Science.gov

Sample records for advanced meteor orbit

  1. Review of the advances in meteor studies

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2014-07-01

    I will present a personal conference summary in the field of meteor studies. The most important advances concerning meteors since the last ACM conference (2012 in Japan) will be highlighted. The most interesting event, which occurred in between and was discussed also on this conference, was the Chelyabinsk superbolide. Nevertheless, progress was made also in other meteor studies.

  2. On the accuracy of orbits from video meteor observations

    NASA Astrophysics Data System (ADS)

    Skokić, I.; Šegon, D.; Kurtović, G.

    2016-01-01

    The velocity limits of the meteor shower's geocentric velocity distribution from the CAMS meteoroid database were determined and used to calculate perturbed orbits. These were compared with the mean stream orbit using the DSH dissimilarity criterion. It was found that for the slow meteor showers (Alpha Capricornids and Geminids), the resulting orbits are within the generally accepted cutoff values for stream associations, while for the faster showers (Perseids, Orionids and Quadrantids) the resulting orbits differ significantly from their mean stream orbit.

  3. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  4. Precise Orbit Determination of Meteors by HPLA Radar and the MU Radar Meteor Head Echo Database

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuji; Yamamoto, Mamoru; Tanaka, Yoshi; Kero, Johan; Szasz, Csilla; Watanabe, Juniichi; Abe, Shinsuke; Kastinen, Daniel

    Mass influx from the space into the terrestrial atmosphere is mainly caused by meteors. Meteors delivers various elements into the atmosphere, but the meteoric dust particles are also of great importance in the terrestrial atmosphere, as they act as nucleus for condensation and clouds and affect various atmospheric phenomena both in physical and chemical aspects. Thus, to investigate the meteor flux, orbits and their interactions in the upper atmosphere is very important but at the same time the method of investigation is limited, especially for the precise measurements High power large aperture (HPLA) radar observation is a recent technique to provide useful information on meteor influx and orbits, as well as interactions with the atmosphere. The recent development of the technique carried out using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S), which is a large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m2 aperture array antenna, has established very precise orbit observations from meteor head echoes. Since 2009, orbital data of about 120,000 meteors have been collected. An open database (MU radar meteor head echo database: MURMHED) for research and education is now being created. In this study, we present the physical quantities and precisions obtained from the MU radar meteor head echo observations and the details of the open database.

  5. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Kornoš, Leonard; Zigo, Pavol; Gajdoš, Štefan; Kalmančok, Dušan; Világi, Jozef; Šimon, Jaroslav; Vereš, Peter; Šilha, Jiří; Buček, Marek; Galád, Adrián; Rusňák, Patrik; Hrábek, Peter; Ďuriš, František; Rudawska, Regina

    2015-12-01

    All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras - the SVMN database - as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ɛ Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

  6. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  7. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  8. IAU MDC Photographic Meteor Orbits Database: Version 2013

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Porubčan, V.; Svoreň, J.

    2014-05-01

    A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249-260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 meteors with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/

  9. Radar meteor orbital structure of Southern Hemisphere cometary dust streams

    NASA Technical Reports Server (NTRS)

    Baggaley, W. Jack; Taylor, Andrew D.

    1992-01-01

    The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.

  10. Observation error propagation on video meteor orbit determination

    NASA Astrophysics Data System (ADS)

    SonotaCo

    2016-04-01

    A new radiant direction error computation method on SonotaCo Network meteor observation data was tested. It uses single station observation error obtained by reference star measurement and trajectory linearity measurement on each video, as its source error value, and propagates this to the radiant and orbit parameter errors via the Monte Carlo simulation method. The resulting error values on a sample data set showed a reasonable error distribution that makes accuracy-based selecting feasible. A sample set of selected orbits obtained by this method revealed a sharper concentration of shower meteor radiants than we have ever seen before. The simultaneously observed meteor data sets published by the SonotaCo Network will be revised to include this error value on each record and will be publically available along with the computation program in near future.

  11. About comparative models of meteor orbital data for different radars

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana

    2016-07-01

    There is an electronic data base (~ 250, 000 orbits of faint radar meteors till +12^M) in the Kashcheyev LAB of KhNURE (Kharkiv, Ukraine). It is important if this data base will become open. Two scientific teams (from New Zealand and from Canada) are the principal expert on similar radar dataset (~500,000 and more than 3 million, respectively). The Kharkiv team will prepare the data for implementation in the IAU Meteor Data Centre and the virtual Observatory. We will develop a standard model for comparison of data from different radars.

  12. A decadal survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar

    NASA Astrophysics Data System (ADS)

    Bruzzone, J. S.; Brown, P.; Weryk, R. J.; Campbell-Brown, M. D.

    2015-01-01

    We present results from a 12 year survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar, a VHF backscattering orbital meteor radar, covering the interval 2002-2013. This survey recorded more than 2 × 104 Daytime Arietid orbits having representative masses of 8 × 10-8 kg and sizes of ≈0.4 mm. The core activity for the Arietids is found in the range 73.5° ≤ λ⊙ ≤ 84.5° and shows a broad 4-d maximum centred near λ⊙ = 80.5° of 0.04 meteoroids km-2 h-1 producing meteors of equivalent radio magnitude of +6.5 from a mean radiant at αg = 44.9° ± 1.1°, δg = 25.5° ± 1 .0°. During the plateau of shower peak activity, the mass index of the stream reaches a minimum with s = 1.6-1.7. Contamination from another nearby shower (likely the Daytime Zeta Perseids) and/or sub-streams showing different orbits compared to the core of the stream is evident in the interval 60.5° ≤ λ⊙ ≤ 71.5°. Similar contamination beyond λ⊙ = 84.5° may be due to the Helion sporadic source. We also characterized the deceleration profiles for Daytime Arietid meteor echoes using several independent speed techniques including Fresnel pre-t0, Fresnel amplitude oscillation and time-of-flight speeds which together with modelling produced a best estimate for the stream's out-of-atmosphere speed of v∞ = 40.5 ± 0.7 km s-1. The mean radar orbit from our study is noticeably smaller in semi-major axis and eccentricity than is found for larger Arietids measured with optical systems, a difference which if real indicates a particle-size sorting of the stream orbit. The broad activity maximum, long duration of activity and particle-size dependence of the orbital elements suggest the stream is too old to have been solely formed during the breakup of the parent comet of the Marsden sunskirters about a millennium ago as proposed by Sekanina & Chodas.

  13. Recent Advances in Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Meachem, Terry; Cooke, William J.

    2003-01-01

    One of the most common (and obvious) problems with video meteor data involves the saturation of the output signal produced by bright meteors, resulting in the elimination of such meteors from photometric determinations. It is important to realize that a "bright" meteor recorded by intensified meteor camera is not what would be considered "bright" by a visual observer - indeed, many Generation II or III camera systems are saturated by meteors with a visual magnitude of 3, barely even noticeable to the untrained eye. As the relatively small fields of view (approx.30 ) of the camera systems captures at best modest numbers of meteors, even during storm peaks, the loss of meteors brighter than +3 renders the determination of shower population indices from video observations even more difficult. Considerable effort has been devoted by the authors to the study of the meteor camera systems employed during the Marshall Space Flight Center s Leonid ground-based campaigns, and a calibration scheme has been devised which can extend the useful dynamic range of such systems by approximately 4 magnitudes. The calibration setup involves only simple equipment, available to amateur and professional, and it is hoped that use of this technique will make for better meteor photometry, and move video meteor analysis beyond the realm of simple counts.

  14. Limitations of the current methods used to compute meteors orbits

    NASA Astrophysics Data System (ADS)

    Egal, A.; Gural, P.; Vaubaillon, J.; Colas, F.; Thuillot, W.

    2015-10-01

    The Cameras for BEtter Resolution NETwork (CABERNET) project aims to provide the most accurate meteoroid orbits achievable working with digital recordings of night sky imagery. The level of performance obtained is governed by the technical attributes of the collection systems and having both accurate and robust data processing. The technical challenges have been met by employing three cameras, each with a field of view of 40°x26° and a spatial (angular) resolution of 0.01°/pixel. The single image snapshots of meteors achieve temporal discrimination along the track through the use of an electronic shutter coupled to the cameras, operating at a sample rate between 100Hz and 200Hz. The numerical processing of meteor trajectories has already been explored by many authors. This included an examination of the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-fit parameterization method published by Gural (2012). After a comparison of these three techniques, we chose to implement Gural 's method, employing several non-linear minimization techniques and trying to match the modeling as close as possible to the basic data measured, i.e. the meteor space-time positions in the sequence of images. This approach results in a more precise and reliable way to determine both the meteor trajectory and velocity through the atmosphere.

  15. Applicability of meteor radiant determination methods depending on orbit type. II. Low-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1994-08-01

    All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.

  16. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  17. The Southern Argentina Agile Meteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Technical Reports Server (NTRS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-01-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteoroid applications. The outcomes of this work show that, given SAAMERs location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  18. THE SOUTHERN ARGENTINA AGILE METEOR RADAR ORBITAL SYSTEM (SAAMER-OS): AN INITIAL SPORADIC METEOROID ORBITAL SURVEY IN THE SOUTHERN SKY

    SciTech Connect

    Janches, D.; Swarnalingam, N.; Close, S.; Hormaechea, J. L.; Murphy, A.; O’Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C. E-mail: nimalan.swarnalingam@nasa.gov E-mail: jlhormaechea@untdf.edu.ar E-mail: doconnor@gsoft.com.au E-mail: bfuller@gsoft.com.au E-mail: claudiobrunini@yahoo.com

    2015-08-10

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  19. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D<=0.1 indicates a very good fit of orbits, 0.1orbits, and D>0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  20. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed

  1. Meteor Orbit Determinations with Multistatic Receivers Using the MU Radar

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yasunori; Hamaguchi, Yoshiyuki; Nakamura, Takuji; Tsutsumi, Masaki; Abo, Makoto

    2008-06-01

    The MU radar of RISH (Research Institute for Sustainable Humanosphere, Kyoto University), which is a MST radar (46.5 MHz, 1 MW peak power), has been successfully applied to meteor studies by using its very high versatility. The system has recently renewed with 25 channel digital receivers which significantly improved the sensitivity and precision of interferometer used in meteor observation. The transmission is now synchronized to GPS signals, and two external receiving sites with a ranging capability has additionally been operated in order to determine the trajectories and speeds of meteoroids.

  2. The 2017 Meteor Shower Activity Forecast for Earth Orbit

    NASA Technical Reports Server (NTRS)

    Moorehead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    Most meteor showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of meteor showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) Meteor Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) meteor showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteor models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0

  3. Observations of the Quadrantid meteor shower from 2008 to 2012: Orbits and emission spectra

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Espartero, Francisco; Trigo-Rodríguez, Josep M.; Castro-Tirado, Alberto J.; Pujols, Pep; Pastor, Sensi; de los Reyes, José A.; Rodríguez, Diego

    2016-09-01

    The activity of the Quadrantids in January during several years (2008, 2010, 2011 and 2012) has been investigated in the framework of the SPanish Meteor Network (SPMN). For this purpose, an array of high-sensitivity CCD video devices and CCD all-sky cameras have been used to obtain multi-station observations of these meteors. These allowed to obtain precise radiant and orbital information about this meteoroid stream. This paper presents a large set of orbital data (namely, 85 orbits) of Quadrantid meteoroids. Most meteors produced by these particles were recorded during the activity peak of this shower. Besides, we discuss four Quadrantid emission spectra. The tensile strength of Quadrantid meteoroids has been also obtained.

  4. Advanced Meteor radar at Tirupati: System details and first results

    NASA Astrophysics Data System (ADS)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  5. Advances in the development of a low-cost video meteor station

    NASA Astrophysics Data System (ADS)

    Zubović, D.; Vida, D.; Gural, P.; Šegon, D.

    2015-01-01

    Recent advances in the field of single board computers, have enabled the development of a low-cost video meteor station with real-time processing capabilities. In this paper, an overview of different capture and computing hardware is given. Furthermore, we present the current state of new open-source software for video meteor capture, multi-frame compression and real-time detection. The software is compatible with the existing Croatian Meteor Network processing package.

  6. MU head echo observations of the 2010 Geminids: radiant, orbit, and meteor flux observing biases

    NASA Astrophysics Data System (ADS)

    Kero, J.; Szasz, C.; Nakamura, T.

    2013-03-01

    We report Geminid meteor head echo observations with the high-power large-aperture (HPLA) Shigaraki middle and upper atmosphere (MU) radar in Japan (34.85° N, 136.10° E). The MU radar observation campaign was conducted from 13 December 2010, 08:00 UTC to 15 December, 20:00 UTC and resulted in 48 h of radar data. A total of ~ 270 Geminids were observed among ~ 8800 meteor head echoes with precisely determined orbits. The Geminid head echo activity is consistent with an earlier peak than the visual Geminid activity determined by the International Meteor Organization (IMO). The observed flux of Geminids is a factor of ~ 3 lower than the previously reported flux of the 2009 Orionids measured with an identical MU~radar setup. We use the observed flux ratio to discuss the relation between the head echo mass-velocity selection effect, the mass distribution indices of meteor showers and the mass threshold of the MU radar.

  7. Recent shower outbursts detected by the Canadian Meteor Orbit Radar (CMOR)

    NASA Astrophysics Data System (ADS)

    Brown, P.

    2016-01-01

    We present recent detections of short-duration shower outbursts as measured by the Canadian Meteor Orbit Radar (CMOR) between 2013-2016. In this interval, CMOR detected two strong shower outbursts unlinked to known showers. These included an outburst of the Kappa Cancrids (KCA - IAU 793) on January 5, 2015 and from the Gamma Lyrids (GLY - IAU 794) on February 7, 2015. Both have an orbit consistent with a Halley-type comet (HTC) or nearly isotropic-comet. Analysis of GLY activity also revealed a previously unreported annual shower, the September Ursae Majorids, (SUR - IAU 795).

  8. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2015-11-01

    Recently, there has been a worldwide proliferation of instruments and networks dedicated to observing meteors, including airborne and future space-based monitoring systems . There has been a corresponding rapid rise in high quality data accumulating annually. In this paper, we present a method embodied in the open-source software program "Meteor Toolkit", which can effectively and accurately process these data in an automated mode and discover the pre-impact orbit and possibly the origin or parent body of a meteoroid or asteroid. The required input parameters are the topocentric pre-atmospheric velocity vector and the coordinates of the atmospheric entry point of the meteoroid, i.e. the beginning point of visual path of a meteor, in an Earth centered-Earth fixed coordinate system, the International Terrestrial Reference Frame (ITRF). Our method is based on strict coordinate transformation from the ITRF to an inertial reference frame and on numerical integration of the equations of motion for a perturbed two-body problem. Basic accelerations perturbing a meteoroid's orbit and their influence on the orbital elements are also studied and demonstrated. Our method is then compared with several published studies that utilized variations of a traditional analytical technique, the zenith attraction method, which corrects for the direction of the meteor's trajectory and its apparent velocity due to Earth's gravity. We then demonstrate the proposed technique on new observational data obtained from the Finnish Fireball Network (FFN) as well as on simulated data. In addition, we propose a method of analysis of error propagation, based on general rule of covariance transformation.

  9. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  10. Secular influence of change in the heliocentric gravitation constant GM ⊙ on evolution of orbits of Meteor Streams

    NASA Astrophysics Data System (ADS)

    Li, Lin-Sen

    2016-06-01

    The Secular influence of the change in the heliocentric gravitational constant on the evolution of orbits of Meteor Streams is examined by using the method of celestial mechanics with variable mass and variable gravitational constant. The change in the heliocentric gravitational constant includes the combined changes in the sun's mass and gravitational constant obtained from the modern observation of planets and spacecraft. The perturbation equations are solved by expanding series with mean anomaly. The solutions of the secular and periodic variation of orbital elements are derived. The theoretical results for the secular variables of the semi-major axes, solar distances at perihelion and orbital periods are given for three Meteor Streams: Dracorids, Quadrantids, and Ursids. The numerical results are shown in Table 2. The discussion and conclusion are drawn.

  11. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  12. Precise Trajectories and Orbits of Meteoroids from the 1999 Leonid Meteor Storm

    NASA Technical Reports Server (NTRS)

    Betlem, Hans; Jenniskens, Peter; Spurny, Pavel; VanLeeuwen, Guus Docters; Miskotte, Koen; TerKuile, Casper R.; Zerubin, Peter; Angelos, Chris; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Photographic multi-station observations of 47 Leonid meteors are presented that were obtained from two ground locations in Spain during the 1999 meteor storm. We find an unresolved compact cluster of radiants at alpha = 153.67 +/- 0.05 and delta = 21.70 +/- 0.05 for a mean solar longitude of 235.282 (J2000). The position is identical to that of the November 17/18 outburst of 1998, which implies that both are due to comet 55P/Tempel-Tuttle's ejecta from 1899. We also find a halo which contains about 28% of all meteors. The spatial distribution of radiant positions appears to be Lorentzian, with a similar fraction of meteors in the profile wings as the meteor storm activity curve.

  13. Advanced meteor radar installed at Tirupati: System details and comparison with different radars

    NASA Astrophysics Data System (ADS)

    Rao, S. Vijaya Bhaskara; Eswaraiah, S.; Venkat Ratnam, M.; Kosalendra, E.; Kishore Kumar, K.; Sathish Kumar, S.; Patil, P. T.; Gurubaran, S.

    2014-11-01

    An advanced meteor radar, viz, Sri Venkateswara University (SVU) meteor radar (SVU MR) operating at 35.25 MHz, was installed at Sri Venkateswara University (SVU), Tirupati (13.63°N, 79.4°E), India, in August 2013 for continuous observations of horizontal winds in the mesosphere and lower thermosphere (MLT). This manuscript describes the purpose of the meteor radar, system configuration, measurement techniques, its data products, and operating parameters, as well as a comparison of measured mean winds in the MLT with contemporary radars over the Indian region. It is installed close to the Gadanki (13.5°N, 79.2°E) mesosphere-stratosphere-troposphere (MST) radar to fill the region between 85 and 100 km where this radar does not measure winds. The present radar provides additional information due to its high meteor detection rate, which results in accurate wind information from 70 to 110 km. As a first step, we made a comparison of SVU MR-derived horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region, as well as model (horizontal wind model 2007) data sets. The comparison showed an exquisite agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well, as did the meridional winds. The observed discrepancies and limitations in the wind measurement are discussed in the light of different measuring techniques and the effects of small-scale processes like gravity waves. This new radar is expected to play an important role in our understanding of the vertical and lateral coupling of different regions of the atmosphere that will be possible when measurements from nearby locations are combined.

  14. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  15. Radio Observations of Meteors.

    PubMed

    Millman, P M

    1954-08-27

    To summarize, we find that the radio technique of meteor observation enables us to extend the systematic recording of meteor rates down to the 9th or 10th magnitude; to determine satisfactory heights and velocities on a scale previously impossible; to calculate the orbits of meteor showers and individual meteors, in particular those that appear only in the daytime; and to study wind drift and fine structure in the ionosphere. The radio observations have quite definitely indicated that down to the 9th magnitude, corresponding to particles approximately 1 mm in diameter, meteors are members of the solar system and do not come from interstellar space.

  16. Meteor Researches at Khnure

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs

  17. Meteor researches at KHNURE

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    2005-01-01

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs.

  18. A study to improve the past orbit of comet C/1917 F1 (Mellish) on the basis of its observed meteor showers

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Vaubaillon, J.; Hajduková, M.

    2016-05-01

    Context. Periodic comets are known to be the parent bodies of meteoroid streams. The stream of a given comet can split into several filaments. These can be observed in the Earth's atmosphere as more than just a single meteor shower. One such comet is C/1917 F1 (Mellish), which associates at least two, possibly four, meteor showers that have been recorded in the meteor databases. In a recent study, the dynamical evolution of the C/1917 F1's theoretical stream was followed by only considering the gravitational perturbations. The properties of individual filaments of this stream, corresponding to the appropriate meteor showers, were not predicted perfectly. Aims: To reach better agreement between theory and observation, we repeatedly model the theoretical stream of C/1917 F1. In the modeling, we also include the Poynting-Robertson drag acting on meteoroids and assume an action of the non-gravitational effects on the parent comet dynamics. If success was achieved, the modeling could become a tool that would enable us to recover the past orbital history of the parent comet. Methods: Considering the nominal orbit, as well as several cloned orbits, of the comet C/1917 F1, we modeled its theoretical streams. The modeling was performed for several past perihelion passages. Each modeled stream consists of 10 000 test particles that are influenced by the Poynting-Robertson drag of various strengths. Results: We achieve a partial improvement in the prediction of the properties of all four meteor showers. The Poynting-Robertson drag helps to improve the match between the theory and observation of three of the four showers. However, when considering the nominal orbit of the parent comet, a perfect match seems to be impossible. A close match in the case of the most problematic shower is achieved using a cloned orbit, but this is not applicable to reality because the simultaneous predictions of the properties of the other three showers fail.

  19. Discovery of Leonid Meteoric Cloud

    DTIC Science & Technology

    2007-11-02

    as a local enhancement in sky brightness during the meteor shower in 1998. The radius of the trail, deduced from the spatial extent of the cloud, is...A meteoric cloud is a faint glow of sunlight scattered by the small meteoroids in the trail along a parent comets orbit. Here we report the first...detection of the meteoric cloud associated with the Leonid meteor stream. Our photometric observations, performed on Mauna Kea, Hawaii, reveal the cloud

  20. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  1. State-of-the-art meteor observing

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, M.

    2014-07-01

    Meteors are an excellent way to sample the local population of small asteroidal and cometary material. Various methods are used to calculate the trajectory, energy, mass and orbit of meteoroids which collide with the atmosphere. Optical methods, including photographic and video observations, can provide information on how meteoroids ablate in the atmosphere, and from this their chemical and physical properties can be inferred. New observing systems have higher resolution than ever before, allowing details as small as a few meters to be distinguished in some cases (e.g. Weryk et al. 2013), and some optical systems are equipped with spectral detectors which allow the atomic composition of the meteoroids to be obtained. Computer automation of both the observing and data reduction process has become much more practical recently. Meteor patrol radars are capable of observing thousands of meteor orbits every day, allowing the details of the distribution of meteoroids at 1 au to be found (e.g. Brown et al. 2010). Radars can operate in daylight and through clouds, providing observations when optical methods fail. High power, large aperture radars allow the ionization curves of very small meteors to be used in the same way as optical light curves, and can also produce precise orbits for meteoroids (Kero et al. 2012). Other methods used to observe meteors, including infrasound, can estimate their position in the atmosphere and their energy, and are particularly useful for very bright fireballs (Ens et al., 2012). Recent advances in meteor observing techniques will be reviewed, including the systematic tracking of meteors with computer guided mirrors and a telescope, and multistation patrol radar observations.

  2. Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    NASA Technical Reports Server (NTRS)

    Kolomiyets, S. V.

    2011-01-01

    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.

  3. Study of the structure of a meteor complex near the earth's orbit. 1. Description of the model

    SciTech Connect

    Voloshchuk, Y.I.; Kashcheev, B.L.

    1986-04-01

    The mechanism which forms meteor swarms and causes them to evolve consists of process which lead, on one hand, to concentration, and on the other hand, to scattering. The authors show that this mechanism leads to a hyperbolic intensity distribution of meteor swarms. By starting out from the most general qualitative concepts concerning the origin and evolution of meteor material, the authors have obtained a model for the probable structure of a meteor complex which reflects its systematic nature. The next step will be to check experimentally whether or not this model is accurate.

  4. Watching meteors on Triton

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Grebowsky, J. M.; Weisman, Andrew L.

    2004-06-01

    The thin atmosphere of Neptune's moon Triton is dense enough to ablate micrometeoroids as they pass through. A combination of Triton's orbital velocity around Neptune and its orbital velocity around the Sun gives a maximum meteoroid impact velocity of approximately 19 km s -1, sufficient to heat the micrometeoroids to visibility as they enter. The ablation profiles of icy and stony micrometeoroids were calculated, along with the estimated brightness of the meteors. In contrast to the terrestrial case, visible meteors would extend very close to the surface of Triton. In addition, the variation in the meteoroid impact velocity as Triton orbits Neptune produces a large variation in the brightness of meteors with orbital phase, a unique Solar System phenomenon.

  5. Advanced SuperDARN meteor wind observations based on raw time series analysis technique

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

    2009-04-01

    The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

  6. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  7. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  8. The radiant distribution of AMOR radar meteors

    NASA Astrophysics Data System (ADS)

    Galligan, D. P.; Baggaley, W. J.

    2005-05-01

    A large data set provided by the highly sensitive Advanced Meteor Orbit Radar (AMOR) facility is used to investigate the structure of the sporadic meteor complex. The helion, antihelion and apex apparent sources are clearly found. Observational bias is then removed to reveal the true source distributions as observed on Earth. A long-standing problem in meteor science has been the difference in observed meteor flux between the helion and antihelion source directions. Consideration of the effects of atmospheric interference and Faraday rotation is found to lead to a closer balance between these. The orbital distributions present within the different regions are also discussed. The apex region is found to have a strong retrograde component and a weaker prograde component that exists at high southerly latitudes and that contains orbits with particularly high inclinations. The retrograde component reduces substantially after inclusion of observational bias corrections. Care should be taken in comparing the results presented here with those from other radar systems: AMOR is sensitive to dust as small in diameter as ~40μm, while the limiting sensitivity of most contemporary systems is an order of magnitude larger.

  9. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  10. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  11. Croatian Meteor Network: Ongoing work 2015 - 2016

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Vida, D.; Korlević, K.; Andreić, Ž.

    2016-01-01

    Ongoing work of the Croatian Meteor Network (CMN) between the 2015 and 2016 International Meteor Conferences is presented. The current sky coverage is considered, software updates and updates of orbit catalogues are described. Furthermore, the work done on meteor shower searches, international collaborations as well as new fields of research are discussed. Finally, the educational efforts made by the CMN are described.

  12. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  13. Development of 3D multimedia with advanced computer animation tools for outreach activities related to Meteor Science and Meteoritics

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Documentaries related to Astronomy and Planetary Sciences are a common and very attractive way to promote the interest of the public in these areas. These educational tools can get benefit from new advanced computer animation software and 3D technologies, as these allow making these documentaries even more attractive. However, special care must be taken in order to guarantee that the information contained in them is serious and objective. In this sense, an additional value is given when the footage is produced by the own researchers. With this aim, a new documentary produced and directed by Prof. Madiedo has been developed. The documentary, which has been entirely developed by means of advanced computer animation tools, is dedicated to several aspects of Meteor Science and Meteoritics. The main features of this outreach and education initiative are exposed here.

  14. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very

  15. Martian Meteor Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fairly young meteor impact crater on Mars that is about the same size ( 1 kilometer; 0.62 miles) as the famous Meteor Crater in northern Arizona, U.S.A. Like the Arizona crater, boulders of ejected bedrock can be seen on the crater's ejecta blanket and in the crater itself. This crater is located in the Aethiopis region of Mars near 4.7oN, 224.1oW. Sunlight illuminates the scene from the lower left.

  16. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image's plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length 'streak' meteor photometry and two-station track determination. Meteor44 has been used to analyze data from the 2001, 2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  17. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  18. Models of sporadic meteor body distributions

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.

    1987-01-01

    The distribution of orbital elements and flux density over the celestial sphere are the most common forms of representation of the meteor body distribution in the vicinity of the Earth's orbit. The determination of flux density distribution of sporadic meteor bodies was worked out. The method and its results are discussed.

  19. Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Southworth, R. B.

    1975-01-01

    Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits.

  20. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  1. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  2. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  3. Croatian Meteor Network: ongoing work 2014 - 2015

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Andreić, Ž.; Korlević, K.; Vida, D.

    2015-01-01

    Ongoing work mainly between 2014-2015 International Meteor Conferences (IMC) has been presented. Current sky coverage, software updates, orbit catalogues updates, shower search updates, international collaboration as well as new fields of research and educational efforts made by the Croatian Meteor Network are described.

  4. A parent body search across several video meteor data bases

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Gural, P.; Andreić, Ž.; Skokić, I.; Korlević, K.; Vida, D.; Novoselnik, F.

    2014-07-01

    A meteor stream search that uses all the known near-Earth objects (NEOs) as parent bodies, with their individual orbital elements as the starting point, has found statistically significant associations when applied to video meteor data bases. By using the combined CMN-SonotaCo data sets containing 133,652 video meteor orbits, 30 comets were associated with meteor showers of which only 23 were previously listed in the IAU MDC data base. Additionally, 43 asteroids with inclinations over 15 degrees may be associated to streams containing ten or more meteor orbits, each possibly representing a new meteor shower. Lastly, by using a modified search that compared the orbital similarity of each meteor to all other video meteors in the data base, 1093 groupings with more than ten meteors were found that may be indicative of several new minor showers. Of those groups, 6 new showers were found to be potentially associated to a parent body. Several dozen additional groups are planned for publication and submittal to the IAU for their consideration as newly discovered streams. Altogether 56,486 (42%) of the meteors in the combined video meteor data base are in one of the meteor stream groupings found, while the rest are likely sporadics. Further analysis is needed to prove that the groupings found are indeed minor showers.

  5. The history of meteors and meteor showers

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    The history of meteors and meteor showers can effectively start with the work of Edmond Halley who overcome the Aristotelean view of meteors as being an upper atmospheric phenomenon and introduced their extraterrestrial nature. Halley also estimated their height and velocity. The observations of the Leonids in 1799, 1833 and 1866 established meteoroids as cometary debris. Two red herrings were caught — fixed radiants and hyperbolic velocities. But the 1890 to 1950 period with two-station meteor photography, meteor spectroscopy and the radar detection of meteors saw the subject well established.

  6. Meteor trajectory estimation from radio meteor observations

    NASA Astrophysics Data System (ADS)

    Kákona, J.

    2016-01-01

    Radio meteor observation techniques are generally accepted as meteor counting methods useful mainly for meteor flux detection. Due to the technical progress in radio engineering and electronics a construction of a radio meteor detection network with software defined receivers has become possible. These receivers could be precisely time synchronized and could obtain data which provide us with more information than just the meteor count. We present a technique which is able to compute a meteor trajectory from the data recorded by multiple radio stations.

