile Red and BODIPY 505/515), nuclear magnetic resonance (NMR), Raman, Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopy for the assessment of lipids in microalgae.

  14. Metallographic examination of damaged N reactor spent nuclear fuel element SFEC5,4378

    SciTech Connect

    Marschman, S.C.; Pyecha, T.D.; Abrefah, J.

    1997-08-01

    N-Reactor spent nuclear fuel (SNF) is currently residing underwater in the K Basins at the Hanford site, in Richland, Washington. This report presents results of the metallographic examination of specimens cut from an SNF element (Mark IV-E) with breached cladding. The element had resided in the K-West (KW) Storage Basin for at least 10 years after it was discharged from the N-Reactor. The storage containers in the KW Basin were nominally closed, isolating the SNF elements from the open pool environment. Seven specimens from this Mark IV-E outer fuel element were examined using an optical metallograph. Included were two specimens that had been subjected to a conditioning process recommended by the Independent Technical Assessment Team, two specimens that had been subjected to a conditioning process recommended in the Integrated Process Strategy Report, and three that were in the as-received, as-cut condition. One of the as-received specimens had been cut from the damaged (or breached) end of the element. All other specimens were cut from the undamaged mid-region of the fuel element. The specimens were visually examined to (1) identify uranium hydride inclusions present in the uranium metal fuel, (2) measure the thickness of the oxide layer formed on the uranium edges and assess the apparent integrity and adhesion of the oxide layer, and (3) look for features in the microstructure that might provide an insight into the various corrosion processes that occurred during underwater storage in the KW Basin. These features included, but were not limited to, the integrity of the cladding and the fuel-to-cladding bond, obvious anomalies in the microstructure, excessive pitting or friability of the fuel matrix, and obvious anomalies in the distribution of uranium hydride or uranium carbide inclusions. Also, the observed metallographic features of the conditioned specimens were compared with those of the as-received (unconditioned) specimens. 11 refs., 93 figs., 2 tabs.

  15. Preliminary metallographic studies of ball fatigue under rolling-contact conditions

    NASA Technical Reports Server (NTRS)

    Bear, H Robert; Butler, Robert H

    1957-01-01

    The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.

  16. Advanced Infusion Techniques with 3-D Printed Tooling

    SciTech Connect

    Nuttall, David; Elliott, Amy; Post, Brian K.; Love, Lonnie J.

    2016-05-10

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanning and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is

  17. Recent advances in techniques for tsetse-fly control*

    PubMed Central

    MacLennan, K. J. R.

    1967-01-01

    With the advent of modern persistent insecticides, it has become possible to utilize some of the knowledge that has accumulated on the ecology and bionomics of Glossina and to devise more effective techniques for the control and eventual extermination of these species. The present article, based on experience of the tsetse fly problem in Northern Nigeria, points out that the disadvantages of control techniques—heavy expenditure of money and manpower and undue damage to the biosystem—can now largely be overcome by basing the application of insecticides on knowledge of the habits of the particular species of Glossina in a particular environment. Two factors are essential to the success of a control project: the proper selection of sites for spraying (the concept of restricted application) and the degree of persistence of the insecticide used. Reinfestation from within or outside the project area must also be taken into account. These and other aspects are discussed in relation to experience gained from a successful extermination project carried out in the Sudan vegetation zone and from present control activities in the Northern Guinea vegetation zone. PMID:5301739

  18. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  19. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  20. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  1. Advances in low energy neutral atom imaging techniques

    SciTech Connect

    Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. ); Gruntman, M. . Space Sciences Center)

    1993-01-01

    Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

  2. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  3. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  4. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  5. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  6. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  7. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  8. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  9. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  10. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  11. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  12. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  13. Advances in neutron radiographic techniques and applications: a method for nondestructive testing.

    PubMed

    Berger, Harold

    2004-10-01

    A brief history of neutron radiography is presented to set the stage for a discussion of significant neutron radiographic developments and an assessment of future directions for neutron radiography. Specific advances are seen in the use of modern, high dynamic range imaging methods (image plates and flat panels) and for high contrast techniques such as phase contrast, and phase-sensitive imaging. Competition for neutron radiographic inspection may develop as these techniques offer application prospects for X-ray methods.

  14. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Pelling, M. R.; Peterson, L. E.; Lin, R. P.; Anderson, K. A.; Pehl, R. H.; Hurley, K. C.; Vedrenne, G.; Sniel, M.; Durouchoux, P.

    1985-01-01

    An advanced gamma-ray spectrometer that is currently in development is described. It will obtain a sensitivity of 0.0001 ph/sq cm./sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging.

  15. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  16. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  17. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  18. Analysis of aerospace nickel-cadmium battery cells. [cadmium migration as seen by scanning electron microscopy and metallographic analysis

    NASA Technical Reports Server (NTRS)

    Eliason, R. R.

    1977-01-01

    Various steps followed in analyzing the electrolyte, separator, and electrodes are reviewed. Specific emphasis is given to scanning electron microscopic and metallographic analysis of the plates. Cadmium migration is defined, its effects and causes are examined, and methods for its reduction in cells are suggested.

  19. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  20. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  1. Metallographic and Numerical Investigation of the EC-FOREVER-4 Test

    SciTech Connect

    Willschuetz, H.-G.; Altstadt, E.; Mueller, G.; Boehmert, J.; Sehgal, B.R.

    2004-07-01

    Assuming the hypothetical scenario of a severe accident with subsequent core meltdown and formation of a melt pool in the reactor pressure vessel (RPV) lower plenum of a Light Water Reactor (LWR) leads to the question about the behavior of the RPV. One accident management strategy could be to stabilize the in-vessel debris configuration in the RPV as one major barrier against uncontrolled release of heat and radio nuclides. To get an improved understanding and knowledge of the melt pool convection and the vessel creep and possible failure processes and modes occurring during the late phase of a core melt down accident the FOREVER-experiments (Failure Of Reactor Vessel Retention) have been performed at the Division of Nuclear Power Safety of the Royal Institute of Technology Stockholm. These experiments are simulating the behavior of the lower head of the RPV under the thermal loads of a convecting melt pool with decay heating, and under the pressure loads that the vessel experiences in a depressurization scenario. The geometrical scale of the experiments is 1:10 compared to a common LWR. Accompanying the experiments metallographic and numerical work is performed at the Forschungszentrum Rossendorf. An axisymmetric Finite Element model is developed based on the multi-purpose code ANSYS/Multiphysics. First the temperature field within the melt pool and within the vessel wall is evaluated. The transient structural mechanical calculations are then performed applying a creep model which takes into account large temperature, stress and strain variations. For a failure prediction it is necessary to introduce a damage measure. This is done according to a model proposed by Lemaitre. The microstructural investigation gives an insight to the material state of the vessel wall at different positions. This can be compared with the numerical damage value calculated in the Finite Element Model. This paper deals with the experimental, numerical, and metallographic results of the

  2. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    PubMed Central

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong

    2016-01-01

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145

  3. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  4. Recent Advances in Techniques for Starch Esters and the Applications: A Review.

    PubMed

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S; Brennan, Margaret; Han, Zhong

    2016-07-09

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented.

  5. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  6. Advanced combustion techniques for controlling NO/x/ emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments have been and continue to be sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere. Of particular concern are the oxides of nitrogen (NO/x/) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NO/x/ emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  7. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  8. Imaging of skull base pathologies: Role of advanced magnetic resonance imaging techniques

    PubMed Central

    Mathur, Ankit; Kesavadas, C; Thomas, Bejoy; Kapilamoorthy, TR

    2015-01-01

    Imaging plays a vital role in evaluation of skull base pathologies as this region is not directly accessible for clinical evaluation. Computerized tomography (CT) and magnetic resonance imaging (MRI) have played complementary roles in the diagnosis of the various neoplastic and non-neoplastic lesions of the skull base. However, CT and conventional MRI may at times be insufficient to correctly pinpoint the accurate diagnosis. Advanced MRI techniques, though difficult to apply in the skull base region, in conjunction with CT and conventional MRI can however help in improving the diagnostic accuracy. This article aims to highlight the importance of advanced MRI techniques like diffusion-weighted imaging, susceptibility-weighted imaging, perfusion-weighted imaging, and MR spectroscopy in differentiation of various lesions involving the skull base. PMID:26427895

  9. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  10. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  11. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  12. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed.

  13. [Principles and advanced techniques for better internetpresentations in obstetrics and gynecology].

    PubMed

    Seufert, R; Molitor, N; Pollow, K; Woernle, F; Hawighorst-Knapstein, S

    2001-08-01

    Internet presentations are common tools for better medical communication and better scientific work. Meanwhile a great number of gynecological and obstetrical institutions present data via the world wide web within a wide range of quality and performance. Specific HTML editors offer quick and easy presentations, but only advanced internet techniques enable interesting multimedia presentations. N-tier applications are the future standard and we must integrate them in general informatical systems. New Concepts, actual tools and general problems will be discussed and new principles similar to actual E commerce techniques are able to solve our special medical demands.

  14. Noncompaction cardiomyopathy: The role of advanced multimodality imaging techniques in diagnosis and assessment.

    PubMed

    Chebrolu, Lakshmi H; Mehta, Anjlee M; Nanda, Navin C

    2017-02-01

    Noncompaction cardiomyopathy (NCCM) is a unique cardiomyopathy with a diverse array of genotypic and phenotypic manifestations. Its hallmark morphology consists of a bilayered myocardium with a compact epicardial layer and prominent trabeculations that comprise the noncompacted endocardial layer. The controversial diagnostic criteria for NCCM have been frequently discussed in the literature. This review touches on those diagnostic criteria, delves further into the evolving use of advanced imaging techniques within the major imaging modalities (echocardiography, computed tomography, and cardiac magnetic resonance imaging), and proposes an alternative algorithm incorporating these techniques for aiding with the diagnosis of NCCM.

  15. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  16. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  17. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  18. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  19. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  20. Potential of advanced MR imaging techniques in the differential diagnosis of parkinsonism.

    PubMed

    Hotter, Anna; Esterhammer, Regina; Schocke, Michael F H; Seppi, Klaus

    2009-01-01

    The clinical differentiation of parkinsonian syndromes remains challenging not only for neurologists but also for movement disorder specialists. Conventional magnetic resonance imaging (cMRI) with the visual assessment of T2- and T1-weighted imaging as well as different advanced MRI techniques offer objective measures, which may be a useful tool in the diagnostic work-up of Parkinson's disease and atypical parkinsonian disorders (APDs). In clinical practice, cMRI is a well-established method for the exclusion of symptomatic parkinsonism due to other pathologies. Over the past two decades, abnormalities in the basal ganglia and infratentorial structures have been shown especially in APDs not only by cMRI but also by different advanced MRI techniques, including methods to assess regional cerebral atrophy quantitatively such as magnetic resonance volumetry, proton magnetic resonance spectroscopy, diffusion-weighted imaging, and magnetization transfer imaging. This article aims to review recent research findings on the role of advanced MRI techniques in the differential diagnosis of neurodegenerative parkinsonian disorders.

  1. Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section.

    PubMed

    Lombi, Enzo; Hettiarachchi, Ganga M; Scheckel, Kirk G

    2011-01-01

    Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describe the complexity of environmental biogeochemical reaction mechanisms relies on our analytical ability through the application and developmemnt of advanced spectroscopic techniques. Accompanying this introductory article are nine papers that either review advanced in situ spectroscopic methods or present original research utilizing these techniques. This collection of articles summarizes the challenges facing environmental biogeochemistry, highlights the recent advances and scientific gaps, and provides an outlook into future research that may benefit from the use of in situ spectroscopic approaches. The use of synchrotron-based techniques and other methods are discussed in detail, as is the importance to integrate multiple analytical approaches to confirm results of complementary procedures or to fill data gaps. We also argue that future direction in research will be driven, in addition to recent analytical developments, by emerging factors such as the need for risk assessment of new materials (i.e., nanotechnologies) and the realization that biogeochemical processes need to be investigated in situ under environmentally relevant conditions.

  2. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  3. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  4. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  5. The thermal evolution of IVA iron meteorites: Evidence from metallographic cooling rates.

    NASA Astrophysics Data System (ADS)

    Rasmussen, Kaare L.; Ulff-Møller, Finn; Haack, Henning

    1995-07-01

    Metallographic cooling rates of group IVA iron meteorites have been recalculated based on the most recent Ni diffusion coefficients and phase diagram. The cooling rates are revised upwards by a factor of ca. 15 relative to previous estimates. A large range in cooling rate is found in the low-Ni part of group IVA (Ni < 8.4 wt%), while the high-Ni part shows approximately constant cooling rates. Undercooling is observed only in the high-Ni IVA members. Some of the taenite lamellae in the high-Ni IVA irons, which were apparently affected by moderate undercooling, can, alternatively, be interpreted to have experienced a nonlinear cooling history. The variation in cooling rate of the entire group IVA spans two orders of magnitude (19-3400 K/My). This span is still so large that it constitutes severe problems for both a core origin model and a raisin-bread model but seemingly it does not contradict a model where the parent body is broken up and reassembled after core crystallization but prior to Widmanstätten pattern formation.

  6. A quantitative-metallographic study of the sintering behaviour of dolomite

    SciTech Connect

    Yeprem, H.A.; Tueredi, E.; Karagoez, S. . E-mail: karagoez@kou.edu.tr

    2004-07-15

    Grain growth of the MgO phase during sintering of natural dolomite from Selcuklu-Konya in Turkey was studied in the temperature range 1600-1700 deg. C. For comparison purposes, iron oxide (98.66% mill scale) was added up to 1.5%. The compositions of the phases formed during sintering were studied using X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy. Quantitative-metallographic analyses were performed on images taken by SEM. For the automatic image analysis of dolomite microstructures, material (atomic number) contrast with backscattered electrons (BSEs) was utilized because it yields higher phase contrast compared to secondary electrons (SEs). Iron oxide additions to dolomite result in dense dolomite structures at given sintering temperatures, where phases with low melting temperatures are developed. During liquid phase sintering, periclase is enriched with iron, which destabilizes the MgO phase. The relevant kinetic exponents for MgO in the natural doloma and 0.5% Fe{sub 2}O{sub 3} added doloma were 6 and 2, and the activation energies were 108 and 243 kJ/mol, respectively.

  7. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  10. Volvo laboratory study of zinc-coated steel sheet-introduction and metallographic characterization of the coatings

    SciTech Connect

    Ostrom, P.; Otterberg, R.

    1989-01-01

    An outline of the Volvo laboratory study of zinc-coated steel sheet is presented. Fourteen different coatings were included in this study. They were all commercially available hot-dip zinc, electrolytic zinc and zinc-rich paint coatings. Not only pure zinc but also coatings alloyed with iron, aluminum and nickel were studied. One-, two- and three-layer coatings were also included. All fourteen coatings are metallographically characterized in this paper.

  11. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  12. Mini-dental implant insertion with the auto-advance technique for ongoing applications.

    PubMed

    Balkin, B E; Steflik, D E; Naval, F

    2001-01-01

    The clinical and histological results of two cases demonstrating retrieved Sendax mini-dental implants in two different patients is the focus of this report. The mini-dental implants were inserted using the auto-advance technique and loaded immediately. The implants were retrieved at 4 months following insertion and at 5 months following insertion and were prepared and reviewed histologically. Clinically, the implants had no mobility, with no apparent exudate or bleeding upon probing, prior to removal. At the time explant procedures were performed, the mini-dental implants had provided immediate support for prostheses during the integration of traditional root-form endosteal implants. Upon explantation, the mini-dental implants were in a state of health and functioning in their intended purpose. Histologically, the bone appeared to be integrated to the surface of the implant at the light microscope level, and the bone appeared to be relatively mature and healthy in the areas observed, more so than one would expect in this amount of time from insertion of mini-dental implants with immediate loading. A discussion of the purposes and technique used for insertion and removal of these mini-dental implants is discussed. This is the first human histological report on the auto-advance technique with immediate loading of mini-dental implants, demonstrating feasibility in ongoing applications.

  13. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  14. Advanced Molecular Diagnostic Techniques for Detection of Food-borne Pathogens; Current Applications and Future Challenges.

    PubMed

    Umesha, S; Manukumar, H M

    2016-01-08

    The elimination of disease-causing microbes from the food supply is a primary goal and this review deals with the overall techniques availavle for detection of food-borne pathogens. Now-a-days conventional methods are replaced by advanced methods like Biosensors, Nucleic Acid-based Tests (NAT) and different PCR based techniques used in molecular biology to identify specific pathogens. Bacillus cereus, Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Campylobacter, Listeria monocytogenes, Salmonella spp, Aspergillus spp. Fusarium spp. Penicillium spp., and pathogens are detected in contaminated food items which cause always diseases in human in any one or the other way. Identification of food-borne pathogens in a short period of time is still a challenge to the scientific field in general and food technology in particular. The low level of food contamination by major pathogens requires specific sensitive detection platforms and the present area of hot research looking forward to new nanomolecular techniques for nanomaterials, make them suitable for the development of assays with high sensitivity, response time and portability. With the sound of these we attemet to highlight a comprehensive overview about food-borne pathogen detection by rapid, sensitive, accurate and cost affordable in situ analytical methods from conventional methods to recent molecular approaches for advanced food and microbiology research.

  15. Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites

    NASA Technical Reports Server (NTRS)

    Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.

    2017-01-01

    We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).

  16. Porosity formation in AI-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations

    NASA Astrophysics Data System (ADS)

    Roy, N.; Samuel, A. M.; Samuel, F. H.

    1996-02-01

    The formation of porosity in Al-9 wt Pct Si-3 wt Pct Cu-X alloys was studied as a function of (1) the hydrogen content of the melt; (2) the melt treatment additives, namely, modifier (Sr), grain refiner (TiB2), and primary silicon refiner (P); (3) alloying elements for precipitation hardening such as Mg and Zn; (4) intermetallics (α-iron, β-iron, sludge, and Al2Cu); and (5) solidification conditions (so-lidification time and solidus velocity). The results were statistically analyzed, based on the quanti-tative image analysis data of the porosity observed in samples obtained from a set of 72 solidification experiments. Metallographic aspects of pore size and pore morphology related to the preceding parameters and the possible mechanisms of porosity formation are highlighted in this article. The results show that a melt hydrogen content of 0.1 mL/100 g Al has the same effect on percentage porosity as that obtained with an addition of 185 ppm strontium to the melt. Grain refiner particles, phosphorus, and magnesium reduce percentage porosity, although in different magnitudes. A Mg-Sr or Mg-GR combination further reduces the percentage porosity observed in the casting. The β needles of the Al5FeSi intermetallic phase are very active as pore nucleation sites. All intermetallics, viz. β needles, α-Chinese script phase, Al2Cu phase, and sludge restrict pore growth and expansion. In-creasing the local solidification time or the solidus velocity increases the pore parameters. Pore growth in the two cases is attributed, respectively, to a diffusion-controlled growth process and to the formation of hot spots.

  17. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Obland, M. D.; Ismail, S.; Meadows, B.; Browell, E. V.

    2014-12-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper.

  18. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.

    PubMed

    Hoque, M Enamul; Chuan, Y Leng; Pashby, Ian

    2012-02-01

    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.

  19. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  20. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  1. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  2. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  3. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    DTIC Science & Technology

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  4. Advancing IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements from Space

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Chen, S.; Obland, M. D.

    2013-12-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) decadal survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, time shifted PN, sine wave modulated PN, and sine wave pulsed PN. Different PN code techniques are presented that are appropriate for different types of lidar hardware, including our current ASCENDS IM-CW concept space hardware. These techniques have excellent auto-correlation properties without sidelobes while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space.