  7. Big data era in meteor science

    NASA Astrophysics Data System (ADS)

    Vinković, D.; Gritsevich, M.; Srećković, V.; Pečnik, B.; Szabó, G.; Debattista, V.; Škoda, P.; Mahabal, A.; Peltoniemi, J.; Mönkölä, S.; Mickaelian, A.; Turunen, E.; Kákona, J.; Koskinen, J.; Grokhovsky, V.

    2016-01-01

    Over the last couple of decades technological advancements in observational techniques in meteor science have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced science goals. We review some of the developments that push meteor science into the big data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere.

  8. Advanced technologies to support earth orbiting systems

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Johnston, Gordon I.

    1992-01-01

    Within NASA, the Office of Aeronautics and Space Technology (OAST) is conducting a major, ongoing engineering research and technology program directed toward the support of future programs, with a major focus on technology for future space science missions. OAST is conducting a substantial effort to identify the technologies required to support the evolution of Mission to Planet Earth. The effort consists of studies, workshops, and technology research programs to explore: (1) new concepts for multisatellite, earth-observing instrumentation and sensor sets; (2) information system advances for continuous and reliable processing of terabit per day data streams; and (3) infrastructure development, including spacecraft bus technology and operations for substantial performance, cost, and reliabiltiy gains. This paper discusses the technological needs of future earth science systems, reviews current and planned activities, and highlights significant achievements in the research and technology program.

  9. The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration. The film describes the Lunar Orbiter's mission to photograph landing areas on the Moon. The Orbiter will be launched from Cape Kennedy using an Atlas Agena booster rocket. Once it is boosted in a trajectory toward the Moon, the Orbiter will deploy two-way earth communication antennas and solar panels for electricity. Attitude control jets will position the solar panels toward the sun and a tracker for a fix on its navigational star. The Orbiter will be put in an off-center orbit around the Moon where it will circle from four to six days. Scientists on Earth will study the effects of the Moon's gravitational field on the spacecraft, then the orbit will be lowered to 28 miles above the Moon's surface. Engineers will control the Orbiter manually or by computer to activate two camera lenses. The cameras will capture pictures of 12,000 square miles of lunar surface in 25 and 400 square mile increments. Pictures will be sent back to Earth using solar power to transmit electrical signals. The signals will be received by antennas at Goldstone, CA, and in Australia and Spain. Incoming photographic data will be electronically converted and processed to produce large-scale photographic images. The mission will be directed from the Space Flight Operations Facility in Pasadena, CA by NASA and Boeing engineers. After the photographic mission, the Orbiter will continue to circle the Moon providing information about micrometeoroids and radiation in the vicinity. [Entire movie available on DVD from CASI as Doc ID 20070031014. Contact help@sti.nasa.gov

  10. Meteor Beliefs Project: ``Year of Meteors''

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  11. Meteor spectra in the EDMOND database

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Gorková, S.; Srba, J.; Ferus, M.; Civiš, S.; di Pietro, C. A.

    2015-01-01

    We present a selection of five interesting meteor spectra obtained in the years 2014 and 2015 via CCTV video systems with a holographic grating, working in CEMENT and BRAMON meteor observation networks. Based on the EDMOND multi stations video meteor trajectory data an orbital classification of these meteors was performed. Selected meteors are members of the LYR, SPE, DSA and LVI meteor streams, one meteor is classified as sporadic background (SPO). In calibrated spectra the main chemical components were identified. Meteors are chemically classified based on relative intensities of the main spectral lines (or multiplets): Mg I (2), Na I (1), and Fe I (15). Bolide EN091214 is linked with the 23rd meteorite with known orbit (informally known as "Žďár"), two fragments of the parent body were found in the Czech Republic so far (August, 2015). For this particular event a time resolved spectral observation and comparison with laboratory spectra of LL3.2 chondritic meteorite are presented.

  12. The Meteor Meter.

    ERIC Educational Resources Information Center

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  13. Meteor observations under the INASAN supervision

    NASA Astrophysics Data System (ADS)

    Kartashova, A. P.; Bagrov, A. V.

    2012-09-01

    Meteor observations have the specific property: we do not know in advance neither area on the celestial sphere, not the time when the event occurs. Besides that, a meteor flash in the atmosphere has duration few seconds or less, and it is hard problem to gather enough photons from it to register a faint or fast meteor. There are a number of tasks in meteor astronomy for solution of which not only a simple registration of meteors in the optical range is required, but a high spatial and time resolution as well. Television method is the most acceptable for such a case and is widely used in the practice of meteor observations. Television meteor observations in Russia are carried out under the Institute of Astronomy of the Russian Academy of Sciences (INASAN) supervision in different regions of Russia: Moscow region, Irkutsk, Ryazan and North Caucasus. The TV system PatrolCa designed for observations in the wide field of view (the ordinary for most of meteor cameras), consists of the following components: the high resolution cameras Watec LCL-902HS, the wide-angle photograph objectives Canon 6/0.8 (F=6 mm, the aperture 1:0.8). The cameras have fields of view of 50°x40° and have a limiting magnitude (for meteors) of +4 m ÷ +5 m. The FAVOR (FAst Variability Optical Registrator) camera is used for observations of faint meteors at the North Caucasus [1]. The basic components of this camera are the following: the high-aperture lense objective with the aperture 150 mm and the focal length 180mm (the aperture 1:1.2), the image intensifier, the objective reversal, CCD receiver "Videoscan" VS-СTT285 2001. The CCD "Sony" ICX285 has format 1380 х 1024 pixels. The camera has a field of view of 18 ° х 20°, and has a limiting magnitude of above +10m (for meteors). The two cameras similar to FAVOR (named SMAC) were designed for double-station observations of faint meteors. The results of observations at these cameras are presented. The observations were held by both methods

  14. The Makings of Meteor Astronomy: Part XIII

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1996-10-01

    In 1848, Sir John Lubbock advanced the hypothesis that meteors shine by reflected sunlight. He developed a set of equations describing the geometry of meteor encounters, and for a decade or so, his idea was at least marginally supported by other observers.

  15. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  16. Diuble station observation of telescopic meteors in Mykolaiv

    NASA Astrophysics Data System (ADS)

    Kulichenko, M. O.; Shulga, O. V.; Sybiryakova, Ye. S.; Kozyryev, Ye. S.

    2017-02-01

    Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI "NAO"). The method of meteor registration is based on the combined observation method developed at RI "NAO". The main accent of the research is made on the precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. Estimation of uncertainties of visible radiant equatorial coordinates, geocentric velocity and heliocentric meteoroid orbit parameters was carried out.

  17. Database of Properties of Meteors

    NASA Technical Reports Server (NTRS)

    Suggs, Rob; Anthea, Coster

    2006-01-01

    A database of properties of meteors, and software that provides access to the database, are being developed as a contribution to continuing efforts to model the characteristics of meteors with increasing accuracy. Such modeling is necessary for evaluation of the risk of penetration of spacecraft by meteors. For each meteor in the database, the record will include an identification, date and time, radiant properties, ballistic coefficient, radar cross section, size, density, and orbital elements. The property of primary interest in the present case is density, and one of the primary goals in this case is to derive densities of meteors from their atmospheric decelerations. The database and software are expected to be valid anywhere in the solar system. The database will incorporate new data plus results of meteoroid analyses that, heretofore, have not been readily available to the aerospace community. Taken together, the database and software constitute a model that is expected to provide improved estimates of densities and to result in improved risk analyses for interplanetary spacecraft. It is planned to distribute the database and software on a compact disk.

  18. A Conceptual Titan Orbiter Mission Using Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.; Spilker, Thomas R.

    2006-01-01

    This study details a conceptual follow-on Titan orbiter mission that would provide full global topographic coverage. surface imaging, and meteorological characterization of the atmosphere over a nominal 5-year science mission duration. The baseline power requirement is approx.1 kWe at EOM and is driven by a high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography. While this power level is moderately higher than that of the Cassini spacecraft. higher efficiency advanced RPSs could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini spacecraft. The Titan Orbiter mission is assumed to launch in 2015. It would utilize advanced RPSs to provide all on-board power.

  19. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  20. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  1. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  2. Meteor Showers of the Earth-crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Pulat, Babadzhanov; Gulchekhra, Kokhirova

    2015-03-01

    The results of search for meteor showers associated with the asteroids crossing the Earthfs orbit and moving on comet-like orbits are given. It was shown that among 2872 asteroids discovered till 1.01.2005 and belonging to the Apollo and Amor groups, 130 asteroids have associated meteor showers and, therefore, are the extinct cometary nuclei.

  3. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter

    2011-12-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration

  4. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Janches, Diego; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Jenniskens, Peter

    2011-01-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (approx. > 10(exp 5) yr at 1 AU) than postulated in the standard collisional models (approx 10(exp 4) yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) 10(exp 11) sq km and approx. 4 10(exp 19) g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be approx. 10(exp 4)-10(exp 5) kg/s. The input is up to approx 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 micron and 1 cm is found to be approx 15,000 tons/yr (factor of 2 uncertainty), which is

  5. Orbital change following Le Fort III advancement in syndromic craniosynostosis: quantitative evaluation of orbital volume, infra-orbital rim and globe position.

    PubMed

    Nout, Erik; van Bezooijen, Jine S; Koudstaal, Maarten J; Veenland, Jifke F; Hop, Wim C J; Wolvius, Eppo B; van der Wal, Karel G H

    2012-04-01

    Patients with syndromic craniosynostosis suffering from shallow orbits due to midface hypoplasia can be treated with a Le Fort III advancement osteotomy. This study evaluates the influence of Le Fort III advancement on orbital volume, position of the infra-orbital rim and globe. In pre- and post-operative CT-scans of 18 syndromic craniosynostosis patients, segmentation of the left and right orbit was performed and the infra-orbital rim and globe were marked. By superimposing the pre- and post-operative scans and by creating a reference coordinate system, movements of the infra-orbital rim and globe were assessed. Orbital volume increased significantly, by 27.2% for the left and 28.4% for the right orbit. Significant anterior movements of the left infra-orbital rim of 12.0mm (SD 4.2) and right infra-orbital rim of 12.8mm (SD 4.9) were demonstrated. Significant medial movements of 1.7mm (SD 2.2) of the left globe and 1.5mm (SD 1.9) of the right globe were demonstrated. There was a significant correlation between anterior infra-orbital rim movement and the increase in orbital volume. Significant orbital volume increase has been demonstrated following Le Fort III advancement. The position of the infra-orbital rim was moved forward significantly, whereas the globe position remained relatively unaffected.

  6. Origin of meteor swarms of the Arietid and Geminid types

    SciTech Connect

    Lebedinets, V.N.

    1985-10-01

    The author proposes a physical mechanism for the formation of meteor swarms on orbits of small size and very small perihelion distance, similar to the orbits of Arietid and Geminid meteor swarms, which are rarely encountered among the larger bodies of the solar system, and he justifies the mechanism mathematically. He shows that comets can transfer to such orbits from orbits of large size during evaporation of their ice nuclei under the action of reactive drag.

  7. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  8. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  9. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  10. Quadrantid Meteor, 2013

    NASA Video Gallery

    An allsky camera in New Mexico captured a brief video of this Quadrantid fireball meteor on Jan. 3, 2013 at 2:04 a.m. EST. The Quadrantid meteor shower occurs each January and derives its name from...

  11. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  12. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  13. Extraterrestrial meteors: a martian meteor and its parent comet.

    PubMed

    Selsis, Franck; Lemmon, Mark T; Vaubaillon, Jérémie; Bell, James F

    2005-06-02

    Regular meteor showers occur when a planet approaches the orbit of a periodic comet--for example, the Leonid shower is evident around 17 November every year as Earth skims past the dusty trail of comet Tempel-Tuttle. Such showers are expected to occur on Mars as well, and on 7 March last year, the panoramic camera of Spirit, the Mars Exploration Rover, revealed a curious streak across the martian sky. Here we show that the timing and orientation of this streak, and the shape of its light curve, are consistent with the existence of a regular meteor shower associated with the comet Wiseman-Skiff, which could be characterized as martian Cepheids.

  14. The new July meteor shower

    NASA Astrophysics Data System (ADS)

    Zoladek, Przemyslaw; Wisniewski, Mariusz

    2012-12-01

    A new meteor stream was found after an activity outburst observed on 2005 July 15. The radiant was located five degrees west of the possible early Perseid radiant, close to the star Zeta Cassiopeiae. Numerous bright meteors and fireballs were observed during this maximum. Analysis of the IMO Video Database and the SonotaCo orbital database revealed an annual stream which is active just before the appearance of the first Perseids, with a clearly visible maximum at solar longitude 113°1. Activity of the stream was estimated as two times higher than activity of the Alpha Capricornids at the same time. The activity period extends from July 12 to 17, during maximum the radiant is visible at coordinates alpha = 5°9, delta = +50°5, and observed meteors are fast, with Vg = 57.4 km/s. The shower was reported to the IAU Meteor Data Center and recognized as a new discovery. According to IAU nomenclature the new stream should be named the Zeta Cassiopeiids (ZCS). %z Arlt R. (1992). WGN, Journal of the IMO, 20:2, 62-69. Drummond J. D. (1981). Icarus, 45, 545-553. Kiraga M. and Olech A. (2001). In Arlt R., Triglav M., and Trayner C., editors, Proceedings of the International Meteor Conference, Pucioasa, Romania, 21-24 September 2000, pages 45-51. IMO. Molau S. (2007). In Bettonvil F. and Kac J., editors, Proceedings of the International Meteor Conference, Roden, The Netherlands, 14-17 September 2006, pages 38-55. IMO. Molau S. and Rendtel J. (2009). WGN, Journal of the IMO, 37:4, 98-121. Olech A., Zoladek P., Wisniewski M., Krasnowski M., Kwinta M., Fajfer T., Fietkiewicz K., Dorosz D., Kowalski L., Olejnik J., Mularczyk K., and Zloczewski K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor Conference, Oostmalle, Belgium, 15-18 September 2005, pages 53-62. IMO. Poleski R. and Szaruga K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor

  15. Meteor spectra from AMOS video system

    NASA Astrophysics Data System (ADS)

    Rudawska, Regina; Tóth, Juraj; Kalmančok, Dušan; Zigo, Pavol; Matlovič, Pavol

    2016-04-01

    Here we demonstrate the capability of the updated All-Sky Meteor Orbit System (AMOS) (called AMOS-Spec) to measure the main element abundances of meteors. The AMOS-Spec program has been created with the intention of carrying out regular systematic spectroscopic observations. At the same time, the meteoroid trajectory and pre-atmospheric orbit are independently measured from data collected by the AMOS camera network. This, together with spectral information, allows us to find the link between the meteoroid and its parent body, from both dynamical and physical consideration. Here we report results for 35 selected cases.

  16. A processing method and results of meteor shower radar observations

    NASA Technical Reports Server (NTRS)

    Belkovich, O. I.; Suleimanov, N. I.; Tokhtasjev, V. S.

    1987-01-01

    Studies of meteor showers permit the solving of some principal problems of meteor astronomy: to obtain the structure of a stream in cross section and along its orbits; to retrace the evolution of particle orbits of the stream taking into account gravitational and nongravitational forces and to discover the orbital elements of its parent body; to find out the total mass of solid particles ejected from the parent body taking into account physical and chemical evolution of meteor bodies; and to use meteor streams as natural probes for investigation of the average characteristics of the meteor complex in the solar system. A simple and effective method of determining the flux density and mass exponent parameter was worked out. This method and its results are discussed.

  17. The ALTAIR Meteor Measurements Program

    NASA Technical Reports Server (NTRS)

    Cooke, William J.

    2007-01-01

    Established in late 2006, the Meteor Measurements Program is in the process of using the ALTAIR radar located on Kwajelein Atoll to obtain radar observations of sporadic and shower meteoroids. The goals are to determine meteoroid masses, orbits, ballistic coefficients and densities, which shall be provided to the Meteoroid Environment Office (MEO) at Marshall Space Flight Center. These data and analyses shall then be used by the MEO to 1) Add a realistic density distribution to the new Meteoroid Engineering Model (MEM), which is the specified environment for vehicle design in the NASA Constellation (return to Moon) program. This program is the implementation of President Bush's Vision for Space Exploration (VSE). 2) Investigate the meteoroid velocity distribution at smaller masses. 3) Strive to understand the differences (biases) in meteoroid observations produced by systems like ALTAIR and those of the meteor patrol radars, such as the University of Western Ontario's CMOR system. This paper outlines the program details and its progress.

  18. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  19. MINOTAUR (Maryland's innovative orbital technologically advanced University rocket)

    NASA Astrophysics Data System (ADS)

    Lewis, Mark J.; Akin, Dave; Lind, Charles; Rice, T.; Vincent, W.

    Over the past decade, there has been an increasing interest in designing small commercial launch vehicles. Some of these designs include OSC's Pegasus, and AMROC's Aquila. Even though these vehicles are very different in their overall design characteristics, they all share a common thread of being expensive to design and manufacture. Each of these vehicles has an estimated production and operations cost of over $15000/kg of payload. In response to this high cost factor, the University of Maryland is developing a cost-effective alternative launch vehicle, Maryland's Innovative Orbital Technologically Advanced University Rocket (MINOTAUR). A preliminary cost analysis projects that MINOTAUR will cost under $10000/kg of payload. MINOTAUR will also serve as an enriching project devoted to an entirely student-designed-and-developed launch vehicle. This preliminary design of MINOTAUR was developed entirely by undergraduates in the University of Maryland's Space Vehicle Design class. At the start of the project, certain requirements and priorities were established as a basis from which to begin the design phase: (1) carry a 100 kg payload into a 200 km circular orbit; (2) provide maximum student involvement in the design, manufacturing, and launch phases of the project; and (3) use hybrid propulsion throughout. The following is the list of the project's design priorities (from highest to lowest): (1) safety, (2) cost, (3) minimum development time, (4) maximum use of the off-the-shelf components, (5) performance, and (6) minimum use of pyrotechnics.

  20. MINOTAUR (Maryland's innovative orbital technologically advanced University rocket)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark J.; Akin, Dave; Lind, Charles; Rice, T. (Editor); Vincent, W. (Editor)

    1992-01-01

    Over the past decade, there has been an increasing interest in designing small commercial launch vehicles. Some of these designs include OSC's Pegasus, and AMROC's Aquila. Even though these vehicles are very different in their overall design characteristics, they all share a common thread of being expensive to design and manufacture. Each of these vehicles has an estimated production and operations cost of over $15000/kg of payload. In response to this high cost factor, the University of Maryland is developing a cost-effective alternative launch vehicle, Maryland's Innovative Orbital Technologically Advanced University Rocket (MINOTAUR). A preliminary cost analysis projects that MINOTAUR will cost under $10000/kg of payload. MINOTAUR will also serve as an enriching project devoted to an entirely student-designed-and-developed launch vehicle. This preliminary design of MINOTAUR was developed entirely by undergraduates in the University of Maryland's Space Vehicle Design class. At the start of the project, certain requirements and priorities were established as a basis from which to begin the design phase: (1) carry a 100 kg payload into a 200 km circular orbit; (2) provide maximum student involvement in the design, manufacturing, and launch phases of the project; and (3) use hybrid propulsion throughout. The following is the list of the project's design priorities (from highest to lowest): (1) safety, (2) cost, (3) minimum development time, (4) maximum use of the off-the-shelf components, (5) performance, and (6) minimum use of pyrotechnics.

  1. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; Kapitzke, M.; Moes, T.; Steel, D.; Williams, T.; Gearheart, D.

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  2. The Southern Argentine Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, Diego

    2014-11-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53 S) in May 2008. SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large number of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars. In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions. The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source, of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables detailed study of showers at high southern latitudes (e.g July Phoenicids or Puppids complex). Finally, SAAMER is ideal for the deployment of complementary instrumentation in both, permanent

  3. The Upsilon Pegasid Meteor Shower

    NASA Astrophysics Data System (ADS)

    Povenmire, H.

    1995-09-01

    On the morning of August 8, 1975, meteors were observed from a previously unrecognized radiant in Pegasus. The rates were approximately seven per hour [1]. The radiant was alpha = 350 degrees, delta = +19 degrees (2000.0). These meteors are characterized as swift, yellow-white and without significant ionization trains [1]. The average magnitude of several hundred meteors from this shower is approximately +3.50, slightly fainter than the Perseids which occur at the same time. A broad maximum seems to occur about August 8. The three active fireball networks (Prairie, MORP and European) were contacted in a search for previously recorded fireballs with negative results. Ceplecha [2] of the European Network computed the orbital elements using the FIRBAL program. On August 19, 1982 at 02:09:57 UT, a magnitude -14.76 f1reball occurred over the White Carpathian Mountains of Austria and Czechoslovakia. It was photographed by five cameras of the European Network. Reduction of this Upsilon Pegasid fireball (EN 190882A) showed it to be a type IIIb fireball [2] - that is, an extremely low density, cometary, snow-like material with a specific gravity of approximately 0.27 g/cm^3. This material ablates at high altitude and cannot produce sonic phenomena or meteorites. It is similar to the material in the Draconid meteor shower. The orbital elements derived from EN 190882A are given in Table I. Table I: Orbital elements for the Upsilon Pegasid stream from EN 190882A. omega = 305.9009 degrees Omega = 145.3431 degrees i = 85.0817 degrees q = 0.2022 e = 1.0 velocity = 51.8608 km/s Using these refined elements, Kronk [3] computed the radiant drift. The radiant drifts from the SSW to NNE at a relatively steep angle and at an average rate of 20 arc-min per day. An intensive literature search [3] revealed four double station Upsilon Pegasids which had previously been listed as sporadics. Institutions providing these data were Yale [4], Stalinabad [5], Tadjikistan [6] and Harvard [7

  4. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  5. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  6. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  7. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2016-09-01

    Methane plumes in the martian atmosphere were previously reported, but their source remains a mystery. We hypothesize a meteor shower source, as we find a correlation between Mars/cometary orbit encounters and detections of plumes.

  8. Rare Double Quadrantid Meteor Sighting

    NASA Video Gallery

    The wide-field meteor camera at NASA's Marshall Space Flight Center recorded these two simultaneous Quadrantid meteors on Jan. 4 at approximately 5 a.m. EST. Moving at 92,000 mph, the meteors flash...

  9. Advanced stellar compass onboard autonomous orbit determination, preliminary performance.

    PubMed

    Betto, Maurizio; Jørgensen, John L; Jørgensen, Peter S; Denver, Troelz

    2004-05-01

    Deep space exploration is in the agenda of the major space agencies worldwide; certainly the European Space Agency (SMART Program) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the cost of deep space missions. From past experience, it appears that navigation is the Achilles heel of deep space missions. Performed on ground, this imposes considerable constraints on the entire system and limits operations. This makes it is very expensive to execute, especially when the mission lasts several years and, furthermore, it is not failure tolerant. Nevertheless, to date, ground navigation has been the only viable solution. The technology breakthrough of advanced star trackers, like the advanced stellar compass (ASC), might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, onboard, and without a priori knowledge of any kind. The solution is robust and fast. This paper presents the preliminary performance obtained during the ground testing in August 2002 at the Mauna Kea Observatories. The main goals were: (1) to assess the robustness of the method in solving autonomously, onboard, the position lost-in-space problem; (2) to assess the preliminary accuracy achievable with a single planet and a single observation; (3) to verify the autonomous navigation (AutoNav) module could be implemented into an ASC without degrading the attitude measurements; and (4) to identify the areas of development and consolidation. The results obtained are very encouraging.

  10. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  11. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  12. Meteor Beliefs Project: Introduction

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-05-01

    A new project to investigate beliefs in meteors and meteoric phenomena in past and present times using chiefly folklore, mythology, prose and poetic literature, is described. Some initial examples are given, along with a bibliography of relevant items already in print in IMO publications.

  13. Influence of the meteoric stream on weather conditions: preliminary consideration

    NASA Astrophysics Data System (ADS)

    Granitskii, Lev V.; Borisevich, A. N.

    2000-12-01

    By the some estimation, about 150 tons of the meteoric matter are fall on the Earth every day. Some researchers note coincidence of the periods of activity of the most powerful meteoric stream with the periods of intensive falling of atmospheric precipitation. The unique meteoric stream Leonids represents the great interest as an example of possible correlation between meteors and power precipitation. The comet produced this stream is well known as Tempel-Tuttl comet, its orbital period is 33.3 years. With the same periodicity, the sharp strengthening of activity of a stream, which is called meteoric shower, is observed. Such meteoric stream during a night could cover the average monthly norm of fall of meteoric bodies at once in tens time. The analysis of meteorological data shows, that the winters of 1933, 1966, 1998 and 1999 years of a maximum Leonids activity are characterized by huge amount of snow. These anomalies have resulted in disasters in some of region. Under our suggestions, the anomaly rate of falling precipitation can be explained by the meteoric dust, which plays the role of the nucleuses of condensation. Thus, taking in to account the dada of regular meteoric stream, it's possible to make long term weather forecasting with the more preciseness.

  14. The heavens on fire : the great Leonid meteor storms

    NASA Astrophysics Data System (ADS)

    Littmann, Mark

    Imagine the night sky so full of shooting stars that the firmament itself seems to be crashing to Earth. When the most spectacular of all meteor showers - the Leonids - passed in 1966, observers saw 40 every second. In 1833, three widely-separated observers described the Leonid storm as `the heavens on fire'. The returning Leonids are now reaching their peak with great activity expected in 1999 and 2000. The Heavens on Fire vividly tells the history of meteors, and especially the Leonids, whose terrifying beauty established meteor science. Mark Littmann traces the history and mythology of meteors, profiles the fascinating figures whose discoveries advanced the field, and explores how meteors have changed the course of life on Earth. He offers advice on how and where to make the best of the 1999 and 2000 Leonid storms. `a must-have for meteor enthusiasts.' Sky and Telescope

  15. Meteor activity from 2001XQ on 2-3 December 2016?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-04-01

    The minor shower 66 Draconid (541 SDD) which was discovered by the Croatian Meteor Network has a mean orbit based on 43 meteors, similar to the orbit of 2001 XD. The asteroid 2001 XD has an orbit typical for Jupiter family comets and therefore may be a dormant comet. The shower activity ranges from November 23 until December 21. All meteor observers are encouraged to pay attention to any possible meteors from this source, although no outburst or any anything spectacular has to be expected.

  16. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  17. Minor meteor shower activity

    NASA Astrophysics Data System (ADS)

    Rendtel, J.

    2016-01-01

    Video meteor observations provide us with data to analyze structures in minor meteor showers or weak features in flux profiles. Samples obtained independently by other techniques allow to calibrate the data sets and to improve the confidence of results as demonstrated with a few results. Both, the confirmation of events predicted by model calculation and the input of observational data to improve the modelling results may help to better understand meteoroid stream evolution processes. Furthermore, calibrated data series can be used for studies of the long-term evolution of meteor shower activity.

  18. Present State and Prospects for the Meteor Research in Ukraine

    NASA Astrophysics Data System (ADS)

    Shulga, O.; Voloshchuk, Y.; Kolomiyets, S.; Cherkas, Y.; Kimakovskay, I.; Kimakovsky, S.; Knyazkova, E.; Kozyryev, Y.; Sybiryakova, Y.; Gorbanev, Y.; Stogneeva, I.; Shestopalov, V.; Kozak, P.; Rozhilo, O.; Taranukha, Y.

    2015-03-01

    ODESSA. Systematical study of the meteor events are being carried out since 1953. In 2003 complete modernization of the observing technique was performed, and TV gmeteor patrolh on the base of WATEC LCL902 cameras was created. @ wide variety of mounts and objectives are used: from Schmidt telescope F = 540 mm, F/D = 2.25 (field of view FOV = (0.68x0.51) deg, star limiting magnitude SLM = 13.5 mag, star astrometric accuracy 1-2 arcsec) up to Fisheye lenses F = 8 mm, F/D = 3.5 (FOV = (36x49) deg, SLM = 7 mag). The database of observations that was collected between 2003 and 2012 consists of 6176 registered meteor events. Observational programs on basis and non-basis observations in Odessa (Kryzhanovka station) and Zmeiny island are presented. Software suite of 12 programs was created for processing of meteor TV observations. It enables one to carry out the whole cycle of data processing: from image preprocessing up to orbital elements determination. Major meteor particles research directions: statistic, areas of streams, precise stream radiant, orbit elements, phenomena physics, flare appearance, wakes, afterglow, chemistry and density. KYIV. The group of meteor investigations has been functioning more than twenty years. The observations are carried out simultaneously from two points placed at the distance of 54 km. Super-isocon low light camera tubes are used with photo lens: F = 50mm, F/D = 1.5 (FOV = (23.5 x 19.0) deg, SLM = 9.5 mag), or F = 85, F/D = 1.5 (FOV = (13x11) deg, SLM = 11.5 mag). Astrometry, photometry, calculation of meteor trajectory in Earth atmosphere and computation of heliocentric orbit are realized in developed gFalling Starh software. KHARKOV. Meteor radio-observations have begun in 1957. In 1972, the radiolocation system MARS designed for automatic meteor registration was recognized as being the most sensitive system in the world. With the help of this system 250 000 faint meteors (up to 12 mag) were registered between 1972 and 1978 (frequency

  19. On the ejection and dispersion velocities of meteor particles

    NASA Astrophysics Data System (ADS)

    Kresak, L.

    1992-07-01

    This paper is a reaction to the attempts to determine the ejection velocities of meteor particles from cometary nuclei using the statistics of photographic meteor orbits. It is argued that this is essentially impossible. The original dispersion velocities are masked completely by much larger measuring errors, and for all permanent meteor showers also by the accumulated effects of planetary perturbations. The perturbations, appearing after sufficient spread particles along the orbit, are on the average about 25-times more effective in the direction perpendicular to the orbital plane than in the direction of motion, and they are about 50-times more effective for typical comets of Jupiter family than for those of Halley type. The latter disproportion is responsible for the widely different distribution of the revolution periods of comets, annual meteor showers, and temporary meteor storms. In addition to direct spacecraft measurements, the only feasible sources of information on the ejection velocities are meteor storms, like the Draconids or Leonids, appearing only several times per century, and the cometary dust trail discovered by IRAS. Both of them indicate incomparably lower velocities than the meteor data - only a few meters per second - and a substantial role of the solar radiation pressure in the initial dispersion.

  20. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  1. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Janches, Diego

    2011-12-20

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer ({approx}> 10{sup 5} yr at 1 AU) than postulated in the standard collisional models ({approx}10{sup 4} yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) Multiplication-Sign 10{sup 11} km{sup 2} and {approx}4 Multiplication-Sign 10{sup 19} g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be {approx}10{sup 4}-10{sup 5} kg s{sup -1}. The input is up to {approx}10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 {mu}m and 1 cm is found to be {approx}15

  2. Goals, technique and equipment of meteor study in Russia

    NASA Astrophysics Data System (ADS)

    Kartashova, A.; Bagrov, A. V.; Bolgova, G. T.; Kruchkov, S. V.; Leonov, V. A.; Mazurov, V. A.

    2013-09-01

    Institute of Astronomy RAS is one of the science institutes in the Russian Federation providing systematic optical meteor observations and supervises several meteor groups in our country. The main tasks of our investigations are dedicated to study meteoroid nature as well as meteoroid streams and meteoroid population in the Solar System. In the XXI century we in Russia carry out the reconstruction of our meteor astronomy due to possibilities of new meteor observation equipment (more powerful than were used before as visual and photographic methods) had made possible to select more interesting goals. First of our task is investigation of meteoroid streams crossing the Earth's orbit, and character of meteoroid distributions along of them. The multi stations meteor monitoring from located in the both hemispheres of the Earth can help in this study. According to the analysis of the evolution of meteor orbits, the compact and long lived meteoroid streams consist mainly from large particles. The observation equipment (cheap TV-cameras) with low limiting magnitude we use for gathering observational data. On the other hand, the observations of weak meteors are needed for new meteor shower indication (or confirmation of known meteor shower). The more effective way to do it is comparison of individual meteor orbits parameters (then calculation of radiants of meteor showers). The observations of space debris (as the meteors with low velocity - less 11.2 km/s) can be taking up within this task. The combination of high sensitive TV-cameras WATEC and super-fast lenses COMPUTAR are widely used for meteor TV-monitoring. The TVsystems for round-year meteor observations are fixed and are permanently oriented to the zenith area (the patrol camera - PatrolCa). The mobile TV-cameras (MobileCa) are used for double station observations (if it is possible) and located not far from main cameras PatrolCa (20-30 km). The mobile TVcameras observe 90% of main PatrolCa cameras FOV at altitudes

  3. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  4. Investigation of meteor shower parent bodies using various metrics

    NASA Astrophysics Data System (ADS)

    Dumitru, B. A.; Birlan, M.; Nedelcu, A.; Popescu, M.

    2016-01-01

    The present knowledge of meteor showers identifies the small bodies of our Solar System as supply sources for meteor streams. Both comets and asteroids are considered as the origin of meteor showers. The new paradigm of "active asteroids" opens up a large field of investigation regarding the relationships between asteroids and meteors. Processes like ejection and disaggregation at impacts, rotational instabilities, electrostatic repulsion, radiation pressure, dehydration stress followed by thermal fractures, sublimation of ices are sources of matter loss from asteroids. Our objective is to find genetic relationships between asteroids and meteor showers using metrics based on orbital elements. For this objective we selected three metrics (Southworth and Hawkins, 1963; Asher et al. 1993, and Jopek, 1993, respectively), the recent MPC database and the more recent IAU meteor shower database. From our analysis, 41 of the meteor showers have probabilities of being produced (or to be fueled) by asteroids. Our sample of asteroids contains more than 1000 objects, all of them belonging to the Near-Earth Asteroid population. The systematic approach performed, based on the physical properties of our sample, reinforced the link between asteroids and their associated meteor shower.

  5. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  6. Double station observation of faint meteors in Nikolaev

    NASA Astrophysics Data System (ADS)

    Kulichenko, Mykola; Shulga, Alexandr; Sybiryakova, Yevgeniya

    2016-07-01

    Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI NAO). The method of meteor registration is based on combined observation method developed at RI NAO. The main accent of the research is made on precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. The accuracy of visible radiant estimation is 0.7" with baseline 5 km, and less 0.5" with baseline 11.8 km. The accuracy of velocity and height estimation is 0.5 km/s and 1-2 km.

  7. The cometary and asteroidal origins of meteors

    NASA Technical Reports Server (NTRS)

    Kresak, L.

    1973-01-01

    A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.

  8. Photoacoustic Sounds from Meteors

    PubMed Central

    Spalding, Richard; Tencer, John; Sweatt, William; Conley, Benjamin; Hogan, Roy; Boslough, Mark; Gonzales, GiGi; Spurný, Pavel

    2017-01-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with −11 to −13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that −12 brightness meteors can generate audible sound at ~25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs. PMID:28145486

  9. Persistent Leonid Meteor Trails

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Milster, S. P.; Grime, B. W.; Gardner, C. S.; Liu, A. Z.; Chu, X.; Kelley, M. C.; Kruschwitz, C. A.; Kane, T. J.

    2000-10-01

    In 1998 and 1999 a campaign was conducted to study the lingering trails left by (brighter than -1.5 mag) Leonid meteors over the Starfire Optical Range near Albuquerque, NM, a facility owned by the Directed Energy Directorate of the Air Force Research Laboratory. Although not unique to the Leonids, lingering trails are characteristic of the brighter members of this shower, even in non-storm years. They are self-luminous from unknown chemiluminscent reactions involving both atmospheric and cometary species. A sodium lidar was used to probe the aftermath of several meteors, some of which left trails visible for more than 20 minutes. CCD images have been analyzed for four trails. The classical explanation of the double line appearance of many trails as shell burning in an optically thin cylinder is shown to be invalid. Surface brightnesses and line emission rates have been derived and indicate that the trails are overbright compared to non-Leonids by orders of magnitude, pointing perhaps to a compositional difference between lingering trails of Leonid and non-Leonid meteors. Because the atmospheric trajectory of the parent meteor is known, the winds and parameters of a gravity wave between 90-100 km above the Earth have been deduced from a single image taken 1-2 minutes after the meteor, or from a series of images. A five degree wide video camera was used to record the evolution of several trails, and a highlight video will be shown of this fascinating and mysterious phenomenon.

  10. Photoacoustic Sounds from Meteors

    NASA Astrophysics Data System (ADS)

    Spalding, Richard; Tencer, John; Sweatt, William; Conley, Benjamin; Hogan, Roy; Boslough, Mark; Gonzales, Gigi; Spurný, Pavel

    2017-02-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with ‑11 to ‑13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that ‑12 brightness meteors can generate audible sound at ~25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.

  11. Photoacoustic sounds from meteors

    DOE PAGES

    Spalding, Richard; Tencer, John; Sweatt, William; ...

    2017-02-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with –11 to –13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally.more » Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that –12 brightness meteors can generate audible sound at ~25 dB SPL. As a result, the photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.« less

  12. Meteor Beliefs Project: meteors in the poems of John Donne

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2004-07-01

    An examination of the uses of meteor imagery in the poems of Englishman John Donne (1572-1631) is made, revealing a set of beliefs reflecting the period when ideas about astronomy, including meteors, were beginning to undergo radical change.

  13. The danger to satellites from meteor storms

    NASA Astrophysics Data System (ADS)

    Beech, M.; Brown, P.; Jones, J.; Webster, A. R.

    During past meteor storms impact probabilities of between 1 and 0.01 percent have be realized per 50m^2 of exposed surface area at altitudes corresponding to both GEO and LEO. The most likely meteoroid stream to yield a storm in the near future is that of the Leonids. Numerical simulations of the orbital evolution of hypothetical Leonid stream meteoroids suggest that storms may occur in the years 1999 and 2000.

  14. Meteor showers on the Earth from sungrazers

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D.

    2014-07-01

    1. C/2012 S1 (ISON) and C/1680 V1 (Newton's comet): Only very few past works [1,2,3] have looked into the aspects of meteor phenomena from sungrazing comets. Here we study whether feasible meteoroid ejection velocities in ISON and Newton's comet could bring the nodes close to the Earth's orbit so as to cause a visually spectacular meteor shower. Detailed analysis using Lagrange's planetary equations [4] shows that even at very high ejection velocities (˜ 1 km/s), the descending nodes of the meteoroids reach only 0.91 au (quite close to the Earth's orbit; which in itself is very rare for sungrazing orbits) in the case of ISON. For Newton's comet, the required ejection velocities are about 800 m/s for the descending node to reach 1 au. Such high ejection velocities are practically rare for big meteoroids (˜ 1 mm in diameter) which encounter Earth and hence spectacular visual meteor activity can be ruled out completely [5]. 2. Marsden Group versus other Sungrazing Families: A similar analysis using Lagrange's equations [6,7] was done on all the known sungrazing families [8]. We find that, only in the Marsden family, it could lead to substantial nodal dispersion in meteoroids so that the descending nodes can encounter Earth at ejection velocities of the order of few 100 m/s. This matches with the earlier significant works [1,2,9] which linked the Daytime Arietids (ARI) to the Marsden group. The fact that only a very small number of sungrazing orbits favour Earth intersection at low ejection velocities (out of the observed families so far) stands as the primary reason for the absence of regular meteor showers from them although sungrazers in itself are very frequent.

  15. Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

  16. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  17. An unusual meteor spectrum

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Hemenway, C. L.; Millman, P. M.; Swider, A.

    1973-01-01

    An extraordinary spectrum of a meteor at a velocity of about 18.5 + or - 1.0 km/s was observed with an image orthicon camera. The radiant of the meteor was at an altitude of about 49 deg. It was first seen showing a yellow red continuous spectrum alone at a height of 137 + or - 8 km which is ascribed to the first positive group of nitrogen bands. After the meteor had descended to 116 + or - 6 km above sea level it brightened rapidly from its previous threshold brightness into a uniform continuum, the D-line of neutral sodium appeared, and at height 105 + or - 5 km all the other lines of the spectrum also appeared. The continuum remained dominant to the end. Water of hydration and entrained carbon flakes of characteristic dimension about 0.2 micron or less are proposed as constituents of the meteoroid to explain these phenomena.

  18. Meteor showers on Earth from sungrazing comets

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D. J.

    2014-01-01

    Sungrazing comets have always captured a lot of interest and curiosity among the general public as well as scientists since ancient times. The perihelion passage of comet C/2012 S1 (ISON) at the end of this year (on 2013 November 28) is an eagerly awaited event. In this work, we do a mathematical study to check whether meteoroids ejected from this comet during its journey around the Sun can produce spectacular meteor phenomena on Earth. Our calculations show that although the orbital elements of this comet are much more favourable than for most sungrazers to have its descending node near the Earth's orbit, even ejection velocities as high as 1 km s-1 do not induce sufficient nodal dispersion to bring meteoroids to Earth intersection during present times. A similar result applies to Newton's comet C/1680 V1 which has surprisingly similar orbital elements, although it is known to be a distinct comet from C/2012 S1. Our analysis also shows that for meteoroids ejected from all known sungrazing groups during recent epochs, only the Marsden family (with required ejection velocities of some hundreds of m s-1) can produce meteor phenomena during present times. In a broader sense, we indicate why we do not observe visually brilliant meteor showers from frequently observed sungrazers.

  19. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  20. Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Richmond, R. J.; Wu, S. T.

    1986-01-01

    Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.

  1. Radar and Meteors: Controversy over the Origin of Meteors in Postwar Astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2006-12-01

    After World War II radio physicists and engineers discovered that radar reflections were readily obtained off the ionized trails left by meteors. The group led by Bernard Lovell at the Jodrell Bank Experimental Station of Manchester University, England, led the effort to design radar transmitters, receivers, and antenna systems that could better understand these reflections. First, an entire suite of daytime meteor showers was found to accompany the familiar nighttime showers. Next, associating with meteor astronomers such as Fred Whipple, Ernst Öpik, and Cuno Hoffmeister, Lovell found that his radar data could contribute to a longstanding controversy in the field: was there any portion of the meteors whose speeds indicated that they were on hyperbolic orbits and therefore of interstellar origin (i.e., >72 km/s), or did all meteoroids originate within the solar system? By 1953 the Jodrell Bank radar astronomers’ huge samples of echoes and measured speeds of meteors indicated that there were in fact no interstellar interlopers. This settled the question for most workers in the field, although Opik and Hoffmeister did not give in.

  2. Large orbit magnetic confinement systems for advanced fusion fuels

    SciTech Connect

    Rostoker, N.

    1992-01-01

    The objective of the grant/contract was to illuminate the problem of magnetic confinement for plasmas where the majority of ions have large gyro-orbits and do not obey adiabatic particle dynamics. The electrons are adiabatic. We considered a class of equilibria where large orbit ions dominate; the equilibria are rigorous solutions of the Vlasov/Maxwell equations. For a simple cse -- the infinitely long, low beta, rotating plasma a complete stability analysis was carried out. This problem was the basis of the first paper on finite Larmor radius stabilization. In that paper an expansion in {var epsilon} = {bar {alpha}}{sub i}/r{sub o} was carried out to the first significant order beyond MHD. In this report the same problem is solved to all orders in {var epsilon}. While this case is of limited applicability to experiments it is rigorous and without approximations, so that it can be used to verify approximations to be developed for more complex and useful cases. The application of the results to date to small fusion reactors is described in the second paper which was written after the termination of the contract, but is based in part on material developed during the contract period.

  3. Advances in precision orbit determination of GRACE satellites

    NASA Astrophysics Data System (ADS)

    Bettadpur, Srinivas; Save, Himanshu; Kang, Zhigui

    The twin Gravity Recovery And Climate Experiment (GRACE) satellites carry a complete suite of instrumentation essential for precision orbit determination (POD). Dense, continuous and global tracking is provided by the Global Positioning System receivers. The satellite orientation is measured using two star cameras. High precision measurements of non-gravitational accel-erations are provided by accelerometers. Satellite laser ranging (SLR) retroreflectors are used for collecting data for POD validation. Additional validation is provided by the highly precise K-Band ranging system measuring distance changes between the twin GRACE satellites. This paper presents the status of POD for GRACE satellites. The POD quality will be vali-dated using the SLR and K-Band ranging data. The POD quality improvement from upgraded modeling of the GPS observations, including the transition to the new IGS05 standards, will be discussed. In addition, the contributions from improvements in the gravity field modeling -partly arising out of GRACE science results -will be discussed. The aspects of these improve-ments that are applicable for the POD of other low-Earth orbiting satellites will be discussed as well.

  4. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  5. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  6. The MU radar meteor head echo observation programme

    NASA Astrophysics Data System (ADS)

    Kero, Johan; Nakamura, Takuji; Nishimura, Koji; Meisel, David D.; Terasawa, Toshio; Masayoshi, Ueda; Fujiwara, Yasunori; Szasz, Csilla; Watanabe, Juniichi

    2012-07-01

    Earth's atmosphere is daily bombarded by billions of dust-sized particles. Those larger than a few tenths of a millimetre give rise to visible streaks of light on the night sky, meteors, or colloquially shooting stars. Meteor science contains many open questions, and the flux of extraterrestrial material into the Earth's atmosphere is one of them. High-power MST radars are powerful tools for providing new insights. This talk contains a review of meteor head echo observations with the 46.5 MHz Shigaraki Middle and Upper atmosphere (MU) radar in Japan (34.85N, 136.10E). We conducted a systematic set of monthly 24 h observations from 2009 June to 2010 December (>500 h) resulting in more than 100,000 high-quality meteor detections. Meteor showers are caused by the Earth intersecting streams of meteoroids on orbits still very similar to those of their parent bodies, usually comets. Meteor showers provide opportunities to compare head echo observations with other observation techniques and simulations. We present comparisons indicating that the head echo radar method provides precision and accuracy comparable to the photographic reduction of much brighter meteors with longer detectable trajectories.

  7. Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors

  8. Asteroidal meteors detected by MU radar head-echo observations

    NASA Astrophysics Data System (ADS)

    Abe, S.; Kero, J.; Nakamura, T.; Fujiwara, Y.; Kastinen, D.; Watanabe, J.; Hashiguchi, H.

    2016-01-01

    The recent development of the technique carried out using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S), which is large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m2 aperture array antenna, has established very precise orbital determination from meteor head echoes. A tremendous number, more than 150000, of observed precise orbits of meteoroids by the MU radar meteor head-echo observation will shed light on new discoveries of meteoroids. Here we report some interesting features related with asteroids or distinct comets.

  9. The Southern Argentina Agile Meteor Radar (SAAMER): Platform for comprehensive meteor radar observations and studies

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J.; Pifko, S.; Hocking, W.; Fritts, D.; Brunini, C.; Close, S.; Michell, R.; Samara, M.

    2014-07-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53^oS) in May 2008 (Janches et al., 2013,2014). SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large numbers of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars (Janches et al., 2014). In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions (Pifko et al., 2014). The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, the SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source (Pifko et al., 2014), of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables to survey (Janches et al., 2013). It can effectively observe radiants from the ecliptic south

  10. Cometary dust streams at Mars: Preliminary predictions from meteor streams at Earth and from periodic comets

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Treiman, Jay S.

    2000-10-01

    Spacecraft are at risk from impacts of interplanetary dust particles, and those particles are concentrated near the orbits of comets and of meteor streams, which are (for the most part) inferred to derive from comets. To explore potential dangers to Mars-orbiting spacecraft from cometary dust, we screened known comets and meteor showers for those with orbits that closely approach Mars' orbit. Of the 135 periodic Mars-crossing comets, the orbits of 50 approach within 0.1 AU of Mars and so are potential current sources of dust and meteor streams at Mars. Among these, 1P/Halley, 9P/Tempel 1, and 1991D1 P/Hermann seem the most promising targets for further study. Past orbits of all Mars-crossing comets might also yield meteor streams at Mars. Among known meteor streams, the daytime Arietids and Geminids could produce significant numbers of meteors at Mars but have not produced (so far) meteor storms that could present significant dangers to spacecraft.

  11. Anomalous meteors from the observations with super-isocon TV systems

    NASA Astrophysics Data System (ADS)

    Kozak, P.; Watanabe, J.; Sato, M.

    2014-07-01

    There is a range of both optical and radar observations of meteors the behavior of which essentially differs from the behavior of most meteors. In some cases such meteors cannot be explained in the frame of the classic physical theory of meteors, in other cases the meteors are just of rare type. First of all these are the meteors with true hyperbolic velocities. In spite of the fact that most of hyperbolic orbits are the results of calculation errors, the meteors with extremely high velocities appreciably exceeding the hyperbolic limit of 73 km/s exist and can be of interstellar origin [1--3]. Another very rare phenomenon describes the possible cluster structure of meteor streams, which could be connected with the ejection of the substance from the cometary nucleus shortly before collision of the particles with the Earth [4]. Among anomalies connected with the meteor motion in the atmosphere one can note, first of all, the ultra-high altitudes of meteor beginnings exceeding 130--140 km [5--7]. Some other observations point to the beginning heights of bright meteors from Leonid shower on altitudes near 200 km [8]. The classic physical theory of meteors cannot explain their radiation on such high altitudes because of low air density [9]. Recently the results of TV observations of meteors with diffusive and cloudy structure appeared [9,10]. The results of observations in which, according to author's opinion, the meteors have a few kilometers transverse jets [9--11] were presented as well. There are video frames with bright meteor obtained with high temporal resolution, where authors declared the radiation, which could be an effect of a spread directly of the shock wave [12]. During many years' double-station observations of meteors which have been carrying out at Astronomical Observatory of Kyiv National Taras Shevchenko University the ultra-sensitive TV transmitting tubes of super-isocon type were used [7]. Given type of the tube is one of the most sensitive in the

  12. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  13. Optical fluxes and meteor properties of the camelopardalid meteor shower

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, M. D.; Blaauw, R.; Kingery, A.

    2016-10-01

    Observations of the Camelopardalid meteor shower in May 2014 were obtained with six different sets of cameras, with limiting meteor magnitudes varying from -2M to +7M. Shower fluxes were calculated for each of the systems, from which the mass index of the shower was found to be 2.17 ± 0.04. Faint meteors in the shower were found to be stronger than average, ablating at lower altitudes than meteors at the same speed recorded with the same system, while the brightest meteors had higher ablation heights and were therefore weaker than typical meteors. These findings can be explained if large Camelopardalids are weak agglomerations of more refractory grains, which are easily disrupted in space and keep the shower supplied with small material and depleted in large material.

  14. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  15. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  16. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  17. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  18. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  19. Estimates of statistical parameters of meteor swarms from the length of the earth`s track

    SciTech Connect

    Andreev, G.V.

    1995-11-01

    Earth`s track length in meteor swarms is several decimal orders more accurately determined than the other observed characteristics; therefore, I propose to use this value in a number of problems of meteor astronomy. Specifically, the possibility is shown of obtaining such values as the size and form of a stream cross section, upper estimates of orbit element variances, radiant coordinates and particle velocities inside the streams, upper estimates of ejection velocities of meteor particles from nuclei of parent comets and their variances, and also upper estimates of the {open_quotes}age{close_quotes} of meteor swarms.

  20. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  1. Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  2. A low cost meteor observation system using radio forward scattering and the interferometry technique

    NASA Astrophysics Data System (ADS)

    Madkour, Waleed; Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Mizumoto, Satoshi

    2016-02-01

    We present a low cost meteor observation system based on the radio forward scattering and interferometry technique at Kochi University of Technology (KUT). The system can be a suitable model for low budget educational institutes that target practical learning of astronomical objects and upper atmospheric characteristics. The system methodology for the automatic counting of meteor echoes, filtering noise and detecting meteor echo directions is described. Detection of the meteor echo directions, which is the basic element for determining the meteor trajectories and the orbital parameters of parent comets, is based on a software system developed for analysis of phase differences detected by interferometry. Randomly selected observation samples measured by the radio interferometer are compared to simultaneous optical observations by video cameras to verify the system accuracy. Preliminary error analysis revealed that the system accuracy is directly related to the duration of observed meteor echoes. Eighty percent of meteor echo samples with durations longer than 3 s showed agreement in azimuth and elevation angles measurements to within a 10° error range, while meteor echo samples with shorter durations showed lower agreement levels probably due to the low system sampling resolution of 0.1 s. The reasonable agreement level of meteor echoes with duration longer than 3 s demonstrated the applicability of the system methodology. Accurate observation of shorter duration meteor echoes could possibly be achieved by improving the system resolution.

  3. ACS after SM4: On-orbit Verification of the HST Advanced Camera for Surveys Repair

    NASA Astrophysics Data System (ADS)

    Golimowski, David A.; Cheng, E. S.; Loose, M.; Sirianni, M.; Lupie, O. L.; Smith, L. J.; Arslanian, S.; Boyce, K. R.; Chapman, G.; Chiaberge, M.; Desjardins, T.; Dye, D.; Ellis, T.; Grogin, N. A.; Lim, P.; Lucas, R. A.; Maybhate, A.; Mil, K. J.; Mutchler, M.; Ricardo, R.; Scott, B.; Serrano, B.; Suchkov, A.; Waczynski, A.; Welty, A. D.; Wheeler, T.; Wilson, E.

    2010-01-01

    The newly replaced CCD electronics box (CEB-R) of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) features a programmable SIDECAR ASIC manufactured by Teledyne. The CEB-R not only restores the functionality of the ACS Wide Field Camera (WFC), but it allows optimization of the WFC's imaging performance via on-orbit adjustment of CCD bias and clock voltages and serial-data transmission timing. We describe the strategy, preparation, execution, and results of the ACS Optimization Campaign, an unprecedented on-orbit extension of ground-based integration and testing that was conducted during the HST Servicing Mission Observatory Verification period.

  4. Low-tech highly efficient radiotechnical solutions for meteors and satellite observations

    NASA Astrophysics Data System (ADS)

    Vovk, V. S.; Shulga, O. V.; Sybiryakova, Ye. S.; Kaliuzny, M. P.; Bushuev, F. I.; Kulichenko, M. O.

    2017-02-01

    Single-station technique of meteors' observation using inexpensive receivers is developed. The receivers are also suitable for observing active artificial Earth's satellites on solar-synchronous orbits when measuring the Doppler shift frequency at which they emit.

  5. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    NASA Astrophysics Data System (ADS)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  6. JEM-EUSO: Meteor and nuclearite observations

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Meteor and fireball observations are key to the derivation of both the inventory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capability. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission.

  7. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  8. The prediction of meteor showers from all potential parent comets

    NASA Astrophysics Data System (ADS)

    Neslušan, Luboš; Hajduková, Mária; Tomko, Dušan; Kaňuchová, Zuzana; Jakubík, Marián

    2014-02-01

    The objectives of this project are to predict new meteor showers associated with as many as possible known periodic comets and to find a generic relationship of some already known showers with these comets. For a potential parent comet, we model a theoretical stream at the moment of its perihelion passage in a far past, and follow its dynamical evolution until the present. Subsequently, we analyze the orbital characteristics of the parts of the stream that approach the Earth's orbit. Modelled orbits of the stream particles are compared with the orbits of actual photographic, video, and radar meteors from several catalogues. The whole procedure is repeated for several past perihelion passages of the parent comet. To keep our description compact but detailed, we usually present only either a single or a few parent comets with their associated showers in one paper. Here, an overview of the results from the modelling of the meteor-shower complexes of more than ten parent bodies will be presented. This enables their diversities to be shown. Some parent bodies may associate meteor showers which exhibit a symmetry of their radiant areas with respect to the ecliptic (ecliptical, toroidal, or showers of an ecliptic-toroidal structure), and there are showers which have no counterpart with a similar ecliptical longitude on the opposite hemisphere. However, symmetry of the radiant areas of the pair filaments with respect to the Earth's apex is visible in almost all the complexes which we examined.

  9. The Taurid complex meteor showers and asteroids

    NASA Astrophysics Data System (ADS)

    Porubčan, V.; Kornoš, L.; Williams, I. P.

    2006-06-01

    The structure of the Taurid meteor complex based on photographic orbits available in the IAU Meteor database is studied. We have searched for potential sub-streams or filaments to be associated with the complex utilizing the Southworth-Hawkins D-criterion. Applying a strict limiting value for D=0.10, fifteen sub-streams or filaments, consisting of more than three members, could be separated out from the general complex. To confirm their mutual consistence as filaments, rather than fortuitous clumping at the present time, the orbital evolution over 5000 years of each member is studied. Utilizing the D-criterion we also searched for NEOs that might be associated with the streams and filaments of the complex and investigated the orbital evolution of potential members. Possible associations between 7 Taurid filaments and 9 NEOs were found. The most probable are for S Psc(b) -- 2003QC10, N Tau(a) -- 2004TG10, ο Ori -- 2003UL3 and N Tau(b) -- 2002XM35. Some of the potential parent objects could be either dormant comets or larger boulders moving within the complex. Three of the most populated filaments of the complex may have originated from 2P/Encke.

  10. James Joule and meteors

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    1989 was the hundredth anniversary of the death of James Prescott Joule, the Prescott being his mother's family name and the Joule, rhyming with cool, originating from the Derbyshire village of Youlgreave. Joule is rightly famous for his experimental efforts to establish the law of conservation of energy, and for the fact that J, the symbol known as the mechanical equivalent of heat, is named after him. Astronomically his "light has been hidden under a bushel". James Joule had a major influence on the physics of meteors.

  11. Largest meteor since Tunguska event explodes above Russian city

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    The meteor that disintegrated in the atmosphere above Chelyabinsk, Russia, on 15 February, injuring more than 1000 people and causing widespread property damage from the shock wave, is the largest such incident since the 1908 Tunguska event in Siberia, according to Paul Chodas, research scientist in the Near-Earth Object (NEO) program office at NASA's Jet Propulsion Laboratory in Pasadena, Calif. During a 15 February teleconference, Chodas said it was an "incredible coincidence" that asteroid DA14 passed safely by Earth on the same day as the Chelyabinsk meteor; the 45-meter-wide asteroid sped by the planet at a distance of just 27,700 kilometers away on its closest approach. He stressed that the meteor was not related to DA14. The meteor "was coming from the wrong direction and at a completely different velocity," he said, noting that the orbit of the meteor went out to the asteroid belt while the orbit of DA14 "is very Earth-like, it does not go out so far."

  12. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  13. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  14. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  15. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  16. Photographic fireball networks. [for global recording of meteor trails

    NASA Technical Reports Server (NTRS)

    Halliday, I.

    1973-01-01

    Three networks for the photography of bright fireballs are now in operation; in the central United States, central Europe and western Canada. A detailed comparison is made of the parameters which describe the three networks. Although only two meteorites for which photographic orbital data are available have been recovered, the networks are contributing valuable data on fireball orbits, influx rates and problems of meteor physics.

  17. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  18. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established a two-station system to calculate daily automated meteor fluxes in the millimeter-size-range for both single-station and double-station meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Real-time Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in single-station detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the

  19. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  20. Don Quixote --- a possible parent body of a meteor shower

    NASA Astrophysics Data System (ADS)

    Rudawska, R.; Vaubaillon, J.

    2014-07-01

    This talk addresses the topic of meteoroid stream parent body in relation to meteor showers observed on the Earth. We carry out a further search to investigate the possibility of meteor shower observations caused by particles ejected from (3552) Don Quixote. The (3552) Don Quixote asteroid was discovered in 1983 as an Amor asteroid. The Tisserand parameter for the orbit has a value of 2.315 with respect to Jupiter, which indicates a comet-like orbit. The diameter of the object calculated from the absolute magnitude, is in the range of 12.3--24.5 km. It all makes Don Quixote a good candidate for a short-period comet among known near-Earth objects, which the recently observed cometary activity confirms [1]. We have investigated the orbital evolution of the meteoroid stream originated from Don Quixote. If the object was active in the past, it might be a parent body for a meteor shower observed on the Earth. The model for the generation and evolution of the meteoroid stream in the Solar System is taken from [2]. The asteroid's orbital elements and physical properties are taken from the JPL horizons website. The ejections of meteoroids from the asteroid surface took place when the asteroid was passing its perihelion between 5000 B.C. and 2013 A.D. Next, the orbits of ejected meteoroids were integrated to the year 2050. If a meteoroid is sufficiently close to the Earth, its orbital parameters are saved and compared with known showers.