  5. Arthroscopically assisted Sauvé-Kapandji procedure: an advanced technique for distal radioulnar joint arthritis.

    PubMed

    Luchetti, Riccardo; Khanchandani, Prakash; Da Rin, Ferdinando; Borelli, Pierpaolo P; Mathoulin, Christophe; Atzei, Andrea

    2008-12-01

    Osteoarthritis of distal radioulnar joint (DRUJ) leads to chronic wrist pain, weakness of grip strength, and limitation of motion, all of which affect the quality of life of the patient. Over the years, several procedures have been used for the treatment of this condition; however, this condition still remains a therapeutic challenge for the hand surgeons. Many procedures such as Darrach procedure, Bower procedure, Sauvé-Kapandji procedure, and ulnar head replacement have been used. Despite many advances in wrist arthroscopy, arthroscopy has not been used for the treatment of arthritis of the DRUJ. We describe a novel technique of arthroscopically assisted Sauvé-Kapandji procedure for the arthritis of the DRUJ. The advantages of this technique are its less invasive nature, preservation of the extensor retinaculum, more anatomical position of the DRUJ, faster rehabilitation, and a better cosmesis.

  6. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques.

    PubMed

    Li, Tie-Qiang; Wahlund, Lars-Olof

    2011-03-01

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel-based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS).

  7. Benign Spine Lesions: Advances in Techniques for Minimally Invasive Percutaneous Treatment.

    PubMed

    Tomasian, A; Wallace, A N; Jennings, J W

    2017-02-09

    Minimally invasive percutaneous imaging-guided techniques have been shown to be safe and effective for the treatment of benign tumors of the spine. Techniques available include a variety of tumor ablation technologies, including radiofrequency ablation, cryoablation, microwave ablation, alcohol ablation, and laser photocoagulation. Vertebral augmentation may be performed after ablation as part of the same procedure for fracture stabilization or prevention. Typically, the treatment goal in benign spine lesions is definitive cure. Painful benign spine lesions commonly encountered in daily practice include osteoid osteoma, osteoblastoma, vertebral hemangioma, aneurysmal bone cyst, Paget disease, and subacute/chronic Schmorl node. This review discusses the most recent advancement and use of minimally invasive percutaneous therapeutic options for the management of benign spine lesions.

  8. Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-06-05

    Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

  9. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    SciTech Connect

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  10. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  11. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques.

    PubMed

    Dirk, Brennan S; Van Nynatten, Logan R; Dikeakos, Jimmy D

    2016-10-19

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell-cell transmission and cell-free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  12. Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.

  13. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors.

  14. Advanced techniques for array processing. Final report, 1 Mar 89-30 Apr 91

    SciTech Connect

    Friedlander, B.

    1991-05-30

    Array processing technology is expected to be a key element in communication systems designed for the crowded and hostile environment of the future battlefield. While advanced array processing techniques have been under development for some time, their practical use has been very limited. This project addressed some of the issues which need to be resolved for a successful transition of these promising techniques from theory into practice. The main problem which was studied was that of finding the directions of multiple co-channel transmitters from measurements collected by an antenna array. Two key issues related to high-resolution direction finding were addressed: effects of system calibration errors, and effects of correlation between the received signals due to multipath propagation. A number of useful theoretical performance analysis results were derived, and computationally efficient direction estimation algorithms were developed. These results include: self-calibration techniques for antenna arrays, sensitivity analysis for high-resolution direction finding, extensions of the root-MUSIC algorithm to arbitrary arrays and to arrays with polarization diversity, and new techniques for direction finding in the presence of multipath based on array interpolation. (Author)

  15. Advanced condition monitoring techniques and plant life extension studies at EBR-2

    SciTech Connect

    Singer, R.M.; Gross, K.C. ); Perry, W.H.; King, R.W. )

    1991-01-01

    Numerous advanced techniques have been evaluated and tested at EBR-2 as part of a plant-life extension program for detection of degradation and other abnormalities in plant systems. Two techniques have been determined to be of considerable assistance in planning for the extended-life operation of EBR-2. The first, a computer-based pattern-recognition system (System State Analyzer or SSA) is used for surveillance of the primary system instrumentation, primary sodium pumps and plant heat balances. This surveillance has indicated that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals and can be used to provide derived signal values to replace signals from failed sensors. The second technique, also a computer-based pattern-recognition system (Sequential Probability Ratio Test or SPRT) is used to validate signals and to detect incipient failures in sensors and components or systems. It is being used on the failed fuel detection system and is experimentally used on the primary coolant pumps. Both techniques are described and experience with their operation presented.

  16. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  17. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  18. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    SciTech Connect

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  19. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  20. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.

  1. Advanced grazing-incidence techniques for modern soft-matter materials analysis.

    PubMed

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  2. Advanced MRI Techniques in the Evaluation of Complex Cystic Breast Lesions

    PubMed Central

    Popli, Manju Bala; Gupta, Pranav; Arse, Devraj; Kumar, Pawan; Kaur, Prabhjot

    2016-01-01

    OBJECTIVE The purpose of this research work was to evaluate complex cystic breast lesions by advanced MRI techniques and correlating imaging with histologic findings. METHODS AND MATERIALS In a cross-sectional design from September 2013 to August 2015, 50 patients having sonographically detected complex cystic lesions of the breast were included in the study. Morphological characteristics were assessed. Dynamic contrast-enhanced MRI along with diffusion-weighted imaging and MR spectroscopy were used to further classify lesions into benign and malignant categories. All the findings were correlated with histopathology. RESULTS Of the 50 complex cystic lesions, 32 proved to be benign and 18 were malignant on histopathology. MRI features of heterogeneous enhancement on CE-MRI (13/18), Type III kinetic curve (13/18), reduced apparent diffusion coefficient (18/18), and tall choline peak (17/18) were strong predictors of malignancy. Thirteen of the 18 lesions showed a combination of Type III curve, reduced apparent diffusion coefficient value, and tall choline peak. CONCLUSIONS Advanced MRI techniques like dynamic imaging, diffusion-weighted sequences, and MR spectroscopy provide a high level of diagnostic confidence in the characterization of complex cystic breast lesion, thus allowing early diagnosis and significantly reducing patient morbidity and mortality. From our study, lesions showing heterogeneous contrast enhancement, Type III kinetic curve, diffusion restriction, and tall choline peak were significantly associated with malignant complex cystic lesions of the breast. PMID:27330299

  3. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  4. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  5. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  6. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  7. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  8. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury.

    PubMed

    Ashwal, Stephen; Holshouser, Barbara A; Tong, Karen A

    2006-01-01

    Advanced neuroimaging techniques are now used to expand our knowledge of traumatic brain injury, and increasingly, they are being applied to children. This review will examine four of these methods as they apply to children who present acutely after injury. (1) Susceptibility weighted imaging is a 3-dimensional high-resolution magnetic resonance imaging technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury. (2) Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding the outcome. (3) Diffusion weighted imaging is based on differences in diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. (4) Diffusion tensor imaging is a form of diffusion weighted imaging and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in human brain. It has been shown to be useful in identifying white matter abnormalities after diffuse axonal injury when conventional imaging appears normal. An important aspect of these advanced methods is that they demonstrate that 'normal-appearing' brain in many instances is not normal, i.e. there is evidence of significant undetected injury that may underlie a child's clinical status. Availability and integration of these advanced imaging methods will lead to better treatment and change the standard of care for use of neuroimaging to evaluate children with traumatic brain injury.

  9. Metallographic Preparation of Space Shuttle Reaction Control System Thruster Electron Beam Welds for Electron Backscatter Diffraction

    NASA Technical Reports Server (NTRS)

    Martinez, James

    2011-01-01

    A Space Shuttle Reaction Control System (RCS) thruster failed during a firing test at the NASA White Sands Test Facility (WSTF), Las Cruces, New Mexico. The firing test was being conducted to investigate a previous electrical malfunction. A number of cracks were found associated with the fuel closure plate/injector assembly (Fig 1). The firing test failure generated a flight constraint to the launch of STS-133. A team comprised of several NASA centers and other research institutes was assembled to investigate and determine the root cause of the failure. The JSC Materials Evaluation Laboratory was asked to compare and characterize the outboard circumferential electron beam (EB) weld between the fuel closure plate (Titanium 6Al-4V) and the injector (Niobium C-103 alloy) of four different RCS thrusters, including the failed RCS thruster. Several metallographic challenges in grinding/polishing, and particularly in etching were encountered because of the differences in hardness, ductility, and chemical resistance between the two alloys and the bimetallic weld. Segments from each thruster were sectioned from the outboard weld. The segments were hot-compression mounted using a conductive, carbon-filled epoxy. A grinding/polishing procedure for titanium alloys was used [1]. This procedure worked well on the titanium; but a thin, disturbed layer was visible on the niobium surface by means of polarized light. Once polished, each sample was micrographed using bright field, differential interference contrast optical microscopy, and scanning electron microscopy (SEM) using a backscatter electron (BSE) detector. No typical weld anomalies were observed in any of the cross sections. However, areas of large atomic contrast were clearly visible in the weld nugget, particularly along fusion line interfaces between the titanium and the niobium. This prompted the need to better understand the chemistry and microstructure of the weld (Fig 2). Energy Dispersive X-Ray Spectroscopy (EDS

  10. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  11. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  12. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  13. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  14. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  15. Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques.

    PubMed

    Wang, C; Schroeder, F A; Hooker, J M

    2014-04-04

    Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.

  16. Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques

    PubMed Central

    Wang, Changning; Schroeder, Frederick A.; Hooker, Jacob M.

    2013-01-01

    Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin modifying enzymes and their function in the human brain would be valuable for diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using PET and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and MRI provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brain. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction. PMID:24051365

  17. Optical techniques for signal distribution and control in advanced radar and communication systems

    NASA Astrophysics Data System (ADS)

    Forrest, J. R.

    1985-03-01

    It is concluded that optical techniques offer some advantages for signal distribution and control in advanced radar and communication systems. They are clearly ideal for transporting microwave signals over considerable distances, as in remote positioning of radar receivers, provided high dynamic range is not required and an enclosed transmission path is essential. They are an elegant means of distributing low level r.f. or i.f. signals around an active phased array where these signals are of relatively constant amplitude (as in mixer local oscillator applications). However, there is currently a rather restrictive limit on the size of distribution network possible. Optical techniques are obviously suitable for distributing digital control signals to phased array modules and confer considerable immunity to interference. They are less suitable for high dynamic range signals, such as the received radar returns, either at r.f. or when downcovered to i.f. Future developments in coherent optics or in fast optical A/D technology could, however, influence this conclusion. Currently, the optimum applications for optical techniques appear to be i.f. beamformers for multibeam communication satellite systems and in calibration/monitoring systems for phased arrays.

  18. Effects of age, system experience, and navigation technique on driving with an advanced traveler information system.

    PubMed

    Dingus, T A; Hulse, M C; Mollenhauer, M A; Fleischman, R N; McGehee, D V; Manakkal, N

    1997-06-01

    This paper explores the effects of age, system experience, and navigation technique on driving, navigation performance, and safety for drivers who used TravTek, an Advanced Traveler Information System. The first two studies investigated various route guidance configurations on the road in a specially equipped instrumented vehicle with an experimenter present. The third was a naturalistic quasi-experimental field study that collected data unobtrusively from more than 1200 TravTek rental car drivers with no in-vehicle experimenter. The results suggest that with increased experience, drivers become familiar with the system and develop strategies for substantially more efficient and safer use. The results also showed that drivers over age 65 had difficulty driving and navigating concurrently. They compensated by driving slowly and more cautiously. Despite this increased caution, older drivers made more safety-related errors than did younger drivers. The results also showed that older drivers benefited substantially from a well-designed ATIS driver interface.

  19. Advances in the transient dc photocurrent technique for excited state dipole moment measurements

    SciTech Connect

    Smirnov, S.N.; Braun, C.L.

    1998-08-01

    Recent advances in the transient dc photocurrent technique for measuring excited state dipole moments, developed in our group, are discussed. A variety of approaches with detailed analyses of their advantages and disadvantages including cell design, circuit construction tricks, the data acquisition procedure, calibration, and the theoretical treatment of different conditions, are presented. Sensitivity, time resolution limitations, and newly developed features, such as the signal{close_quote}s dependence on light polarization as well as charge separation at interfaces are outlined. Dipole moments of a few molecules (diphenylcyclopropenone, bianthryl, dimethylaminonitrostilbene, Coumarin 153, and fluoroprobe) suitable for calibration purpose are reported{emdash}some of them for the first time. {copyright} {ital 1998 American Institute of Physics.}

  20. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  1. Visualisation of Ecohydrological Processes and Relationships for Teaching Using Advanced Techniques

    NASA Astrophysics Data System (ADS)

    Guan, H.; Wang, H.; Gutierrez-Jurado, H. A.; Yang, Y.; Deng, Z.

    2014-12-01

    Ecohydrology is an emerging discipline with a rapid research growth. This calls for enhancing ecohydrology education in both undergraduate and postgraduate levels. In other hydrology disciplines, hydrological processes are commonly observed in environments (e.g. streamflow, infiltration) or easily demonstrated in labs (e.g. Darcy's column). It is relatively difficult to demonstrate ecohydrological concepts and processes (e.g. soil-vegetation water relationship) in teaching. In this presentation, we report examples of using some advanced techniques to illustrate ecohydrological concepts, relationships, and processes, with measurements based on a native vegetation catchment in South Australia. They include LIDAR images showing the relationship between topography-control hdyroclimatic conditions and vegetation distribution, electrical resistivity tomography derived images showing stem structures, continuous stem water potential monitoring showing diurnal variations of plant water status, root zone moisture depletion during dry spells, and responses to precipitation inputs, and incorporating sapflow measurements to demonstrate environmental stress on plant stomatal behaviours.

  2. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS.

  3. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  4. Efficient Boolean and multi-input flow techniques for advanced mask data processing

    NASA Astrophysics Data System (ADS)

    Salazar, Daniel; Moore, Bill; Valadez, John

    2012-11-01

    Mask data preparation (MDP) typically involves multiple flows, sometimes consisting of many steps to ensure that the data is properly written on the mask. This may include multiple inputs, transformations (scaling, orientation, etc.), and processing (layer extraction, sizing, Boolean operations, data filtering). Many MDP techniques currently in practice require multiple passes through the input data and/or multiple file I/O steps to achieve these goals. This paper details an approach which efficiently process the data, resulting in minimal I/O and greatly improved turnaround times (TAT). This approach takes advanced processing algorithms and adapts them to produce efficient and reliable data flow. In tandem with this processing flow, an internal jobdeck mapping approach, transparent to the user, allows an essentially unlimited number of pattern inputs to be handled in a single pass, resulting in increased flexibility and ease of use. Transformations and processing operations are critical to MDP. Transformations such as scaling, reverse tone and orientation, along with processing including sizing, Boolean operations and data filtering are key parts of this. These techniques are often employed in sequence and/or in parallel in a complex functional chain. While transformations typically are done "up front" when the data is input, processing is less straightforward, involving multiple reads and writes to handle the more intricate functionality and also the collection of input patterns which may be required to produce the data that comprises a single mask. The approach detailed in this paper consists of two complementary techniques: efficient MDP flow and jobdeck mapping. Efficient MDP flow is achieved by pipelining the output of each step to the input of the subsequent step. Rather than writing the output of a particular processing step to file and then reading it in to the following step, the pipelining or chaining of the steps results in an efficient flow with

  5. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  6. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  7. Nanostructural defects evidenced in failing silicon-based NMOS capacitors by advanced failure analysis techniques

    NASA Astrophysics Data System (ADS)

    Faivre, Emilie; Llido, Roxane; Putero, Magali; Fares, Lahouari; Muller, Christophe

    2014-04-01

    An experimental methodology compliant with industrial constraints was deployed to uncover the origin of soft breakdown events in large planar silicon-based NMOS capacitors. Complementary advanced failure analysis techniques were advantageously employed to localize, isolate and observe structural defects at nanoscale. After an accurate localization of the failing area by optical beam-induced resistance change (OBIRCH), focused ion beam (FIB) technique enabled preparing thin specimens adequate for transmission electron microscopy (TEM). Characterization of the gate oxide microstructure was performed by highresolution TEM imaging and energy-filtered spectroscopy. A dedicated experimental protocol relying on iterative FIB thinning and TEM observation enabled improving the quality of electron imaging of defects at atom scale. In that way, the gate oxide integrity was evaluated and an electrical stress-induced silicon epitaxy was detected concomitantly to soft breakdown events appearing during constant voltage stress. The growth of silicon hillocks enables consuming a part of the breakdown energy and may prevent the soft breakdown event to evolve towards a hard breakdown that is catastrophic for device functionality.

  8. Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques.

    PubMed

    Chen, Fei; Peldszus, Sigrid; Peiris, Ramila H; Ruhl, Aki S; Mehrez, Renata; Jekel, Martin; Legge, Raymond L; Huck, Peter M

    2014-01-01

    A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study.

  9. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  10. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  11. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.

    PubMed

    Somorjai, Gabor A; Frei, Heinz; Park, Jeong Y

    2009-11-25

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  12. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    NASA Astrophysics Data System (ADS)

    Bialasiewicz, J. T.

    1995-06-01

    The goal is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the pseudo-random binary sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL's Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior of the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  13. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  14. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  15. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  16. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  17. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  18. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  19. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  20. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.

    2010-04-01

    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  1. Advanced techniques and painless procedures for nonlinear contact analysis and forming simulation via implicit FEM

    NASA Astrophysics Data System (ADS)

    Zhuang, Shoubing

    2013-05-01

    Nonlinear contact analysis including forming simulation via finite element methods has a crucial and practical application in many engineering fields. However, because of high nonlinearity, nonlinear contact analysis still remains as an extremely challenging obstacle for many industrial applications. The implicit finite element scheme is generally more accurate than the explicit finite element scheme, but it has a known challenge of convergence because of complex geometries, large relative motion and rapid contact state change. It might be thought as a very painful process to diagnose the convergence issue of nonlinear contact. Most complicated contact models have a great many contact surfaces, and it is hard work to well define the contact pairs using the common contact definition methods, which either result in hundreds of contact pairs or are time-consuming. This paper presents the advanced techniques of nonlinear contact analysis and forming simulation via the implicit finite element scheme and the penalty method. The calculation of the default automatic contact stiffness is addressed. Furthermore, this paper presents the idea of selection groups to help easily and efficiently define contact pairs for complicated contact analysis, and the corresponding implementation and usage are discussed. Lastly, typical nonlinear contact models and forming models with nonlinear material models are shown in the paper to demonstrate the key presented method and technologies.

  2. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  3. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  4. Simultaneous evaluation of prepulse inhibition with EMG and EEG using advanced artifact removal techniques.

    PubMed

    Fraga, Francisco J; Noya, Claudemiro V; Zimiani, Maria I; Avila, Milton A; Shuhama, Rosana; Del-Ben, Cristina M; Menezes, Paulo R; Martin, Rodrigo S; Salum, Cristiane

    2016-08-01

    Prepulse inhibition (PPI) consists of a reduction of the acoustic startle reflex (SR) magnitude (measured with EMG) when a startling stimulus is preceded by a non-startling one. This behavior has been extensively investigated in studies related to schizophrenia, since sensory-motor deficit plays a central role in its pathophysiology. However, the same auditory stimuli that trigger the SR also provoke intense auditory evoked responses (AEP), which can be measured with EEG. Comparing these two types of responses, acquired simultaneously, is a great opportunity to investigate the dependence and interdependence of their neural pathways. Nonetheless, so far very few studies have dared to perform such simultaneous recordings, because SR produces strong eye blinks and muscle contraction artifacts that contaminate EEG electrodes placed on the scalp. In this study we investigated the possibility of simultaneously obtaining both the acoustic SR (using EMG) and the AEP (using EEG) measures, through the use of advanced artifact removal techniques, to better characterize PPI in healthy humans.

  5. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  6. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings.