  1. The Chelyabinsk meteor

    NASA Astrophysics Data System (ADS)

    Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.

    2014-07-01

    A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 meteor over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the meteor lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed meteor lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that

  2. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1

  3. Initial Operation and Checkout of Stratospheric Aerosol Gas Experiment and Meteor-3M Satellite

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Makridenko, L.; Chu, W.; Salikhov, R.; Moore, A.; Trepte, C.; Cisewski, M.

    2002-01-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10,2001 aboard the Russian Meteor-3M satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA s Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center s (LaRC) management. This paper presents innovative approaches deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational issues

  4. Initial operation and checkout of stratospheric aerosol gas experiment and Meteor-3M satellite

    NASA Astrophysics Data System (ADS)

    Habib, Shahid; Makridenko, Leonid; Chu, William P.; Salikhov, Rashid; Moore, Alvah S., Jr.; Trepte, Charles R.; Cisewski, Michael S.

    2003-04-01

    Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10, 2001 aboard the Russian Meteor-3M(1) satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA's Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. This paper presents the process and approach deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational

  5. Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2016-04-01

    Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (i > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.

  6. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  7. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  8. Artificial meteor test towards: On-demand meteor shower

    NASA Astrophysics Data System (ADS)

    Abe, S.; Okajima, L.; Sahara, H.; Watanabe, T.; Nojiri, Y.; Nishizono, T.

    2016-01-01

    An arc-heated wind tunnel is widely used for ground-based experiments to simulate environments of the planetary atmospheric entry under hypersonic and high-temperature conditions. In order to understand details of a meteor ablation such as temperature, composition ratio and fragmentation processes, the artificial meteor test was carried out using a JAXA/ISAS arc-heated wind tunnel. High-heating rate around 30 MW/m2 and High-enthalpy conditions, 10000 K arc-heated flow at velocity around 6 km/s were provided. Newly developed artificial metallic meteoroids and real meteorites such as Chelyabinsk were used for the ablation test. The data obtained by near-ultraviolet and visible spectrograph (200 and 1100nm) and high-speed camera (50 μs) have been examined to develop more efficient artificial meteor materials. We will test artificial meteors from a small satellite in 2018.

  9. Two slow meteors with spectra

    NASA Astrophysics Data System (ADS)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-01-01

    On January 2, 2017 two peculiar meteors (M20170102_001216 and M20170102_015202) were observed by several stations in Switzerland. Both had a long duration, slow velocity, similar brightness and a very similar radiant. As they appeared in a time interval of 100 minutes, a satellite was suspected as a possible origin of these two observations. A closer inspection however showed that this interpretation was incorrect. The two objects were slow meteors. Spectra were taken from both objects, which were nearly identical. Together this points to a common origin of the two meteors.

  10. Pursuing a historical meteor shower

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; Sato, Mikiya; Kasuga, Toshihiro

    2006-11-01

    The strong outburst of the Phoenicids was witnessed by people in a Japanese expedition ship, Soya, in 1956. After that, this meteor shower has never been observed at this activity level. Although its parent comet has not been strictly identified, the possible candidate was the comet D/1819W1 (Blanpain) which appeared only once in 1819. A newly discovered asteroid 2003WY25 becomes a clue to the mystery of this meteor shower. We introduce our result on the investigation of this meteor shower on the basis of the dust trail theory.

  11. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    SciTech Connect

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going

  12. Upward-moving low-light meteor. I: Observation results

    NASA Astrophysics Data System (ADS)

    Kozak, P. M.; Watanabe, J.

    2017-01-01

    The results of TV-detecting an earth-atmosphere-grazing low-light meteor are presented. The meteor was registered near Kyiv, Ukraine, on 23 September 2003 at UT = 20:55:52 during the Autumn Equinox observations. It was registered with both observational cameras within the altitude range H ≈ 115.6 div 117.9 km (Δ {H} ≈ - 2.3 km), the zenith distance of its radiant varying within the bounds of {Z_R} ≈ 93.7° div 94.0°. After 3D reconstruction of the trajectory, the perigee distance of the meteor was found {R_P} ≈ {{6467}}{{.4}} km, while the altitude of the minimal encounter with earth above sea level was{H_P} = 101.7 km. Traveling with the velocity of {υ}_{∞} ≈ 62.9 km/s, the meteor reached the view fields of the cameras ˜426 km after the perigee (˜6.8 s), and left them at the height of ˜461 km, practically not changing its absolute magnitude which varied in the range of {2.9^m} div {4.1^m} . Thus, the meteor remained inside the view fields of the cameras for ˜0.5 s, passing the distance of ˜35˜ km during this time. The right ascension and declination of geocentric radiant of the meteor before perigee were {α _G} ≈ 79.3°, {δ _G} ≈ - 4.2° accordingly, and the geocentric velocity {υ_G} ≈ 61.9 km/s, while after the perigee {α _G} ≈ 78.1°, {δ _G} ≈ - 2.8°, and {υ_G} ≈ 61.9 km/s (the atmosphere deceleration was neglected). The computations of heliocentric orbit elements of the meteor led to the conclusion that the meteoroid does not belong to any known meteor streams. While traveling through the view fields of the cameras, the meteor lost the mass of ˜ 5 × 10-3 g. Since the meteor was registered at the heights where ablation must become lower and eventually stop, one can assert that the meteoroid left the earth atmosphere saving part of its mass.

  13. Upward-moving low-light meteor. I: Observation results

    NASA Astrophysics Data System (ADS)

    Kozak, P. M.; Watanabe, J.

    2017-01-01

    The results of TV-detecting an earth-atmosphere-grazing low-light meteor are presented. The meteor was registered near Kyiv, Ukraine, on 23 September 2003 at UT = 20:55:52 during the Autumn Equinox observations. It was registered with both observational cameras within the altitude range H ≈ 115.6 div 117.9 km (Δ H ≈ - 2.3 km), the zenith distance of its radiant varying within the bounds of Z_R ≈ 93.7° div 94.0°. After 3D reconstruction of the trajectory, the perigee distance of the meteor was found R_P ≈ 6467.4 km, while the altitude of the minimal encounter with earth above sea level was H_P = 101.7 km. Traveling with the velocity of υ_∞ ≈ 62.9 km/s, the meteor reached the view fields of the cameras ˜426 km after the perigee (˜6.8 s), and left them at the height of ˜461 km, practically not changing its absolute magnitude which varied in the range of 2.9^m div 4.1^m. Thus, the meteor remained inside the view fields of the cameras for ˜0.5 s, passing the distance of ˜35˜ km during this time. The right ascension and declination of geocentric radiant of the meteor before perigee were α_G ≈ 79.3°, δ_G ≈ - 4.2° accordingly, and the geocentric velocity υ_G ≈ 61.9 km/s, while after the perigee α_G ≈ 78.1°, δ _G ≈ - 2.8°, and υ_G ≈ 61.9 km/s (the atmosphere deceleration was neglected). The computations of heliocentric orbit elements of the meteor led to the conclusion that the meteoroid does not belong to any known meteor streams. While traveling through the view fields of the cameras, the meteor lost the mass of ˜ 5 × 10-3 g. Since the meteor was registered at the heights where ablation must become lower and eventually stop, one can assert that the meteoroid left the earth atmosphere saving part of its mass.

  14. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  15. On-orbit test results from the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Evans, Jenifer B.; Digenis, Constantine J.; Gibbs, Margaret D.; Hearn, David R.; Lencioni, Donald E.; Mendenhall, Jeffrey A.; Welsh, Ralph D.

    2002-01-01

    The Advanced Land Imager (ALI) is the primary instrument flown on the first Earth Observing mission (EO-1), launched on November 21, 2000. It was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. During the first ninety days on orbit, the instrument performance was evaluated by collecting several Earth scenes and comparing them to identical scenes obtained by Landsat7. In addition, various on-orbit calibration techniques were exercised. This paper will present an overview of the EO-1 mission activities during the first ninety days on-orbit, details of the ALI instrument performance and a comparison with the ground calibration measurements.

  16. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  17. Simulating Meteor Shower Observations In The Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    McAuliffe, J. P.; Christou, A. A.

    2005-08-01

    It is known that fast meteoroids entering the martian atmosphere give rise to bright, detectable meteors (Adolfsson et al, Icarus 119, 144, 1996). Although single meteors have already been detected at Mars (Selsis et al., Nature 435, 581, 2005), the characterisation of the martian meteor year will require a large number of detections. Experience at the Earth suggests that data storage and bandwidth resources to conduct such surveys will be substantial, and may be prohibitive. In an attempt to quantify the problem in detail, we have simulated meteor shower detection in the martian and terrestrial atmospheres. For a given shower, we assume a meteoroid stream flux, size distribution and velocity based on current knowledge of Earth streams as well as the proximity of certain comets' orbits to that of Mars. A numerical code is used to simulate meteoroid ablation in a model martian and terrestrial atmosphere. Finally, using the same baseline detector characteristics (limiting magnitude, sky coverage) we generate detection statistics for the two planets. We will present results for different types of showers, including strong annual activity and episodic outbursts from Halley-type and Jupiter family comets. We will show how detection efficiency at Mars compares to the Earth for these showers and discuss optimum strategies for monitoring the martian atmosphere for meteor activity. Astronomy research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  18. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  19. CCSDS Advanced Orbiting Systems - International data communications standards for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.

    1990-01-01

    Established in 1982, the Consultative Committee for Space Data Systems (CCSDS) is an international organization that is staffed by data-handling experts from nearly all of the world's major space agencies. Its goal is to develop standard data-communications techniques so that several agencies may cross-support each other's data flow and thus allow complex, international missions to be flown. Under the general umbrella of Advanced Orbiting Systems (AOS), an international CCSDS task force was formed in 1985 to develop standard data-communications concepts for manned missions, such as the Space Station Freedom and the Hermes space plane, and large unmanned vehicles, such as polar orbiting platforms. The history of the CCSDS and the development of the AOS recommendation are reviewed, and the user services and protocols embodied in its systems architecture are introduced.

  20. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  1. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office is a US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. If the event is outside meteor network coverage and there is no imagery recorded by the public, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network are presented.

  2. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  3. TV Observations of Meteors in INASAN: Equipment, Methods and First Results

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.; Bagrov, A. V.; Leonov, V. A.

    2007-08-01

    For the analysis the risk from particles of meteor streams, we must have proved information about masses and densities of meteors. The prime task is to select minor streams from sporadic meteors. Very few astronomers tried to do it, when others only mark observed meteor “Sporadic” without registering its track. So very few previous observations cannot be used for streams detection, and we had to do it from special observations. As a width of meteoroid stream may be very narrow, the Earth will cross it in few hours and it is necessary to observe meteor events 24 hour a day. This is why we provide meteor monitoring and catch every ray of light in night skies and ask other observers to join our program. The current goal of our investigation is continuous monitoring of meteor events by two ways: from nearby sites (about 20-60 km distance) for triangle observations and simultaneously from some observation sites separated by approximately thousand kilometers for detection of minor streams. The last one will reveal spatial heterogeneity's of strong meteor showers also. Since July 2002 at the Arkhyz Space Tracking Station (North Caucasus) and near Moscow hybrid TV-cameras with CCD (“PatrolCa”) are used for meteor observations. Limiting magnitude of the first camera is about +5 magn in the 52-degrees field under frame rate 25 f/sec, the second camera has limiting magnitude 11,5m in field 18x22 degrees with rate 7,5 f/sec. Since June 2006 four extra PatrolCa begin stereo (basis) TV-observation near Moscow with the aims of determination of individual orbits of observed meteors and their physical densities. Observed by meteor monitoring data show that at least 40% of sporadic meteors may be referred to catalogued weak meteor streams. In this paper we present the method of definition of celestial coordinates of objects in the single frame of the wide-angle system. The method allows definition of celestial coordinates of a meteor at the restrictions of absents of enough

  4. Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements

    NASA Technical Reports Server (NTRS)

    Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.

    1995-01-01

    The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.

  5. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  6. CAMS newly detected meteor showers and the sporadic background

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  7. Structure and sources of the sporadic meteor background from video observations

    NASA Astrophysics Data System (ADS)

    Jakšová, Ivana; Porubčan, Vladimír; Klačka, Jozef

    2015-10-01

    We investigate and discuss the structure of the sporadic meteor background population in the near-Earth space based on video meteor orbits from the SonotaCo database (SonotaCo 2009, WGN, 37, 55). The selection of the shower meteors was done by the Southworth-Hawkins streams-search criterion (Southworth & Hawkins 1963, Smithson. Contr. Astrophys., 7, 261). Of a total of 117786 orbits, 69.34% were assigned to sporadic background meteors. Our analysis revealed all the known sporadic sources, such as the dominant apex source which is splitting into the northern and southern branch. Part of a denser ring structure about the apex source connecting the antihelion and north toroidal sources is also evident. We showed that the annual activity of the apex source is similar to the annual variation in activity of the whole sporadic background. The antihelion source exhibits a very broad maximum from July until January and the north toroidal source shows three maxima similar to the radar observations by the Canadian Meteor Orbit Radar (CMOR). Potential parent bodies of the sporadic population were searched for by comparison of the distributions of the orbital elements of sporadic meteors, minor planets and comets.

  8. Parametric analysis of performance and design characteristics for advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.; Strack, W. C.; Padrutt, J. A.

    1972-01-01

    Performance, trajectory, and design characteristics are presented for (1) a single-stage shuttle with a single advanced rocket engine, (2) a single-stage shuttle with an initial parallel chemical engine and advanced engine burn followed by an advanced engine sustainer burn, (3) a single-stage shuttle with an initial chemical engine burn followed by an advanced engine burn, and (4) a two-stage shuttle with a chemical propulsion booster stage and an advanced propulsion upper stage. The ascent trajectory profile includes a brief initial vertical rise; zero-lift flight through the sensible atmosphere; variational steering into an 83-kilometer by 185-kilometer intermediate orbit; and a fixed, 460-meter per second allowance for subsequent maneuvers. Results are given in terms of burnout mass fractions (including structure and payload), trajectory profiles, propellant loadings, and burn times. These results are generated with a trajectory analysis that includes a parametric variation of the specific impulse from 800 to 3000 seconds and the specific engine weight from 0 to 1.0.

  9. A method for estimating the height of a mesospheric density level using meteor radar

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Vincent, R. A.; Murphy, D. J.

    2015-07-01

    A new technique for determining the height of a constant density surface at altitudes of 78-85 km is presented. The first results are derived from a decade of observations by a meteor radar located at Davis Station in Antarctica and are compared with observations from the Microwave Limb Sounder instrument aboard the Aura satellite. The density of the neutral atmosphere in the mesosphere/lower thermosphere region around 70-110 km is an essential parameter for interpreting airglow-derived atmospheric temperatures, planning atmospheric entry maneuvers of returning spacecraft, and understanding the response of climate to different stimuli. This region is not well characterized, however, due to inaccessibility combined with a lack of consistent strong atmospheric radar scattering mechanisms. Recent advances in the analysis of detection records from high-performance meteor radars provide new opportunities to obtain atmospheric density estimates at high time resolutions in the MLT region using the durations and heights of faint radar echoes from meteor trails. Previous studies have indicated that the expected increase in underdense meteor radar echo decay times with decreasing altitude is reversed in the lower part of the meteor ablation region due to the neutralization of meteor plasma. The height at which the gradient of meteor echo decay times reverses is found to occur at a fixed atmospheric density. Thus, the gradient reversal height of meteor radar diffusion coefficient profiles can be used to infer the height of a constant density level, enabling the observation of mesospheric density variations using meteor radar.

  10. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network or the Southern Ontario Meteor Network, such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall. But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.

  11. Performance of D-Parameters in Isolating Meteor Showers from the Sporadic Background

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2016-01-01

    It is often necessary to draw a division between meteor showers and the sporadic meteor complex in order to study these components of the meteoroid environment. Meteor showers persist for less than a season and are composed of members with a greater-than-average degree of orbital similarity. The level of orbital similarity is often quantified using so-called D-parameters; a D-parameter cutoff may be employed to define or extract a shower. Depending on the study, this cutoff value may be chosen based on the size of the data-set, the percentage of sporadic meteors within the data-set, or the inclination of the shower in question. We argue that the cutoff value should also reject the strength of the shower compared to the local sporadic background. We therefore present a method for determining, on a per-shower basis, the D-parameter cutoff that limits the false-positive rate to an acceptable percentage. If the false-positive rate exceeds this percentage regardless of cutoff value, we deem the shower to be undetectable in our data. We apply this method to optical meteor observations from the NASA All-Sky and Southern Ontario Meteor Networks and present the detectable meteor showers and their characteristics.

  12. Canadian Advanced Nanospace Experiment 2: Om-Orbit Experience with an Innovative Three-Kilogram Satellite

    NASA Astrophysics Data System (ADS)

    Sarda, K.; Grant, C.; Eagleson, S.; Kekez, D. D.; Zee, R. E.

    2008-08-01

    The objective of the Canadian Advanced Nanospace eXperiment (CanX) program is to develop highly capable "nanospacecraft," or spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low- cost and rapid access to space for scientists, technology developers, and operationally responsive missions. The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) has developed the Canadian Advanced Nanospace eXperiment 2 (CanX-2) nanosatellite that launched in April 2008. CanX-2, a 3.5-kg, 10 x 10 x 34 cm satellite, features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. The primary mission of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a 30 mNms nanosatellite reaction wheel as part of a three- axis stabilized momentum-bias attitude control system, and a commercially available GPS receiver. The secondary objective of CanX-2 is to fly a number of university experiments including an atmospheric spectrometer. At the time of writing CanX-2 has been in orbit for three weeks and has performed very well during preliminary commissioning. The mission, the engineering and scientific payloads, and the preliminary on-orbit commissioning experiences of CanX-2 are presented in this paper.

  13. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  14. Long term orbital storage of cryogenic propellants for advanced space transportation missions

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Brown, Norman S.

    1987-01-01

    A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems.

  15. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  16. Meteor Scatter Communication between Thule and Station Nord, Greenland

    DTIC Science & Technology

    1990-09-01

    capacity digital communication channel. In comparison with high yield satellite links, meteor scatter was too complex for widespread utilization then...great companionship during the field campaigns. To Mr. Eric Li , Dr. A. L. Snyder, Jr., Dr. G. S. Sales and Dr. J. A. Weitzen of the University of Lowell...geostationary satellites . Existing polar orbiting satellites intended for data collection are restricted for data of interest to the World Meteorological

  17. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  18. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly.

  19. The making of meteor astronomy: part V.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1993-12-01

    The first true comparisons between the observations and the "rising vapors" hypothesis of meteor origins were made in the early eighteenth century. One of the key figures in the new meteoric dialogue was Edmond Halley.

  20. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  1. Leonid meteors, 2001 November 18

    NASA Astrophysics Data System (ADS)

    McGee, H. W.; Mobberley, M. P.

    2002-02-01

    Leonid meteors photographed from Palau, Micronesia, on 2001 November 18. Clockwise from top right: 3 meteors in Corvus, 19.18-19.20 UT; brilliant fireball in Orion, 18.48.30 UT; bright Leonid in Hydra, 19.06 UT. 50mm f/1.8 lens, 1600 ISO Fuji Superia film; M.P. Mobberley. Top left: Composite of three 5-minute exposures between 19.15 and 19.36 UT. 28mm f2.8 lens, 800 ISO Kodak Gold film; H.W. McGee.

  2. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  3. Note on the 1972 Giacobinid meteor shower.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    It is shown that the 1972 Giacobinid meteor shower was extremely weak with a peak activity of two to three visual meteors per hour. Only two meteor spectra were obtained from the 17 slitless spectrograph systems operated by the Langley Research Center. The largely unexpected, essentially null results of the 1972 Giacobinid meteor shower observations are indicative of the present limited understanding and predictability of cosmic dust storms.

  4. New trends in meteor radio receivers

    NASA Astrophysics Data System (ADS)

    Rault, Jean-Louis

    2014-01-01

    Recent progresses in low cost—but performing—SDR (software defined radio) technology presents a major breakthrough in the domain of meteor radio observations. Their performances are now good enough for meteor work and should therefore encourage newcomers to join the meteor radio community.

  5. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  6. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1997-01-01

    Solar electric propulsion technology is currently being used for geostationary satellite station keeping. Analyses show that electric propulsion technologies can be used to obtain additional increases in payload mass by using them to perform part of the orbit transfer. Three electric propulsion technologies are examined at two power levels for geostationary insertion of an Atlas IIAS class spacecraft. The onboard chemical propulsion apogee engine fuel is reduced in this analysis to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns that will minimize the electric propulsion transfer times. For a 1550-kg Atlas IIAS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150-800 kg are enabled by using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  7. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.

    2008-01-01

    The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).

  8. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  9. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  10. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  11. Chasing Meteors With a Microscope.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1993-01-01

    Describes types of meteors and micrometeorites that enter the Earth's atmosphere. Presents an activity where students collect micrometeorites with a strip of tape in an undisturbed outdoor area. After 24 hours, they examine the tape by sandwiching it between 2 glass slides and view through a microscope at 100X. (PR)

  12. An Initial Meteoroid Stream Survey in the Southern Hemisphere Using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-01-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1 resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  13. An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-04-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1° resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  14. Fireballs from Australian Desert Fireball Network - search for similar orbits

    NASA Astrophysics Data System (ADS)

    Shrbený, L.; Spurný, P.; Bland, P. A.

    2016-01-01

    We studied the fireball activity from the Desert Fireball Network records from 2006 to 2014 and identified a couple of time periods with increased number of fireballs. We searched for orbital similarities among the fireballs in these time periods and have found members of 10 individual meteor showers and two groups of similar orbits that do not correspond to any known meteor shower.

  15. Physical and dynamical studies of meteors

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Sekanina, Z.

    1973-01-01

    Interplanetary distributions from a sample of 20,000 radar meteor observations are presented. These distributions are freed from all known selection effects with the exception of a possible bias against fragmenting meteors which has not yet been adequately assessed. These data thus represent the largest and most accurate collection of radar meteor distributions. Both general average distribution and the distribution of meteor streams with their comet and asteroid associations are presented. Sporadic space density and space density of meteor streams are also included.

  16. Four years of meteor spectra patrol

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1974-01-01

    The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.

  17. Meteors Without Borders: a global campaign

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  18. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1995-01-01

    Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  19. Advances in Orion's On-Orbit Guidance and Targeting System Architecture

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Fill, Thomas; Robinson, Shane

    2015-01-01

    NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.

  20. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  1. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  2. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  3. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  4. Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.

    2016-02-01

    Separating meteor showers from the sporadic meteor background is critical for the study of both showers and the sporadic complex. The linkage of meteors to meteor showers, to parent bodies, and to other meteors is done using measures of orbital similarity. These measures often take the form of so-called D-parameters and are generally paired with some cutoff value within which two orbits are considered related. The appropriate cut-off value can depend on the size of the data set (Southworth & Hawkins 1963), the sporadic contribution within the observed size range (Jopek 1995), or the inclination of the shower (Galligan 2001). If the goal is to minimize sporadic contamination of the extracted shower, the cut-off value should also reflect the strength of the shower compared to the local sporadic background. In this paper, we present a method for determining, on a per-shower basis, the orbital similarity cut-off value that corresponds to a chosen acceptable false-positive rate. This method also assists us in distinguishing which showers are significant within a set of data. We apply these methods to optical meteor observations from the NASA All-Sky and Southern Ontario Meteor Networks.

  5. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  6. Comparison of the structures of meteor streams of cometary and possible asteroidal origin

    NASA Astrophysics Data System (ADS)

    Sokolova, M. G.; Sergienko, M. V.

    2016-11-01

    The structures of the meteor streams of cometary origin—Draconids, Ursids, Perseids, and Lyrids—and the streams presumably connected with asteroids—Taurids and α-Capricornids—are compared. The comparative analysis was performed by the mass distribution of meteoroids in the stream and the activity profile for the meteors with the maximum recorded stellar magnitude +3 m and brighter. Visual observations of 1987-2008 from the database of the International Meteor Organization (IMO) and earlier sources were considered. It has been shown that the structures of the meteor streams of cometary and, presumably, asteroidal origin differ somewhat by the activity profile and the mass distribution of meteoroids in the cross-section of a stream along the Earth's orbit.

  7. Asteroid, Meteor, Meteorite

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2010-04-01

    Almahata Sitta is the name identifying the collection of meteorite remnants of the first observed fall of a tracked asteroid, 2008 TC3. Ground-based observatories, orbiting satellites, a pilot of a commercial airline flight, and eyewitnesses of the fireball in the Nubian Desert of northern Sudan all observed evidence of the spectacular events on October 6, 2008. The first meteorites were recovered two months later in Sudan by students and staff from the University of Khartoum (Sudan) led by Dr. Muawia Shaddad and further guided by Dr. Peter Jenniskens of the SETI Institute and NASA Ames Research Center (Mt. View, California). A session at the 41st Lunar and Planetary Science Conference held March 1-5, 2010 focused on ureilitic asteroids and insights from Almahata Sitta, and forms the basis for this article. Rather than discuss the results of each of the talks and posters presented at the conference, I highlight what makes the impact, recovery, and characterization of the ureilite meteorite fragments so outstanding.

  8. Technology and Advanced Development for a Non-Toxic Orbital Maneuvering System and Reaction Control System for Orbiter Upgrade

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Ferrante, Fred A.; Engelmann, G. L.; Gibson, V. A.; Phillipsen, P. C.

    1999-01-01

    NASA intends to pursue technology applications to upgrade the Space Shuttle Orbiter OMS and RCS systems with non-toxic propellants. The primary objectives of an upgraded OMS/RCS are improved safety and reliability, reduced operations and maintenance costs while meeting basic OMS/RCS operational and performance requirements. The OMS/RCS has a high degree of direct interaction with the crew and requires subsystem and components that are compatible with integration into the orbiter vehicle with regard to external mold-line, power and thermal control The non-toxic propulsion technology is also applicable to future Human Exploration and Development of Space (HEDS) missions. The HEDS missions have similar requirements for attitude control and lander descent/ascent propulsion and which will emphasize the use of In-Situ Resource for propellants. When used as a regenerative coolant as in the Shuttle Orbiter OMS combustion chamber, non-toxic fuels such as ethanol are limited in their cooling capacity by the bulk temperature rise permitted to prevent film boiling or possible coking. Typical regeneratively cooled chambers are constructed from highly conductive copper, which maximizes heat transfer, or from low conductivity materials like stainless steel that can also exacerbate cooling problems. For an ethanol cooled application the heat transfer into the fluid must be controlled to reduce the fuel coolant bulk temperature rise. An approach to provide this control is the subject of this report. This report is being issued to document work done by Aerojet on NASA contract NAS 8-98042. Specifically, this project investigates of the use of ethanol, a designated non-toxic fuel, as a coolant for the Space Shuttle Orbital Maneuvering System Engine combustion chamber. The project also addresses a cost reducing fabrication technique for construction of such a combustion chamber. The study contained three major sub-tasks: an analytical investigation and trade study which included

  9. Physical Characteristics of Faint Meteors by Light Curve and High-resolution Observations

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2014-11-01

    The physical structure of a meteoroid may be inferred from optical observations, particularly the light curve, of a meteor. For example: a classically shaped (late peaked) light curve is seen as evidence of a solid single body, whereas a symmetric light curve may indicate a dustball structure. High-resolution optical observations show how the meteoroid fragments: continuously, leaving a long wake, or discretely, leaving several distinct pieces. Calculating the orbit of the meteoroid using two station data then allows the object to be associated with asteroidal or cometary parent bodies. Optical observations thus provide simultaneous information on meteoroid structure, fragmentation mode, and origin.CAMO (the Canadian Automated Meteor Observatory) has been continuously collecting faint (masses < 10-4 kg) two station optical meteors with image-intensified narrow field (with a resolution of up to 3 meters per pixel) and wide field (26 by 19 degrees) cameras since 2010. The narrow field, telescopic cameras allow the meteor fragmentation to be studied using a pair of mirrors to track the meteor. The wide-field cameras provide the light curve and trajectory solution.We present preliminary results from classifying light curves and high-resolution optical observations for 3000 faint meteors recorded since 2010. We find that most meteors (both asteroidal and cometary) show long trails, while meteors with short trails are the second most common morphology. It is expected that meteoroids that experience negligible fragmentation have the shortest trails, so our results imply that the majority of small meteoroids fragment during ablation. A surprising observation is that almost equal fractions of asteroidal and cometary meteors fragment (showing long trails), implying a similar structure for both types of meteoroids.

  10. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  11. High temperature condensates among meteors

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1975-01-01

    It is noted that two meteors which exhibited no lines of iron or sodium in their spectra have been tentatively attributed to aubrites in order to explain their lack of iron. It is shown, however, that no meteorites, including aubrites, have simultaneously low abundances of iron and sodium and that possible parent materials other than aubrites must be considered for the observed meteors. Other possible parent materials considered in this letter include melilite and diopside, two minerals containing both Ca and Mg but neither Fe nor Na. It is suggested that meteoroids rich in Ca and Mg but lacking Fe and Na might form a reservoir for the so-called 'lost' elements (Ca, Mg, Al, Ti, the lanthanides, and other refractory elements) which are depleted in ordinary and enstatite chondrites relative to cosmic abundances.

  12. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  13. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  14. CAMS verification of single-linked high-threshold D-criterion detected meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Nénon, Quentin

    2016-03-01

    From preliminary 2010-2011 results of the Cameras for Allsky Meteor Surveillance (CAMS) meteoroid orbit survey, which were combined with published 2007-2009 SonotaCo video meteor network data, 55 new meteor showers (##448-502) were identified and added to the IAU Working List on Meteor Showers in 2012. These showers were identified based on an automated single-linked DSH-criterion analysis of a combined 105,000 orbits with high-threshold (a low DSH < 0.05), but low acceptable sample size (⩾6 members). Three more years of CAMS and four more years of SonotaCo observations have now increased the meteoroid orbit database four fold. The earlier detections are verified by searching for number density enhancements in drift-corrected radiant and orbital element maps. Twenty showers are detected in both surveys and are now certain to exist. Median orbital elements are presented. Not detected in this manner were 19% of the fast Vg > 40 km/s showers, 54% of the Vg = 18-40 km/s showers, and 90% of the slow Vg < 18 km/s showers.