    PubMed

    Chang, Kung-Chin; Lu, Hsin-I; Peng, Chih-Wei; Lai, Mei-Chun; Hsu, Sheng-Chieh; Hsu, Min-Hsiang; Tsai, Yuan-Kai; Chang, Chi-Hao; Hung, Wei-I; Wei, Yen; Yeh, Jui-Ming

    2013-02-01

    Nanocasting technique was used to obtain a biomimetic superhydrophobic electroactive polyimide (SEPI) surface structure from a natural Xanthosoma sagittifolium leaf. An electroactive polyimide (EPI) was first synthesized through thermal imidization. An impression of the superhydrophobic Xanthosoma sagittifolium leaf was then nanocasted onto the surface of the EPI so that the resulting EPI was superhydrophobic and would prevent corrosion. Polydimethylsiloxane (PDMS) was then used as a negative template to transfer the impression of the superhydrophobic surface of the biomimetic EPI onto a cold-rolled steel (CRS) electrode. The superhydrophobic electroactive material could be used as advanced coatings that protect metals against corrosion. The morphology of the surface of the as-synthesized SEPI coating was investigated using scanning electron microscopy (SEM). The surface showed numerous micromastoids, each decorated with many nanowrinkles. The water contact angle (CA) for the SEPI coating was 155°, which was significantly larger than that for the EPI coating (i.e., CA = 87°). The significant increase in the contact angle indicated that the biomimetic morphology effectively repelled water. Potentiodynamic and electrochemical impedance spectroscopic measurements indicated that the SEPI coating offered better protection against corrosion than the EPI coating did.

  7. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  8. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Frazin, Richard

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012

  9. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  10. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru

    2014-01-01

    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  11. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  12. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  13. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    NASA Astrophysics Data System (ADS)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  14. Metallographic study of articles of the Kamensk iron foundry and iron works produced in the 18th-20th centuries

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Gizhevski, B. A.; Khlebnikova, Yu. V.; Naumov, S. V.; Egorova, L. Yu.

    2016-02-01

    Results have been presented for studies of the microstructure and chemical composition of a number of articles made of iron and cast iron at the Kamensk plant, which cover the period from the start of the production of iron on the territory of the city of Kamensk-Ural'skii at the turn of the 17th-18th centuries to the beginning of the 20th century. Differences in the composition of the Kamensk cast iron and modern grades of foundry cast iron have been established. Possible sources of technological difficulties and production waste at the Kamensk plant have been revealed. The potential of metallographic studies for the attribution of historical articles made of ferrous metals are shown.

  15. Landslide detection and long-term monitoring in urban area by means of advanced interferometric techniques

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Del Ventisette, Chiara; Liguori, Vincenzo; Casagli, Nicola

    2010-05-01

    This work aims at illustrating the potential of advanced interferometric techniques for detection and long-term monitoring of landslide ground deformations at local scale. Space-born InSAR (Synthetic Aperture Radar Interferometry) has been successfully exploited in recent years to measure ground deformations associated to processes with slow kinematics, such as landslides, tectonic motions, subsidence or volcanic activity, thanks to both the standard single-interferogram approach (centimeter accuracy) and advanced time-series analyses of long temporal radar satellite data stacks (millimeter accuracy), such as Persistent Scatterers Interferometry (PSI) techniques. In order to get a complete overview and an in-depth knowledge of an investigated landslide, InSAR satellite measures can support conventional in situ data. This methodology allows studying the spatial pattern and the temporal evolution of ground deformations, improving the spatial coverage and overcoming issues related to installation of ground-based instrumentation and data acquisition in unstable areas. Here we describe the application of the above-mentioned methodology on the test area of Agrigento, Sicily (Italy), affected by hydrogeological risk. The town is located in Southern Sicily, at edge of the Apennine-Maghrebian thrust belt, on the Plio-Pleistocene and Miocene sediments of the Gela Nappe. Ground instabilities affect the urban area and involve the infrastructures of its NW side, such as the Cathedral, the Seminary and many private buildings. An integration between InSAR analyses and conventional field investigations (e.g. structural damages and fractures surveys) was therefore carried out, to support Regional Civil Protection authorities for emergency management and risk mitigation. The results of InSAR analysis highlighted a general stability of the whole urban area between 1992 and 2007. However, very high deformation rates (up to 10-12 mm/y) were identified in 1992-2000 in the W slope of the

  16. MicroRNA changes in advanced radiotherapy techniques and its effect to secondary cancers.

    PubMed

    Sert, Fatma

    2012-09-01

    MicroRNAs (miRNAs) are a kind of RNA, produced copies of endogenous hairpin-shaped, are 21-25 nucleotide length, small, and single chain. Recent studies have revealed that hundreds of miRNAs are found in the human genome and are responsible for diverse cellular processes including the control of developmental timing, cell proliferation, apoptosis and tumorigenesis. miRNAs can activate the initiation of apoptosis, cessation of the cell cycle and aging in case of DNA damage by stimulating the tumor suppressor target gene p53 directly and indirectly. DNA damage is composed by multiple stress factors including ionizing radiation, reactive oxygen species, UV exposure and drugs like doxorubicin and camptothecin. Radiation is used widely in health, academic area, and industry for producing electricity. As a result of using radiation widely in different fields, environmental radiation exposure is increasing as well. Whereas high dose radiation exposure causes DNA damage and gives rise to ionization to molecules of living cells by accelerating malignant tumor formation. Fields receiving high dose radiation are evaluated in terms of adverse effects, therapeutic efficacy and secondary malignancies in radiotherapy applications. Dose distributions are re-created when it is required. On the other hand, fields received low dose and the doses that the patient is exposure in simulation and/or portal imaging are often overlooked. The changes in miRNA levels arising in low dose radiation field and its effect to neoplastic process in cell will be pathfinder in terms of secondary cancers or second primary cancers. It is shown that there are differences between the level changes of miRNA in low dose fields which are overlooked in daily practical applications because of not resulting with acute or chronic side effect and the level changes of miRNA in high dose fields. With the help of verifying so-called differences in low dose fields which are seen in advanced radiation techniques

  17. Analysis of Volatile Compounds by Advanced Analytical Techniques and Multivariate Chemometrics.

    PubMed

    Lubes, Giuseppe; Goodarzi, Mohammad

    2017-03-17

    Smelling is one of the five senses, which plays an important role in our everyday lives. Volatile compounds are, for example, characteristics of food where some of them can be perceivable by humans because of their aroma. They have a great influence on the decision making of consumers when they choose to use a product or not. In the case where a product has an offensive and strong aroma, many consumers might not appreciate it. On the contrary, soft and fresh natural aromas definitely increase the acceptance of a given product. These properties can drastically influence the economy; thus, it has been of great importance to manufacturers that the aroma of their food product is characterized by analytical means to provide a basis for further optimization processes. A lot of research has been devoted to this domain in order to link the quality of, e.g., a food to its aroma. By knowing the aromatic profile of a food, one can understand the nature of a given product leading to developing new products, which are more acceptable by consumers. There are two ways to analyze volatiles: one is to use human senses and/or sensory instruments, and the other is based on advanced analytical techniques. This work focuses on the latter. Although requirements are simple, low-cost technology is an attractive research target in this domain; most of the data are generated with very high-resolution analytical instruments. Such data gathered based on different analytical instruments normally have broad, overlapping sensitivity profiles and require substantial data analysis. In this review, we have addressed not only the question of the application of chemometrics for aroma analysis but also of the use of different analytical instruments in this field, highlighting the research needed for future focus.

  18. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  19. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    SciTech Connect

    Schalkoff, Robert J.

    1999-06-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology.

  20. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  1. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  2. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was

  3. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  4. New Advanced Fabrication Technique for Millimeter-Wave Planar Components based on Fluororesin Substrates using Graft Polymerization

    NASA Astrophysics Data System (ADS)

    Ito, Naoki; Mase, Atsushi; Kogi, Yuichiro; Seko, Noriaki; Tamada, Masao; Sakata, Eiji

    2008-06-01

    As the importance of advanced millimeter-wave diagnostics increases, a reliable and accurate fabrication technique for high-performance devices and relevant components is essential. We describe a new improved fabrication technique for millimeter-wave planar components, such as antennas using low-loss fluororesin substrates. A fragile adhesion between the copper foil and fluororesin substrate and the accuracy of the device pattern using conventional fabrication techniques have been prime suspects in the failure of the devices. In order to solve these problems, surface treatment of fluororesin films and a fabrication method using electro-fine-forming (EF2) are proposed. The peel adhesion strength between the metal and fluororesin films and the value of the dielectric constant of the fluororesin films before and after grafting are reported. A prototype antenna using conventional fluororesin substrates and grafted-poly(tetrafluoroethylene) (PTFE) films produced using the EF2 fabrication technique are also introduced.

  5. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  6. The impulse resistance welding: A new technique for joining advanced thermoplastic composite parts

    SciTech Connect

    Arias, M.; Ziegmann, G.

    1996-12-31

    Welding is a joining technique suitable for thermoplastic composites. This paper presents the development of a new, fast joining technique, which is based on the common resistance welding process. Heat is introduced by using electrical power pulses into the heating area and therefore this technique was called the Impulse Resistance Welding (IRW). The new technique will be described and discussed and the application of this technique by joining ribs to the skin of an aerodynamic spoiler part is demonstrated. The potential of an automation of the Impulse resistance welding process will be shown. Carbon fibre /PEEK (APC-2/AS4) has been selected as the material both for the skin and the rib.

  7. A metallographic evaluation of the stainless steel-silver solder joint.

    PubMed

    Rogers, O W

    1979-02-01

    A technique has been developed and described for the examination of the interface between dissimilar metals, utilizing electrolytic etching and gold electro-deposition procedures. This procedure permitted etching of both the constituents of the silver solder-stainless steel interface without differential leveling. The grain boundaries at the surface of the stainless steel interface were accentuated by the chemical action of the flux during the joining procedure and the notched grain boundaries influenced the nucleation of the silver solder. No evidence of alloying was found within the resolution of the instruments used.

  8. [Advancement of colloidal gold chromatographic technique in screening of ochratoxin A].

    PubMed

    Zhou, Wei-lu; Wang, Yu-ting; Kong, Wei-jun; Yang, Mei-hua; Zhao, Ming; Ou-Yang, Zhen

    2015-08-01

    Ochratoxin A (OTA) is a toxic secondary metabolite mainly produced by Aspergillus and Penicillium species, existing in a variety of foodstuffs and Chinese medicines. OTA is difficult to be detected in practice because of the characteristics such as trace amounts, toxicity, existing in complex matrices. In the numerous detection technologies, colloidal gold chromatographic techniques are highly sensitive, specific, cost-effective and user-friendly, and are being used increasingly for OTA screening. Recently, with the development of aptamer technology and its application in chromatographic technique, a newly colloidal gold aptamer chromatographic technique has been developed. This review elaborates the structures and principles of both traditional and newly colloidal gold chromatographic techniques, focuses on newly colloidal gold aptamer chromatographic technique, summarizes and compares their use in rapid detection of OTA. Finally, in order to provide a reference for better research of related work, the development trends of this novel technique are prospected.

  9. Adaptations of advanced safety and reliability techniques to petroleum and other industries

    NASA Technical Reports Server (NTRS)

    Purser, P. E.

    1974-01-01

    The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.

  10. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  11. Advanced imaging techniques for the study of plant growth and development

    PubMed Central

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P.; Benfey, Philip N.

    2014-01-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

  12. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling.

  13. Advances in CIS devices fabricated by a non-vacuum technique

    SciTech Connect

    Leidholm, C.R.; Norsworthy, G.A.; Roe, R.; Halani, A.; Basol, B.M.; Kapur, V.K.

    1999-03-01

    A novel, non-vacuum technique based on nano-particle deposition has been developed for the formation of CIS-type solar cell absorbers. Solar cells with {gt}12{percent} efficiency were previously demonstrated using this technique. Improvements in module integration processes have recently yielded 8{percent} minimodules of 75 cm{sup 2} area. {copyright} {ital 1999 American Institute of Physics.}

  14. Advanced techniques for the measurement of multiple recombination parameters in solar cells

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Wolf, M.

    1985-01-01

    A survey of bulk recombination measurement techniques was presented. Classical methods were reviewed along with their limiting assumptions and simplifications. A modulated light measurement system was built and showed the large effects of junction capacitance. Techniques for extension of classical methods for measurement of multiparameter multiregression measurements were identified and analyzed.

  15. Metallographic examinations of Type 304 stainless steel (heat 9T2796) tested in high-temperature uniaxial and multiaxial experiments

    SciTech Connect

    Swindeman, R.W.; Houck, C.W.

    1984-03-01

    The results obtained from a number of metallographic examinations of Type 304 stainless steel specimens were compiled. Samples were obtained from uniaxial and multiaxial tests covering a very broad span of temperatures and times. Special emphasis was on the identification of failure modes, cracking patterns, grain distortion, and grain-boundary microstructures. Uniaxial specimens exhibited the following sequence of failure modes with increasing temperature and time: ductile plastic tearing, ductile plastic shear, wedge cracking, and microvoid cracking. Over most of the temperature range examined (482 to 871/sup 0/C), M/sub 23/C/sub 6/ precipitated on grain boundaries at long times. Sigma phase and possibly ferrite were often present in the stressed areas at temperatures as low as 482/sup 0/C (900/sup 0/F). These metallurgical features promoted a severe loss in creep ductility at long times and low temperatures. Most multiaxial tests were performed under conditions that promoted wedge cracking. Stress gradients also favored surface crack initiation rather than bulk damage. Testing times for multiaxial tests were less than 10,000 h; hence, there was insufficient time for the development of embrittling features such as microvoids, sigma, and ferrite. Long-time multiaxial tests to failure are recommended.

  16. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    ERIC Educational Resources Information Center

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  17. The Advance Organizer: A Review of Research Using Glass's Technique of Meta-Analysis.

    ERIC Educational Resources Information Center

    Luiten, John; And Others

    Using Glass's meta-analysis, of which "effect size" is the fundamental measure, 135 research studies on Ausubel's advance organizer theory were reviewed to determine its effect on learning and retention. Variables, such as grade level, subject area, organizer presentation mode, and ability level were also examined. In most of these…

  18. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  19. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  20. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.

  1. An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery

    PubMed Central

    Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N.

    2013-01-01

    The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared. PMID:25161371

  2. Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    NASA Astrophysics Data System (ADS)

    Zellweger, Christoph; Emmenegger, Lukas; Firdaus, Mohd; Hatakka, Juha; Heimann, Martin; Kozlova, Elena; Spain, T. Gerard; Steinbacher, Martin; van der Schoot, Marcel V.; Buchmann, Brigitte

    2016-09-01

    Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.

  3. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  4. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  5. Advanced techniques for the storage and use of very large, heterogeneous spatial databases

    NASA Technical Reports Server (NTRS)

    Peuquet, Donna J.

    1987-01-01

    Progress is reported in the development of a prototype knowledge-based geographic information system. The overall purpose of this project is to investigate and demonstrate the use of advanced methods in order to greatly improve the capabilities of geographic information system technology in the handling of large, multi-source collections of spatial data in an efficient manner, and to make these collections of data more accessible and usable for the Earth scientist.

  6. Advanced Endovascular Approaches in the Management of Challenging Proximal Aortic Neck Anatomy: Traditional Endografts and the Snorkel Technique

    PubMed Central

    Quatromoni, Jon G.; Orlova, Ksenia; Foley, Paul J.

    2015-01-01

    Advances in endovascular technology, and access to this technology, have significantly changed the field of vascular surgery. Nowhere is this more apparent than in the treatment of abdominal aortic aneurysms (AAAs), in which endovascular aneurysm repair (EVAR) has replaced the traditional open surgical approach in patients with suitable anatomy. However, approximately one-third of patients presenting with AAAs are deemed ineligible for standard EVAR because of anatomic constraints, the majority of which involve the proximal aneurysmal neck. To overcome these challenges, a bevy of endovascular approaches have been developed to either enhance stent graft fixation at the proximal neck or extend the proximal landing zone to allow adequate apposition to the aortic wall and thus aneurysm exclusion. This article is composed of two sections that together address new endovascular approaches for treating aortic aneurysms with difficult proximal neck anatomy. The first section will explore advancements in the traditional EVAR approach for hostile neck anatomy that maximize the use of the native proximal landing zone; the second section will discuss a technique that was developed to extend the native proximal landing zone and maintain perfusion to vital aortic branches using common, off-the-shelf components: the snorkel technique. While the techniques presented differ in terms of approach, the available clinical data, albeit limited, support the notion that they may both have roles in the treatment algorithm for patients with challenging proximal neck anatomy. PMID:26327748

  7. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  8. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  9. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  10. Visualization of delamination in composite materials utilizing advanced X-ray imaging techniques

    NASA Astrophysics Data System (ADS)

    Vavrik, D.; Jakubek, J.; Jandejsek, I.; Krejci, F.; Kumpova, I.; Zemlicka, J.

    2015-04-01

    This work is focused on the development of instrumental radiographic methods for detection of delaminations in layered carbon fibre reinforced plastic composites used in the aerospace industry. The main limitation of current visualisation techniques is a very limited possibility to image so-called closed delaminations in which delaminated layers are in contact practically with no physical gap. In this contribution we report the development of innovative methods for closed delamination detection using an X-ray phase contrast technique for which the distance between delamination surfaces is not relevant. The approach is based on the energetic sensitivity of phase-enhanced radiography. Based on the applied methodology, we can distinguish both closed and open delamination. Further we have demonstrated the possibility to visualise open delaminations characterised by a physical gap between delaminated layers. This delamination type was successfully identified and visualized utilizing a high resolution and computed tomography table-top technique based on proper beam-hardening effect correction.

  11. Advanced analysis technique for the evaluation of linear alternators and linear motors

    NASA Technical Reports Server (NTRS)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  12. Advanced Analytical Techniques for the Measurement of Nanomaterials in Food and Agricultural Samples: A Review

    PubMed Central

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2013-01-01

    Abstract Nanotechnology offers substantial prospects for the development of state-of-the-art products and applications for agriculture, water treatment, and food industry. Profuse use of nanoproducts will bring potential benefits to farmers, the food industry, and consumers, equally. However, after end-user applications, these products and residues will find their way into the environment. Therefore, discharged nanomaterials (NMs) need to be identified and quantified to determine their ecotoxicity and the levels of exposure. Detection and characterization of NMs and their residues in the environment, particularly in food and agricultural products, have been limited, as no single technique or method is suitable to identify and quantify NMs. In this review, we have discussed the available literature concerning detection, characterization, and measurement techniques for NMs in food and agricultural matrices, which include chromatography, flow field fractionation, electron microscopy, light scattering, and autofluorescence techniques, among others. PMID:23483065

  13. Fault Detection of Gearbox from Inverter Signals Using Advanced Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Pislaru, C.; Lane, M.; Ball, A. D.; Gu, F.

    2012-05-01

    The gear faults are time-localized transient events so time-frequency analysis techniques (such as the Short-Time Fourier Transform, Wavelet Transform, motor current signature analysis) are widely used to deal with non-stationary and nonlinear signals. Newly developed signal processing techniques (such as empirical mode decomposition and Teager Kaiser Energy Operator) enabled the recognition of the vibration modes that coexist in the system, and to have a better understanding of the nature of the fault information contained in the vibration signal. However these methods require a lot of computational power so this paper presents a novel approach of gearbox fault detection using the inverter signals to monitor the load, rather than the motor current. The proposed technique could be used for continuous monitoring as well as on-line damage detection systems for gearbox maintenance.

  14. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  15. Advanced statistics: applying statistical process control techniques to emergency medicine: a primer for providers.

    PubMed

    Callahan, Charles D; Griffen, David L

    2003-08-01

    Emergency medicine faces unique challenges in the effort to improve efficiency and effectiveness. Increased patient volumes, decreased emergency department (ED) supply, and an increased emphasis on the ED as a diagnostic center have contributed to poor customer satisfaction and process failures such as diversion/bypass. Statistical process control (SPC) techniques developed in industry offer an empirically based means to understand our work processes and manage by fact. Emphasizing that meaningful quality improvement can occur only when it is exercised by "front-line" providers, this primer presents robust yet accessible SPC concepts and techniques for use in today's ED.

  16. Image enhancement and advanced information extraction techniques for ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.

    1975-01-01

    The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.

  17. Advances in Surgical Reconstructive Techniques in the Management of Penile, Urethral, and Scrotal Cancer.

    PubMed

    Bickell, Michael; Beilan, Jonathan; Wallen, Jared; Wiegand, Lucas; Carrion, Rafael

    2016-11-01

    This article reviews the most up-to-date surgical treatment options for the reconstructive management of patients with penile, urethral, and scrotal cancer. Each organ system is examined individually. Techniques and discussion for penile cancer reconstruction include Mohs surgery, glans resurfacing, partial and total glansectomy, and phalloplasty. Included in the penile cancer reconstruction section is the use of penile prosthesis in phalloplasty patients after penectomy, tissue engineering in phallic regeneration, and penile transplantation. Reconstruction following treatment of primary urethral carcinoma and current techniques for scrotal cancer reconstruction using split-thickness skin grafts and flaps are described.

  18. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    NASA Technical Reports Server (NTRS)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  19. Advanced techniques for detection and identification of microbial agents of gastroenteritis.

    PubMed

    Dunbar, Sherry A; Zhang, Hongwei; Tang, Yi-Wei

    2013-09-01

    Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.

  20. Principles and techniques in the design of ADMS+. [advanced data-base management system

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nick; Kang, Hyunchul

    1986-01-01

    'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

  1. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    SciTech Connect

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  2. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  3. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    PubMed Central

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  4. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  5. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  6. Management of a coronally advanced lingual flap in regenerative osseous surgery: a case series introducing a novel technique.

    PubMed

    Ronda, Marco; Stacchi, Claudio

    2011-01-01

    One of the crucial factors in the success of guided bone regeneration procedures is the correct management of the soft tissues. This allows for stable primary wound closure without tension, which can result in premature exposure of the augmentation area, jeopardizing the final outcome. The use of vertical and periosteal incisions to passivate buccal and lingual flaps in the posterior mandible is often limited by anatomical factors. This paper reports on a series of 69 consecutive cases introducing a novel surgical technique to release and advance the lingual flap coronally in a safe and predictable manner.

  7. An advanced test technique to quantify thermomechanical fatigue damage accumulation in composite materials

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1993-01-01

    A mechanical test technique was developed to assist in quantifying the accumulation of damage in composite materials during thermomechanical fatigue (TMF) cycling. This was accomplished by incorporating definitive elastic mechanical property measurements into an ongoing load-controlled TMF test without disturbing the test specimen or significantly altering the test conditions. The technique allows two fundamental composite properties consisting of the isothermal elastic static moduli and the macroscopic coefficient of thermal expansion (CTE) to be measured and collected as functions of the TMF cycles. The specific implementation was incorporated into the commonly employed idealized in-phase and out-of-phase TMF cycles. However, the techniques discussed could be easily implemented into any form of load-controlled TMF mission cycle. By quantifying the degradations of these properties, tremendous insights are gained concerning the progression of macroscopic composite damage and often times the progression of damage within a given constituent. This information should also be useful for the characterization and essential for the verification of analytical damage modeling methodologies. Several examples utilizing this test technique are given for three different fiber lay-ups of titanium metal matrix composites.

  8. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  9. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  10. Advanced SuperDARN meteor wind observations based on raw time series analysis technique

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

    2009-04-01

    The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

  11. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  12. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  13. Advanced Techniques for Deploying Reliable and Efficient Access Control: Application to E-healthcare.

    PubMed

    Jaïdi, Faouzi; Labbene-Ayachi, Faten; Bouhoula, Adel

    2016-12-01

    Nowadays, e-healthcare is a main advancement and upcoming technology in healthcare industry that contributes to setting up automated and efficient healthcare infrastructures. Unfortunately, several security aspects remain as main challenges towards secure and privacy-preserving e-healthcare systems. From the access control perspective, e-healthcare systems face several issues due to the necessity of defining (at the same time) rigorous and flexible access control solutions. This delicate and irregular balance between flexibility and robustness has an immediate impact on the compliance of the deployed access control policy. To address this issue, the paper defines a general framework to organize thinking about verifying, validating and monitoring the compliance of access control policies in the context of e-healthcare databases. We study the problem of the conformity of low level policies within relational databases and we particularly focus on the case of a medical-records management database defined in the context of a Medical Information System. We propose an advanced solution for deploying reliable and efficient access control policies. Our solution extends the traditional lifecycle of an access control policy and allows mainly managing the compliance of the policy. We refer to an example to illustrate the relevance of our proposal.

  14. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  15. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  16. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  17. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in flight measured drag polar, lift curve, and aircraft specific excess power. From these elements, many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  18. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  19. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  20. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    SciTech Connect

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  1. Recent advances in sample preparation techniques and methods of sulfonamides detection - A review.

    PubMed

    Dmitrienko, Stanislava G; Kochuk, Elena V; Apyari, Vladimir V; Tolmacheva, Veronika V; Zolotov, Yury A

    2014-11-19

    Sulfonamides (SAs) have been the most widely used antimicrobial drugs for more than 70 years, and their residues in foodstuffs and environmental samples pose serious health hazards. For this reason, sensitive and specific methods for the quantification of these compounds in numerous matrices have been developed. This review intends to provide an updated overview of the recent trends over the past five years in sample preparation techniques and methods for detecting SAs. Examples of the sample preparation techniques, including liquid-liquid and solid-phase extraction, dispersive liquid-liquid microextraction and QuEChERS, are given. Different methods of detecting the SAs present in food and feed and in environmental, pharmaceutical and biological samples are discussed.

  2. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  3. Head up and head mounted display performance improvements through advanced techniques in the manipulation of light

    NASA Astrophysics Data System (ADS)

    Wisely, Paul L.

    2009-05-01

    Since their introduction a number of years ago, head up and helmet mounted displays have undergone continuous and intensive development in aerospace applications. To date, the designs have been performed using geometric optic design techniques and have progressed to the point where very little further improvement in their characteristics is possible. This paper describes a display realised by the use of new optical design techniques based on wave-guiding principles that have enabled substantial further significant improvements to be made. These improvements are not only in respect of size, weight and volume for a given optical performance, but also in the optical characteristics that currently limit the usability of such displays in many applications. Displays that have been realised and tested through these methods are described and their performance in laboratory and flight trials discussed, together with considerations for further progress in their development.

  4. Temperature and pressure measurement techniques for an advanced turbine test facility

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.; Cochran, R. P.

    1980-01-01

    A high pressure, high-temperature turbine test facility constructed for use in turbine cooling research is described. Several recently developed temperature and pressure measuring techniques are used in this facility. The measurement techniques, their status, previous applications and some results are discussed. Noncontact surface temperature measurements are made by optical methods. Radiation pyrometry principles combined with photoelectric scanning are used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components are expected to be handled with an 80 channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft.

  5. Carrier detection and prenatal diagnosis of hemophilia B with more advanced techniques.

    PubMed

    Caprino, D; Acquila, M; Mori, P G

    1993-12-01

    We used the PCR to amplify three polymorphic regions of Factor IX gene on 35 Italian families: DdeI intron 1, Mn1I exon f, and the polymorphism HhaI located 8 kb at the 3' end of FIX gene. We analyzed the Mn1I and HhaI markers on DGGE and DdeI polymorphism on agarose gel. We reached an informativity of 78% and we found one mutation at codon 145 (exon f) during the screening for Mn1I polymorphism. Furthermore, we performed 16 prenatal diagnoses on chorionic villus samples; five were female and 11 male. Four were uninformative three healthy and one affected male fetus were recognized by PCR techniques, two healthy and one affected fetus by Southern analysis. In three pregnant women examined for the first time during pregnancy, the PCR technique allowed us to perform a rapid diagnosis of noncarrier status, avoiding the fetal sampling procedures.

  6. Advanced techniques for free-space optical quantum cryptography over water

    NASA Astrophysics Data System (ADS)

    Hill, Alexander D.; Christensen, Bradley; Kwiat, Paul G.

    2016-03-01

    Free-space quantum key distribution (QKD) over water (e.g., ship to ship) may be limited by ship motion and atmospheric effects, such as mode distortion and beam wander due to turbulence. We report on a technique which reduces noise by excluding spatial modes which are less likely to contain QKD signal photons and experimentally demonstrate an improvement in QKD key generation rates in various noise and turbulence regimes.

  7. Exploring the theoretical basis of nursing using advanced techniques of concept analysis.

    PubMed

    Morse, J M

    1995-03-01

    In this article, the traditional methods of concept development are critiqued, and alternative methods that use qualitative methods of inquiry are presented. Variations of concept development techniques appropriate to the maturity of the concept being explored are then described, including methods for concept delineation, concept comparison, concept clarification, concept correction, and concept identification. To illustrate the application of concept development methods to nursing theory, a research program to delineate the construct of comfort is described.

  8. An Evaluation of an Advanced System Analysis Technique for Modeling a DoD Training Environment

    DTIC Science & Technology

    1977-09-01

    on software engineering at the Massa- chusetts Institute of Technology . SotTech has applied the technique. to a wide range of planning, analysis, and...of various Commander’s Conferences and Technology Symposiums sponsored by TIADOC in 1975 and 1976. While this overview may now be slightly dated, it...this group. 1. The Army’s instructional strategies were not as cost- efficient as some more modern instructional technologies . 2. School personnel

  9. Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials

    PubMed Central

    Schryvers, D; Cao, S; Tirry, W; Idrissi, H; Van Aert, S

    2013-01-01

    After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary Ni–Ti, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix. PMID:27877554

  10. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  11. VCM-OFDM technique for advanced space communications system with high spectral efficiency

    NASA Astrophysics Data System (ADS)

    Li, Jionghui; Zhou, Qing; Xiong, Weiming; Zhang, Ying; Yao, Chen

    2016-11-01

    The development of precise scientific payloads brings higher demand on the efficiency of space communications system to transmit the increasing volume of scientific data. Aiming to this issue, Orthogonal Frequency Division Multiplexing (OFDM) is chosen for its inherent capability of high-rate data transmission. Further, considering the dynamic link condition due to satellite orbital motion, we propose a new technique which combines Variable Coding Modulation (VCM) with OFDM to enhance the communication link spectral efficiency with required transmission reliability. With VCM-OFDM technique, the channel coding and modulation mode can be variable with time according to the link conditions, in order to fit the link budget curve and maintain a relatively fixed link margin. Hence, link resource waste can be reduced and throughput can be remarkably improved. Considering that OFDM-based systems are sensitive to Doppler shifts/spread, the coding and modulation mode (CODMOD) selection should be optimized subject to this scenario. This paper introduces the architecture of near-earth space data transmission system based on VCM-OFDM technique. The Doppler influence is analyzed through simulation and the CODMOD selection algorithm is discussed. The results prove the high performance on spectral efficiency enhancement of VCM-OFDM by comparison with several existing alternative methods.

  12. Analysis of liquid penetration in paper structures by advanced imaging techniques

    NASA Astrophysics Data System (ADS)

    Arthur, Beth Ann

    Ink penetration in paper is influenced by the structure of the interfiber and intrafiber void spaces and the surface characteristics of the fibers. This dissertation describes new techniques to determine the influence of the fiber surfaces and the cell wall internal structure on ink spreading and penetration. The location and penetration of ink is demonstrated by optical, scanning electron, confocal laser scanning, and transmission electron (TEM) microscopy methods. Ink penetration, as determined by each of these methods, is compared. The hemicelluloses of the fiber's internal void surfaces can be determined by immunochemical labeling in conjunction with TEM imaging. It is demonstrated through the use of primary monoclonal antibodies with specificity for hemicelluloses with a secondary colloidal gold marker. This technique provides a way to visualize the location of hemicelluloses inside the cell wall and on the surfaces of nanopores. Combining paper structure with fluid spreading and wicking models can identify the influence of fiber surfaces and the cell wall on drop absorption. Ink spreading coefficients for such modeling are determined through a series of designed experiments (DoE) and comparisons to a theoretical sessile drop. Application: Microscopic techniques used to determine biological and physical locations in plants on a fibrous level also can be used to study ink diffusion, water uptake, and other characteristics of fibrous material. Key Words: Immunolableing of hemicelluloses, DoE, drop spread modeling, ink diffusion.

  13. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment.

  14. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  15. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  16. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  17. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants.

  18. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.

  19. Methods for quantification of soil-transmitted helminths in environmental media: current techniques and recent advances

    PubMed Central

    Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.

    2015-01-01

    Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788

  20. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    SciTech Connect

    Schalkoff, R.J.; Geist, R.M.; Dawson, D.M.

    1998-06-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  1. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  2. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  3. Two-Person Technique of Peroral Endoscopic Myotomy for Achalasia with an Advanced Endoscopist and a Thoracic Surgeon: Initial Experience

    PubMed Central

    Jegadeesan, Ramprasad; Navaneethan, Udayakumar; Lopez, Rocio; Murthy, Sudish C.; Raja, Siva

    2016-01-01

    Background and Aims. We initiated peroral endoscopic myotomy (POEM) utilizing a two-person technique with combination of an advanced endoscopist and a thoracic surgeon with complementary skills. Our aim was to determine the feasibility and outcomes in initial 20 patients. Methods. In this observational study, main outcomes measured were therapeutic success in relieving symptoms (Eckardt score < 3), decrease in lower esophageal sphincter (LES) pressures, improvement in emptying on timed barium esophagogram (TBE), and complications. Results. POEM was successful in all 20 patients with a mean operative time of 140.1 + 32.9 minutes. Eckardt symptom scores decreased significantly at two-month follow-up (6.4 + 2.9 versus 0.25 + 0.45, p < 0.001). Both basal and residual LES pressures decreased significantly (28.2 + 14.1 mmHg versus 12.8 + 6.3 and 22.4 + 11.3 versus 6.3 + 3.4 mmHg, p = 0.025 and <0.001, resp.). Barium column height at 5 minutes on TBE reduced from 6.8 + 4.9 cm to 2.3 + 2.9 cm (p = 0.05). Two patients (10%) had mucosal perforations and one had delayed bleeding (5%). Conclusions. Two-person technique of POEM with combination of an advanced endoscopist and a thoracic surgeon is highly successful with low risk of complications. PMID:27630977

  4. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  5. Advanced definition study for the determination of atmospheric ozone using the satellite eclipse technique

    NASA Technical Reports Server (NTRS)

    Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.

    1973-01-01

    A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.

  6. Advanced Failure Determination Measurement Techniques Used in Thermal Fatigue Life Testing of Electronic Packaging

    NASA Technical Reports Server (NTRS)

    Wallace, A. P.; Cornford, S. L.; Gross, M. A.

    1996-01-01

    Thermal fatigue life testing of various electronic packaging technologies is being performed by the Reliability Technology Group at the Jet Propulsion Laboratory. These testing efforts are in progress to improve uderstanding of the reliability issues associated with low volume packaging technologies for space applications and to develop qualification and acceptance approaches for these technologies. The work described here outlines the electrical failure detection techniques used during testing by documenting the circuits and components used to make these measurements, the sensitivity of the measurements, and the applicability of each specific measurement.

  7. Advanced Technologies for the Improvement of Spray Application Techniques in Spanish Viticulture: An Overview

    PubMed Central

    Gil, Emilio; Arnó, Jaume; Llorens, Jordi; Sanz, Ricardo; Llop, Jordi; Rosell-Polo, Joan R.; Gallart, Montserrat; Escolà, Alexandre

    2014-01-01

    Spraying techniques have been undergoing continuous evolution in recent decades. This paper presents part of the research work carried out in Spain in the field of sensors for characterizing vineyard canopies and monitoring spray drift in order to improve vineyard spraying and make it more sustainable. Some methods and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a variable rate sprayer is described. All these technologies are interesting in terms of adjusting the amount of pesticides applied to the target canopy. PMID:24451462

  8. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  9. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  10. Performance and Advanced Data Placement Techniques with Ceph's Distributed Storage System

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.

    2016-10-01

    The STAR online computing environment is a demanding concentrated multipurpose compute system with the objective to obtain maximum throughput with process concurrency. Motivation for extending the STAR online compute farm from a simple job processing tool for data taking, into a multipurpose resource equipped with a large storage system would lead any dedicated resources to become an extremely efficient and an attractive multi-purpose facility. To achieve this goal, our compute farm is using the Ceph distributed storage system which has proven to be an agile solution due to its effective POSIX interface and excelling its object storage with IO concurrency. With this we have taken our cluster one step further in terms of IO performance by investigating and leveraging new technologies and key features of Ceph. With the acquisition of a 10Gb backbone network we have ensured to eliminate the network as a limitation. With further acquisition of large fast drives (1TB SSDs) we will show how one can customize the data placement options Ceph has to offer such as primary affinity, mounting OSD journals on SSDs, and Cache Tiering along with non-Ceph related local disk caching techniques. We will discuss the latest performance results along with the expected results by using each technique. We hope this paper will serve the community's interest for the Ceph distributed storage solution.

  11. Nanosatellites in LEO and beyond: Advanced Radiation protection techniques for COTS-based spacecraft

    NASA Astrophysics Data System (ADS)

    Selčan, David; Kirbiš, Gregor; Kramberger, Iztok

    2017-02-01

    This paper presents an approach for implementing radiation protection FDIR (Fault Detection, Isolation and Recovery) techniques designed especially for nanosatellites, capable of ensuring reliable operation in harsh orbits using COTS (Commercial off the Shelf) components. The radiation environment, as encountered by nanosatellites utilizing Flash-based FPGAs in orbits higher than Low Earth Orbit, is analyzed, primarily focusing on SEE (Single Event Effects). In order to assure reliable operation, the FDIR policy is split into two levels: the Low Level FDIR which ensures that no permanent damage occurs to the satellite's electronics, which then allows the use of a High Level FDIR tasked with maintaining high availability. A hierarchical approach, consisting of three types of current limiters in combination with watchdog timers and fault tolerant logic implemented inside a flash-based FPGA is proposed for the Low Level FDIR. The impacts of various radiation-induced faults are analyzed with respect to how the FDIR techniques mitigate them. The proposed current limiters and watchdog timers have been implemented and evaluated for suitability of use with the hierarchical FDIR policy. In order to decrease the impacts on the size and weight footprints, the current limiters were implemented as stacked 3D modules.

  12. Advanced numerical techniques for accurate unsteady simulations of a wingtip vortex

    NASA Astrophysics Data System (ADS)

    Ahmad, Shakeel

    A numerical technique is developed to simulate the vortices associated with stationary and flapping wings. The Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations are used over an unstructured grid. The present work assesses the locations of the origins of vortex generation, models those locations and develops a systematic mesh refinement strategy to simulate vortices more accurately using the URANS model. The vortex center plays a key role in the analysis of the simulation data. A novel approach to locating a vortex center is also developed referred to as the Max-Max criterion. Experimental validation of the simulated vortex from a stationary NACA0012 wing is achieved. The tangential velocity along the core of the vortex falls within five percent of the experimental data in the case of the stationary NACA0012 simulation. The wing surface pressure coefficient also matches with the experimental data. The refinement techniques are then focused on unsteady simulations of pitching and dual-mode wing flapping. Tip vortex strength, location, and wing surface pressure are analyzed. Links to vortex behavior and wing motion are inferred. Key words: vortex, tangential velocity, Cp, vortical flow, unsteady vortices, URANS, Max-Max, Vortex center

  13. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    SciTech Connect

    DeCarli, J.P. II ); Carta, G. . Dept. of Chemical Engineering); Byers, C.H. )

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  14. Advanced techniques for neoclassical tearing mode control in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Volpe, F. A. G.; Austin, M. E.; La Haye, R. J.; Lohr, J.; Prater, R.; Strait, E. J.; Welander, A. S.