  15. Metopic synostosis: Measuring intracranial volume change following fronto-orbital advancement using three-dimensional photogrammetry.

    PubMed

    Freudlsperger, Christian; Steinmacher, Sahra; Bächli, Heidi; Somlo, Elek; Hoffmann, Jürgen; Engel, Michael

    2015-06-01

    There is still disagreement regarding the intracranial volumes of patients with metopic synostosis compared with healthy patients. This study aimed to compare the intracranial volume of children with metopic synostosis before and after surgery to an age- and sex-matched control cohort using three-dimensional (3D) photogrammetry. Eighteen boys with metopic synostosis were operated on using standardized fronto-orbital advancement. Frontal, posterior and total intracranial volumes were measured exactly 1 day pre-operatively and 10 days post-operatively, using 3D photogrammetry. To establish an age- and sex-matched control group, the 3D photogrammetric data of 634 healthy boys between the ages of 3 and 13 months were analyzed. Mean age at surgery was 9 months (SD 1.7). Prior to surgery, boys with metopic synostosis showed significantly reduced frontal and total intracranial volumes compared with the reference group, but similar posterior volumes. After surgery, frontal and total intracranial volumes did not differ statistically from the control group. As children with metopic synostosis showed significantly smaller frontal and total intracranial volumes compared with an age- and sex-matched control group, corrective surgery should aim to achieve volume expansion. Furthermore, 3D photogrammetry provides a valuable alternative to CT scans in the measurement of intracranial volume in children with metopic synostosis, which significantly reduces the amount of radiation exposure to the growing brain.

  16. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  17. Benefits of Application of Advanced Technologies for a Neptune Orbiter, Atmospheric Probes and Triton Lander

    NASA Technical Reports Server (NTRS)

    Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig

    2005-01-01

    Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.

  18. Effects of construction and alignment errors on the orbit functions of the advanced photon source storage ring

    SciTech Connect

    Bizek, H.; Crosbie, E.; Lessner, E.; Teng, L.; Wirsbinski, J.

    1991-01-01

    The orbit functions for the Advanced Photon Source Storage Ring have been studied using the simulation code RACETRACK. Non-linear elements are substituted into the storage ring lattice to simulate the effects of construction and alignment errors in the quadrupole, dipole, and sextupole magnets. The effects of these errors on the orbit distortion, dispersion, and beta functions are then graphically analyzed to show the rms spread of the functions across several machines. The studies show that the most significant error is displacement of the quadrupole magnets. Further studies using a 3 bump correction routine show that these errors can be corrected to acceptable levels. 1 ref., 10 figs., 1 tab.

  19. Meteor Beliefs Project: Meteoric Imagery in SF, Part V: This Island Earth

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2007-04-01

    The classic 1950s science fiction film This Island Earth is discussed for its meteoric elements, along with a more recent movie which pokes fun at it, by way of celebrating the Meteor Beliefs Project's fourth anniversary.

  20. Dynasonde Measurements of Ionospheric Meteor Effects

    NASA Astrophysics Data System (ADS)

    Berkey, F. T.; Sikdar, P.; Fish, C. S.; Jones, O.; Tsai, L.; Yen, C.

    2002-12-01

    The ionization created when meteoric particles impinge on the upper atmosphere has been studied extensively, both with optical methods and by radar techniques. Traditionally, meteor radars have been configured as dedicated, fixed-frequency systems that operate in the HF/VHF bands and are employed to measure winds and other parameters in the mesosphere-lower thermosphere region. It has long been recognized that ionosondes are capable of detecting meteor ionization although the sparse sounding format of most synoptic instruments does not facilitate a rigorous analysis of meteor ionization effects. Furthermore, most ionosonde-based studies have focused on meteor shower intervals when the meteor ionization is especially prominent (e.g. Chandra et. al., 2001). However, the capabilities of digital ionosondes such as the NOAA dynasonde allow the detailed study of various parameters of the meteor-induced ionization such as amplitude, polarization and spatial location, in addition to the time-of-flight, as a function of time and frequency. In this report, we will examine meteor ionization recorded by dynasondes located at Bear Lake (Utah) and Halley (Antarctica) demonstrating that these ionogram data can be used to distinguish between underdense and overdense meteor ionization. Other characteristics of the meteor-induced ionization, such as spatial location and Doppler velocity will also be presented. The dynasonde operated at the USU Bear Lake Observatory (42° N, 111° W) detects a large flux of meteor echoes and will be the primary source of data for this study. Chandra, H., et. al., Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes, Annales. Geophys., 19, 59-69, 2001.

  1. Canadian Advanced Nanospace Experiment 2 Orbit Operations: Two Years of Pushing the Nanosatellite Performance Envelope

    NASA Astrophysics Data System (ADS)

    Sarda, Karan

    The objective of the Canadian Advanced Nanospace eXperiment (CanX) program is to de-velop highly capable nanospacecraft, i.e. spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low-cost and rapid access to space for scientists, technol-ogy developers and operationally-responsive missions. The Space Flight Laboratory (SFL), at the University of Toronto Institute for Aerospace Studies (UTIAS) has developed the CanX-2 nanosatellite that launched in April 2008. CanX-2, a 3.5-kg, 10 x 10 x 34 cm satellite, features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. The primary mission of CanX-2 is to perform a number of university exper-iments. These experiments include a miniature atmospheric spectrometer designed to detect greenhouse gas concentrations, a GPS signal occultation experiment designed to map electron and water vapour concentrations in the ionosphere and troposphere respectively, and a materi-als science experiment which evaluates a novel atomic oxygen resistant coating. The secondary mission of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a nanosatellite reac-tion wheel as part of a three-axis stabilized attitude control subsystem, and a GPS receiver. After two successful years in orbit, the nanosatellite has met or exceeded all mission objectives and continues to demonstrate the cost-effective capabilities of this class of spacecraft. Key achievements to date include a characterization of the propulsion system, a full demonstration of the attitude determination and control subsystem including capabilities in accurate pay-load pointing, unprecedented radio performance for an operational nanosatellite, and hundreds of successful science operations. The mission, the engineering and scientific payloads, and a discussion of notable orbit

  2. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  3. 95 years anniversary of Professor BL Kashcheyev (1920 - 2004) - the well-known Ukrainian researcher of meteors by the radar method

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana

    2015-08-01

    Meteor astronomy is constantly evolving. We can distinguish several stages in the development of meteor astronomy. One of these steps is the period associated with carrying out the global program called "International Geophysical Year 1957" (IGY1957). Thanks to this program in Ukraine in Kharkiv has been studied meteors using radar techniques. One of the organizers of the IGY 1957 meteor program execution in Ukraine (and in the former Soviet Union) was prof. BL Kashcheyev (1920-2004). At the IAU GA in 1958 prof. BL Kashcheyev made the report on the meteor radar studies in Kharkiv. These research were considered by the IAU Commission 22 as the best in the world. The name of Professor BL Kashcheyev related to the creation of the Kharkiv meteor radar system and the long series of meteor observations, creating the database of 250 thousand orbits of faint meteors (12^ M), carrying out the variety of meteor projects (including the GLOBMET). In 2004 the Kharkiv meteor radar complex was given the status of national heritage of Ukraine. In 2007, the organizers of the program "International Heliophisic Year 2007" (IHY2007) remarked the BL Kashcheyev contribution to the IGY 1957 (the certificate and the pin "The IGY1957 Gold ").

  4. Monte-Carlo Method Application for Precising Meteor Velocity from TV Observations

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2014-12-01

    Monte-Carlo method (method of statistical trials) as an application for meteor observations processing was developed in author's Ph.D. thesis in 2005 and first used in his works in 2008. The idea of using the method consists in that if we generate random values of input data – equatorial coordinates of the meteor head in a sequence of TV frames – in accordance with their statistical distributions we get a possibility to plot the probability density distributions for all its kinematical parameters, and to obtain their mean values and dispersions. At that the theoretical possibility appears to precise the most important parameter – geocentric velocity of a meteor – which has the highest influence onto precision of meteor heliocentric orbit elements calculation. In classical approach the velocity vector was calculated in two stages: first we calculate the vector direction as a vector multiplication of vectors of poles of meteor trajectory big circles, calculated from two observational points. Then we calculated the absolute value of velocity independently from each observational point selecting any of them from some reasons as a final parameter. In the given method we propose to obtain a statistical distribution of velocity absolute value as an intersection of two distributions corresponding to velocity values obtained from different points. We suppose that such an approach has to substantially increase the precision of meteor velocity calculation and remove any subjective inaccuracies.

  5. TV observations of the Perseid meteor shower in 2012-2013

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.; Bolgova, Galina T.

    2015-12-01

    The results of television meteor observations during the Perseid meteor shower activity in 2012-2013 are presented. The observations were carried out in the Moscow region using the television system PatrolCa - the patrol camera with the field of view of 56°×44° and limiting magnitude (for meteors) of +4m. The distribution of the Index of Meteors Activity of the Perseid meteor shower in 2012-2013 was estimated. The maximum activity occurs on August 12 with the Index of Meteors Activity (IMA) (λ=140.4°) 192 (±0.03)*103 particles to the Earth per 1 h in 2012 and 122 (±0.06)*103 particles to the Earth per 1 h in 2013 (λ=140.2°). In total for 91 meteoroids radiants, geocentric velocities and orbit parameters were calculated. The daily drift of Perseid radiant was determined. The dependence of the beginning and ending heights by absolute magnitude is presented.

  6. Formation of the Leonid meteor stream and storm

    NASA Technical Reports Server (NTRS)

    Wu, Zidian; Williams, I. P.

    1992-01-01

    It is well known that some meteor showers display a very high level of activity at certain times, the most famous being the Leonid shower with very spectacular displays at roughly 33 year intervals. This period being also the period of the parent comet of the stream, Comet Tempel-Tuttle. An investigation of the geometry of the comet and the Earth at the time of each high activity occurrence by Yeomans suggests that most of the meteoroids are found outside the cometary orbit and lagging the comet. The formation process of such a stream by numerically integrating the orbits of dust particles ejected from the comet and moving under the influence of gravity and radiation pressure are simulated. The intersection of these dust particles with the Earth is also considered and it is concluded that about 12 percent of the ejected particles may be observed and that of those observable, 63 percent will be outside the cometary orbit and behind the comet.

  7. The Meteor and Fireball Network of the Sociedad Malagueña de Astronomía

    NASA Astrophysics Data System (ADS)

    Aznar, J. C.; Castellón, A.; Gálvez, F.; Martínez, E.; Troughton, B.; Núñez, J. M.; Villalba, F.

    2016-12-01

    One of the most active fields in which has been dedicated the Málaga Astronomical Society (SMA) is the meteors and meteor showers. Since 2006 the SMA refers parts of visual observations and photographic detections from El Pinillo station (Torremolinos, Spain). In 2013 it was decided to give an extra boost to get a camera network that allowed the calculation of the atmospheric trajectory of a meteoroid and, where possible, obtaining the orbital elements.

  8. Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2012-01-01

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  9. DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2011-12-10

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D {approx}< 10 {mu}m are blown out from the solar system by radiation pressure, while those with D {approx}> 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D {approx} 100 {mu}m, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a {approx} 1 AU. They are expected to produce meteors with radiants near the apex of Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e {approx} 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  10. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  11. The established meteor showers as observed by CAMS

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Albers, J.; Gural, P. S.; Haberman, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Orbital elements are presented for 70 of the 95 meteor showers considered ;established; by the International Astronomical Union. From 2010 October 21 until 2013 March 31, the low-light-video based Cameras for Allsky Meteor Surveillance project (CAMS) measured a total of 110,367 meteoroid trajectories and pre-atmospheric orbits from mostly -2 to +4 magnitude meteors with a precision of <2° (median 0.4°) in apparent radiant direction and <10% (median 0.9%) in speed. This paper discusses how the already established showers manifest in this data. Newly resolved components in the radiant distribution shed light on the dynamics and physical lifetime of parent bodies and their meteoroids. Many multi-component showers have associated parent bodies with nodal lines not much rotated from that of their meteoroids (Encke Complex, Machholz Complex, Phaethon Complex, and now also the 169P/NEAT Complex). These may result from a parent body disruption cascade, with the disruption-generated meteoroids fading on the short timescale of a few hundred to a few thousand years. In particular, the Northern and Southern Taurids of the Encke Complex are decomposed here into 19 individual streams. Seven of these streams can be paired with mostly sub-km sized potential parent body asteroids that move in 2P/Encke-like orbits that span the narrow semi-major axis range of 2.20-2.35 AU. The meteoroids in these Taurid streams do not survive long enough for the nodal line to fully rotate relative to that of their parent body.

  12. What do we see as ANT, Apex and Toroidal sources? - What meteors are, where meteors came from, where meteoroids are going

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-10-01

    We found that the observabilities of meteors depend strongly on meteor velocity; the ratio of the number of CCD to photographic meteors is expressed as a quadratic function of the velocity, and the observability for radar observations has a clear peak around V_g=30 km/s. If we do not compensate for the observability, we are under the impression that radar observations contribute most to the Toroidal activity, CCD observations record a huge number of the Apex meteors, and photographic meteors concentrate on the ANT area. We assume that the observed number against the velocity shows roughly the observability for each observational technique and get more plausible results: in first place in radar observations is the Apex source and in optical observations ANT, while the Toroidal source is not so impressive. We calculated the radiants of 3212 comets and 1533 PHAs (potentially hazardous asteroids), finding 193 radiants of periodic comets, 1013 radiants of non-periodic comets and 3018 radiants of PHAs. Comparison of predicted to observed radiants reveals a very interesting fact: the contribution of the periodic comets to sporadic meteor activities is small, though we have clear recollections of meteor showers made up by a substantial number of massive meteoroids. It is clear many meteoroids from periodic comets meet Earth with low velocity and do not radiate enough light to be visible. Both predicted and observed radiant distributions clearly separate into two regions except for radiant areas relating to periodic comets. It is suggested that the Apex source is descended from non-periodic comets, ANT from asteroid kinsfolk and the Toroidal source is accumulated by older particles near Earth's orbit from both comets and asteroids.

  13. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  14. The Status of NASA's Wide-Field Meteor Camera Network and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Cooke, W.; Kingery, A.; Suggs, R.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014.

  15. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  16. The Tunguska event and meteors with a final flare

    SciTech Connect

    Levin, B.Y.; Bronshten, V.A.

    1986-04-01

    The phenomenon of the Tunguska explosion has much in common with the flares that are observed for bright meteors and bolides at the very end of their paths. The hypothesis has been formulated that these phenomena are of the same nature and differ only in scale. One can explain them from the viewpoint of the theory developed by Grigoryan, with allowance for vaporization. The concept of a very porous body (as applied to the Tunguska meteorite) has been subjected to criticism. It is shown that with allowance for progressive fragmentation the parameters of the Tunguska body (velocity and orbital elements) can be matched to a cometary nature for it.

  17. Various meteor scenes III: Recurrent showers and some minor showers

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-02-01

    Meteor activities vary widely from year to year. We study here the June Bootids (JBO), τ-Herculids (TAH), and Andromedids (AND) which are basic examples for the recurrent nature of meteor showers. Half a century has passed since well-known photographic or radar meteor showers were detected. It is necessary to note that some `established' IAU showers are historical ones and we cannot always see them. We find the historical trace of AND by video and four distinct activities in the area of JBC (=JBO+TAH). Meteor showers look different by different observational techniques. Many minor showers in the IAU list have been detected only by observations stored for many days and many years; visual observations in a single night cannot perceive them naturally. We studied the φ-Piscids (PPS), χ-Taurids (CTA), γ-Ursae Minorids (GUM), η-Pegasids (ETP), and α-Sextantids (ASX) as examples and found they have not been recognized by visual observers at all. It is noteworthy that some of them have possible identifications in the IAU list and in preceding observations or reports. The difference in search methods makes the situations much more complicated. The five minor showers we studied here do not have confirmations by all observational techniques. Geobased search (radiant point, time of the observation, and possibly geocentric velocity) may overlook showers which are dispersed in radiant position. A search using the D-criterion is dependent on the presumption of a spherical distribution in the orbital space and may not represent the real distribution, or may overestimate the accuracy of the observations and lead to subdividing the showers into several parts. We must use these search methods properly.

  18. Meteor Terminology poster translated into different languages

    NASA Astrophysics Data System (ADS)

    Perlerin, Vincent; Hankey, Mike

    2014-02-01

    The American Meteor Society (AMS) has created an educational poster that defines the major terms of the meteor terminology. This poster is an educational tool made available for free on the AMS website. We offer this poster to be translated and shared among the IMO members.

  19. Meteor radio detection. (Italian Title: Radiometeore, oggi)

    NASA Astrophysics Data System (ADS)

    Aglialoro, A.; Devetti, M.

    2013-08-01

    Meteor detection using the radio technique called "Meteor-Scatter" and some results obtained since 2005 by our team. This kind of activity has become difficult after the switch-off of analog TV; a hope may be a French VHF trasmitter: the Graves radar.

  20. Dynamical Model for the Toroidal Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Pokorný, Petr; Vokrouhlický, David; Nesvorný, David; Campbell-Brown, Margaret; Brown, Peter

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  1. Dynamical model for the toroidal sporadic meteors

    SciTech Connect

    Pokorný, Petr; Vokrouhlický, David; Nesvorný, David; Campbell-Brown, Margaret; Brown, Peter E-mail: vokrouhl@cesnet.cz E-mail: margaret.campbell@uwo.ca

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  2. The Advanced Mars Climate Sounder (AMCS) - A Proven Atmospheric Profiler for Future Mars Orbiters

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Schofield, J. T.; Kass, D. M.; McCleese, D. J.

    2016-10-01

    We describe a mature, low-cost, and low-risk infrared atmospheric profiler based on MRO/MCS heritage for measuring atmospheric temperature, dust, water ice, carbon dioxide ice, and water vapor on a future Mars orbiter mission.

  3. Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    NASA Technical Reports Server (NTRS)

    Hashimoto, T.; Watanabe, J.; Sato, M.; Ishiguro, M.

    2011-01-01

    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source.

  4. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  5. Spin-orbit assisted chiral-tunneling at semiconductor tunnel junctions: study with advanced 30-band k • p methods

    NASA Astrophysics Data System (ADS)

    Dang, Huong T.; Erina, E.; L. Nguyen, Hoai T.; Jaffrès, H.; Drouhin, H.-J.

    2016-10-01

    In this paper, we report on theoretical investigations and advanced k • p calculations of carrier forward scattering asymmetry (or transmission asymmetry in tunnel junction) vs. their incidence through magnetic tunnel junctions (MTJ) made of semiconductors involving spin-orbit interactions (SOI). This study represents an extension to our previous contribution1 dealing with the role, on the electronic forward and backward transmission-reflection asymmetry, of the Dresselhaus interaction in the conduction band (CB) of MTJs with antiparallel magnetized electrodes. The role of the atomic-SOI in the p-type valence band (VB) of semiconductors is investigated in a second step. We first developed a perturbative scattering method based on Green's function formalism and applied to both the orbitally non-degenerated CB and degenerated VB to explain the calculated asymmetry in terms of orbital-moment tunneling branching and chirality arguments. This particular asymmetry features are perfectly reproduced by advanced k • p tunneling approaches (30-band) in rather close agreement with the Green's function methods at the first perturbation order in the SOI strength parameter. This forward scattering asymmetry leads to skew-tunneling effects involving the branching of evanescent states within the barrier. Recent experiments involving non-linear resistance variations vs. the transverse magnetization direction or current direction in the in-plane current geometry may be invoked by the phenomenon we discuss.

  6. Instrument for the detection of meteors in the infrared

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Koschny, D.; Ter Haar, J.

    2014-07-01

    The flux of interplanetary particles in the size range 2 mm to 20 m is poorly constrained due to insufficient data --- the larger bodies may be observed remotely by ground-based or space-based telescopes and the smaller particles are measured by in-situ impact detectors in space or by meteor cameras from ground. An infrared video rate imager in Earth orbit would enable a systematic characterization for an extended period, day and night, of the flux in this range by monitoring the bright meteor/fireball generated during atmospheric entry. Due to the low flux of meteoroids in this range a very large detector is required. With this method a large portion of the Earth atmosphere is in fact used as a huge detector. Such an instrument has never flown in Earth orbit. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. The knowledge on emission of light by meteors/bolides at infrared wavelengths is very limited while it can be suspected that the continuum emission from meteors/bolides have stronger emission at infrared wavelengths than in the visible due to the likely low temperatures of these events. At the same time line emission is dominating over the continuum in the visible so it is not clear how this will compare with the continuum in the infrared. We have developed a bread-board version of an IR video rate camera, the SPOSH-IR. The instrument is based on an earlier technology development, SPOSH --- Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replaced by a cooled IR detector and new infrared optics. The earlier work has proven the concept of the instrument and of automatic detection of meteors/bolides in the visible wavelength range. The new hardware has been built by Jena-Optronik, Jena, Germany and has been tested during several meteor showers in the Netherlands and at ESA's OGS

  7. American Meteor Society Fireball reporting system and mobile application

    NASA Astrophysics Data System (ADS)

    Hankey, M.

    2014-07-01

    witnesses have filed reports, elapsed time data collected from the mobile phone can be used to determine the velocity of the fireball. With the velocity, trajectory solution and RA/DEC the AMS can plot orbital estimates for significant fireball events reported to the society. Our hope is that overtime this catalog of events will reveal patterns relating to the origins of bright fireballs at certain times of year. The AMS also hopes to be able to associate fireball events reported to the society with known meteor showers when RA/DEC radiant estimates fall close enough to those of known showers. In addition to the enhanced fireball reporting application, the AMS Mobile App provides a meteor shower calendar with information, radiant maps and moon conditions for all upcoming showers. There is also a meteor observing function inside the app that enables meteor observers to log meteor observations directly on the phone and have that data uploaded to the AMS online database and associated with that users observing profile. To record observations the user simply points the device at the part of the sky where they saw the meteor. They then drag their finger across the screen in the direction the meteor traveled. The user is then prompted to enter the magnitude of the event and associate the meteor with a known shower that is active for that date. When the user completes their session, all of the data for each meteor along with the information relating to the session is uploaded to the AMS website. Users can then review the data online in the AMS member's area. Data across all users can be aggregated for statistical analysis and ZHR estimates. Currently the AMS has over 10,000 registered users and facebook followers. In 2013 over 680,000 people visited the AMS website and the society received over 18,000 witness reports relating to 713 confirmed unique fireball events.

  8. Visual data of minor meteor showers limits of the method

    NASA Technical Reports Server (NTRS)

    Rendtel, Jurgen; Koschack, R.

    1992-01-01

    Visual meteor observations are carried out on a regular basis by many experienced observers worldwide, thus supplying information about activity of meteor showers. The limits of the method are determined by the accuracy of the detection of the meteor trail. This study shows that visual meteor observations provide reliable data for an observable hourly rate of greater than or equal to 3.

  9. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  10. Radio Meteors Observations Techniques at RI NAO

    NASA Astrophysics Data System (ADS)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  11. Calibrating Video Cameras For Meteor Works

    NASA Astrophysics Data System (ADS)

    Khaleghy-Rad, Mona; Campbell-Brown, M.

    2006-09-01

    The calculation of the intensity of light produced by a meteor ablating in the atmosphere is crucial to determination of meteoroid masses, and to uncovering the meteoroid's physical structure through ablation modeling. A necessary step in the determination is to use cameras which have been end-to-end calibrated to determine their precise spectral response. We report here a new procedure for calibrating low-light video cameras used for meteor observing, which will be used in conjunction with average meteor spectra to determine absolute light intensities.

  12. MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J. I.; Stewart, A. I. F.; McClintock, W. E.; Jain, S. K.; Chaffin, M. S.; Stiepen, A.; Crismani, M.; Plane, J. M. C.; Carrillo-Sánchez, J. D.; Evans, J. S.; Stevens, M. H.; Yelle, R. V.; Clarke, J. T.; Holsclaw, G. M.; Montmessin, F.; Jakosky, B. M.

    2015-06-01

    We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1-100 µm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect.

  13. Video meteor detection filtering using soft computing methods

    NASA Astrophysics Data System (ADS)

    Silađi, E.; Vida, D.; Nyarko, K.

    2015-01-01

    In this paper we present the current progress and results from the filtering of Croatian Meteor Network video meteor detections using soft computing methods such as neural networks and support vector machines (SVMs). The goal is to minimize the number of false-positives while preserving the real meteor detections. This is achieved by pre-processing the data to extract meteor movement parameters and then recognizing patterns distinct to meteors. The input data format is fully compliant with the CAMS meteor data standard, and as such the proposed method could be utilized by other meteor networks of the similar kind.

  14. Effects of meteoric debris on stratospheric aerosols and gases

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.

    1981-01-01

    Characterizations of meteoric dust height and size distributions are obtained using Hunten's calculations of meteor ablation and recondensation rates. The contribution of meteor residues to aerosol composition, the role of meteoric dust as condensation nuclei, and the effects of meteor debris on aerosol size distributions are quantified, and particle surface areas are estimated. The potential importance of heterogeneous chemistry for stratospheric trace gases is discussed. The interaction between H2SO4 vapor and meteor metal vapors is investigated. It is concluded that meteoric particles may dominate the natural stratospheric aerosols at small (less than .01 micron radius) and large (greater than 1 micron radius) sizes under normal conditions.

  15. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    NASA Technical Reports Server (NTRS)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the

  16. Impact of aerospace advancements on capabilities of reusable earth-to-orbit ships

    NASA Astrophysics Data System (ADS)

    Froning, H. D., Jr.; Leingang, J. L.

    1990-10-01

    Aerospace developments are bringing about the possibility of effective, fully reusable vehicles for transport of people and cargo between earth and space. This paper will indicate the magnitude of earth-to-orbit improvement that these developments may provide for single and multistage vehicles and for rocket and airbreathing flight.

  17. Advanced design for orbital debris removal in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.

  18. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  19. Video Orbits of the Geminids

    NASA Astrophysics Data System (ADS)

    Hajdukova, M.

    2014-07-01

    Geminid meteoroids, observed by the video technique, were analysed with the aim of determining the actual dispersion of their reciprocal semimajor axes 1/a within the stream. Orbits were selected from the European Video Meteor Network Database, EDMOND, (Kornos et al., 2013), from the SonotaCo Shower Catalogue (SonotaCo, 2009), and from the Czech Catalogue of Video Meteor Orbits (Koten et al., 2003). The observed orbital dispersion, including the measurement errors, was compared with that obtained from the precisely-reduced photographic orbits of Geminids from the IAU Meteor Data Center (Lindblad et al., 2003). In this paper, we concentrate on the influence of errors on the orbital dispersion. The size and distribution of observational errors determined from the long-period meteoroid streams (Hajdukova 2013), were applied to determine the real dispersion within this short-period meteoroid stream. The observed dispersions, described by the median absolute deviation in terms of 1/a, range from 0.041 to 0.050 1/au. The deviation of the median reciprocal semimajor axis from the parent (3200) Phaethon, obtained from Japanese video orbits, is 0.009 1/au, and that from the EDMOND data 0.01 1/au. This deviation obtained from the photographic orbits of the IAU Meteor Data Center was significantly greater (Hajdukova 2009). Similar results were obtained from the Czech Video Orbits Catalogue, where the value is 0.05 1/au. The investigation showed that semimajor axes of meteor orbits in both the SonotaCo and EDMOND datasets are systematically biased as a consequence of the method used for the video orbit determination, probably because corrections for atmospheric deceleration were either incorrectly made or were not done at all. Thus, the determined heliocentric velocities are underestimated, and the semimajor axes medians shifted towards smaller values. The observed distributions in 1/a from these video data become biased towards higher values of 1/a. The orbits of the Geminid

  20. Large Meteor Tracked over Northeast Alabama

    NASA Video Gallery

    On the evening of May 18, NASA all-sky meteor cameras located at NASA’s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

  1. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  2. Man-Sized Meteor Over Macon

    NASA Video Gallery

    Astronomers at NASA's Marshall Space Flight Center have recorded the brightest meteor ever seen by their network. On May 20, 2011, six-foot diameter fragment of an unknown comet entered the atmosph...

  3. Comparison with Russian analyses of meteor impact

    SciTech Connect

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  4. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left to right: Richard Rawls, Chip Holloway, and Art Hayhurst standing next to the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  5. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Back view of the SAGE III Bench Checkout Unit, Portable Image Generator (PIG) on tripod, and the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  6. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Full view of the SAGE III Bench Checkout Unit, Collimated Source Bench (CSB), Portable Image Generator (PIG) on tripod, and Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  7. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  8. Meteor showers of the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kerr, Steve

    2014-04-01

    We present the results of an exhaustive meteor shower search in the southern hemisphere. The underlying data set is a subset of the IMO Video Meteor Database comprising 50,000 single station meteors obtained by three Australian cameras between 2001 and 2012. The detection technique was similar to previous single station analysis. In the data set we find 4 major and 6 minor northern hemisphere meteor showers, and 12 segments of the Antihelion source (including the Northern and Southern Taurids and six streams from the MDC working list). We present details for 14 southern hemisphere showers plus the Centaurid and Puppid-Velid complex, with the η Aquariids and the Southern δ Aquariids being the strongest southern showers. Two of the showers (θ^2 Sagittariids and τ Cetids) were previously unknown and have received preliminary designations by the MDC. Overall we find that the fraction of southern meteor showers south of -30deg declination (roughly 25%) is clearly smaller than the fraction of northern meteor showers north of +30deg declination (more than 50%) obtained in our previous analysis.