    2009-10-01

    Two techniques were developed at DIII-D [J. L. Luxon, Nucl. Fusion 42, 64 (2002)] to tackle ITER-specific aspects of neoclassical tearing mode (NTM) control, namely, (1) the relatively small size of the rotating islands, smaller than the electron cyclotron current drive (ECCD) deposition region, and (2) the increased tendency of the islands, compared to present devices, to lock to the wall or to the residual error field, in a position not necessarily accessible to ECCD. Modulated ECCD is known to suppress small islands more efficiently, when "broad," than continuous ECCD. At DIII-D, a NTM of poloidal/toroidal mode numbers m /n=3/2 was completely stabilized by a new technique where oblique electron cyclotron emission acted at the same time as an indicator of good alignment between ECCD and the island, and as a waveform generator, for modulation in synch and in phase with the island O-point. In another experiment, after locking in an unfavorable position, a 2/1 island was steered by externally generated magnetic perturbations, brought in the view of the gyrotrons and partly stabilized by ECCD in the island O-point. Magnetic perturbations were also used to sustain and control the mode rotation, which has the potential for an easier ECCD modulation.

  15. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  16. Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report

    SciTech Connect

    1995-10-09

    Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

  17. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  18. Pluripotent stem cell derivation and differentiation toward cardiac muscle: novel techniques and advances in patent literature.

    PubMed

    Quattrocelli, Mattia; Thorrez, Lieven; Sampaolesi, Maurilio

    2013-04-01

    Pluripotent stem cells hold unprecedented potential for regenerative medicine, disease modeling and drug screening. Embryonic stem cells (ESCs), standard model for pluripotency studies, have been recently flanked by induced pluripotent stem cells (iPSCs). iPSCs are obtained from somatic cells via epigenetic and transcriptional reprogramming, overcoming ESC-related ethical issues and enabling the possibility of donor-matching pluripotent cell lines. Since the European Court of Justice banned patents involving embryo disaggregation to generate human ESCs, iPSCs can now fuel the willingness of European companies to invest in treatments based on stem cells. Moreover, iPSCs share many unique features of ESCs, such as unlimited self-renewal potential and broad differentiation capability, even though iPSCs seem more susceptible to genomic instability and display epigenetic biases as compared to ESCs. Both ESCs and iPSCs have been intensely investigated for cardiomyocyte production and cardiac muscle regeneration, both in human and animal models. In vitro and in vivo studies are continuously expanding and refining this field via genetic manipulation and cell conditioning, trying to achieve standard and reproducible products, eligible for clinical and biopharmaceutical scopes. This review focuses on the recently growing body of patents, concerning technical advances in production, expansion and cardiac differentiation of ESCs and iPSCs.

  19. The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution

    SciTech Connect

    White, Claire; Bloomer, Breaunnah E.; Provis, John L.; Henson, Neil J.; Page, Katharine L.

    2012-05-16

    With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

  20. An educational training simulator for advanced perfusion techniques using a high-fidelity virtual patient model.

    PubMed

    Tokaji, Megumi; Ninomiya, Shinji; Kurosaki, Tatsuya; Orihashi, Kazumasa; Sueda, Taijiro

    2012-12-01

    The operation of cardiopulmonary bypass procedure requires an advanced skill in both physiological and mechanical knowledge. We developed a virtual patient simulator system using a numerical cardiovascular regulation model to manage perfusion crisis. This article evaluates the ability of the new simulator to prevent perfusion crisis. It combined short-term baroreflex regulation of venous capacity, vascular resistance, heart rate, time-varying elastance of the heart, and plasma-refilling with a simple lumped parameter model of the cardiovascular system. The combination of parameters related to baroreflex regulation was calculated using clinical hemodynamic data. We examined the effect of differences in autonomous-nerve control parameter settings on changes in blood volume and hemodynamic parameters and determined the influence of the model on operation of the control arterial line flow and blood volume during the initiation and weaning from cardiopulmonary bypass. Typical blood pressure (BP) changes (hypertension, stable, and hypotension) were reproducible using a combination of four control parameters that can be estimated from changes in patient physiology, BP, and blood volume. This simulation model is a useful educational tool to learn the recognition and management skills of extracorporeal circulation. Identification method for control parameter can be applied for diagnosis of heart failure.

  1. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections.

    PubMed

    Franek, Michal; Suchánková, Jana; Sehnalová, Petra; Krejčí, Jana; Legartová, Soňa; Kozubek, Stanislav; Večeřa, Josef; Sorokin, Dmitry V; Bártová, Eva

    2016-04-01

    Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.

  2. Advanced imaging techniques in the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma

    PubMed Central

    Yang, Ke; Zhang, Xiao-Ming; Yang, Lin; Xu, Hao; Peng, Juan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization (TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusion-weighted magnetic resonance imaging (MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusion-weighted imaging, blood oxygen level-dependent MRI, positron emission tomography (PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed. PMID:27239110

  3. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    NASA Astrophysics Data System (ADS)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  4. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  5. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  6. Development of a corrosion detection experiment to evaluate conventional and advanced NDI techniques

    SciTech Connect

    Roach, D.

    1995-12-31

    The Aging Aircraft NDI Validation Center (AANC) was established by the Federal Aviation Administration Technical Center (FAATC) at Sandia National Laboratories in August of 1991. The goal of the AANC is to provide independent validation of technologies intended to enhance the structural inspection of aging commuter and transport aircraft. The deliverables from the AANC`s validation activities are assessments of the reliability of existing and emerging inspection technologies as well as analyses of the cost benefits to be derived from their implementation. This paper describes the methodology developed by the AANC to assess the performance of NDI techniques. In particular, an experiment being developed to evaluate corrosion detection devices will be presented. The experiment uses engineered test specimens, as well as complete aircraft test beds to provide metrics for NDI validation.

  7. Miscibility studies of Polyethylene Glycol with Polystyrene in Toluene by Various Physical and Advanced Techniques

    NASA Astrophysics Data System (ADS)

    Padmanaban, R.; Venkatramanan, K.

    2016-10-01

    Polyethylene glycol (PEG) is a chemical that has an extensive variety of applications in the world of medicine. It is used as a base to manufacture certain medicines, assist in drug delivery, and is also used as an agent in some medical procedures. It is an osmotic laxative. Polyethylene glycol works by retaining water in the stool, resulting in softer stools and more frequent bowel movements. Polyethylene glycol does not affect glucose and electrolytes in the body. PEG refers to a hydrocarbon molecule that can have a variable size, and different sizes can have different physical properties, giving this compound a great deal of flexibility in its application. In the present study, Polyethylene Glycol (PEG) (Molar mass: 1500) is blended with Polystyrene (PS) (Molar mass: 35000) in Toluene. The miscibility nature of the poly blend is analyzed by Ultrasonic velocity, viscosity, density and refractive index techniques at 303K. The compatibility nature of the blend is confirmed by Differential Scanning Calorimetry (DSC) studies.

  8. A review of modeling techniques for advanced effects in shape memory alloy behavior

    NASA Astrophysics Data System (ADS)

    Cisse, Cheikh; Zaki, Wael; Ben Zineb, Tarak

    2016-10-01

    micro, micro-macro and macro scales focusing pseudoelastic and shape memory effects. The paper reviews and discusses various techniques used in the literature for modeling complex behaviors observed in shape memory alloys (SMAs) that go beyond the core pseudoelastic and shape memory effects. These behaviors, which will be collectively referred to herein as ‘secondary effects’, include mismatch between austenite and martensite moduli, martensite reorientation under nonproportional multiaxial loading, slip and transformation-induced plasticity and their influence on martensite transformation, strong thermomechanical coupling and the influence of loading rate, tensile-compressive asymmetry, and the formation of internal loops due to incomplete phase transformation. In addition, because of their importance for practical design considerations, the paper discusses functional and structural fatigue, and fracture mechanics of SMAs.

  9. Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982

    SciTech Connect

    Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

    1985-11-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  10. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  11. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  12. Advanced Treatment Monitoring for Olympic-Level Athletes Using Unsupervised Modeling Techniques

    PubMed Central

    Siedlik, Jacob A.; Bergeron, Charles; Cooper, Michael; Emmons, Russell; Moreau, William; Nabhan, Dustin; Gallagher, Philip; Vardiman, John P.

    2016-01-01

    Context Analysis of injury and illness data collected at large international competitions provides the US Olympic Committee and the national governing bodies for each sport with information to best prepare for future competitions. Research in which authors have evaluated medical contacts to provide the expected level of medical care and sports medicine services at international competitions is limited. Objective To analyze the medical-contact data for athletes, staff, and coaches who participated in the 2011 Pan American Games in Guadalajara, Mexico, using unsupervised modeling techniques to identify underlying treatment patterns. Design Descriptive epidemiology study. Setting Pan American Games. Patients or Other Participants A total of 618 US athletes (337 males, 281 females) participated in the 2011 Pan American Games. Main Outcome Measure(s) Medical data were recorded from the injury-evaluation and injury-treatment forms used by clinicians assigned to the central US Olympic Committee Sport Medicine Clinic and satellite locations during the operational 17-day period of the 2011 Pan American Games. We used principal components analysis and agglomerative clustering algorithms to identify and define grouped modalities. Lift statistics were calculated for within-cluster subgroups. Results Principal component analyses identified 3 components, accounting for 72.3% of the variability in datasets. Plots of the principal components showed that individual contacts focused on 4 treatment clusters: massage, paired manipulation and mobilization, soft tissue therapy, and general medical. Conclusions Unsupervised modeling techniques were useful for visualizing complex treatment data and provided insights for improved treatment modeling in athletes. Given its ability to detect clinically relevant treatment pairings in large datasets, unsupervised modeling should be considered a feasible option for future analyses of medical-contact data from international competitions. PMID

  13. Advanced Techniques for Neoclassical Tearing Mode Control by Electron Cyclotron Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Volpe, F.

    2008-11-01

    Novel techniques have been developed in DIII-D for (1) control of rapidly rotating neoclassical tearing modes (NTMs) and (2) control of NTMs that have locked to a residual error field or the resistive wall. Electron cyclotron current drive (ECCD) has been successful at suppression of NTMs in present tokamaks, but will face new challenges in ITER where NTMs are expected to be more prone to locking. In order to avoid locking, rotating islands must be controlled at small widths that are expected to be narrower than the ECCD deposition. Under these conditions, modulated ECCD is predicted to stabilize more efficiently than continuous current drive. (1) A new technique developed at DIII-D detects the island using oblique electron cyclotron emission with a line of sight equivalent to that of the ECCD. This removes much of the uncertainty in mapping the island structure from the detector to the current drive location. This method was used both to measure the radial alignment between ECCD and the island, and to synchronize the modulation in phase with the island O-point, successfully stabilizing an NTM with mode numbers m/n=3/2. (2) If islands do grow large enough to lock, locked mode control will be necessary for recovery or avoiding disruption in ITER. A potential difficulty associated with locking is that the mode can lock in a position not necessarily accessible to ECCD. To obviate this problem, magnetic perturbations were used for the first time to unlock and reposition a locked m/n=2/1 mode in order to bring it in view of the gyrotron beam, leading to a significant reduction in island size. Once unlocked, magnetic perturbations were also used to sustain and control the mode rotation, which has the potential for easier ECCD modulation

  14. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  15. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques.

    PubMed

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon; Cohen, Yoram

    2017-04-08

    As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6-10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed.

  16. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and

  17. Results of two different surgical techniques in the treatment of advanced-stage Freiberg's disease

    PubMed Central

    Özkul, Emin; Gem, Mehmet; Alemdar, Celil; Arslan, Hüseyin; Boğatekin, Ferit; Kişin, Bülent

    2016-01-01

    Background: Freiberg's disease is an osteochondrosis most commonly seen in adolescent women and characterized by pain, swelling and motion restriction in the second metatarsal. The early stages of this disease can be managed with semirigid orthoses, metatarsal bars and short leg walking cast. Number of operative methods are suggested which can be used depending on the pathophysiology of the disease, including abnormal biomechanics, joint congruence and degenerative process. We evaluated the outcomes of the patients with Freiberg's disease who were treated with dorsal closing-wedge osteotomy and resection of the metatarsal head. Patients and Methods: 16 patients (11 female, 5 male) with a mean age of 24.5 (range 13–49 years) years who underwent dorsal closing wedge osteotomy or resection of the metatarsal head were included in this retrospective study. Second metatarsal was affected in 13 and third metatarsal in three patients. According to the Smillie's classification system, ten patients had type IV osteonecrosis and six patients had type V. The results of the patients were evaluated using the lesser metatarsophalangeal-interphalangeal (LMPI) scale. Results: According to the LMPI scale, the postoperative scores for the osteotomy and excision groups were 86 (range 64–100) and 72.6 (range 60–85), respectively. In the osteotomy group, mean passive flexion restriction was 18° (range 0°–35°) and mean passive extension restriction was 12° (range 0°–25°). Mean metatarsal shortening was 2.2 mm (range 2–4 mm) in the osteotomy group as opposed to 9.8 mm (range 7–14 mm) in the excision group. Significant pain relief was obtained in both groups following the surgery. Conclusions: The decision of performing osteotomy or resection arthroplasty in the patients with advanced-stage Freiberg's disease should be based on the joint injury and the patients should be informed about the cosmetic problems like shortening which may arise from resection. PMID:26955180

  18. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Menzies, B.; Smouse, S.M.; Stallings, J.W.

    1995-09-01

    Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide NOx emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control/optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  19. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  20. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  1. Advanced InSAR techniques for the management and characterization of geothermal resources

    NASA Astrophysics Data System (ADS)

    Bellotti, F.; Falorni, G.; Morgan, J.; Rucci, A.; Ferretti, A.

    2012-04-01

    InSAR is a remote sensing tool that has applications in both geothermal exploitation and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in different stages of development. SqueeSAR™, which represents the latest breakthrough in InSAR technology, provides a significant increase in the spatial density of measurement points by exploiting signal returns from both point-like and distributed scatterers. Furthermore, recent satellite radar sensors have a higher spatial resolution (down to 1 m), as well as a higher temporal frequency of image acquisitions (down to a few days). The coupling of the new algorithm with this new generation of satellites provides a valuable tool for monitoring the different phases of geothermal production and in support of the decision making process. Some examples from the US are presented here: the first case study involves the use of InSAR within a suite of tools for exploration of the San Emidio geothermal field in Nevada. This project aimed to develop geophysical techniques to identify and map large aperture fractures for the placement of new production/exploration wells. The second and third examples examine two zones in California: the Salton Sea area, where multi-interferogram InSAR provided an overview of surface deformation at a producing geothermal reservoir. Surface deformation in this area was complex, and the added detail provided insight into the interplay of tectonics and production activities. Additional InSAR studies have also been carried out at the Geysers field in order to evaluate the behavior of an Enhanced Geothermal System (EGS) in

  2. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  3. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  4. Advanced Non-Destructive Ocular Visualization Methods by Improved X-Ray Imaging Techniques

    PubMed Central

    Scherer, Kai; Werner, Jens U.; Lang, Gerhard K.; Lang, Gabriele E.; Pfeiffer, Franz; Noël, Peter; Rummeny, Ernst; Herzen, Julia

    2017-01-01

    Due to limited X-ray contrast, the use of micro-CT in histology is so far not as widespread as predicted. While specific staining procedures—mostly using iodine—address this shortcoming, long diffusion times restrict its use in the often time-constrained daily routine. Recently, a novel staining protocol has been proposed using a biochemical preconditioning step, which increases the permeability of the cells for the staining agent. This could enable the imaging of entire organs of small mammals at a yet unmatched image quality with reasonable preparation and scan times. We here propose an adaptation of this technique for virtual ophthalmology and histology by volumetrically assessing both human and porcine eyes. Hereby, we demonstrate that (contrast-enhanced) micro-CT can outperform conventional histology in the assessment of tumor entities, as well as functioning as a supplementary tool for surgeons in the positioning of intraocular implants in-vitro and as a general assessment tool for ophthalmologic specimens. PMID:28129364

  5. The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs

    PubMed Central

    Martin, R.J.; Puttachary, S.; Buxton, S.K.; Verma, S.; Robertson, A.P.

    2014-01-01

    The following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites. PMID:24871674

  6. Advanced Digitization Techniques in Retrieval of Mechanism and Machine Science Resources

    NASA Astrophysics Data System (ADS)

    Lovasz, E.-Ch.; Gruescu, C. M.; Ciupe, V.; Carabas, I.; Margineanu, D.; Maniu, I.; Dehelean, N.

    The European project thinkMOTION works on the purpose of retrieving all-times content regarding mechanisms and machine science by means of creating a digital library, accessible to a broad public through the portal Europeana. DMG-Lib is intended to display the development in the field, from its very beginning up to now days. There is a large range of significant objects available, physically very heterogeneous and needing all to be digitized. The paper presents the workflow, the equipments and specific techniques used in digitization of documents featuring very different characteristics (size, texture, color, degree of preservation, resolution and so on). Once the workflow established on very detailed steps, the development of the workstation is treated. Special equipments designed and assembled at Universitatea "Politehnica" Timisoara are presented. A large series of software applications, including original programs, work for digitization itself, processing of images, management of files, automatic optoelectronic control of capture, storage of information in different stages of processing. An illustrating example is explained, showing the steps followed in order to obtain a clear, high-resolution image from an old original document (very valuable as a historical proof but very poor in quality regarding clarity, contrast and resolution).

  7. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    SciTech Connect

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the development of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.

  8. Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging

    PubMed Central

    Liu, Chengbo; Gong, Xiaojing; Lin, Riqiang; Liu, Feng; Chen, Jingqin; Wang, Zhiyong; Song, Liang; Chu, Jun

    2016-01-01

    Photoacoustic (PA) imaging is a rapidly emerging biomedical imaging modality that is capable of visualizing cellular and molecular functions with high detection sensitivity and spatial resolution in deep tissue. Great efforts and progress have been made on the development of various PA imaging technologies with improved resolution and sensitivity over the past two decades. Various PA probes with high contrast have also been extensively developed, with many important biomedical applications. In comparison with chemical dyes and nanoparticles, genetically encoded probes offer easier labeling of defined cells within tissues or proteins of interest within a cell, have higher stability in vivo, and eliminate the need for delivery of exogenous substances. Genetically encoded probes have thus attracted increasing attention from researchers in engineering and biomedicine. In this review, we aim to provide an overview of the existing PA imaging technologies and genetically encoded PA probes, and describe further improvements in PA imaging techniques and the near-infrared photochromic protein BphP1, the most sensitive genetically encoded probe thus far, as well as the potential biomedical applications of BphP1-based PA imaging in vivo. PMID:27877244

  9. Magnetic and Structural characterization of Co nanowires using advanced electron microscopy techniques

    NASA Astrophysics Data System (ADS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team

    2015-03-01

    We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.

  10. Development of Advanced Coating Techniques for Highly-durable Casting Dies

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Takagi, M.; Mano, T.

    2013-03-01

    In order to improve the durability of aluminum die-casting molds, we applied microstructure-controlled PVD coating techniques. Single-layer and multilayer films consisting of chromium nitride (CrN) or titanium aluminum nitride (TiAlN) were prepared using an ion plating process. Structures of multilayer films were observed using transmission electron microscopy. Pin-shaped mold steel specimens coated with each of the films were soaked in the molten aluminum alloy at 953 K different periods of time, and the amount of weight loss due to erosion was evaluated. The weight losses for the multilayer CrN and TiAlN specimens were found to be less than those for the single-layer specimens. As a practical test, five specimens of core pins used in aluminum die casting of automobile parts were coated with multilayer films, and the number of maintenance operations required to remove aluminum alloy remaining on the specimen surfaces after several thousand castings was counted and compared with six control specimens (core pins treated using a commercial salt bath diffusion process). The number of maintenance operations for CrN- and TiAlN-based multilayer-coated core pins was found to be lower than for the control specimens.

  11. Assessment of small hydropower potential for the Olanesti River using advanced software techniques

    NASA Astrophysics Data System (ADS)

    Moldoveanu, A.; Galie, A.; Moldoveanu, M.; Popa, F.; Tica, E.; Popa, B.

    2017-01-01

    The assessment of small hydropower potential for rivers is essential for the Renewable Energy Sources Directive implementation, in order to identify and analyze opportunities for new small hydropower developments. As the Water Framework Directive requirement is the non-deterioration of the status of the river water bodies, the aspects regarding the consistency of a flow regime downstream hydropower plant and the environmental objectives are important. The paper presents a case study, the Olanesti River (Romania), using software techniques dedicated to the assessment of small hydropower potential. The hydropower potential of the river was assessed considering the heads based on the Digital Terrain Model and the mean flow. In addition, the environmental flow was considered for the installed capacity assessment, in order to cope with the Water Framework Directive requirements. The harnessed hydropower potential, the optimal distance between the water intake and power plant location, their optimum positions along the river sector, installed capacity and electricity production, calculated at an average lifetime, are the outcomes of the software. The applicability of the tool might be extended on a regional scale in order to support the decision making authorities, taking into account the increasing demand for energy as well as the environmental issues.

  12. Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers

    NASA Technical Reports Server (NTRS)

    Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj

    1995-01-01

    The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

  13. Development of advanced techniques for identification of flow stress and friction parameters for metal forming analysis

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjoong

    The accuracy of process simulation in metal forming by finite element method depends on the accuracy of flow stress data and friction value that are input to FEM programs. Therefore, it is essential that these input values are determined using reliable tests and evaluation methods. This study presents the development of inverse analysis methodology and its application to determine flow stress data of bulk and sheet materials at room and elevated temperatures. The inverse problem is defined as the minimization of the differences between the experimental measurements and the corresponding FEM predictions. Rigid-viscoplastic FEM is used to analyze the metal flow while a numerical optimization algorithm adjusts the material parameters used in the simulation until the calculated response matches the measured data within a specified tolerance. The use of the developed inverse analysis methodology has been demonstrated by applying it to the selected reference rheological tests; cylinder compression test, ring compression test, instrumented indentation test, modified limiting dome height test, and sheet hydraulic bulge test. Furthermore, using the determined material property data, full 3-D finite element simulation models, as examples of industrial applications for orbital forming and thermoforming processes have been developed for reliable process simulation. As results of this study, it was shown that the developed inverse analysis methodology could identify both the material parameters and friction factors from one set of tests, simultaneously. Therefore, this technique can offer a systematic and cost effective way for determining material property data for simulation of metal forming processes.

  14. The SALUT Project: Study of Advanced Laser Techniques for the Uncovering of Polychromed Works of Art

    NASA Astrophysics Data System (ADS)

    van der Snickt, G.; De Boeck, A.; Keutgens, K.; Anthierens, D.

    In order to find out whether the existing laser systems can be employed to remove superimposed layers of paint on secco wall paintings in a selective way, laser tests were carried out on three types of prepared samples simulating three stratigraphies that are frequently encountered in practice. OM, EPMA, colorimetry, μRaman, and FT-IR were used to evaluate the results. It was found that Q-switched Nd:YAG lasers emitting at 1,064nm could be employed to remove unwanted layers of oil paint and limewash, but the treatment of large areas requires implementation of a computer-controlled X-Y-Z station in order to control the parameters. However, the applicability of this technique will remain limited as ablation at the established optimum parameters implied a discoloration of the pigments cinnabar, yellow ochre, and burnt sienna. Moreover, it was observed that no ablation took place when the limewash thickness exceeds 25 μm. Unwanted layers of acrylic could be removed in an efficient way with an excimer laser emitting at 193 nm.

  15. Ablation of the locally advanced pancreatic cancer: An introduction and brief summary of techniques.

    PubMed

    Petrou, Athanasios; Moris, Demetrios; Paul Tabet, Patrick; David Wensley Richards, Brian; Kourounis, Georgios

    2016-01-01

    Pancreatic ductal adenocarcinoma is a lethal and late presenting malignancy with dismal survival rates. An estimated total of 330,000 people died from this malignancy in 2012. Although there have been improvements in diagnostic and treatment methods, the survival of late stage pancreatic cancer has not shown significant improvement in the past 4 decades. Multiple treatment approaches are available including chemotherapy, radiotherapy, and immunotherapy, but to this day surgical resection remains the only curative treatment option. Ablative techniques use various forms of energy to cause local tissue destruction through necrosis or apoptosis. They are relevant in pancreatic ductal adenocarcinoma as they are a treatment option in non-resectable tumors where their use ranges from symptom control to reducing tumor size for resection. In this narrative review we have grouped and outlined the various ablative methods, classifying them into thermal (Radiofrequency ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, Cryoablation), and non-thermal ablative methods (Irreversible Electroporation (NanoKnife®), Photodynamic Therapy). This is followed by a description and review of the available evidence on survival and complications for each of these ablative methods. According to the literature, thermal ablative methods appear to be more accessible but are implicated with more complications than non thermal ablative methods which show the most promise.

  16. Femtosecond And Picosecond Laser Ablation Of Intraocular Lenses: An Advanced Technique For Their Surface Modification

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Spyratou, E.; Bacharis, C.; Barberoglou, M.; Englezis, A.; Kalpouzos, C.; Loukakos, P.; Pouli, P.

    2011-09-01

    Ophthalmology is entering a very interesting period with new diffractive multifocals, improved refractive multifocals, and accommodative lenses, all coming out at the same time. A new diffractive-refractive design for providing intermediated vision is apodization. In an apodized pattern, physical diffractive step heights are reduced in height, in an almost continuously varying manner. This study is aimed to investigate the use of ultrashort laser pulses to ablate the surface of intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were performed on hydrophilic and hydrophobic intraocular lenses (IOLs). The samples were irradiated with a Ti:Sapphire laser at λ = 0.785 μm, pulse duration 150 fs, repetition rate 1 kHz and with a Nd:YAG 4ω laser at λ = 0.266 μm, pulse duration 155 ps, repetition rate 10 Hz. We investigated the ablation efficiency and the surface modification with a Scanning Electron Microscope (SEM). The experimental results and the theoretical assumptions on the relevant ablation mechanism are discussed.

  17. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: a review.

    PubMed

    Selvaraj, Jonathan Nimal; Wang, Yan; Zhou, Lu; Zhao, Yueju; Xing, Fuguo; Dai, Xiaofeng; Liu, Yang

    2015-01-01

    Mycotoxin contamination in agro-food systems has been a serious concern over the last few decades in China, where the Ministry of Health has set maximum limits for mycotoxins in different agro-products. Overall survey data show that aflatoxin contamination in infant cereals, edible oils, raw milk, ginger and its related products are far below Chinese regulatory limits. The absence of aflatoxin M1 contamination in infant milk powders indicates a high standard of control. Aflatoxins in liquorice roots and lotus seeds have been reported for the first time. For deoxynivalenol, high levels were found in wheat grown in the Yangtze Delta region, which is more prone to rainfall, supporting Fusarium infection. The emerging mycotoxins beauvericins and enniatins have been reported in the medicinal herbs in China. Ochratoxin A in wine was below the European Union regulatory limits, but fumonisins in maize need to be monitored and future regulatory control considered. Overall from all the survey data analysed in this review, it can be concluded that 92% of the samples analysed had mycotoxin levels below the Chinese regulatory limits. In terms of detection techniques in recent years, immuno-based assays have been developed largely due to their excellent sensitivity and ease of use. Assays targeting multiple mycotoxins like aflatoxins, ochratoxin A, zearalenone and deoxynivalenol have been reported using microarrays and suspension arrays targeting in particular maize, rice and peanuts. Aptamer-based assays against ochratoxin A and aflatoxins B1 and B2 have been developed involving fluorescence detection; and surface plasmon resonance immunosensors have been developed targeting wine, maize, wheat, wild rye, hay and peanut oil with high sensitivity (> 0.025 ng l(-1)). Commercialisation of these technologies is much needed for wider usage in the coming years.

  18. Advances in the regionalization approach: geostatistical techniques for estimating flood quantiles

    NASA Astrophysics Data System (ADS)

    Chiarello, Valentina; Caporali, Enrica; Matthies, Hermann G.

    2015-04-01

    The knowledge of peak flow discharges and associated floods is of primary importance in engineering practice for planning of water resources and risk assessment. Streamflow characteristics are usually estimated starting from measurements of river discharges at stream gauging stations. However, the lack of observations at site of interest as well as the measurement inaccuracies, bring inevitably to the necessity of developing predictive models. Regional analysis is a classical approach to estimate river flow characteristics at sites where little or no data exists. Specific techniques are needed to regionalize the hydrological variables over the considered area. Top-kriging or topological kriging, is a kriging interpolation procedure that takes into account the geometric organization and structure of hydrographic network, the catchment area and the nested nature of catchments. The continuous processes in space defined for the point variables are represented by a variogram. In Top-kriging, the measurements are not point values but are defined over a non-zero catchment area. Top-kriging is applied here over the geographical space of Tuscany Region, in Central Italy. The analysis is carried out on the discharge data of 57 consistent runoff gauges, recorded from 1923 to 2014. Top-kriging give also an estimation of the prediction uncertainty in addition to the prediction itself. The results are validated using a cross-validation procedure implemented in the package rtop of the open source statistical environment R The results are compared through different error measurement methods. Top-kriging seems to perform better in nested catchments and larger scale catchments but no for headwater or where there is a high variability for neighbouring catchments.

  19. Advanced techniques for latent fingerprint detection and validation using a CWL device

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Hildebrandt, Mario; Fischer, Robert; Kiertscher, Tobias; Dittmann, Jana; Vielhauer, Claus

    2012-06-01

    The technology-aided support of forensic experts while investigating crime scenes and collecting traces becomes a more and more important part in the domains of image acquisition and signal processing. The manual lifting of latent fingerprints using conventional methods like the use of carbon black powder is time-consuming and very limited in its scope of application. New technologies for a contact-less and non-invasive acquisition and automatic processing of latent fingerprints, promise the possibilities to inspect much more and larger surface areas and can significantly simplify and speed up the workflow. Furthermore, it allows multiple investigations of the same trace, subsequent chemical analysis of the residue left behind and the acquisition of latent fingerprints on sensitive surfaces without destroying the surface itself. In this work, a FRT MicroProf200 surface measurement device equipped with a chromatic white-light sensor CWL600 is used. The device provides a gray-scale intensity image and 3D-topography data simultaneously. While large area scans are time-consuming, the detection and localization of finger traces are done based on low-resolution scans. The localized areas are scanned again with higher resolution. Due to the broad variety of different surface characteristics the fingerprint pattern is often overlaid by the surface structure or texture. Thus, image processing and classification techniques are proposed for validation and visualization of ridge lines in high-resolution scans. Positively validated regions containing complete or sufficient partial fingerprints are passed on to forensic experts. The experiments are provided on a set of three surfaces with different reflection and texture characteristics, and fingerprints from ten different persons.

  20. Advances in flowing afterglow and selected-ion flow tube techniques

    NASA Astrophysics Data System (ADS)

    Squires, Robert R.

    1992-09-01

    New developments in flowing afterglow and selected-ion flow tube (SIFT) techniques are briefly reviewed. Particular emphasis is given to the new chemical and physical information that can be obtained with use of the tandem flowing afterglow-triple quadrupole apparatus developed in the author's laboratory. Several outstanding recent achievements in the design and utilization of flowing afterglow and SIFT instruments in other laboratories are briefly highlighted that illustrate the power and flexibility of flow-tube-based methods. These include isotope tracer experiments with the tandem flowing afterglow-SIFT instrument in Boulder, studies of large molecular cluster ions with the variable temperature facility at Penn State, and gas-phase metal ion reactions with the laser ablation/fast flow reactor in Madison. Recent applications of the flowing afterglow-triple quadrupole instrument in our laboratory have made use of collision-induced dissociation (CID) as a tool for synthesizing novel ions and for obtaining new thermo-chemical information from threshold energy measurements. Collision-induced decar☐ylation of organic car☐ylate ions provides access to a variety of unusual and highly basic carbanions that cannot be generated with conventional ion sources. The formation and properties of saturated alkyl ions and studies of gas-phase reactions of the methyl anion are briefly described. We have developed a new method for carrying out "preparative CID" in a flowing afterglow with use of a mini-drift tube; some recent applications of this new ion source are presented. Measurement of CID thresholds for simple cleavage reactions of thermalized ions can provide accurate measures of bond strengths, gas-phase acidities and basicities, and heats of formation for ions and reactive neutral species. Applications of this approach in the thermochemical characterization of carbenes, benzynes and biradicals are described. Future prospects for the continued development of flow

  1. Joint IAMAS/IAHS symposium J1 on global monitoring and advanced observing techniques in the atmosphere and hydrosphere

    SciTech Connect

    Ohring, G. ); Aoki, T. ); Halpern, D. ); Henderson-Sellers, A. ); Charlock, T. ); Joseph, J. ); Labitzke, K. ); Raschke, E. ); Smith, W. )

    1994-04-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS) and took place in Yokohama, Japan, 13-15 July 1993, as part of the IAMAS/IAHS Join Assembly. Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  2. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: a review.

    PubMed

    Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An; Liu, Dan

    2015-01-01

    The freshness quality of fish plays an important role in human health and the acceptance of consumers as well as in international fishery trade. Recently, with food safety becoming a critical issue of great concern in the world, determination and evaluation of fish freshness is much more significant in research and development. This review renovates and concentrates recent advances of evaluating methods for fish freshness as affected by preharvest and postharvest factors and highlights the determination methods for fish freshness including sensory evaluation, microbial inspection, chemical measurements of moisture content, volatile compounds, protein changes, lipid oxidation, and adenosine triphosphate (ATP) decomposition (K value), physical measurements, and foreign material contamination detection. Moreover, the advantages and disadvantages of these methods and techniques are compared and discussed and some viewpoints about the current work and future trends are also presented.

  3. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  4. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  5. Advanced Autonomous Formation Control and Trajectory Management Techniques for Multiple Micro UAV Applications (Controle d’une formation autonome evoluee, et gestion des trajectoires. Techniques d’applications pour micro UAV multiples)

    DTIC Science & Technology

    2008-06-01

    Formation Control and Trajectory Management Techniques for Multiple Micro UAV Applications ( Contrôle d’une formation autonome évoluée, et gestion des...EN-SCI-195 Advanced Autonomous Formation Control and Trajectory Management Techniques for Multiple Micro UAV Applications ( Contrôle d’une formation...autonome évoluée, et gestion des trajectoires. Techniques d’applications pour micro UAV multiples) The material in this publication was

  6. Advanced Techniques for Assessment of Postural and Locomotor Ataxia, Spatial Orientation, and Gaze Stability

    NASA Technical Reports Server (NTRS)

    Wall, Conrad., III

    1999-01-01

    and quantified. We are improving this situation by applying methodologies such as nonlinear orbital stability to quantify responses and by using multivariate statistical approaches to link together the responses across separate tests. In this way we can exploit the information available and increase the ability to discriminate between normal and pathological responses. Measures of stability and orientation are compared to measures such as dynamic visual acuity and with balance function tests. The responses of normal human subjects and of patients having well documented pathophysiologies are being characterized. When these studies are completed, we should have a clearer idea about normal and abnormal patterns of eye, head, and body movements during locomotion and their stability in a wide range of environments. We plan eventually to use this information to validate the efficacy of candidate neurovestibular and neuromuscular rehabilitative techniques. Some representative studies made during this year are summarized.

  7. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, T.; Boudjema, F.; Lauret, J.; Naumann, A.; Teodorescu, L.; Uwer, P.

    "Beyond the Cutting edge in Computing" Fundamental research is dealing, by definition, with the two extremes: the extremely small and the extremely large. The LHC and Astroparticle physics experiments will soon offer new glimpses beyond the current frontiers. And the computing infrastructure to support such physics research needs to look beyond the cutting edge. Once more it seems that we are on the edge of a computing revolution. But perhaps what we are seeing now is a even more epochal change where not only the pace of the revolution is changing, but also its very nature. Change is not any more an "event" meant to open new possibilities that have to be understood first and exploited then to prepare the ground for a new leap. Change is becoming the very essence of the computing reality, sustained by a continuous flow of technical and paradigmatic innovation. The hardware is definitely moving toward more massive parallelism, in a breathtaking synthesis of all the past techniques of concurrent computation. New many-core machines offer opportunities for all sorts of Single/Multiple Instructions, Single/Multiple Data and Vector computations that in the past required specialised hardware. At the same time, all levels of virtualisation imagined till now seem to be possible via Clouds, and possibly many more. Information Technology has been the working backbone of the Global Village, and now, in more than one sense, it is becoming itself the Global Village. Between these two, the gap between the need for adapting applications to exploit the new hardware possibilities and the push toward virtualisation of resources is widening, creating more challenges as technical and intellectual progress continues. ACAT 2010 proposes to explore and confront the different boundaries of the evolution of computing, and its possible consequences on our scientific activity. What do these new technologies entail for physics research? How will physics research benefit from this revolution in

  8. Devices Materials and Processes for Nanoelectronics: Characterization with Advanced X-Ray Techniques Using Lab-Based and Synchrotron Radiation Sources

    SciTech Connect

    E Zschech; C Wyon; C Murray; G Schneider

    2011-12-31

    Future nanoelectronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nanostructures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nanoelectronics industry is reviewed. The focus of this paper is on the study of nanoscale device and on-chip interconnect materials, and materials for 3D IC integration as well.

  9. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  10. Characterization of optical components using contact and non-contact interferometry techniques: advanced metrology for optical components

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Conroy, Mike; Smith, Richard

    2012-10-01

    Advanced metrology plays an important role in the research, production and quality control of optical components. With surface finish, form error and other parameter specifications becoming more stringent, precision measurements are increasingly demanded by optics manufacturers and users. The modern metrologist now has both contact and noncontact measurement solutions available and a combination of these techniques now provides a more detailed understanding of optical components. Phase Grating Interferometry (PGI) with sub-nanometre vertical resolution and sub-micron lateral resolution can provide detailed characterization of a wide range of components including shallow and steep-sided optics. PGI is ideal for precision form measurement of a comprehensive range of lenses, moulds and other spherical or aspheric products. Because of the complex nature of these components, especially precision aspheric and asphero-diffractive optics, control of the form is vital to ensure they perform correctly. Recent hardware and software developments now make it possible to gain a better understanding and control of the form and function of this optics. Another change is the use of high speed 3D non-contact measurement of optics which is becoming more popular. Often scanning interferometric techniques such as coherence correlation interferometry (CCI) can be used to study components not suited to 2D contact analysis, including fragile surfaces and structured surfaces. Scanning interferometry can also be used to measure film thickness and uniformity of any coating present. In this paper the use of both PGI and CCI to measure optical lenses and coatings is discussed.

  11. Monitoring Landslides in Western Mountainous Areas of China Using Advanced Multi-Temporal InSAR Techniques

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Liao, Mingsheng; Zhang, Lu; Gong, Jianya

    2016-08-01

    Disasters, caused by landslide, rock fall, debris flow, ground fissure, etc., are one of the significant natural catastrophes, threatening and influencing the socio-economic conditions around the world. China is one of the countries that suffer heavily from such geo-hazards. And most landslides take place in the mountainous valley areas of western China. With its wide coverage and sub-centimeter accuracy, radar remote sensing has already proven its potential for remotely measuring unstable slopes. Differential InSAR (D-InSAR) is used to recognize known landslides and find potential unstable slopes in a region scale. Then, for a specific landslide, advanced multi-temporal InSAR method is exploited to characterize its surface deformation by obtaining time-series displacement on coherent targets. Among them, the PSI technique exploits only PSs exhibiting high phase stability in a stack of interferograms, which generally exist in urban areas. But, in the case of rural environment characterized by vegetated or low reflectivity homogeneous regions, few PSs could be identified. As a complement of persistent scatterers, distributed scatterers widely existing in rural areas can be exploited. DSs decorrelate slowly and can be found from homogeneous ground, scattered outcrops, debris flows, non-cultivated lands and desert areas. In this poster, a distributed scatterers-based InSAR technique, making use of PSs and DSs, is proposed. At first, we will use D-InSAR technique to detect landslides. Then, both PSI and DS-InSAR will be implemented to monitor interested landslides. And a comparison study of these two methods are conducted.