  9. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  10. Dormant comets among the near-Earth object population: a meteor-based survey

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Pokorný, Petr

    2016-11-01

    Dormant comets in the near-Earth object (NEO) population are thought to be involved in the terrestrial accretion of water and organic materials. Identification of dormant comets is difficult as they are observationally indistinguishable from their asteroidal counterparts, however, they may have produced dust during their final active stages which potentially are detectable today as weak meteor showers at the Earth. Here we present the result of a reconnaissance survey looking for dormant comets using 13 567 542 meteor orbits measured by the Canadian Meteor Orbit Radar (CMOR). We simulate the dynamical evolution of the hypothetical meteoroid streams originated from 407 near-Earth asteroids in cometary orbits that resemble orbital characteristics of Jupiter-family comets (JFCs). Out of the 44 hypothetical showers that are predicted to be detectable by CMOR, we identify five positive detections that are statistically unlikely to be chance associations, including three previously known associations. This translates to a lower limit to the dormant comet fraction of 2.0 ± 1.7 per cent in the NEO population and a dormancy rate of ˜10-5 yr-1 per comet. The low dormancy rate confirms disruption and dynamical removal as the dominant end state for near-Earth JFCs. We also predict the existence of a significant number of meteoroid streams whose parents have already been disrupted or dynamically removed.

  11. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  12. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H.

    1979-01-01

    The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.

  13. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Task 7: Engine data summary

    NASA Technical Reports Server (NTRS)

    Christensen, K. L.

    1980-01-01

    A performance optimized engine system design for a man-rated advanced LOX/hydrogen expander cycle engine was investigated. The data are presented in tables, figures, and drawings. The following categories of data for the advanced expander cycle engine are presented: engine operating specification and pressure schedule; engine system layout drawing; major component layout drawings, including thrust chamber and nozzle, extendible nozzle actuating mechanism and seal, LOX turbopump, LOX boost pump, hydrogen turbopump, hydrogen boost pump, and propellant control valves; engine performance and service life prediction; engine weight; and engine envelope. The data represent updates based upon current results from the design and analyses tasks performed under contract. Futher iterations in the designs and data can be expected as the advanced expander cycle engine design matures.

  14. Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Cole, John; Campbell, Jonathan; Robertson, Anthony

    1995-01-01

    During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.

  15. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  16. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  17. Shigaraki middle and upper atmosphere radar meteor-head-echo database

    NASA Astrophysics Data System (ADS)

    Kero, J.; Nakamura, T.; Szasz, C.; Kastinen, D.; Watanabe, J.; Yamamoto, M.; Fujiwara, Y.; Abo, M.; Tanaka, Y.; Abe, S.

    2014-07-01

    Introduction: Mass infux from space into the terrestrial atmosphere is mainly caused by meteors. Meteors deliver various elements into the atmosphere and the meteoric dust particles are of great importance in the terrestrial atmosphere. For example, they act as nucleus for condensation and clouds and affect various atmospheric phenomena both in physical and chemical aspects. Thus, to investigate the meteor flux, orbits and their interactions in the upper atmosphere is very important but at the same time the method of investigation is limited, especially for precise measurements. High-power large-aperture (HPLA) radar observation is a recent technique to provide useful information on meteor infux and orbits, as well as interactions with the atmosphere. Since 2009 orbital data of about 120,000 meteors [2] have been collected using a novel head-echo analysis algorithm for the lower VHF band [1]. The data was collected using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S). The MU radar is a large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m^2 aperture array antenna. An open database (MU radar meteor head echo database: MURMHED) for research and education is now being created. Database: The database currently holds 53 different parameters for each event and a number of associated time series consisting of range, height, radar cross section, signal to noise ratio, radial velocity and meteorid velocity. The database parameters are MJD, Year [UT], Month [UT], Day [UT], Hour [UT], Minute [UT], Second [UT], Duration [s], RA [deg], Dec [deg], Az [deg], Ze [deg], Az uncorr [deg], Ze uncorr [deg], Ze correction [deg], Obs initial vel [km/s], Geocentric vel [km/s], RCS [dBsm], SNR [dB], Start hgt [km], End hgt [km], Az of start point [deg], Ze of start point [deg], Az of end point [deg], Ze of end point [deg], Semimajor axis [au], Eccentricity, Perihelion dist [au], Lon of asc node [deg

  18. Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Diem, H. G.

    1980-01-01

    The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.

  19. BRAMS: The Belgian RAdio Meteor Stations

    NASA Technical Reports Server (NTRS)

    Lamy, H.; Ranvier, S.; De Keyser, J.; Calders, S.; Gamby, E.; Verbeeck, C.

    2011-01-01

    In the last months, the Belgian Institute for Space Aeronomy has been developing a Belgian network for observing radio meteors using forward scattering technique. This network is called BRAMS for Belgian RAdio Meteor Stations. Two beacons emitting a circularly polarized pure sine wave toward the zenith act as the transmitters at frequencies of 49.97 and 49.99 MHz. The first one located in Dourbes (Southern Belgium) emits a constant power of 150 Watts while the one located in Ieper (Western Belgium) emits a constant power of 50 Watts. The receiving network consists of about 20 stations hosted mainly by radio amateurs. Two stations have crossed-Yagi antennas measuring horizontal and vertical polarizations of the waves reflected off meteor trails. This will enable a detailed analysis of the meteor power profiles from which physical parameters of the meteoroids can be obtained. An interferometer consisting of 5 Yagi-antennas will be installed at the site of Humain in order to determine the angular detection of one reflection point, allowing us to determine meteoroid trajectories. We describe this new meteor observing facility and present the goals we expect to achieve with the network.

  20. Earth Observing-1 Advanced Imager Flight Performance Assessment: Investigating Dark Current Stability Over One-Half Orbit Period during the First 60 Days

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.

  1. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.

  2. Advanced engine study for mixed-mode orbit-transfer vehicles

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Engine design, performance, weight and envelope data were established for three mixed-mode orbit-transfer vehicle engine candidates. Engine concepts evaluated are the tripropellant, dual-expander and plug cluster. Oxygen, RP-1 and hydrogen are the propellants considered for use in these engines. Theoretical performance and propellant properties were established for bipropellant and tripropellant mixes of these propellants. RP-1, hydrogen and oxygen were evaluated as coolants and the maximum attainable chamber pressures were determined for each engine concept within the constraints of the propellant properties and the low cycle thermal fatigue (300 cycles) requirement. The baseline engine design and component operating characteristics are determined at a thrust level of 88,964N (20,000 lbs) and a thrust split of 0.5. The parametric data is generated over ranges of thrust and thrust split of 66.7 to 400kN (15 to 90 klb) and 0.4 to 0.8, respectively.

  3. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  4. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    PubMed

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2017-02-01

    In this paper, we revisit and complete our preceding work on the Fokker Lagrangian describing the dynamics of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates. We clarify the impact of the nonlocal character of the Fokker Lagrangian or the associated Hamiltonian on both the conserved energy and the relativistic periastron precession for circular orbits. We show that the nonlocality of the action, due to the presence of the tail effect at the 4PN order, gives rise to an extra contribution to the conserved integral of energy with respect to the Hamiltonian computed on shell, which was not taken into account in our previous work. We also provide a direct derivation of the periastron advance by taking carefully into account this nonlocality. We then argue that the infrared (IR) divergences in the calculation of the gravitational part of the action are problematic, which motivates us to introduce a second ambiguity parameter, in addition to the one already assumed previously. After fixing these two ambiguity parameters by requiring that the conserved energy and the relativistic periastron precession for circular orbits be in agreement with numerical and analytical gravitational self-force calculations, valid in the limiting case of small mass ratio, we find that our resulting Lagrangian is physically equivalent to the one obtained in the ADM Hamiltonian approach.

  6. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  7. Forecast of the Comet 46P/Wirtanen Meteor Shower Activity in 2017 and 2019

    NASA Astrophysics Data System (ADS)

    Maslov, M. P.; Muzyko, E. I.

    2016-12-01

    The article presents the description of possible activity from the comet 46P/Wirtanen meteor shower. The proximity of this comet to the Earth orbit in 1984-2042 increases probabily for the Earth to encounter meteoroid particles released by this comet. For the nearest years two cases of such activity are found—in 2017 and 2019 and their characteristics and circumstances are presented.

  8. Forecast of the Comet 46P/Wirtanen Meteor Shower Activity in 2017 and 2019

    NASA Astrophysics Data System (ADS)

    Maslov, M. P.; Muzyko, E. I.

    2017-01-01

    The article presents the description of possible activity from the comet 46P/Wirtanen meteor shower. The proximity of this comet to the Earth orbit in 1984-2042 increases probabily for the Earth to encounter meteoroid particles released by this comet. For the nearest years two cases of such activity are found—in 2017 and 2019 and their characteristics and circumstances are presented.

  9. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  10. Orbital Transfer Rocket Engine Technology. Advanced Engine Study, Task D.6 Final Report

    DTIC Science & Technology

    1992-06-01

    Pieper. The work was continued through the Design and Parametric Subtask under the direction of Judy Schneider. Completion of the study and... studies while NASA Lewis Research Center has di- rected main engine development. The work reported herein was completed under a contract with NASA LeRC...set is established. Work on the Advanced Engine Study began in November 1988 and concluded in the Spring of 1990 with this final report. I 3n/Drrn 47

  11. On the age and parent body of the daytime Arietids meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, A.; Wiegert, P.; Pokorny, P.; Brown, P.

    2016-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is among the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz and more recently the Marsden's group of sun-skirting comets. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). Our simulations suggest that the age and observed characteristics of the daytime Arietids are consistent with cometary activity from 96P, over the past 12000 years. The sunskirting comets that presumably formed in a major comet breakup between 100 - 950 AD (Chodas and Sekanina, 2005), alone, cannot explain the observed shower characteristics of the Arietids. Thus, the Marsden sunskirters cannot be the dominant parent, though our simulations suggest that they contribute to the core of the stream.

  12. Calibration and postlaunch performance of the Meteor 3/TOMS instrument

    SciTech Connect

    Jaross, G.; Krueger, A.; Cebula, R.P.; Seftor, C.; Hartmann, U.; Haring, R.; Burchfield, D. ||

    1995-02-01

    Prelaunch and postlaunch calibration results for the Meteor 3/total ozone mapping spectrometer (TOMS) instrument are presented here. Ozone amounts are retrieved from measurements of Earth albedo in the 312- to 380-nm range. The accuracy of albedo measurements is primarily tied to knowledge of the reflective properties of diffusers used in the calibrations and to the instrument`s wavelength selection. These and other important prelaunch calibrations are presented. Their estimated accuracies are within the bounds necessary to determine column ozone to better than 1%. However, postlaunch validation results indicate some prelaunch calibration uncertainties may be larger than originally estimated. Instrument calibrations have been maintained postlaunch to within a corresponding 1% error in retrieved ozone. Onboard calibrations, including wavelength monitoring and a three-diffuser solar measurement system, are described and specific results are presented. Other issues, such as the effects of orbital precession on calibration and recent chopper wheel malfunctions, are also discussed.

  13. Analysis of historical meteor and meteor shower records: Korea, China, and Japan

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2005-05-01

    We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.

  14. ROAN Remote radio meteor detection sensor

    NASA Astrophysics Data System (ADS)

    Lesanu, C. E.

    2016-01-01

    Only few meteor enthusiasts across the world today, approaches systematically the radio meteor detection technique, one of the reasons being the difficulty to build and install proper permanent antennas, especially when low-VHF frequency opportunity transmitters are used as illuminators. Other reasons were in the past the relatively high cost of the entire system, receivers and computers, and not ultimately the high power consumption of the system in a 24/7 operation, when using regular personal computers. The situation changed in the recent years with the advent of the low cost software defined radio SDR receivers and low consumption/cost single board computers SBC. A commercial off-the-shelf hardware based remote radio meteor detection sensor is presented.

  15. September epsilon Perseid cluster as a result of orbital fragmentation

    NASA Astrophysics Data System (ADS)

    Koten, P.; Čapek, D.; Spurný, P.; Vaubaillon, J.; Popek, M.; Shrbený, L.

    2017-04-01

    Context. A bright fireball was observed above the Czech Republic on September 9, 2016, at 23:06:59 UT. Moreover, the video cameras at two different stations recorded eight fainter meteors flying on parallel atmospheric trajectories within less than 2 s. All the meteors belong to the September epsilon Perseid meteor shower. The measured proximity of all meteors during a very low activity meteor shower suggests that a cluster of meteors was observed. Aims: The goal of the paper is first to determine whether this event was a random occurrence or a real meteor cluster and second, if it was a cluster, to determine the epoch and at what distance from the Earth the separation of the particles occurred. Methods: The atmospheric trajectories of the observed meteors, masses, and relative distances of individual particles were determined using a double-station observation. According to the distances and masses of the particles, the most probable distance and time of fragmentation is determined. Results: The observed group of meteors is interpreted as the result of the orbital fragmentation of a bigger meteoroid. The fragmentation happened no earlier than 2 or 3 days before the encounter with the Earth at a distance smaller than 0.08 AU from the Earth.

  16. The Radio Meteor Zoo: a citizen science project

    NASA Astrophysics Data System (ADS)

    Calders, S.; Verbeeck, C.; Lamy, H.; Martínez Picar, A.

    2016-01-01

    Scientists from the BRAMS radio meteor network have started a citizen science project called Radio Meteor Zoo in collaboration with Zooniverse in order to identify meteor reflections in BRAMS spectrograms. First, a small-scale version of the Radio Meteor Zoo was carried out with a sample of meteor identifications in 12 spectrograms by 35 volunteers. Results are presented here and allowed us to define a method that reliably detects meteor reflections based on the identifications by the volunteers. It turns out that, if each spectrogram is inspected by 10 volunteers, hit and false detection percentages of 95% respectively 6% are expected. The Radio Meteor Zoo is online at https://www.zooniverse.org/projects/zooniverse/radio-meteor-zoo. Citizen scientists are kindly invited to inspect spectrograms.

  17. Exploring the relationship between meteor parameters based on photographic data

    NASA Astrophysics Data System (ADS)

    Yancheva, Y.; Hristova, S.; Bojurova, E.

    2016-01-01

    The paper presents an attempt to investigate the relationship between the luminosity and the linear length of the meteors, based on photographic observations of the Geminid meteor shower during the night of maximum in December 2015.

  18. Radar Observations of Meteor Interactions in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Mann, I.; Pellinen-Wannberg, A.; Tjulin, A.

    2011-12-01

    Solid particles entering the Earth's atmosphere produce meteors in the ionosphere, typically at 80 to 120 km altitude, but also beyond. The major process causing the meteor is the vaporization of the solid after heating by collision with the atmospheric particles; sputtering also occurs. A fraction of the material that is ablated from the entering objects re-condenses into meteoric smoke particles. Meteors are actively detected by backscattering of radar signals and they are observed, for instance, with the EISCAT (European Incoherent Scatter Scientific Association) radars. Meteor trail and headecho observations detect the ionisation that is associated with the meteor. They allow for studying the properties of the entering solid objects (dust and meteors) and the subsequent ionospheric interactions. We discuss the range of objects that can be detected with EISCAT and the capability of the measurements to find the formation of the meteoric smoke. We then consider the possibilities for measurements with the future EISCAT 3D.

  19. Knut Lundmark, meteors and an early Swedish crowdsourcing experiment.

    PubMed

    Kärnfelt, Johan

    2014-10-01

    Mid twentieth century meteor astronomy demanded the long-term compilation of observations made by numerous individuals over an extensive geographical area. Such a massive undertaking obviously required the participation of more than just professional astronomers, who often sought to expand their ranks through the use of amateurs that had a basic grasp of astronomy as well as the night sky, and were thus capable of generating first-rate astronomical reports. When, in the 1920s, renowned Swedish astronomer Knut Lundmark turned his attention to meteor astronomy, he was unable to rely even upon this solution. In contrast to many other countries at the time, Sweden lacked an organized amateur astronomy and thus contained only a handful of competent amateurs. Given this situation, Lundmark had to develop ways of engaging the general public in assisting his efforts. To his advantage, he was already a well-established public figure who had published numerous popular science articles and held talks from time to time on the radio. During the 1930s, this prominence greatly facilitated his launching of a crowdsourcing initiative for the gathering of meteor observations. This paper consists of a detailed discussion concerning the means by which Lundmark's initiative disseminated astronomical knowledge to the general public and encouraged a response that might directly contribute to the advancement of science. More precisely, the article explores the manner in which he approached the Swedish public, the degree to which that public responded and the extent to which his efforts were successful. The primary aim of this exercise is to show that the apparently recent Internet phenomenon of 'crowdsourcing', especially as it relates to scientific research, actually has a pre-Internet history that is worth studying. Apart from the fact that this history is interesting in its own right, knowing it can provide us with a fresh vantage point from which to better comprehend and appreciate

  20. Infrasonic Tracking of the Chelyabinsk Meteor

    NASA Astrophysics Data System (ADS)

    Garces, M. A.; Smirnov, A.; Liszka, L.

    2013-12-01

    The Infrasonic Energy, Nth Octave (INFERNO) energy estimator of Garces (2013) is used in conjunction with the PMCC4 array processing algorithm to refine the chronology and energetics of infrasonic signals from the Chelyabinsk Meteor. We concentrate on infrasound array data from the closest stations: I31KZ (Aktyubinsk, Kazakhstan), I43RU (Dubna, Russia), and KURK (Kurchatov, Kazakhstan), using the published satellite trajectory as a starting point. This study systematically applies standardized, self-similar, logarithmic time-frequency multiresolution algorithms to infrasonic data with the aim of improving the temporal and spatial resolution of the arrivals associated with the meteor's impact.

  1. Antarctic ozone - Meteoric control of HNO3

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Rodriguez, Jose M.

    1988-01-01

    Atmospheric circulation leads to an accumulation of debris from meteors in the Antarctic stratosphere at the beginning of austral spring. The major component of meteoric material is alkaline, comprised predominantly of the oxides of magnesium and iron. These metals may neutralize the natural acidity of stratospheric aerosols, remove nitric acid from the gas phase, and bond it as metal nitrates in the aerosol phase. Removal of nitric acid vapor has been previously shown to be a critical link in the photochemical depletion of ozone in the Antarctic spring, by allowing for increased catalytic loss from chlorine and bromine.

  2. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  3. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  4. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    SciTech Connect

    Christiansen, E.L.; Crews, J.L.; Kerr, J.H.; Chhabildas, L.C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel{trademark} ceramic fabric and Kevlar{trademark} high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ({open_quotes}hypervelocity launcher{close_quotes}) and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at {approximately}11.5km/s. The {gt}10km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel{trademark}/Kevlar{trademark} shield provides superior protection performance compared to an all-aluminum shield alternative. {copyright} {ital 1996 American Institute of Physics.}

  5. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.

  6. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  7. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  8. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  9. Easy way to estimate meteor brightness on TV frames

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    The traditional method of the meteor brightness measurements claims that the meteor brightness is equal to the stellar magnitude of a star that looks like a meteor in the brightest point of its track. This rule was convenient for the comparison of meteor observations by different observers and for the analysis of the brightness distributions of meteors from observed showers. This traditional method suffers from systematic errors, particularly those that arise from using stellar brightness measured in specific spectral wave bands different from the observer's ones, but mainly due to neglecting the influence of the meteor angular velocity on the real meteor brightness. To get a proper estimate of the meteor brightness that is a measure of the ground meteor illumination in the non-systematic units, an observer must take into account that the effective exposition of a meteor image in any resolution element of its track is a few times shorter than the corresponding exposition of a star image in the same frame. We propose a very simple method for improved estimations of meteor brightness by applying a correction to the meteor stellar magnitude obtained within the traditional framework.

  10. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  11. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  12. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  13. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  14. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  15. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  16. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  17. Double station observation of Draconid meteor outburst from two moving aircraft

    NASA Astrophysics Data System (ADS)

    Koten, Pavel; Vaubaillon, Jeremie; Margonis, Anastasios; Tóth, Juraj; Ďuriš, František; McAulliffe, Jonathan; Oberst, Jürgen

    2015-12-01

    A Draconid meteor shower outburst was observed from the boards of two scientific aircraft on 8 October 2011. In this paper we report the results of this double station experiment. The beginning and terminal heights are similar to other Draconid observations and confirm the fragile nature of the meteoroids. From the distribution function of terminal heights, a critical mass was found to be about 3.5 g. A behaviour of the terminal heights changes at this point. Light curves of Draconid meteors show great variability with a maximum of the F-number distribution around 0.35, which also confirms fragility of the material. Observed radiants of the meteors are in agreement with the theoretical model. Although encounters with two different filaments were predicted, it is impossible to distinguish between them from the radiants as well as the orbital data. Despite the complications with the data processing the airborne mission shows that such double station experiment is possible and provides valuable insight into meteor structure and dynamics.

  18. Meteor hurricane at Mars on 2014 October 19 from comet C/2013 A1

    NASA Astrophysics Data System (ADS)

    Vaubaillon, J.; Maquet, L.; Soja, R.

    2014-04-01

    Comet C/2013 A1 will make a very close approach with the planet Mars on 2014 October 19. For this event, we compute the density of cometary dust particles around the Mars Express spacecraft, in order to assess the real risk for space probes. We also estimate the zenithal hourly rate (ZHR) and discuss observational opportunities for the resulting Martian meteor shower. We find, for a surface of 2.7 m2, that the Mars Express spacecraft will experience approximately 10 impacts from particles larger than 100 μm in size. The fluence per square metre is found to be 3.5 during the encounter. The equivalent ZHR is computed to be ZHR ≃ 4.75 × 109 h-1, making this event the strongest meteor storm ever predicted. We call this event a `meteor hurricane', which we define to be a meteor shower with ZHR exceeding 106 h-1. The event will last approximately 5 h in total, and peak around 20:00 UT (Earth UT time). We call for observations of this unique event by all possible means, but also warn operators of Mars-orbiting spacecraft against the risks of impacts from comet particles larger than 100 μm, with impacts speeds of 57.42 km s-1.

  19. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  20. BRAMS --- the Belgian RAdio Meteor Stations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  1. Lake Erie Fireball Meteor, Orangeville View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Oran...

  2. Lake Erie Fireball Meteor, Tavistock View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Tavi...

  3. Bright Meteor Lights Up Atlanta Skies

    NASA Video Gallery

    This video shows a very bright meteor that streaked over the skies of Atlanta, Ga., on the night of Aug. 28, 2011. The view is from an all sky camera in Cartersville, Ga., operated by NASA’s Mars...

  4. Lake Erie Fireball Meteor, Mcmaster View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Mcma...

  5. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  6. Luceafarul: a Romanian meteor-inspired poem.

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Ghoerghe, A. D.

    1999-10-01

    The poem Luceafarul, written by Mihai Eminescu and first published in 1883, is considered as being the greatest Romanian poetic masterpiece. In commemorating the 110th anniversary of the author's death in 1999, the authors present here a short discussion of the poem's astronomical imagery, which includes the re-using of long-held beliefs about meteors from old Romanian myths and folklore.

  7. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  8. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    USGS Publications Warehouse

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  9. Canadian Advanced Nanospace eXperiment 2 Orbit Operations: Over a Year of Pushing the Nanosatellite Performance Envelope

    NASA Astrophysics Data System (ADS)

    Zee, R. E.; Sarda, K.; Skone, S. H.; Quine, B.

    2009-12-01

    The Canadian Advanced Nanospace eXperiment 2 (CanX-2) was launched in April 2008 and has demonstrated the utility of nanosatellites for scientific missions for well over a year. The objective of the CanX program is to develop highly capable nanospacecraft, i.e. spacecraft under 10 kilograms, in short timeframes of 2-3 years. CanX missions offer low-cost and rapid access to space for scientists, technology developers and operationally-responsive missions. The Space Flight Laboratory (SFL), at the University of Toronto Institute for Aerospace Studies (UTIAS) developed the CanX-2 nanosatellite, a 3.5-kg, 10 x 10 x 34 cm satellite, or triple CubeSat. The satellite features a collection of scientific and engineering payloads that push the envelope of capability for this class of spacecraft. An objective of CanX-2 is to test and demonstrate several enabling technologies for precise formation flight. These technologies include a custom cold-gas propulsion system, a 30 mNms nanosatellite reaction wheel as part of a three-axis stabilized Y-Thomson attitude control subsystem, and a commercially available GPS receiver. CanX-2 also performs science experiments including the measurement of greenhouse gas concentrations and profiling of atmospheric water vapor content and total electron count. These scientific experiments are accomplished by virtue of an atmospheric spectrometer provided by York University, and GPS radio occultation measurements for the University of Calgary. After more than a year of success in orbit, the nanosatellite has met or exceeded all mission objectives and continues to demonstrate the cost-effective capabilities of this class of spacecraft. Key achievements to date include successful GPS radio occultations and spectrometer measurements, in addition to proving technologies, including the characterization of the propulsion system, a full demonstration of the attitude determination and control subsystem including capabilities in accurate payload pointing

  10. Spectral analysis of four meteors. [chemical compositions and spectral emissions

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Four meteor spectra are analyzed for chemical composition and radiative processes. The chemical compositions of the Taurid, Geminid, and Perseid meteors were found to be similar to that of a typical stony meteorite. The chemical composition of the sporadic meteor was found to be similar to that of a nickel iron meteorite. The radiation from optical meteors was found to be similar to that of a low temperature gas, except that strong, anomalous ionic radiation is superposed on the neutral radiation in bright, fast meteors.

  11. Comparison of TV magnitudes and visual magnitudes of meteors

    NASA Astrophysics Data System (ADS)

    Shigeno, Yoshihiko; Toda, Masayuki

    2008-08-01

    The generally accepted belief is that a meteor, with a large amount of infrared rays, can be captured brighter than it actually is by infrared-sensitive image intensifiers (I.I.) or CCD. We conducted observations of meteors using three methodologies: 1) I.I. with an attached filter that has the same spectral response as the human eye at night vision, 2) I.I. without the filter and 3) visually to determine meteor magnitudes. A total of 31 members of the astronomical club at Meiji University observed 50 Perseid meteors, 19 Geminid meteors as well as 44 sporadic meteors and the results were tabulated. The results helped us understand that on average I.I. can record meteors as brighter than visual observation by the magnitude equivalent of 0.5 for Perseids, 1.0 for Geminids and 0.5 for sporadic meteors. For I.I. with a filter that has the same spectral response the human eye at night vision, it turned out that we could obtain almost the same magnitude with observation by the human eye. We learned that a bright meteor with negative magnitude can be observed by I.I. brighter than the human eye. From several examples, we found I.I. could record a meteor with about -1 visual magnitude as brighter by about three magnitudes. We could probably do so because a bright meteor with negative magnitude may contain more infrared rays and the brightness could be amplified.

  12. Physical and dynamical studies of meteors. [radar observation of fragmentation

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Sekanina, Z.

    1974-01-01

    Distribution of meteors in streams detected in the synoptic-year meteor sample plus a study of the fragmentation characteristics of the synoptic-year meteor sample are presented. Population coefficients and dispersion coefficients were determined for each meteor stream. These two parameters serve to determine the number of definite members of the stream in the sample used, and to estimate the actual space density of meteor streams. From results of the fragmentation study, it appears that the main body of most radar meteors does not ablate fragments layer by layer, but collapses rather suddenly under dynamic pressures on the order of 0,0002 dynes/cm. Furthermore, it is believed that fragmentation does not cause a serious selection effect in the radar meteor data.

  13. Optical observations of the spatial and temporal relations between sprites and meteors during the 2009 Geminid shower

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Ben-Yona, M.; Reicher, N.; Mezuman, K.; Price, C. G.

    2010-12-01

    Meteors had long been suggested as a possible factor affecting the generation and location of sprite elements, via deposition of dust particles and ablation prodcuts that serve as ignition points by locally enhancing the transient quasi-electrostatic electric field in mesospheric altitudes (Zabotin and Wright, 2001). Since during a meteor shower the flux of incoming particles is much larger than during non-shower nights, it is reasonable to assume that the presence of relatively large amounts of particles at mesospheric altitudes facilitates the generation of sprites above active thunderstorms, when the TLEs occur directly below the deposition region of the shower. We report observations of the co-occurrence in space and time of bright meteors and sprites during the night of December 10-11 2009, three days before the reported peak of the Geminid meteor shower (IMO) which had a maximum ZHR ~120 per hour. A typical winter storm system was located over the Mediterranean Sea, some 300 km north-west of Tel-Aviv, where our cameras were located. A total of 37 sprites (columns and carrots) were imaged during a 5 hour period, intermittently with 12 meteor trails detected within the same field of view. By calculating the meteor trajectories and the locations and the dimensions of the sprite elements, we show a close temporal and spatial proximity between them. From the angular distance between the shower radiant and the observed bright segment of the meteors' orbits, the beginning altitudes were found to be 87-102±5 km (in agreement with Koten et al.,2004), and termination heights 82-96±5 km. Sprite lengths and altitudes were also computed (initiation at ~75±5km), and found to overlap with the heights where meteors visually terminated. In some cases the sprites were observed just minutes after the meteors occurred, with only a couple of km separation from their location. However no direct and immediate one-to-one causality was detected. Possible mechanisms for meteor

  14. Measurement of the Earth's Radiation Budget components from Russian satellites "Meteor-M" № 1 and "Meteor-M" № 2

    NASA Astrophysics Data System (ADS)

    Cherviakov, M.

    2015-12-01

    One of the foremost challenges to monitoring the climate system is the ability to make a precise measurement of Earth's radiation budget components from space. Thereupon a new "Meteor-M" satellite program has been started in Russia. The first satellite of new generation "Meteor-M" № 1 was put into orbit in September, 2009 and second satellite "Meteor-M" № 2 - in July, 2014. Some measurements results obtained by the nadir looking medium field of view radiometers IKOR-M which was installed on "Meteor-M" satellites are presented. These equipments were created in Saratov State University under the direction of Yu. A. Sklyarov for monitoring of outgoing shortwave radiation (OSR), albedo and absorbed solar radiation (ASR) at TOA. The basic products of data processing are given in the form of global maps of distribution OSR, albedo and ASR. Such maps were made for each month during observation period. Fig. 1 presents the map of global distribution of monthly averaged values of albedo in April, 2014. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. TOA fluxes deduced from the "Meteor-M" № 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and ASR over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the

  15. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  16. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  17. Sungrazing dust particles against the sporadic meteor background

    NASA Astrophysics Data System (ADS)

    Golubaev, A. V.

    2015-07-01

    From the results of the statistical study, the genetic relation between some meteors (from -5 m to +5 m ) of the sporadic background and the comets of the Kreutz, Marsden, and Kracht families has been revealed. The radiants of sporadic meteors are concentrated at the geocentric ecliptic latitudes 7°-10° northward and southward of the ecliptic. The radiants of the sungrazing meteoroids, that were detected on their heliocentric orbits "before" and "after" the perihelion passage, are concentrated in the elongation intervals of approximately 120°-165° and 20°-60° from the Sun, respectively. Each of the specified radiant regions, in its turn, breaks up into two groups. The group of radiants with elongations of about 30° and 155° from the Sun belongs to the Marsden and Kracht cometary families, while the group with 50° and 135°, to the Kreutz cometary family. In the distribution by perihelion distance, a sharp decrease of the number of observed dust particles with q < 0.08 AU was found. This corresponds to the heliocentric distances (20-30 R ⊙), where the production of microscopic dust due to sublimation of cometary nuclei, while approaching the Sun, terminates. The number of sporadic sungrazing meteoroids detected after their passage in the vicinity of the Sun is approximately 20 times smaller than the number of similar particles in the preperihelion part of the trajectory. This result is of special importance for studying the thermodesorption effect of meteoroids (i.e., the change in the content of chemical elements in meteoroids as a function of the perihelion distance).

  18. Hazards due to Meteor and Asteroids and Infux of Cosmic Matter on the Earth

    NASA Astrophysics Data System (ADS)

    Kruchynenko, V. G.; Voloshchuk, Yu. I.; Kashcheev, B. L.; Kazantsev, A. M.; Lupishko, D. F.; Yatskiv, Ya. S.

    The problem of meteor and asteroid hazards is considered on the basis of modern studies of small bodies in the solar system. Using one of the largest meteor data banks and the results of calculations of asteroid orbits, new approaches to the search for space bodies which may be dangerous to our planet are formulated. The problem of destruction of meteoroids of various masses in the atmosphere and on the surface of the Earth is considered, and a criterion for distinguishing between impact and explosion meteorites is presented. Analysis of the data on influx of cosmic bodies on the Earth in a wide range of masses is made. The probability of collision of space vehicles with meteoroid particles is given.

  19. The connection between Comet P/Machholz and the Quadrantid meteor

    NASA Astrophysics Data System (ADS)

    Gonczi, R.; Rickman, H.; Froeschle, C.

    1992-02-01

    Attention is given to the variation of the period of q-i oscillation between different meteor particles in relation to the hypothesis that the shedding of meteors occurred nearly 4000 yr ago, when Comet P/Machholz last had a very small perihelion distance. It is shown that this hypothesis is viable in view of the ejection velocities typically expected and the resulting spread in the period of q-i oscillations. The most promising range of semimajor axes is just inside the 2/1 resonance, and detailed study reveals many cases of chaotic behavior due to the close encounters with Jupiter. With regard to the possible ejection of Quadrantids at the second-last minimum of q of Comet P/Machholz, i.e, more than 8000 yr ago, it is argued that the Poynting-Robertson effect has already largely removed the particles from the observable orbits.

  20. Chemical Analysis of Primitive Objects Using a Slitless Ultraviolet Meteor Spectrometer (CAPO-SUMS)

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Wdowiak, T.; Lowrance, J.; Carruthers, G.; Jenniskens, P.; Gerakines, P.

    2003-01-01

    Measure the elemental composition in both random meteors and in the bolides forming specific meteor streams (these are traceable to specific small bodies in the solar system). These will yield the average chemical composition and degree of chemical variability in a statistically significant number of planetesimals. CAPO-SUMS is functionally equivalent to a series of multiple, small-body sample analysis missions, but provides much more analytical capability than is possible on any orbital or flyby mission due to the vaporization, ionization and ultraviolet emission from the ablating bolide as it enters the atmosphere. CAPO-SUMS will provide a chemical context from which the detailed analytical studies provided by a cometary or asteroidal lander mission can be interpreted.

  1. Orbits and emission spectra from the 2014 Camelopardalids

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Trigo-Rodríguez, Josep M.; Zamorano, Jaime; Izquierdo, Jaime; de Miguel, Alejandro Sánchez; Ocaña, Francisco; Ortiz, José L.; Espartero, Francisco; Morillas, Lorenzo G.; Cardeñosa, David; Moreno-Ibáñez, Manuel; Urzáiz, Marta

    2014-12-01

    We have analysed the meteor activity associated with meteoroids of fresh dust trails of Comet 209P/LINEAR, which produced an outburst of the Camelopardalid meteor shower (IAU code #451, CAM) in 2014 May. With this aim, we have employed an array of high-sensitivity CCD video devices and spectrographs deployed at 10 meteor observing stations in Spain in the framework of the Spanish Meteor Network. Additional meteoroid flux data were obtained by means of two forward-scatter radio systems. The observed peak zenithal hourly rate was much lower than expected, of around 20 meteors h-1. Despite of the small meteor flux in the optical range, we have obtained precise atmospheric trajectory, radiant and orbital information for 11 meteor and fireball events associated with this stream. The ablation behaviour and low tensile strength calculated for these particles reveal that Camelopardalid meteoroids are very fragile, mostly pristine aggregates with strength similar to that of the Orionids and the Leonids. The mineral grains seem to be glued together by a volatile phase. We also present and discuss two unique emission spectra produced by two Camelopardalid bright meteors. These suggest a non-chondritic nature for these particles, which exhibit Fe depletion in their composition.

  2. Hyperbolic meteors: Interstellar or generated locally via the gravitational slingshot effect?

    NASA Astrophysics Data System (ADS)

    Wiegert, Paul A.

    2014-11-01

    The arrival of solid particles from outside our Solar System would present us with an invaluable source of scientific information. Attempts to detect such interstellar particles among the meteors observed in Earth's atmosphere have almost exclusively assumed that those particles moving above the Solar System's escape speed - particles on orbits hyperbolic with respect to the Sun - were precisely the extrasolar particles being searched for. Here we show that hyperbolic particles can be generated entirely within the Solar System by gravitational scattering of interplanetary dust and meteoroids by the planets. These particles have necessarily short lifetimes as they quickly escape our star system; nonetheless some may arrive at Earth at speeds comparable to those expected of interstellar meteoroids. Some of these are associated with the encounter of planets with the debris streams of individual comets: Comet C/1995 O1 Hale-Bopp's 1996 pre-perihelion encounter with Jupiter could have scattered particles that would have reached our planet with velocities of almost 1 km s-1 above the hyperbolic velocity at Earth; however, such encounters are relatively rare. The rates of occurrence of hyperbolically-scattered sporadic meteors are also quite low. Only one of every ∼104 optical meteors observed at Earth is expected to be such a locally generated hyperbolic and its heliocentric velocity is typically only a hundred metres per second above the heliocentric escape velocity at Earth's orbit. The majority of such gravitationally-scattered hyperbolics originate at Mercury, though Venus and Mars also contribute. Mercury and Venus are predicted to generate weak 'hyperbolic meteor showers': the restrictive geometry of scattering to our planet means that a radiant near the Sun from which hyperbolic meteors arrive at Earth should recur with the planet's synodic period. However, though planetary scattering can produce meteoroids with speeds comparable to interstellar meteors and at

  3. The age and the probable parent body of the daytime arietid meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, Abedin; Wiegert, Paul; Pokorný, Petr; Brown, Peter

    2017-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is amongst the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz [McIntosh, B.A., 1990. Comet P/Machholz and the Quadrantid meteor stream. Icarus 86, 894 299-304. doi:10.1016/0019-1035(90)90219-Y.] and more recently a member of the Marsden group of sun-skirting comets, P/1999 J6 [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10.1086/497374.]. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). We find the most plausible scenario to be that the age and the formation mechanism of the Arietids is consistent with continuous cometary activity of 96P/Machholz over a time interval of ≈12,000 years. The sun-skirting comet P/1999 J6 suggested by [Sekanina, Z., Chodas, P.W., 2005. Origin of the Marsden and Kracht Groups of Sunskirting 922 Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex. ApJS 923 161, 551-586. doi:10

  4. Data processing of records of meteoric echoes

    NASA Astrophysics Data System (ADS)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  5. A fireball analysis from Spanish meteor observations

    NASA Astrophysics Data System (ADS)

    Benítez Sánchez, O.; Ocaña González, F.

    2004-03-01

    Naked eye meteor records from Spain are used for an analysis of 3240 fireballs reported by members of the Sociedad de Observadores de Meteoros Y Cometas de España (SOMYCE) and by casual eye-witnesses from 1982 to 2000. This analysis concerns various areas, such as statistical studies of the colours and the frequency of fireballs in annual meteor showers. Annual and diurnal variations are also discussed. We describe the population index r for magnitudes brighter than m=-2 for ORI, VIR, AQU, TAU, CAP, QUA, GEM, LYR, LEO, KCG, PER and sporadic fireballs. The typical population index is always in the range ≃ 1.2 to 1.9, except for Perseids and Geminids. An investigation of visual fireballs radiants was attempted with the Radiant software. The sample of fireballs (282 fireballs with the path reported) only shows evidence for the Perseids and Leonids.

  6. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  7. An FDTD model of scattering from meteor head plasma

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Close, S.

    2015-07-01

    We have developed a three-dimensional finite difference time domain (FDTD) model of scattering of radar waves from meteor head plasma. The model treats the meteor head plasma as a cold, collisional, and magnetized plasma, and solves Maxwell's equations and the Langevin equation simultaneously and self-consistently in and around the plasma. We use this model to investigate scattering of radar waves from a meteor head (the "head echo") under a range of plasma densities, meteor scale sizes, and wave frequencies. In this way we relate the radar cross section (RCS) to these variable parameters. We find that computed RCS disagrees with previous analytical theory at certain meteor sizes and densities, in some cases by over an order of magnitude. We find that the calculated meteor head RCS is monotonically related to the "overdense area" of the meteor, defined as the cross-section area of the part of the meteor where the plasma frequency exceeds the wave frequency. These results provides a physical measure of the meteor size and density that can be inferred from measured RCS values from ground-based radars. Meteoroid mass can then be inferred from the meteor plasma distribution using established methods.

  8. Structural peculiarities of the Quadrantid meteor shower

    NASA Technical Reports Server (NTRS)

    Isamutdinov, Sh. O.; Chebotarev, R. P.

    1987-01-01

    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions.

  9. A global atmospheric model of meteoric iron

    NASA Astrophysics Data System (ADS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Höffner, Josef; Yi, Fan; Plane, John M. C.

    2013-08-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  10. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  11. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  12. Development of a melting model for meteors

    NASA Astrophysics Data System (ADS)

    Dias, Bruno; Bariselli, Federico; Turchi, Alessandro; Frezzotti, Aldo; Chatelain, Philippe; Magin, Thierry

    2016-11-01

    Meteor phenomenon is a frequent event happening on planet Earth. Due to the high entry velocities of these objects, the surface of the material undergoes extreme heat loads. Since the material is mainly composed by several oxides, eventually, the surface temperature will overcome the melting point. In this study we propose a melting model, in order to understand the material behavior, coupled with a flow solver. A detailed study of the flow around the stagnation streamline is also presented.

  13. Elementary process and meteor train spectra

    NASA Technical Reports Server (NTRS)

    Ovezgeldyev, O. G.

    1987-01-01

    Mechanisms of excitation of individual spectral line radiation were studied experimentally and theoretically and it was demonstrated that such processes as oxidation, resonant charge exchange, dissociative recombination and others play an important part in the chemistry of excited particles. The foundation was laid toward simulating the elementary processes of meteor physics. Having a number of advantages and possibilities, this method is sure to find a wide use in the future.

  14. Photometric stellar catalogue for TV meteor astronomy

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    Photometry for ordinary astrophysics was carefully developed for its own purposes. As stars radiation is very similar to the blackbody radiation, astronomers measure star illumination in wide or narrow calibrated spectral bands. This is enough for star photometry with precise accuracy and for measuring their light flux in these bands in energetic units. Meteors are moving objects and do not allow collection of more photons then they emit. So meteor observers use the whole spectral band that can be covered by sensitivity of their light sensors. This is why measurements of stellar magnitudes of background stars by these sensors are not the same as catalogued star brightness in standard photometric spectral bands. Here we present a special photometric catalogue of 93 bright non-variable stars of the northern hemisphere, that can be used by meteor observers of standard background whose brightness are calculated in energetic units as well as in non-systematic stellar magnitudes in spectral wavelength of the WATEC 902 sensitivity.

  15. Investigation of Relationships between Known Meteor Streams and Recently Recovered NEOs

    NASA Astrophysics Data System (ADS)

    Micheli, Marco; Tholen, D. J.; Elliott, G. T.; Troyer, J. M.

    2009-09-01

    In the past few years we recovered many single-opposition NEOs. A few of these objects are thought to be associated with known meteor streams, but the linkage is often unconfirmed because of a lack of precise orbital information on the parent object. The addition of a second opposition to the observed orbital arc greatly improves the predictability of their past motion, allowing us to back-integrate their orbital evolution long enough to extract meaningful predictions of associated meteoric activity. In this work we will present the results of this type of analysis on a few of these objects. The most interesting case is probably the recently recovered 2001 HA4, tentatively associated by Peter Jenniskens with the annual stream known as ω-Piscids (OPC, IAU code #217). The present radiant of the stream does not match the asteroidal orbit very well, with a declination discrepancy close to 20 degrees. With our integration we tested if old particles released in the past could match the present radiant: the discrepancy cannot be reduced by more than a few degrees, also assuming unreasonably large ejection velocities and radiation pressure effects. We also investigated the possibility of a different stream at the other node, and we found a reasonable match with the Daytime q-Pegasids (QPE, IAU code #130). Another object recovered by our team is 1997 QK1, proposed by Jenniskens as parent for the July Centaurids (JCE, IAU code #179). We checked if a compact meteor cloud associated with the object could have hit the Earth in 1896, explaining a short lived outburst observed that year from Sydney. The outburst radiant could be matched only by old and dispersed particle clouds, but not with compact recently ejected material. Acknowledgement: our observations were funded by grant AST 0709500 from the U.S. National Science Foundation.

  16. The 2009-2010 MU radar head echo observation programme for sporadic and shower meteors: radiant densities and diurnal rates

    NASA Astrophysics Data System (ADS)

    Kero, J.; Szasz, C.; Nakamura, T.; Meisel, D. D.; Ueda, M.; Fujiwara, Y.; Terasawa, T.; Nishimura, K.; Watanabe, J.

    2012-09-01

    The aim of this paper is to give an overview of the monthly meteor head echo observations (528.8 h) conducted between 2009 June and 2010 December using the Shigaraki Middle and Upper atmosphere radar in Japan (34°.85 N, 136°.10 E). We present diurnal detection rates and radiant density plots from 18 separate observational campaigns, each lasting for at least one diurnal cycle. Our data comprise more than 106 000 meteors. All six recognized apparent sporadic meteor sources are discernable and their average orbital distributions are presented in terms of geocentric velocity, semimajor axis, inclination and eccentricity. The north and south apex have radiant densities an order of magnitude higher than other apparent source regions. The diurnal detection rates show clear seasonal dependence. The main cause of the seasonal variation is the tilt of the Earth's axis, causing the elevation of the Earth's apex above the local horizon to change as the Earth revolves around the Sun. Yet, the meteor rate variation is not symmetric with respect to the equinoxes. When comparing the radiant density at different times of the year, and thus at different solar longitudes along the Earth's orbit, we have found that the north and south apex source regions fluctuate in strength.

  17. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  18. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C.; Michell, R.; Samara, M.

    2014-03-01

    A radar meteor echo is the radar scattering signature from the free electrons generated by the entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF all-sky meteor radars primarily detect the specular trails, while high-power, large-aperture (HPLA) radars efficiently detect meteor head echoes and, in some cases, nonspecular trails. The fact that head echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. Such systems would also permit simultaneous detection of all different scattering mechanisms using the same instrument, rather than requiring assorted different classes of radars, which can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER). The results presented here are derived from observations performed over a period of 12 days in August 2011 and include meteoroid dynamical parameter distributions, radiants, and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  19. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  20. Meteoroid streams identification amongst 231 Southern hemisphere video meteors

    NASA Astrophysics Data System (ADS)

    Jopek, T. J.; Koten, P.; Pecina, P.

    2010-05-01

    In this study, 231 video meteoroid orbits observed at the Southern hemisphere were searched for streams. Several searches have been made using three D-criteria: DSH, DN and DV. The mutual D-distances were processed by a cluster analysis algorithm based on the single neighbour linking technique. The values of the meteoroid association thresholds for groups of 2, 3, 4, ... members were estimated by the statistical approach. In all three basic searches, about 29-33 per cent of the meteoroid sample turned out to belong to the stream component. The following streams have been detected: η Aquariids (ETA, #31), χ Capricornids (CCA, #420), May Microscopiids (MMI, #421), Northern and Southern Librids-Luppids (NLL, #422 SLL, #423) and Northern and Southern May Ophiuchids (NOP, #149 SOP, #150). 12 η Aquariids were detected using each D-function. Their mean orbital elements resemble the orbit of 1P/Haley however, the mean semimajor axis and the activity time differ significantly from those determined by the other observers. 10 members of χ Capricornids and five members of May Microscopiids were found using the DN function only. For these streams, we did not find any counterparts among the streams listed in the IAU MDC. Our Librids-Luppids and Ophiuchids form two separate complex groups which consist of 16 and 18 members, respectively. From a viewpoint of the cluster analysis technique, they are reliable significant structures. Our Ophiuchids are similar to the already known Northern and Southern May Ophiuchids. Near the mean radiant of Librids-Luppids, we do not see any radiant of the known shower. Its possible counterpart, the Southern ω Scorpiids, has a radiant significantly shifted from our Librids-Luppids. Thus, we consider Librids-Luppids as a new stream or some new manifestation of the May Ophiuchids Complex. Also, this study has shown us that in case of complex structures, traditional procedures of meteor showers distinction are not sufficient tool to give

  1. Theoretical and Observational Studies of Meteor Interactions with the Ionosphere

    DTIC Science & Technology

    2006-06-01

    Spaceborne Ultraviolet 251-384 nm Spectroscopy of a Meteor During the 1997 Leonid Shower , Meteorites and Planetary Science, 37. Jones, W., 1997...RTO-MP-IST-056 12 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Theoretical and Observational Studies of Meteor Interactions with the...ABSTRACT An intense flux of small-mass meteors has been seen in large-aperture radar scattering for many years. At high altitudes, these meteoroids

  2. Mesospheric observations by a forward scattering meteor radar basic setup

    NASA Astrophysics Data System (ADS)

    Madkour, Waleed; Yamamoto, Masa-yuki

    2016-08-01

    The durations of radio echo signals scattered from meteor ionized trails might not show a consistent increase corresponding to higher density trails due to the rapid removal of meteor ions at certain heights. Several studies have concluded the dominant role of the secondary ozone layer over diffusion in the removal of the meteor trails below 95 km through chemical oxidization of the meteor ions. Using a basic setup configuration of a forward scattering receiver, a trial to observe the mesospheric ozone concentration was performed by analyzing the meteor echo duration distributions. The forward scattered meteor echoes have the advantage of long durations that can enable observing the transition from the diffusion-removal regime to the chemistry-removal regime. The cumulative meteor echo duration distribution of two meteor showers, the Perseids and the Geminids, were analyzed over 10 years and the chemistry-removal regime in each shower was observed. The knee duration position at which a drop in the number of long overdense meteor echoes starts differed by around 30 seconds between the two showers. As the secondary ozone concentration is inversely related to the solar activity level, the Geminids 2011 corresponding to a high solar activity level showed a significant higher counts of long duration echoes compared to the Geminids 2006 during a low activity level, with the knee position shifted to longer duration. The knee positions obtained during the two distinct meteor showers and the two half solar cycle points are generally in agreement with the mesospheric ozone conditions expected in each case. However, continuous data record is required for the other meteor showers and the sporadic meteors at different heights to observe the mesospheric ozone concentration vertically and the full 11-years solar cycle.

  3. Satellite Remote Sensing of Atmospheric Meteoric Ions and Neutral Species

    DTIC Science & Technology

    2006-09-30

    times that of the Mg content. An examination of the content around the times of known meteor showers shows no measurable increases during or following...Fe. The heavy arrows at the bottom of Figure 2 represent the approximate times of major meteor showers . The data are smoothed with a 500 point medium...arrows indicate the times of meteor showers . There are no measurable increases associated with the showers , either at the shower commencement or

  4. The American Meteor Society's filter bank spectroscopy project

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2015-01-01

    The American Meteor Society (AMS) has sponsored the development of an alternative method of meteor spectroscopy that relies on a set of eight very narrow band wavelength filters. The interference filters used are tuned to the dominant meteoric emission lines of Ca+, two Fe line regions, Mg, Na, Si+, the forbidden O line, and atmospheric O777. Discussion will include the design trade-offs, construction of the instrument, first light testing, and initial results.

  5. Development of a Remote Monitoring System Using Meteor Burst Technology

    SciTech Connect

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-07-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  6. METEOR - an artificial intelligence system for convective storm forecasting

    SciTech Connect

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  7. Meteor Beliefs Project: Meteoric imagery associated with the death of John Brown in 1859

    NASA Astrophysics Data System (ADS)

    Drobnock, G. J.; McBeath, A.; Gheorghe, A. D.

    2009-12-01

    An examination is made of metaphorical meteor imagery used in conjunction with the death of American anti-slavery activist John Brown, who was executed in December 1859. Such imagery continues to be used in this regard into the 21st century.

  8. Meteor Beliefs Project: some meteoric imagery in the works of William Shakespeare

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-08-01

    Passages from three of William Shakespeare's plays are presented, illustrating some of the beliefs in meteors in 16th-17th century England. They also reflect earlier beliefs and information which it is known Shakespeare drew on in constructing his works.

  9. Results from the US/Russian Meteor-3/Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Herman, Jay R. (Editor)

    1993-01-01

    The development of Meteor-3/TOMS (Total Ozone Mapping Spectrometer) was a joint project of the United States and Russia to fly a U.S. ozone measuring instrument (TOMS) onboard a Russian spacecraft (Meteor-3) and rocket (Cyclone), launched from Plesetsk, Russia. The Meteor-3/TOMS (M3TOMS) was launched into a 1202-km-high, near-polar orbit on 15 Aug. 1991, where it can obtain complete global coverage for most of each year. Both the U.S. and Russian sides have successfully received and processed data into ozone amounts from 25 Aug. 1991 to 1 Jun. 1992, and expect to continue for the life of the instrument and spacecraft. The successful development of the instrument hardware, spacecraft interface, data memory, telemetry systems, and software are described. Descriptions are given of the U.S. and Russian ground stations for receiving M3TOMS data. In addition, the data reduction software was independently developed by the U.S. and by the Russians, and is shown to agree to better than the precision of the measurements.

  10. Dust of Orionid meteor shower in the Earth atmosphere before and after Halley's Comet

    NASA Technical Reports Server (NTRS)

    Mateshvili, G.; Mateshvili, YU.

    1989-01-01

    Among the interesting questions concerning meteor streams associated with Comet Halley is the question of whether or not the activity of a meteor stream was connected with the approach of the comet to the terrestrial orbit in 1985 to 1986. Meteoric aerosols getting to the upper atmosphere can be detected by twilight sounding, as has been done previously. It turns out that not only parameters describing some properties of aerosol can be obtained by twilight sounding, but also characteristics concerning the structure of the stream can be derived. Among the yearly active streams, the Orionides have always attracted the attention of scientists. The period of activity of the Orionides is October 18 to 26, and the maximum stream activity is October 21. In detecting aerosol layers in the terrestrial atmosphere, a notion of the logarithmic intensity gradient of scattered twilight light is used, d log I/dH, where I is intensity and H is the real twilight beam height, which is a function of the wavelength observed. A photoelectric photometer with an interference filter at the wavelength of 610 nm is used. The observation were carried out in two points of the solar vertical; the zenith angle of the observation points was + or - 60 degrees. The recording was carried on continuously in each direction during a minute, then the system was switched to the other direction. A calibration standard was recorded before each observation. The observation dates in the Orionid periods of 1984, 1986, and 1987 are given.

  11. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  12. Meteor activity from the Perseus-Auriga region in September and October

    NASA Astrophysics Data System (ADS)

    Rendtel, Jurgen; Molau, Sirko

    2010-10-01

    A systematic search was carried out for radiants of high-inclination meteor showers in September and October based on data collected over eleven years with cameras of the IMO Video Meteor Network. The Aurigids (206 AUR), with an outburst in 2007, and the September epsilon-Perseids (208 SPE), with an outburst in 2008, were the most prominent showers. Detailed SPE outburst data of 2008 are presented. Data of the October Lyncids (228 OLY) and the beta-Aurigids (210 BAU) stored in the database of the IAU Meteor Data Center have been confirmed. Radiant data of the September Lyncids (81 SLY) have been improved, and the activity period of the delta-Aurigids (224 DAU) has been better defined. Two new radiants have been detected: the September-October Lyncids (424 SOL) and the psi-Aurigids (425 PSA). All showers are at high-inclination orbits and may be part of a complex which could be similar to the Kreutz group of comets.

  13. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  14. A global model of meteoric sodium

    NASA Astrophysics Data System (ADS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-10-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  15. Aging comets and their meteor showers

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi

    2016-10-01

    Comets are thought to be responsible for the terrestrial accretion of water and organic materials. The aging of comets is one of the most critical yet poorly understood problems in planetary astronomy. Here we attack this problem by examining different parts of the cometary aging spectrum of Jupiter-family comets (JFCs), a group of comets that dominates the cometary influx in the near-Earth space, using both telescopic and meteor observations.We examine two representative JFCs and the population of dormant comets. At the younger end of the aging spectrum, we examine a moderately active JFC, 15P/Finlay, and review the puzzle of the non-detection of the associated Finlayid meteor shower. We find that, although having been behaved like a dying comet in the past several 102 years, 15P/Finlay does possess ability for energetic outbursts without a clear reason. Towards the more aged end of the spectrum, we examine a weakly active JFC, 209P/LINEAR. By bridging telescopic observations at visible and infrared wavelength, meteor observations and dynamical investigations, we find that 209P/LINEAR is indeed likely an aged yet long-lived comet. At the other end of the spectrum, we examine the population of dormant near-Earth comets, by conducting a comprehensive meteor-based survey looking for dormant comets that have recently been active. We find the lower limit of the dormant comet fraction in the near-Earth object (NEO) population to be 2.0 ± 1.7%. This number is at the lower end of the numbers found using dynamical and telescopic techniques, which may imply that a significant fraction of comets in the true JFC population are weakly active and are not yet detected.These results have revealed interesting diversities in dying or dead comets, both in their behaviors as well as their natures. An immediate quest in the understanding of cometary aging would be to examine a large number of dying or dead comets and understand their general characteristics.

  16. Manned Venus Orbiting Mission

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1967-01-01

    Manned orbiting stopover round trips to Venus are studied for departure dates between 1975 and 1986 over a range of trip times and stay times. The use of highly elliptic parking orbits at Venus leads to low initial weights in Earth orbit compared with circular orbits. For the elliptic parking orbit, the effect of constraints on the low altitude observation time on the initial weight is shown. The mission can be accomplished with the Apollo level of chemical propulsion, but advanced chemical or nuclear propulsion can give large weight reductions. The Venus orbiting mission weights than the corresponding Mars mission.

  17. First results from the 2009-2010 MU radar head echo observation programme for sporadic and shower meteors: the Orionids 2009

    NASA Astrophysics Data System (ADS)

    Kero, J.; Szasz, C.; Nakamura, T.; Meisel, D. D.; Ueda, M.; Fujiwara, Y.; Terasawa, T.; Miyamoto, H.; Nishimura, K.

    2011-10-01

    The aim of this paper is to demonstrate the capabilities of a new automated analysis scheme developed for meteor head echo observations by the Shigaraki middle and upper atmosphere (MU) radar in Japan (?N, ?E). Our analysis procedure computes meteoroid range, velocity and deceleration as functions of time with unprecedented accuracy and precision. This is crucial for estimations of meteoroid mass and orbital parameters, as well as investigations into meteoroid-atmosphere interaction processes. We collected an extensive set of data (>500 h) between 2009 June and 2010 December. Here, we present initial results from data taken in 2009 October 19-21. More than 600 of about 10 000 head echoes recorded during 33 h were associated with the 1P/Halley dust of the Orionid meteor shower. These meteors constitute a very clear enhancement of meteor radiants centred around right ascension α=? and declination δ=?. Their estimated atmospheric entry velocity of 66.9 km s-1 is in good agreement with 1P/Halley dust ejected in the year 1266 BC, which, according to simulations, crossed Earth's orbit at the time of our observation. The Orionid activity within the MU radar beam reached about 50 h-1 during radiant culmination. The flux of sporadic meteors in the MU radar data, coming primarily from the direction of the Earth's apex, peaked at about 700 h-1 during the same observations.

  18. Double camera configuration Assistant program for meteor stations

    NASA Astrophysics Data System (ADS)

    De Cicco, Marcelo

    2016-04-01

    Recently we build a program to assist double cameras coverage configuration. The DOCCA (double camera configuration assistant) software is in its first version, and is based on mathematic language, but yet helps the network to improve double detections meteors. It takes in account the distance stations, the high of an ideal meteor brightness, and an average ‘r’ factor for a typical shower.

  19. Comets and meteors in the beliefs of ancient mayas

    NASA Astrophysics Data System (ADS)

    Yershova, G. G.

    2001-12-01

    Data concerning the Mayan approach to comets and meteors have till now been available mostly from ethnographical and folklore sources which dealt, as a rule, with various beliefs and tokens. The studies of hieroglyphic texts of the Classic Period (AD 600-900) have proved that comets and meteors were undoubtedly known in this culture through astronomical observations and their periodicity.

  20. Correlating video meteors with GRAVES radio detections from the UK

    NASA Astrophysics Data System (ADS)

    Fleet, R.

    2015-01-01

    The area of meteor ablation layer illuminated by the GRAVES radar is low on the horizon from southern UK. A number of simultaneous video meteor and radio detections suggested that it was possible to record common events despite the unfavorable relative positions. This was investigated further to see what the constraints are and whether there is any prospect of obtaining useful data.