  12. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1990-12-01

    0W " -Annual Letter Report- N,4 Research and Developmen. on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and...Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office of the Chief of Naval Research Report...SUBTITLE Research and Development on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Filn.Growth Technl.ques and R&T:212k003---03 Fabrication of High

  13. Advanced metering techniques

    SciTech Connect

    Szydlowski, R.F.

    1993-01-01

    The goal of the US Department of Energy Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools and procedures used to identify and evaluate efficiency improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy-use efficiency. To assist in implementing energy-efficiency measures, FEMP helps federal agencies with identifying efficiency opportunities and in implementing energy-efficiency and demand-side management programs at federal sites. As the lead laboratory for FEMP, Pacific Northwest Laboratory (PNL) provides technical assistance to federal agencies to better understand and characterize energy systems. The US Army Forces Command (FORSCOM) has tasked PNL to provide technical assistance to characterize and modernize energy systems at FORSCOM installations. As part of that technical assistance, PNL performed an in-depth examination of automatic meter-reading system technologies currently available. The operating characteristics and relative merits of all the major systems were reviewed in the context of applicability to federal installations. That review is documented in this report.

  14. ADVANCED ELECTRONIC PACKAGING TECHNIQUES

    DTIC Science & Technology

    MICROMINIATURIZATION (ELECTRONICS), *PACKAGED CIRCUITS, CIRCUITS, EXPERIMENTAL DATA, MANUFACTURING, NONDESTRUCTIVE TESTING, RESISTANCE (ELECTRICAL), SEMICONDUCTORS, TESTS, THIN FILMS (STORAGE DEVICES), WELDING.

  15. Advanced Communication Techniques

    DTIC Science & Technology

    1988-07-01

    described in which joint decoding is accomplished by combining the syndrome information into one system of linear equations which is solved to give...objective of finding the measurement errors for doppler and range, leading eventually to comparisons of the relative advantages of the systems . Since these...joins in fragmented database systems on both broadcast and nonbroadcast type computer networks is analyzed. Semantic information associated with

  16. Advanced Query Techniques.

    DTIC Science & Technology

    1979-10-01

    structures I* Data structures a. parse tree D. resolved intermediate query c. data access patn d. lists of matcning i-stances e. requestea fielas 2. Taules... tree (or a forest of trees ). A data relation riow Jescriptively corresponds to a downward oath of label words in tre nierarchy. 4e can reinforce this...general Page 3-10 Handling Natural languaqe Queries syntax-driven narsinq alooritnm for context- tree lanquaqes (41, further auqmented to accept syntactic

  17. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1991-12-01

    AD-A243 531IIII!IIHUHllAlll| DTIC Annual Letter Report EL Vr DECA S C Research and Development on Advanced Silicon Carbide Thin Film Growth...Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office...Letter l/,1- 2 3 lj9 l 4. TITLE AND SUBTITLE Research and Develp~nt on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Film .Growth Techniques and R&T

  18. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  19. The Role of Robotic Surgery for Rectal Cancer: Overcoming Technical Challenges in Laparoscopic Surgery by Advanced Techniques.

    PubMed

    Park, Seungwan; Kim, Nam Kyu

    2015-07-01

    The conventional laparoscopic approach to rectal surgery has several limitations, and therefore many colorectal surgeons have great expectations for the robotic surgical system as an alternative modality in overcoming challenges of laparoscopic surgery and thus enhancing oncologic and functional outcomes. This review explores the possibility of robotic surgery as an alternative approach in laparoscopic surgery for rectal cancer. The da Vinci® Surgical System was developed specifically to compensate for the technical limitations of laparoscopic instruments in rectal surgery. The robotic rectal surgery is associated with comparable or better oncologic and pathologic outcomes, as well as low morbidity and mortality. The robotic surgery is generally easier to learn than laparoscopic surgery, improving the probability of autonomic nerve preservation and genitourinary function recovery. Furthermore, in very complex procedures such as intersphincteric dissections and transabdominal transections of the levator muscle, the robotic approach is associated with increased performance and safety compared to laparoscopic surgery. The robotic surgery for rectal cancer is an advanced technique that may resolve the issues associated with laparoscopic surgery. However, high cost of robotic surgery must be addressed before it can become the new standard treatment.

  20. Roof Deformation, Failure Characteristics, and Preventive Techniques of Gob-Side Entry Driving Heading Adjacent to the Advancing Working Face

    NASA Astrophysics Data System (ADS)

    Bai, Jian-biao; Shen, Wen-long; Guo, Guan-long; Wang, Xiang-yu; Yu, Yang

    2015-11-01

    In mining excavation, the roof bending subsidence of gob-side entry driving heading adjacent to the advancing working face (HAWF) can be considerable. Influenced by the original rock pressure, the front and lateral abutment pressure of the adjacent working face, and the front abutment pressure of the current working face, the support body can easily fail, leading to serious instability of the rock mass surrounding the tunnel. To study the stress state and the deformation failure mechanism of the HAWF roof structure, we use on-site survey data, numerical simulation, and theoretical calculations to fit the spatial distribution law of mining abutment pressure piecewise, and establish a dynamic mechanical model of the roof structure. We then propose a roof failure criterion and examine the roof flexure deformation behavioral pattern. We found that the central part of the roof is the main point that controls the surrounding rock. To prevent the deformation and collapse of the roof and rock surrounding the tunnel, we propose techniques that can be applied to HAWF gob-side entry driving, including setting the coal pillar width, the driving stop and restart timing, and other control concepts.

  1. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  2. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

    PubMed Central

    Mattes, Malcolm D.; Zhou, Ying; Berry, Sean L.; Barker, Christopher A.

    2016-01-01

    Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung V20 (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum Dmax (13.6 vs. 38.9 Gy), bowel D200cc (7.3 vs. 23.1 Gy), femur D50 (34.6 vs. 57.2 Gy), and genitalia Dmax (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus Dmean (16.9 vs. 22.4 Gy), brachial plexus D5 (57.4 vs. 61.3 Gy), bladder D5 (26.8 vs. 36.5 Gy), and femur D50 (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients. PMID:27306779

  3. Advanced Tribological Coatings for High Specific Strength Alloys

    DTIC Science & Technology

    1989-09-29

    Hard Anodised 4 HSSA12 (SHT) Plasma Nitrided 1 HSSA13 (H&G) Plasma Nitrided 2 HSSA14 (SHT) High Temperature Nitrocarburized 1 HSSA15 (H&G) Nitrox 1...HSSA26 ( High Temperature Plasma Nitriding) has recently arrived, and is currently undergoing metallographic examination. The remaining samples are still...Report No 3789/607 Advanced Tribological Coatings For High Specific Strength Alloys, R&D 5876-MS-01 Contract DAJ A45-87-C-0044 5th Interim Report

  4. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  5. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  6. Diagnosis of dissolved organic matter removal by GAC treatment in biologically treated papermill effluents using advanced organic characterisation techniques.

    PubMed

    Antony, Alice; Bassendeh, Mojgan; Richardson, Desmond; Aquilina, Simon; Hodgkinson, Andrew; Law, Ian; Leslie, Greg

    2012-02-01

    Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62cf. 1.47kgm(-3)) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240mgL(-1). The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58mgL(-1)), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534gmol(-1)) and aromaticity (5.35 vs. 4.67Lmg(-1)m(-1)) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0Lmg(-1)m(-1) in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50gmol(-1) while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.

  7. Implications for Metallographic Cooling Rates, Derived from Fine-Scale Analytical Traverses Across Kamacite, Taenite, and Tetrataenite in the Butler Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.

    2016-01-01

    The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling

  8. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    DOE PAGES

    Sanabria, Carlos; Lee, Peter J.; Starch, William; ...

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on themore » strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less

  9. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    SciTech Connect

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Blum, Timothy; Devred, Arnaud; Jewell, Matthew C.; Pong, Ian; Martovetsky, Nicolai; Larbalestier, David C.

    2015-06-22

    Cables made with Nb3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.

  10. Wear and metallographic analysis of WaveOne and reciproc NiTi instruments before and after three uses in root canals.

    PubMed

    Pirani, Chiara; Paolucci, Alessandro; Ruggeri, Oddone; Bossù, Maurizio; Polimeni, Antonella; Gatto, Maria Rosaria Antonella; Gandolfi, Maria Giovanna; Prati, Carlo

    2014-01-01

    Reciprocating instruments made from M-wire alloy have been proposed to reduce the risk of fracture. No information is available on the surface alteration after single and multiple uses in root canals. Two reciprocating NiTi instruments were used on extracted teeth up to three times. ESEM/EDS analysis was conducted to determine defects, alterations, and wear features of the apical third of instruments and metallographic analysis was performed on the cross-section of new and used instruments to compare alloy properties. Topography of apical portion was evaluated by AFM before and after uses. Extracted single-rooted teeth were divided into two groups and instrumented according to the manufacturer's recommendations with: (A) WaveOne Primary and (B) Reciproc R25. Each group was divided into three subgroups according to the number of canals instrumented: 1, 2, and 3, respectively. Chi square test was performed to verify homogeneity of defects distribution and GLM to evaluate the differences of RMS at baseline and after use for both groups (α level 0.05). No instrument fractured and no spiral distortions were observed under optical microscope even when the number of uses increased. Not significant differences were found for WaveOne and Reciproc. Blades presented a wrapped portion in WaveOne group and a more symmetrical feature in Reciproc group. Metallographic analysis revealed in both groups the presence of twinned martensitic grains with isolated flat austenitic areas. Both instruments demonstrated limited alteration, such as tip deformation and wear. This study confirmed the safe clinical use of both instruments for shaping multi-rooted teeth.

  11. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, No. 4, July 1995--September 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-11-06

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 29, 1995.

  13. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  14. Comparison of desired radiographic advancement distance and true advancement distance required for patellar tendon-tibial plateau angle reduction to the ideal 90° in dogs by use of the modified Maquet technique.

    PubMed

    Pillard, Paul; Livet, Veronique; Cabon, Quentin; Bismuth, Camille; Sonet, Juliette; Remy, Denise; Fau, Didier; Carozzo, Claude; Viguier, Eric; Cachon, Thibaut

    2016-12-01

    OBJECTIVE To evaluate the validity of 2 radiographic methods for measurement of the tibial tuberosity advancement distance required to achieve a reduction in patellar tendon-tibial plateau angle (PTA) to the ideal 90° in dogs by use of the modified Maquet technique (MMT). SAMPLE 24 stifle joints harvested from 12 canine cadavers. PROCEDURES Radiographs of stifle joints placed at 135° in the true lateral position were used to measure the required tibial tuberosity advancement distance with the conventional (A(M)) and correction (A(E)) methods. The MMT was used to successively advance the tibial crest to A(M) and A(E). Postoperative PTA was measured on a mediolateral radiograph for each advancement measurement method. If none of the measurements were close to 90°, the advancement distance was modified until the PTA was equal to 90° within 0.1°, and the true advancement distance (TA) was measured. Results were used to determine the optimal commercially available size of cage implant that would be used in a clinical situation. RESULTS Median A(M) and A(E) were 10.6 mm and 11.5 mm, respectively. Mean PTAs for the conventional and correction methods were 93.4° and 92.3°, respectively, and differed significantly from 90°. Median TA was 13.5 mm. The A(M) and A(E) led to the same cage size recommendations as for TA for only 1 and 4 stifle joints, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Both radiographic methods of measuring the distance required to advance the tibial tuberosity in dogs led to an under-reduction in postoperative PTA when the MMT was used. A new, more accurate radiographic method needs to be developed.

  15. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    SciTech Connect

    Liu, H; Liang, X; Kalbasi, A; Lin, A; Ahn, P; Both, S

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: proton PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.

  16. IFPA Meeting 2012 Workshop Report I: comparative placentation and animal models, advanced techniques in placental histopathology, human pluripotent stem cells as a model for trophoblast differentiation.

    PubMed

    Ackerman, W E; Carter, A M; De Mestre, A M; Golos, T G; Jeschke, U; Kusakabe, K; Laurent, L C; Parast, M M; Roberts, R M; Robinson, J M; Rutherford, J; Soma, H; Takizawa, T; Ui-Tei, K; Lash, G E

    2013-03-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2012 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of models and technical issues involved in placenta research: 1) comparative placentation and animal models; 2) advanced techniques in placental histopathology; 3) human pluripotent stem cells as a model for trophoblast differentiation.

  17. Evaluation of the Advanced-Canopy-Atmosphere-Surface Algorithm (ACASA Model) Using Eddy Covariance Technique Over Sparse Canopy

    NASA Astrophysics Data System (ADS)

    Marras, S.; Spano, D.; Sirca, C.; Duce, P.; Snyder, R.; Pyles, R. D.; Paw U, K. T.

    2008-12-01

    Land surface models are usually used to quantify energy and mass fluxes between terrestrial ecosystems and atmosphere on micro- and regional scales. One of the most elaborate land surface models for flux modelling is the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model, which provides micro-scale as well as regional-scale fluxes when imbedded in a meso-scale meteorological model (e.g., MM5 or WRF). The model predicts vegetation conditions and changes with time due to plant responses to environment variables. In particular, fluxes and profiles of heat, water vapor, carbon and momentum within and above canopy are estimated using third-order equations. It also estimates turbulent profiles of velocity, temperature, humidity within and above canopy, and CO2 fluxes are estimated using a combination of Ball-Berry and Farquhar equations. The ACASA model is also able to include the effects of water stress on stomata, transpiration and CO2 assimilation. ACASA model is unique because it separates canopy domain into twenty atmospheric layers (ten layers within the canopy and ten layers above the canopy), and the soil is partitioned into fifteen layers of variable thickness. The model was mainly used over dense canopies in the past, so the aim of this work was to test the ACASA model over a sparse canopy as Mediterranean maquis. Vegetation is composed by sclerophyllous species of shrubs that are always green, with leathery leaves, small height, with a moderately sparse canopy, and that are tolerant at water stress condition. Eddy Covariance (EC) technique was used to collect continuous data for more than 3 years period. Field measurements were taken in a natural maquis site located near Alghero, Sardinia, Italy and they were used to parameterize and validate the model. The input values were selected by running the model several times varying the one parameter per time. A second step in the parameterization process was the simultaneously variation of some parameters

  18. Techniques to Assess and Mitigate the Environmental Risk Posed by use of Airguns: Recent Advances from Academic Research Programs

    NASA Astrophysics Data System (ADS)

    Miller, P. J.; Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; King, R.

    2006-05-01

    There is considerable uncertainty about the ways in which marine mammals might react to noise, the biological significance of reactions, and the effectiveness of planning and real-time mitigation techniques. A planning tool commonly used to assess environmental risk of acoustic activities uses simulations to predict acoustic exposures received by animals, and translates exposure to response using a dose-response function to yield an estimate of the undesired impact on a population. Recent advances show promise to convert this planning tool into a real-time mitigation tool, using Bayesian statistical methods. In this approach, being developed for use by the British Navy, the environmental risk simulation is updated continuously during field operations. The distribution of exposure, set initially based on animal density, is updated in real-time using animal sensing data or environmental data known to correlate with the absence or presence of marine mammals. This conditional probability of animal presence should therefore be more accurate than prior probabilities used during planning, which enables a more accurate and quantitative assessment of both the impact of activities and reduction of impact via mitigation decisions. Two key areas of uncertainty in addition to animal presence/absence are 1.) how biologically-relevant behaviours are affected by exposure to noise, and 2.) whether animals avoid loud noise sources, which is the basis of ramp-up as a mitigation tool. With support from MMS and industry partners, we assessed foraging behaviour and avoidance movements of 8 tagged sperm whales in the Gulf of Mexico during experimental exposure to airguns. The whale that was approached most closely prolonged a surface resting bout hours longer than typical, but resumed foraging immediately after the airguns ceased, suggesting avoidance of deep diving necessary for foraging near active airguns. Behavioral indices of foraging rate (echolocation buzzes produced during prey

  19. Bridging the Gap 10 Years Later: A Tool and Technique to Analyze and Evaluate Advanced Academic Curricular Units

    ERIC Educational Resources Information Center

    Beasley, Jennifer G.; Briggs, Christine; Pennington, Leighann

    2017-01-01

    The need for a shared vision concerning exemplary curricula for academically advanced learners must be a priority in the field of education. With the advent of the Common Core State Standards adoption in many states, a new conversation has been ignited over meeting the needs of students with gifts and talents for whom the "standard"…

  20. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems

    DTIC Science & Technology

    1982-06-23

    Advanced Calculus (McGraw-Hill, New York, 1956). 99. R. Bartle , The Elements of Real Analysis (Wiley, New York, 1964). R-7 I i...f (a- M) (a - H)*4(s) du(s) - C (D.28c) where U is the standard (i.e., Lebesgue ) measure in the signal domain. Of course, the integrals in Eq. (D.28

  1. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, April 1--June 30, 1995

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-09-01

    Objective is to integrate advanced geoscience and reservoir engineering concepts to quantify the dynamics of fluid-rock and fluid-fluid interactions as related to reservoir architecture and lithologic characterization. During this period, studies were made of the permeability, wettability, and porosity of the Sulimar Queen Formation.

  2. Project ASSERT. Advanced and Specialized Study in Educational Research Techniques. Final Report, November 1979 to November 1981.

    ERIC Educational Resources Information Center

    Cornejo, Ricardo J.; Rodriguez, Ana Maria

    Project ASSERT, an experimental project conducted at San Diego State University (California), was designed to prepare, demonstrate, and disseminate strategies to increase the participation of women and minorities in education research. The program trained faculty researchers in advanced research methodologies and provided practitioners with…

  3. Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding

    NASA Astrophysics Data System (ADS)

    Liu, Xin-bo; Qiao, Feng-bin; Guo, Li-jie; Qiu, Xiong-er

    2017-02-01

    Novel hybrid refill friction stir spot welding (RFSSW) assisted with ultrasonic oscillation was introduced to 5A06 aluminum alloy joints. The metallographic structure and mechanical properties of 5A06 aluminum alloy RFSSW joints formed without ultrasonic assistance and with lateral and longitudinal ultrasonic assistance were compared, and the ultrasonic-assisted RFSSW process parameters were optimized. The results show that compared with lateral ultrasonic oscillation, longitudinal ultrasonic oscillation strengthens the horizontal bonding ligament in the joint and has a stronger effect on the joint's shear strength. By contrast, lateral ultrasonic oscillation strengthens the vertical bonding ligament and is more effective in increasing the joint's tensile strength. The maximum shear strength of ultrasonic-assisted RFSSW 5A06 aluminum alloy joints is as high as 8761 N, and the maximum tensile strength is 3679 N when the joints are formed at a tool rotating speed of 2000 r/min, a welding time of 3.5 s, a penetration depth of 0.2 mm, and an axial pressure of 11 kN.

  4. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  5. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1--March 31, 1994

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1994-12-31

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts, with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Technical progress is summarized for the following: geological studies; hydrologic and tracer research; and geophysical research.

  6. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    PubMed

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  7. Advances in cell culture process development: tools and techniques for improving cell line development and process optimization.

    PubMed

    Sharfstein, Susan T

    2008-01-01

    At the 234th National Meeting of the American Chemical Society, held in Boston, MA, August 19-23, 2007, the ACS BIOT division held two oral sessions on Cell Culture Process Development. In addition, a number of posters were presented in this area. The critical issues facing cell culture process development today are how to effectively respond to the increase in product demands and decreased process timelines while maintaining robust process performance and product quality and responding to the Quality by Design initiative promulgated by the Food and Drug Administration. Two main areas were addressed in the presentations: first, to understand the effects of process conditions on productivity and product quality, and second, to achieve improved production cell lines. A variety of techniques to achieve these goals were presented, including automated flow cytometric analysis, a high-throughput cell analysis and selection method, transcriptional and epigenetic techniques for analysis of cell lines and cell culture systems, and novel techniques for glycoform analysis.

  8. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, July 1, 1995--September 30, 1995

    SciTech Connect

    Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-12-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Several members of the PPRC staff are participating in the development of improved reservoir description by integration of the field and laboratory data, as well as in the development of quantitative reservoir models to aid performance predictions.

  9. Postoperative chemoradiotherapy vs. preoperative chemoradiotherapy for locally advanced (operable) gastric cancer: clarifying the role and technique of radiotherapy

    PubMed Central

    Jang, Raymond; Darling, Gail

    2015-01-01

    Background Worldwide, almost one million new cases of stomach cancer were diagnosed in 2012, making it the fifth most common cancer, and the third leading cause of cancer deaths. The current tumor node metastasis (TNM) staging system represents a consensus between the East and the West, and will serve as a strong foundation upon which to build future evidence. In this review article, we first discuss the definition and optimal surgery for locally advanced gastric cancer, followed by the general principles when considering a pre vs. postoperative radiotherapy (RT) strategy. We then provide a synthesis of the existing randomized trial evidence in an attempt clarify the role of pre and postoperative RT in the management of locally advanced gastric cancer. Methods A Medline search 1966-Jun 2014 was undertaken. Randomized trials including patients with locally advanced gastric cancer (using established definitions), comparing RT [with or without chemotherapy (CT)], with surgery alone or other treatment modalities were included. Systematic reviews and evidence based practice guidelines that include this body of primary studies were preferentially discussed. Medline, Cochrane Library, Clinicaltrial.gov, Guidelines Clearinghouse were searched. Results Sixteen randomized trials, three systematic reviews and one practice guideline were included as the evidence base. In this group of studies, two reports compared postoperative chemoradiotherapy (CRT) with surgery alone. Driven predominantly by INT0116, they established the role of postoperative CRT to provide a survival benefit in a patient group that underwent surgery with predominantly D0-1 dissections. Preoperative RT (four studies) showed promise for survival benefit but the risks of bias in these trials were high. Postoperative CRT compared with CT alone (eight trials) showed no survival benefit with the addition of radiation although some evidence of activity can be observed with improved local regional control

  10. JUST in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced IT tools (the VR Tool).

    PubMed

    Manganas, A; Tsiknakis, M; Leisch, E; Ponder, M; Molet, T; Herbelin, B; Magnetat-Thalmann, N; Thalmann, D; Fato, M; Schenone, A

    2004-01-01

    This paper reports the results of the second of the two systems developed by JUST, a collaborative project supported by the European Union under the Information Society Technologies (IST) Programme. The most innovative content of the project has been the design and development of a complementary training course for non-professional health emergency operators, which supports the traditional learning phase, and which purports to improve the retention capability of the trainees. This was achieved with the use of advanced information technology techniques, which provide adequate support and can help to overcome the present weaknesses of the existing training mechanisms.

  11. JUST in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced IT tools (the Web-CD).

    PubMed

    Manganas, A; Tsiknakis, M; Leisch, E; Karefilaki, L; Monsieurs, K; Bossaert, L L; Giorgini, F

    2004-01-01

    This paper reports the results of the first of the two systems developed by JUST, a collaborative project supported by the European Union under the Information Society Technologies (IST) Programme. The most innovative content of the project has been the design and development of a complementary training course for non-professional health emergency operators, which supports the traditional learning phase, and which purports to improve the retention capability of the trainees. This was achieved with the use of advanced information technology techniques, which provide adequate support and can help to overcome the present weaknesses of the existing training mechanisms.

  12. Development of an interatmospheric window wavelength (5-9 μm) infrared thermography with an advanced image processing technique

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Komiyama, Tatsuhito; Sakagami, Takahide; Kubo, Shiro

    2006-04-01

    Recently, deterioration of concrete structures before their design life has become a serious social problem in Japan. Nondestructive inspection techniques are required, for detecting defects and damages in concrete structures, such as subsurface void or delamination. As one of these techniques, the thermographic NDT can be applied as an effective NDT technique to inspect large area of the objective structure from distant place. In addition, it does not require any chemicals and application of physical excitation for inspection. However, the thermographic NDT has a shortcoming that the measurement results are affected by the reflection of atmospheric radiation due to the sunlight, sky or surrounding materials. Since most of the buildings in Japan are covered with luster materials with low emissivity, such as tile or mortal, infrared reflection on the surface is difficult to be neglected. To reduce the influence of these reflection noises, the infrared thermography with detectable wavelength from 5 to 8 μm, which coincides with absorption range of moisture, is utilized. In this research, a new infrared thermography with 5 to 8 μm wavelength range by applying a band pass filter and an uncooled microbolometer infrared array detector. Further, a new signal to noise (S/N) ratio improvement technique has been developed in order to compensate a deterioration of sensitivity due to the band pass filter.

  13. An Evaluation of an Advanced System Analysis Technique for Modeling a DoD Training Environment. Final Report.

    ERIC Educational Resources Information Center

    Borich, Gary D.; Jemelka, Ron

    The Structured Analysis and Design Technique (SADT) analyzes a problem through building a model of the problem on paper which is top-down, modular, hierarchic, and structured. It is a communications vehicle using an iterative author-commenter cycle which focuses attention on defined topics, increases management control, creates a systematic work…

  14. Roux-en-Y augmented gastric advancement: An alternative technique for concurrent esophageal and pyloric stenosis secondary to corrosive intake

    PubMed Central

    Waseem, Talat; Azim, Asad; Ashraf, Muhammad Hasham; Azim, Khawaja M

    2016-01-01

    Select group of patients with concurrent esophageal and gastric stricturing secondary to corrosive intake requires colonic or free jejunal transfer. These technically demanding reconstructions are associated with significant complications and have up to 18% ischemic conduit necrosis. Following corrosive intake, up to 30% of such patients have stricturing at the pyloro-duodenal canal area only and rest of the stomach is available for rather less complex and better perfused gastrointestinal reconstruction. Here we describe an alternative technique where we utilize stomach following distal gastric resection along with Roux-en-Y reconstruction instead of colonic or jejunal interposition. This neo-conduit is potentially superior in terms of perfusion, lower risk of gastro-esophageal anastomotic leakage and technical ease as opposed to colonic and jejunal counterparts. We have utilized the said technique in three patients with acceptable postoperative outcome. In addition this technique offers a feasible reconstruction plan in patients where colon is not available for reconstruction due to concomitant pathology. Utility of this technique may also merit consideration for gastroesophageal junction tumors. PMID:28070231

  15. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  16. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    NASA Astrophysics Data System (ADS)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  17. Precise parallel optical spectrum analysis using the advanced two-phonon light scattering combined with the cross-disperser technique.

    PubMed

    Shcherbakov, A S; Arellanes, A O; Chavushyan, V

    2016-12-01

    We develop an advanced approach to the optical spectrometer with acousto-optical dynamic grating for the Guillermo Haro astrophysical observatory (Mexico). The progress consists of two principle novelties. First is the use of the acousto-optical nonlinearity of two-phonon light scattering in crystals with linear acoustic losses. This advanced regime of light scattering exhibits a recently revealed additional degree of freedom, which allows tuning of the frequency of elastic waves and admits the nonlinear apodization improving the dynamic range. The second novelty is the combination of the cross-disperser with acousto-optical processing. A similar pioneering step provides an opportunity to operate over all the visible range in a parallel regime with maximal achievable resolution. The observation window of the optical spectrometer in that observatory is ∼9  cm, so that the theoretical estimations of maximal performances for a low-loss LiNbO3 crystal for this optical aperture at λ=405  nm give spectral resolution of 0.0523 Å, resolving power of 77,400, and 57,500 spots. The illustrative proof-of-principle experiments with a 6 cm LiNbO3 crystal have been performed.

  18. A quick-quench technique for the study of creep cavitation in metals

    SciTech Connect

    Lim, L.C.; Pak, H.P.

    1996-12-01

    Several techniques have been used by researchers to study the evolution of cavitation damage in metals and alloys during creep. Three of the most commonly used techniques are the density measurement method, metallographic polishing technique and cryogenic fracturing technique. The density measurement method suffers from the unavailability in separating cavity nucleation from growth events, hence making result interpretation on cavity nucleation difficult. The metallographic polishing technique has always been known to enlarge the size of the cavities and may not be suitable when the precise size and shape of cavities are of concern. There is also the question of the minimum size of cavities which can be revealed by such a technique. On the other hand, the material often needs to be embrittled to weaken the grain boundaries for the cryogenic fracturing technique to be applicable. As impurities have been found to significantly affect the cavitation behavior of metals and alloys, it is not known if the result obtained from the embrittled material would represent that of clean material. Another concern in the study of creep cavitation is the preservation of the tiny cavities formed after the nucleation event. This is because grain boundary cavities that are formed during high temperature creep could sinter upon the release of the applied load especially when the cavities are small, such as those formed during the initial stage of creep test. This would make detection of creep cavities during subsequent metallographic examinations inaccurate. This paper describes a quick-quench method devised to arrest this sintering effect.

  19. Laser beam and tissue interactions: use of advanced therapeutic and diagnostic techniques: in-vitro experiments and in-vivo trials

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    2001-04-01

    The mechanism of laser beam and tissue interaction is governed by the technical characteristics of the laser beam and the optical properties of the tissue. The therapeutic laser wavelength, pulse duration and beam quality, as well as the laser radiation delivery systems, the ablation mechanisms and the diagnostic techniques to monitor a surgical process are studied in this work. Advanced therapeutic and diagnostic techniques, such as integrating sphere, atomic force microscopy and beam profiling are used in the experimental study. In vitro experiments on tissue, laser ablation and diagnosis using laser induced fluorescence are performed. Finally, in vivo animal trials of an endoscopic/laparoscopic laser prototype are realized, in the framework of the appropriate protocols.

  20. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  1. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  2. Advances in Understanding the Molecular Structures and Functionalities of Biodegradable Zein-Based Materials Using Spectroscopic Techniques: A Review.

    PubMed

    Turasan, Hazal; Kokini, Jozef L

    2017-02-13

    Zein's amphiphilic properties, film forming capability, and biodegradability make it a highly demanded polymer for fabrication of packaging materials, production of drug carrier nanoparticles, scaffolds in tissue engineering, and formation of biodegradable platforms for biosensors including microfluidic devices. Zein properties can be improved by chemical modifications, which are often analyzed with spectroscopic techniques. However, there is not a consensus on the structure of zein. For this reason, in this Review the aim is to compile the recent studies conducted on zein-based products and compare them under five main spectroscopic techniques: Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, circular dichroism (CD), X-ray diffraction (XRD) and atomic force microscopy (AFM). This Review serves as a library of recent zein studies and helps readers to have a better perception of contradictions in the literature to take their studies one step further.

  3. Manufacturing Methods and Technology (MANTECH) Program Manufacturing Techniques for a Composite Tail Section for the Advanced Attack Helicopter.

    DTIC Science & Technology

    1981-10-01

    c.l-.kj tnk i r. ib sized to accommodate the local load requircmcnts. I .-,kl, thlckrv. , including laminae and honeycomb core is illuatr1tt1 . t, Vi...occur as a result of manufacturing defects, storage , environmental conditions, in-service conditions, and production techniques. Specific areas of concern...Antenna inopedance, pattern, and cain were ineasured. Ic .- .: te study was to determine if thc eistina 1NI t" 1 \\ ertica --l :JL. r I .:,ilin, Edge

  4. Anchor technique: Use of stent retrievers as an anchor to advance thrombectomy catheters in internal carotid artery occlusions

    PubMed Central

    Wolfe, Stacey Q; Janjua, Rashid M; Hedayat, Hirad; Burnette, Christofer

    2015-01-01

    In three recent cases of acute complete internal artery occlusions, we used stent retriever deployed through the mechanical aspiration/distal access catheters to achieve recanalization. In all cases the stent retriever was used as an anchor and supplemented mechanical thrombectomy. This report describes the technical details of the procedure and presents an alternative plan of action in difficult cases when standard thrombectomy techniques do not work. PMID:26494404

  5. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated.

  6. Novel frequency domain techniques and advances in Finite Difference Time domain (FDTD) method for efficient solution of multiscale electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Panayappan, Kadappan

    With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these

  7. Techniques for quantitative LC-MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture.

    PubMed

    Fung, Eliza N; Bryan, Peter; Kozhich, Alexander

    2016-04-01

    LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.

  8. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1, 1996--March 31, 1996

    SciTech Connect

    Buckley, J.S.; Ouenes, A.

    1996-06-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. The essence of the work completed in the first quarter of 1996 is summarized in the following three statements: automatic log digitizing software is superior to hand digitizing; laboratory wettability tests suggest that the reservoir is mixed-wet and results of the non-reactive tracer test were used to revise the mechanics of the wettability test design to include tracer injection below a packer.

  9. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques.

    PubMed

    Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert

    2015-02-01

    Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters.

  10. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    PubMed

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.

  11. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  12. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  13. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  14. Morphometric analysis of murine skin wound healing: standardization of experimental procedures and impact of an advanced multitissue array technique.

    PubMed

    Gerharz, Michael; Baranowsky, Ankev; Siebolts, Udo; Eming, Sabine; Nischt, Roswitha; Krieg, Thomas; Wickenhauser, Claudia

    2007-01-01

    Morphometric data based on skin wounding offer important information for the characterization of the phenotype of transgenic mouse models. The goal of this study was the comparison of technical procedures concerning wounding, processing, and evaluation of samples in different mouse strains. The multitissue array technique was used to estimate its adaptability for standardized analysis in wound healing. Skin wounds between days 1 and 14 after wounding were analyzed. The influence of mouse strain (C57BI/6 vs. FVB/N mice), sex, size of the punch biopsies, and preparation of the tissue sections was investigated on 94 mice. The parameters distance between the migration tongues (deltaMT) and surface not covered by epithelium were evaluated to describe the reepithelialization, and the distance between the adnexa was chosen to measure wound contraction. In addition, the techniques to measure the area of granulation tissue (GT) were evaluated. The data illustrate the requirement of standardized conditions for skin wound-healing experiments and demonstrate that histological preparation in serial sections is mandatory to detect slight differences in wound contraction. For the analysis of cellular composition in GT, multitissue arrays are useful tools in wound-healing studies.

  15. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    SciTech Connect

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.

  16. Reproduction in chinchilla (Chinchilla lanigera): current status of environmental control of gonadal activity and advances in reproductive techniques.

    PubMed

    Busso, J M; Ponzio, M F; Fiol de Cuneo, M; Ruiz, R D

    2012-07-01

    A review of the biology of reproduction of chinchilla, focusing on environmental control of the gonadal activity, is presented. Chinchilla is a South American hystricomorph rodent genus currently considered almost extinct in the wild. However, a domestic form is still widespread in breeding farms around the world. Information regarding their reproductive biology has been obtained from studies on captive animals. In the case of Chinchilla lanigera, a seasonal reproductive pattern has been frequently reported in breeding facilities, but factors that might trigger gonadal activity have not been identified. The available information on reproductive productivity in farms worldwide shows a range of 1.2 to 2.4 deliveries per female per yr (with up to 2.1 weaned young per female per yr). Indeed, as found in all rodents, chinchillas can multiply at high fecundity and fertility rates (4 to 6 follicles mature during estrous cycles). Some new research avenues are postulated to improve the control of gonadal activity by means of environmental and/or pharmacologic factors. Furthermore, reproductive techniques that have been validated in chinchilla are reviewed (noninvasive hormone monitoring, semen collection, sperm cryopreservation, estrus induction), and several technical steps are proposed to be able to achieve AI. Because domesticated chinchilla still share some genomic characteristics with their counterparts in the wild, validated reproductive techniques in chinchilla males and females might contribute to the success of breeding programs.

  17. Advanced performance and scalability of Si nanowire field-effect transistors analyzed using noise spectroscopy and gamma radiation techniques

    SciTech Connect

    Li, J.; Vitusevich, S. A. Pud, S.; Offenhäusser, A.; Petrychuk, M. V.; Danilchenko, B. A.

    2013-11-28

    High-quality Si nanowire field effect transistors (FETs) were fabricated using thermal nanoimprint and chemical wet etching technologies. FET structures of different lengths demonstrate high carrier mobility with values of about 750 cm{sup 2}/Vs and low volume densities of active traps in the dielectric layers of 5 × 10{sup 17} cm{sup −3} eV{sup −1}. We investigated the transport properties of these n-type channel structures using low-frequency noise spectroscopy before and after gamma radiation treatment. Before gamma irradiation, FET structures with lengths of less than 4 μm exhibited noise from contact regions with 1/(L{sup 2}) dependence for the relative 1/f noise. After gamma radiation, the spectra reflected the priority of channel noise with 1/L dependence for all samples. The transport characteristics show that the fabricated nanowire FETs improved scalability, decreased parameter scattering, and increased stability after treatment. The results demonstrate that these nanowire FETs are promising for nanoelectronic and biosensor applications due to the cost-efficient technology and advanced performance of FETs with improved stability and reliability.

  18. Advanced assessment of the physicochemical characteristics of Remicade® and Inflectra® by sensitive LC/MS techniques.

    PubMed

    Fang, Jing; Doneanu, Catalin; Alley, William R; Yu, Ying Qing; Beck, Alain; Chen, Weibin

    2016-01-01

    In this study, we demonstrate the utility of ultra-performance liquid chromatography coupled to mass spectrometry (MS) and ion-mobility spectrometry (IMS) to characterize and compare reference and biosimilar monoclonal antibodies (mAbs) at an advanced level. Specifically, we focus on infliximab and compared the glycan profiles, higher order structures, and their host cell proteins (HCPs) of the reference and biosimilar products, which have the brand names Remicade® and Inflectra®, respectively. Overall, the biosimilar attributes mirrored those of the reference product to a very high degree. The glycan profiling analysis demonstrated a high degree of similarity, especially among the higher abundance glycans. Some differences were observed for the lower abundance glycans. Glycans terminated with N-glycolylneuraminic acid were generally observed to be at higher normalized abundance levels on the biosimilar mAb, while those possessing α-linked galactose pairs were more often expressed at higher levels on the reference molecule. Hydrogen deuterium exchange (HDX) analyses further confirmed the higher-order similarity of the 2 molecules. These results demonstrated only very slight differences between the 2 products, which, interestingly, seemed to be in the area where the N-linked glycans reside. The HCP analysis by a 2D-UPLC IMS-MS approach revealed that the same 2 HCPs were present in both mAb samples. Our ability to perform these types of analyses and acquire insightful data for biosimilarity assessment is based upon our highly sensitive UPLC MS and IMS methods.

  19. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  20. Mechanical evaluation of six techniques for stable fixation of the sagittal split osteotomy after counterclockwise mandibular advancement.

    PubMed

    De Oliveira, Leandro Benetti; Reis, Jose Mauricio Nunes; Spin-Neto, Rubens; Gabrielli, Marisa Aparecida Cabrini; Oguz, Yener; Pereira-Filho, Valfrido Antonio

    2016-06-01

    We have evaluated the resistance to displacement of six stable methods of fixation of a sagittal split ramus osteotomy (SSRO) in the mandibular advancement with counterclockwise rotation. We tested 60 synthetic hemimandibles in six groups of 10 each: Group I - fixation with a straight four-hole 2.0mm miniplate; Group II - a straight six-hole 2.0mm miniplate; Group III - two straight 2.0mm four-hole miniplates; Group IV - an eight-hole 2.0mm (grid plate); Group V - a 2.0mm four-hole straight miniplate and 2.0×12mm bicortical screw; and Group VI - a straight four-hole 2.0mm locking miniplate. We applied a linear force in the region between the canine and the first premolar using a universal testing machine (EMIC- DL2000) with a loading cell of 10 KN. The loads at 1, 3, and 5mm displacement were recorded (N) and the data transmitted from the load cell to a computer. Results were analysed using analysis of variance (ANOVA) (p<0.001) and the Tukey post-test for comparison of the significance of the differences between the groups. For the three degrees of displacement, fixation with two straight 2.0mm plates and with the grid plate gave higher load values.