  1. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  2. Meteor storm forecasting: Leonids 1999-2001

    NASA Astrophysics Data System (ADS)

    Ferrin, I.

    1999-08-01

    We present a method for meteor storm forecasting, that we apply to the Leonids in 1999-2001. The method makes use of a plot where the particle density distribution around the comet is mapped (Fig. 1) and isolines of equal meteor intensity are drawn. The most significant result found is the existence of a ``ridge" or region of high particle density, that corresponds to the great Leonid storms and that we identify with the ``dust trails" that Sykes et al. (1990) and Sykes & Walker (1992) found behind all periodic comets. We present detailed calculations of the trajectories of meteoroids that will reproduce this ridge. We predict the intensity of upcoming Leonid showers by the position of the Earth in relation to the isolines. For 1999 we predict a zenith hourly rate (ZHR) of 3.5 K+/-1 K. For the year 2000 we can only limit the intensity to 5 K

  3. Modeling Meteor Flares for Spacecraft Safety

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven

    2017-01-01

    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  4. Meteoric Magnesium Ions in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Grebowsky, Joseph

    1999-01-01

    From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  5. Meteor Trains - Terminology and Physical Interpretation

    NASA Astrophysics Data System (ADS)

    Borovička, Jirí

    2006-10-01

    This article presents a summary of various luminous phenomena that may follow after passage of a meteor. The terminology recommended by the International Astronomical Union in 1961 is used, which calls these phenomena trains. Nowadays, several types of trains can be clearly distinguished. The understanding of the underlying physical and chemical processes is, however, still not satisfactory and the nomenclature of different train phenomena has not yet been settled. In this paper I call them wake, green train, persistent train, and reflection train. Meteor wakes are formed by rarified non-equilibrium gas behind the meteoroid. The green train, produced by the radiation of the forbidden oxygen line at 557.7 nm, is created by reactions among atmospheric species. The persistent train is the most complex phenomenon with three phases of evolution. The afterglow phase is formed by cooling rarified gas. After that, atomic recombination phase follows. The third and most persistent continuum phase is probably fed by chemiluminescence. Finally, the reflection train occurs when sunlight is scattered by a dust cloud created by meteoroid disruption.

  6. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  7. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  8. Temperature tides determined with meteor radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.; Hocking, A.

    2002-09-01

    A new analysis method for producing tidal temperature parameters using meteor radar measurements is presented, and is demonstrated with data from one polar and two mid-latitude sites. The technique further develops the temperature algorithm originally introduced by Hocking (1999). That earlier method was used to produce temperature measurements over time scales of days and months, but required an empirical model for the mean temperature gradient in the mesopause region. However, when tides are present, this temperature gradient is modulated by the presence of the tides, complicating extraction of diurnal variations. Nevertheless, if the vertical wavelengths of the tides are known from wind measurements, the effects of the gradient variations can be compensated for, permitting determination of temperature tidal amplitudes and phases by meteor techniques. The basic theory is described, and results from meteor radars at Resolute Bay (Canada), London (Canada) and Albuquerque (New Mexico, USA) are shown. Our results are compared with other lidar data, computer models, fundamental tidal theory and rocket data. Phase measurements at two mid-latitude sites (Albuquerque, New Mexico, and London, Canada) show times of maximum for the diurnal temperature tide to change modestly throughout most of the year, varying generally between 0 h and 6 h, with an excursion to 12 h in June at London. The semidiurnal tide shows a larger annual variation in time of maximum, being at 2 4 h in the winter months but increasing to 9 h during the late summer and early fall. We also find that, at least at mid-latitudes, the phase of the temperature tide matches closely the phase of the meridional tide, and theoretical justification for this statement is given. We also demonstrate that this is true using the Global Scale Wave Model (Hagan et al., 1999). Median values for the temperature amplitudes for each site are in the range 5 to 6 Kelvin. Results from a more northern site (Resolute Bay) show

  9. The MAGIC meteoric smoke particle sampler

    NASA Astrophysics Data System (ADS)

    Hedin, Jonas; Giovane, Frank; Waldemarsson, Tomas; Gumbel, Jörg; Blum, Jürgen; Stroud, Rhonda M.; Marlin, Layne; Moser, John; Siskind, David E.; Jansson, Kjell; Saunders, Russell W.; Summers, Michael E.; Reissaus, Philipp; Stegman, Jacek; Plane, John M. C.; Horányi, Mihály

    2014-10-01

    Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (Ox/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to

  10. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  11. Meteoric Metal Layer in Mars' Atmosphere: Steady-state Flux and Meteor Showers

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Schneider, Nicholas; Jain, Sonal; Plane, John; Diego Carrillo-Sanchez, Juan; Deighan, Justin; Stevens, Michael; Evans, Scott; Chaffin, Michael; Stewart, Ian; Jakosky, Bruce

    2016-04-01

    We report on a steady state metal ion layer at Mars produced by meteoric ablation in the upper atmosphere as observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. In December 2015, Mars encountered three predicted meteor showers, and analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but Mg/Mg+ less than predicted by factor >3, indicative of undetermined chemical processes in the Mars atmosphere.

  12. Comet Machholz and the Quadrantid meteor stream

    NASA Astrophysics Data System (ADS)

    Jones, J.; Jones, W.

    1993-04-01

    Until quite recently, the Quadrantid meteor stream was considered to be an 'orphan'. Because of the difficulty in accounting for the large difference in the longitudes of the ascending nodes, McIntosh (1990) suggested that Comet Machholz and the stream have a sibling rather than a parent-child relationship. Gonczi et al. (1992) proposed that gravitational perturbations by Jupiter may be amplified sufficiently by the 2:1 resonance of the stream with Jupiter to explain the difference in the longitudes of ascending nodes if the stream was born when the comet's perihelion distance was last at its minimum about 4000 yr ago. In this paper, we show by computer simulations that, if the comet was captured at its last close approach with Jupiter about 2200 yr ago, there has been sufficient time for the resulting stream to produce most of the features of the presently observed Quadrantid/Arietid/Southern Delta-Aquarid complex.

  13. Nitric oxide production by Tunguska meteor

    NASA Technical Reports Server (NTRS)

    Park, C.

    1978-01-01

    The nonequilibrium chemical processes of nitric oxide formation are computed for the wake of the Tunguska meteor of 1908. The wake characteristics are derived by carrying out an optically-thick radiation field analysis for ablation of the meteoroid. The wake flow field is approximated by a one-dimensional, well-stirred reactor model. Known characteristics of the Tunguska event are imposed as constraints, and three controlling parameters - chemical composition, density, and velocity - are varied over a range around the values derived by Korobeinikov et al. (1976) and Petrov and Stulov (1975). The calculation shows that at least 19 million tons of nitric oxide is produced between the altitudes of 10 and 50 km. The anomalous atmospheric phenomena following the event are attributed to the reactions involving nitric oxide thus produced and atmospheric ozone. It is speculated that the nitric oxide produced by the event fertilized the area near the fall, causing the observed rapid plant growth.

  14. eMeteorNews: website and PDF journal

    NASA Astrophysics Data System (ADS)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  15. Why to start with eMeteorNews?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews has been prepared in May 2016. The year 2016 will be a test period for this project. The mission statement of this project is: “Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work.”

  16. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    Since early 2006, NASA's Marshall Space Flight Center (MSFC) has observed over 330 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of a 9-year routine observing campaign was observed by two 0.35 m telescopes at MSFC. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact [1] approximately 3 km from the location predicted by a newly developed geolocation technique [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of five fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Crater size calculations based on assumptions derived from fireball measurements yielded an estimated crater diameter of 10-23 m rim-to-rim using the Holsapple [5] and Gault [6] models, a result consistent with the observed crater measured to be 18 m across. This is the first time a lunar impact flash has been associated with fireballs in Earth's atmosphere and an observed crater.

  17. Asteroids, comets, Kuiper Belt objects, meteors: the ACM (AKM) 2002 perspective

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.

    2002-11-01

    An impressionistic overview is given on the state of science of Asteroider, Kometer, Meteorer (AKM), where the Swedish spelling is adopted in recognition of the origin of the ACM conference series. Asteroider (asteroids) are a field that has come of age to the point of asking sophisticated geological and geophysical questions based on dedicated spacecraft missions. Kometer (comets) are coming of age with a strong international emphasis toward new comet missions and ever increasing sophistication of Earth-based observations. K also stands for Kuiper belt objects, a field that wasn't invented when our conference series began but whose inclusion we embrace and recognize as being integral to our science. (Hence the recommendation that we adopt the moniker AKM to proclaim fully our inclusivity) KBOs are an emerging field, perhaps analogous to a fast growing child. The presently known number of KBOs is comparable to the number of known main-belt asteroids in 1900, suggesting that we are just beginning to learn about this region. Meteorer (meteors) is a rejuvenated field that has enjoyed spectacular recent successes in detailed predictions of the Leonid shower and in just recently recording the fall and recovering the Neuschwanstein meteorite. The future outlook portends the greatest advancement in K (kometer and KBOs) with broad interdisciplinary implications.

  18. Comet P/Machholtz and the Quadrantid meteor stream

    SciTech Connect

    Mcintosh, B.A. )

    1990-07-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs.

  19. New approaches to some methodological problems of meteor science

    NASA Astrophysics Data System (ADS)

    Meisel, David D.

    1987-08-01

    Several low cost approaches to continuous radio-scatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed.

  20. The Distribution of the Orbits in the Geminid Meteoroid Stream Based on the Dispersion of their Periods

    NASA Technical Reports Server (NTRS)

    Hajdukova, M., Jr.

    2011-01-01

    Geminid meteoroids, selected from a large set of precisely-reduced meteor orbits from the photographic and radar catalogues of the IAU Meteor Data Center (Lindblad et al. 2003), and from the Japanese TV meteor shower catalogue (SonotaCo 2010), have been analyzed with the aim of determining the orbits distribution in the stream, based on the dispersion of their periods P . The values of the reciprocal semi-major axis 1/a in the stream showed small errors in the velocity measurements. Thus, it was statistically possible to also determine the relation between the observed and the real dispersion of the Geminids.

  1. Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chen, Mohan; Xia, Junchao; Huang, Chen; Dieterich, Johannes M.; Hung, Linda; Shin, Ilgyou; Carter, Emily A.

    2015-05-01

    Orbital-free density functional theory (OFDFT) is a linear-scaling first-principles quantum mechanics method used to calculate the ground-state energy of a given system. Here we present a new version of PRinceton Orbital-Free Electronic Structure Software (PROFESS) with new features. First, PROFESS 3.0 provides a set of new kinetic energy density functionals (KEDFs) which are designed to model semiconductors or transition metals. Specifically, PROFESS 3.0 includes the Huang-Carter (HC) KEDF [1], a density decomposition method with fixed localized electronic density [2], the Wang-Govind-Carter (WGC) decomposition KEDF [3], and the Enhanced von Weizsäcker (EvW)-WGC KEDF [4]. Other major new functions are included, such as molecular dynamics with different statistical mechanical ensembles and spin-polarized density optimizers.

  2. Harvey Nininger's 1948 attempt to nationalize Meteor Crater.

    NASA Astrophysics Data System (ADS)

    Plotkin, H.; Clarke, R. S., Jr.

    2008-10-01

    Harvey Nininger successfully petitioned the American Astronomical Society to pass a motion in support of nationalizing Meteor Crater, Arizona, at its June 1948 meeting. He alleged that the Barringer family, who held title to the crater, was depriving American citizens of its scenic beauty and scientific value. He then reportedly went on to make the unauthorized—and false—claim that the family would be receptive to a fair purchase offer for the crater. The Barringers, who had not been given advance warning of the petition and were not present at the meeting, felt ambushed. They quickly and forcefully rebutted Nininger’s allegations, made it clear they had no intention of relinquishing their title to the crater, and terminated his exploration rights. What led Nininger to such a curious and self-defeating act? Based on our reading of his voluminous personal correspondence, we conclude that it was rooted primarily in his complex relationship with Frederick Leonard and Lincoln LaPaz, and his desire to establish a national institute for meteoritical research—with them, originally, but after a serious falling out, on his own. Prevented from moving his American Meteorite Museum to the crater rim, Nininger wondered what would happen if the crater was nationalized and made into a public park, with an accompanying tourist center and museum. With characteristic élan, he could picture himself at its head, with a secure salary and adequate space to exhibit his meteorite collection.

  3. A statistical approach to the temporal development of orbital associations

    NASA Astrophysics Data System (ADS)

    Kastinen, D.; Kero, J.

    2016-01-01

    We have performed preliminary studies on the use of a Monte-Carlo based statistical toolbox for small body solar system dynamics to find trends in the temporal development of orbital associations. As a part of this preliminary study four different similarity functions where implemented and applied to the 21P/Giacobini-Zinner meteoroid stream, and resulting simulated meteor showers. The simulations indicate that the temporal behavior of orbital element distributions in the meteoroid stream and the meteor shower differ on century size time scales. The configuration of the meteor shower remains compact for a long time and dissipates an order of magnitude slower than the stream. The main effect driving the shower dissipation is shown to be the addition of new trails to the stream.

  4. One year of United Kingdom Meteor Observation Network

    NASA Astrophysics Data System (ADS)

    Kacerek, Richard; Campbell-Burns, Peter

    2014-01-01

    United Kingdom Meteor Observation Network (UKMON) began data gathering in April 2012 with its first station placed in Ash Vale, Surrey. This contribution shows our progress of building a network in the UK during one year.

  5. Meteor Outbursts and Storms from the Spacecraft Hazard Perspective

    NASA Technical Reports Server (NTRS)

    Cooke, William; Moser, Danielle; Suggs, Rob

    2004-01-01

    The recent Leonid meteor storms have propelled meteor shower forecasting from an idea into the realm of practical application, invoked several times per year by numerous spacecraft. This paper will describe shower activity predictions, which give zenith hourly rate (ZHR) as a function of time, and how these are translated into spacecraft risks. Common spacecraft meteor shower mitigation strategies will also be discussed, and the important issue as to when to implement such operations considered. It should be noted that, while the recent meteor storms did not result in the loss of a vehicle, there were a few spacecraft anomalies attributed to Leonid strikes, and the nature of these will be commented upon. Finally, we assess the current state of the art in shower forecasting, and take a look "down the road" at some possible outbursts in the near future.

  6. Meteoric aspects of the Earth-grazing asteroid 2004 FH

    NASA Astrophysics Data System (ADS)

    Langbroek, M.

    2004-07-01

    A search for meteors potentially associated with the recent spectacular earthgrazing asteroid 2004 FH in the IAU photographic meteor database yields three meteors from the Harvard project, which is probably not enough to support the notion that 2004 FH is one of the larger meteoroids in a stream. The theoretical radiant is located at alpha = 226 g, delta = -4 g (for March 19), and meteors would have v_infty of about 13.2 km/s, which is very slow. Asteroid 2004 FH would only be dangerous if it is an M-class asteroid. A stony asteroid of this size and speed would disintegrate almost completely in the atmosphere without doing much harm. An M-class (iron) asteroid, however, would shower down fragments weighing many tons, creating a crater field with craters up to 100+ meters wide, and serious blast damage within a few kilometers.

  7. NASA Meteor Cam Video of June 2, 2016 Arizona Fireball

    NASA Video Gallery

    Video obtained from the NASA meteor camera situated at the MMT Observatory on the site of the Fred Lawrence Whipple Observatory, located on Mount Hopkins, Arizona, in the Santa Rita Mountains. Cred...

  8. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  9. The investigation of multiplet structures in meteor spectra

    NASA Astrophysics Data System (ADS)

    Mozgova, Alona; Churyumov, Klim

    2016-07-01

    The structures of the iron multiplets and some other elements observed in spectra of meteor comas were considered. The catalog of iron multiplets lines was made. For each term there are indicated energy levels and wavelengths of spectral lines. For clearly explaining the transitions that accompany the radiation in given multiplets the complete Grotrian diagrams were constructed. Spectral analysis has an important role in understanding the physical processes which occur in meteor comas. Each meteor spectrum contains a large number of spectral lines belonging to atoms of different chemical elements and has a multiplet structures. The multiplets are usually spaced pairs or triples of lines but the multiplet may consist of one or more lines than three. The studying of multiplet structures in meteor spectra makes it possible to investigate the properties and a behavior of atoms of the meteor body matter. It can be used for creating models of physical and chemical processes which occur during the meteor flight in the Earth's atmosphere. For some tasks of meteor physics it needs to know not only the wavelength of a line and its belonging to some multiplet, but also both the excitation potentials of the upper and lower levels. This is useful, for example, for the study of the atoms distribution over the levels and how it differs from the Boltzmann distribution, as well as for the construction of curves growth and for determining the temperature excitation in the meteor coma, etc. For this purpose, the Walt Grotrian diagrams or chart of terms are built. They show the allowed transitions between the energy levels of the atoms. These diagrams can be used for one or more electrons (multielectrons) in the atom. The specific selection rules are taken into account in their construction. These rules are related to the change in angular momentum of the electron.

  10. Meteor Beliefs Project: Spears of GodSpears of God

    NASA Astrophysics Data System (ADS)

    Hendrix, Howard V.; McBeath, Alastair; Gheorghe, Andrei Dorian

    2012-04-01

    A selection of genuine or supposedly sky-fallen objects from real-world sources, a mixture of weapons, tools and "magical" objects of heavenly provenance, are drawn from their re-use in the near-future science-fiction novel Spears of God by author Howard V Hendrix, with additional discussion. The book includes other meteoric and meteoritic items too, some of which have been the subject of previous Meteor Beliefs Project examinations.

  11. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    NASA Astrophysics Data System (ADS)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  12. Optical observations of meteors in RI Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Shulga, Alexander; Sybiryakova, Yevgeniya; Kulichenko, Nikolay; Vovk, Vasyl

    2015-08-01

    Video observations of meteors at the RI NAO are conducted using meteor patrol, which includes 6 optical telescopes (4 lenses: f = 85 mm, f/1.8; 2 lenses: f = 100 mm, f/2.0) equipped with a TV CCD cameras WAT-902H2 (768×576, 8.6×8.3µ). The field of view of 4 telescopes is 3.2°×4.2° and 2.7°×3.6° for 2 telescopes. System doesn't have any intensifier. Each video system is contained in a hermetic capsule to prevent it from rain and other aggressive meteorological conditions. Cameras work in the interlace mode with rate 50 half-frames per second.During 2011-2014 4135 single station meteors were observed. The mean duration of observed meteor trajectories are in 0.05-0.6 s. Double station observation campaigns has been started in September 2013 and it is still working with baseline 11.8 km. During September 2013 - September 2014 total number of observed meteor trajectories was 1757. Number of double station meteors - 328. The mean accuracy of visible radiant determination is less than 0.5 arc sec, more than 80% of radiates have standard deviation less than 0.2 arc sec.

  13. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  14. Large orbit magnetic confinement systems for advanced fusion fuels. Final technical report, April 1, 1990--February 29, 1992

    SciTech Connect

    Rostoker, N.

    1992-07-01

    The objective of the grant/contract was to illuminate the problem of magnetic confinement for plasmas where the majority of ions have large gyro-orbits and do not obey adiabatic particle dynamics. The electrons are adiabatic. We considered a class of equilibria where large orbit ions dominate; the equilibria are rigorous solutions of the Vlasov/Maxwell equations. For a simple cse -- the infinitely long, low beta, rotating plasma a complete stability analysis was carried out. This problem was the basis of the first paper on finite Larmor radius stabilization. In that paper an expansion in {var_epsilon} = {bar {alpha}}{sub i}/r{sub o} was carried out to the first significant order beyond MHD. In this report the same problem is solved to all orders in {var_epsilon}. While this case is of limited applicability to experiments it is rigorous and without approximations, so that it can be used to verify approximations to be developed for more complex and useful cases. The application of the results to date to small fusion reactors is described in the second paper which was written after the termination of the contract, but is based in part on material developed during the contract period.

  15. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  16. Seasonal Variation in Meteor Decay Time Profiles Measured by a Meteor Radar at King Sejong Station (62°S, 58°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Lee, C.; Jee, G.

    2008-12-01

    A VHF meteor radar at King Sejong Station (62°S, 58°W), Antarctica has been detecting echoes from more than 20,000 meteors per day since March 2007. Meteor echoes are decayed typically within seconds as meteor trail plasma spread away or are neutralized. Assuming that diffusion is the only process for decay of meteor echo signals, the atmospheric temperatures and pressures have been inferred from the measured meteor decay times at the peak meteor altitudes around 90 km. In this study, we analyze altitude profiles of meteor decay times in each month, which clearly show a maximum at 80 ~ 85 km. The maximum appears at higher altitude during austral summer than winter. The fast decay of meteor signals below the maximum cannot be explained by atmospheric diffusion which decreases with increasing atmospheric densities. We find that the measured meteor decay time profiles can be fitted with a loss rate profile, in addition to diffusion, with a peak altitude of 55 ~ 73 km and a peak rate of 4 ~ 15 sec- 1. The additional loss of meteor plasma may be due to electron absorption by icy particles in the mesosphere, but the estimated peak altitudes are much lower than the layers of NLC or PME. The estimated peak loss rates seem to be too large to be accounted by absorption by icy or dust particles. We will discuss other processes to explain the fast meteor times and their variation over season.

  17. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in Meteoric ion layers

    NASA Astrophysics Data System (ADS)

    Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu

    2016-04-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.

  18. Preliminary design and performance of an advanced gamma ray spectrometer for future orbiter missions. [composition and evolution of planets

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.

    1975-01-01

    A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.

  19. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  20. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.

  1. How to estimate the affect of an intense meteor

    NASA Astrophysics Data System (ADS)

    Wu, G. J.

    In the present age the potential threat to space projects coming from some intense meteor storms has been noticed Meteoroids have not the big size and great mass of the man-made space debris but they have high velocities up to 11-72 km s -1 and energies In addition a tremendous number of meteoroids might be encountered in a short time Moreover the destroy of the meteoroids is extensive In an impact the shock waves can be generated and propagate along colliding bodies compressing and heating both the target and meteoroid-self A plasma cloud may enclose the target and expands into the surrounding vacuum emitting electromagnetic radiation in a wide spectral range Especially the increasing activity of mankind in space for scientific commercial and military purposes has lead to an increase in safety-related problems about the satellites space stations and astronauts The actual destroy has been recorded many times making the data being lost or solar panels being severely damaged even the satellite lost its control and culminated in an early end of the mission Up to date several new techniques for observing meteors and meteor showers have been developed However the initial definition about a meteor storm based on visual observations with a Zenithal Hourly Rate of above one thousand seems insufficient since it only means a storm or burst of meteors in numbers means an eyewitness could have a chance to see a spectacular meteor show How to define the intense activity of a meteor storm how to estimate and predict the affect of

  2. An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Phillips, James A.; Horack, John M.; Jerman, Gregory; Myszka, Ed

    1999-01-01

    On 17 November 1998, a helium-filled weather balloon was launched into tfle strato- sphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Election Microscope analyses of the returned collectors revealed the capture of a -30-pm particle. with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows en- riched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, et al. 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is most similar in composition to cosmic spherules captured during airplane flights throucrh the stratosphere. The mineralogical class is consistent with a stony (S) type of silicates. olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg,Fe)SiO3]-or oxides, herecynite [(Fe,Mg) Al2O4]. Attribution to the debris stream of the Leonids' parent body, comet Tempel-Tuttle, would make it the first such material from beyond the orbit of Uranus positively identified on Earth.

  3. Six Degree-of-Freedom Entry Dispersion Analysis for the METEOR Recovery Module

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Braun, Robert D.; Powell, Richard W.; Engelund, Walter C.; Tartabini, Paul V.

    1996-01-01

    The present study performs a six degree-of-freedom entry dispersion analysis for the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) mission. METEOR offered the capability of flying a recoverable science package in a microgravity environment. However, since the Recovery Module has no active control system, an accurate determination of the splashdown position is difficult because no opportunity exists to remove any errors. Hence, uncertainties in the initial conditions prior to deorbit burn initiation, during deorbit burn and exo-atmospheric coast phases, and during atmospheric flight impact the splashdown location. This investigation was undertaken to quantify the impact of the various exo-atmospheric and atmospheric uncertainties. Additionally, a Monte-Carlo analysis was performed to statistically assess the splashdown dispersion footprint caused by the multiple mission uncertainties. The Monte-Carlo analysis showed that a 3-sigma splashdown dispersion footprint with axes of 43.3 nm (long), -33.5 nm (short), and 10.0 nm (crossrange) can be constructed. A 58% probability exists that the Recovery Module will overshoot the nominal splashdown site.

  4. Meteor Crater: An Analog for Using Landforms to Reconstruct Past Hydrologic Conditions

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Howard, A. D.; Nishiizumi, K.; Caffee, M. W.; Kring, D. A.

    2015-12-01

    Recent work suggests that debris flow activity has occurred on Mars in the last few million years during high orbital obliquities, but estimating the amount and frequency of liquid water needed to generate these types of flows is still poorly constrained. While it is relatively common to estimate water amounts needed to produce landforms on Mars, such as gullies or alluvial fans, this is something rarely done on Earth. Consequently, there is little field data on the linkage between climate (snowmelt or rainfall events) and the amount of runoff needed to produce specific volumes of sediment in a landform. Here, we present field and modeling data from Meteor Crater, which is a ~50,000 year old impact crater in northern Arizona (USA). Though it is very well preserved, it has developed gullies along its inner wall, similar in form to many gullies on Mars. Meteor Crater, similar to many Martian craters, has also gone through a change in a climate based on the ~30 m of lake sediments on its now dry floor, and what has eroded from its walls has deposited on its floor, making it a closed system. We show using LiDAR-derived topographic data and field observations that debris flows, likely generated by runoff entrainment into talus bordering bedrock cliffs of the crater walls, drove erosion and deposition processes at Meteor Crater. Cosmogenic dating of levee deposits indicates that debris flows ceased in the early Holocene, synchronous with regional drying. For a water-to-rock ratio of 0.3 at the time of transport, which is based on data from rotating drum experiments, it would have taken ~150,000 m3 of water to transport the estimated ~500,000 m3 of debris flow deposits found at the surface of the crater floor. This extensive erosion would require less than 0.4 m of total runoff over the 0.35 km2 upslope source area of the crater, or ~26 mm of runoff per debris flow event. Much more runoff did occur however, as evidenced by lake deposits on the crater floor and Holocene

  5. Long duration meteor echoes characterized by Doppler spectrum bifurcation

    NASA Astrophysics Data System (ADS)

    Bourdillon, A.; Haldoupis, C.; Hanuise, C.; Le Roux, Y.; Menard, J.

    2005-03-01

    We report on a new category of long lasting meteor echoes observed occasionally with HF and VHF radars. These meteoric returns, which have lifetimes from many seconds to a few minutes, are characterized by a distinct Doppler spectral signature showing a pronounced Doppler bifurcation which includes narrow bands of discrete Doppler velocities, often of opposite polarity. The large signal to noise ratios and the narrowness of the spectra imply that coherent or Bragg scattering is not of relevance here, therefore these echoes do not associate with the long living meteor-induced backscatter (MIB) from the lower E region. A reasonable interpretation needs to explain both the Doppler spectrum bifurcation and the long echo duration. As such, we propose the idea of a structured vertical wind shear in the lower E region which traps different fragments of a meteor trail plasma in the same way that sporadic E layers form. These trail parts inside the shear-related wind profile may act as relatively long-lasting meteoric reflectors moving with different Doppler velocities, also of opposite polarity.

  6. When comets get old: A synthesis of comet and meteor observations of the low activity comet 209P/LINEAR

    NASA Astrophysics Data System (ADS)

    Ye (叶泉志), Quan-Zhi; Hui (许文韬), Man-To; Brown, Peter G.; Campbell-Brown, Margaret D.; Pokorný, Petr; Wiegert, Paul A.; Gao (高兴), Xing

    2016-01-01

    It is speculated that some weakly active comets may be transitional objects between active and dormant comets. These objects are at a unique stage of the evolution of cometary nuclei, as they are still identifiable as active comets, in contrast to inactive comets that are observationally indistinguishable from low albedo asteroids. In this paper, we present a synthesis of comet and meteor observations of Jupiter-family Comet 209P/LINEAR, one of the most weakly active comets recorded to-date. Images taken by the Xingming 0.35-m telescope and the Gemini Flamingo-2 camera are modeled by a Monte Carlo dust model, which yields a low dust ejection speed (1/10 of that of moderately active comets), dominance of large dust grains, and a low dust production of 0.4kgs-1 at 19 d after the 2014 perihelion passage. We also find a reddish nucleus of 209P/LINEAR that is similar to D-type asteroids and most Trojan asteroids. Meteor observations with the Canadian Meteor Orbit Radar (CMOR), coupled with meteoroid stream modeling, suggest a low dust production of the parent over the past few hundred orbits, although there are hints of a some temporary increase in activity in the 18th century. Dynamical simulations indicate 209P/LINEAR may have resided in a stable near-Earth orbit for ∼104 yr, which is significantly longer than typical JFCs. All these lines of evidence imply that 209P/LINEAR as an aging comet quietly exhausting its remaining near surface volatiles. We also compare 209P/LINEAR to other low activity comets, where evidence for a diversity of the origin of low activity is seen.

  7. Orbital cellulitis

    MedlinePlus

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  8. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  9. Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    NASA Technical Reports Server (NTRS)

    Koschny, D.; Gritsevich, M.; Barentsen, G.

    2011-01-01

    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.

  10. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology

    USGS Publications Warehouse

    Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.

    1998-01-01

    Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented meteoric calcite lines, which we define here as meteoric sphaerosiderite lines. Meteoric sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.

  11. Tunguska meteor fall of 1908 - Effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1981-01-01

    The Tunguska meteor, whose disintegration over Siberia in 1908 may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere, is discussed. The photochemical aftereffects of the event are simulated using a comprehensive model of atmospheric trace composition. Calculations are made which indicate that up to 45% of the ozone in the Northern Hemisphere may have been depleted by the meteor's nitric oxide cloud early in 1909 and that large ozone reductions may have persisted until 1912. Measurements of atmospheric transparency by the Smithsonian Astrophysical Observatory for the years 1909-1911 reveal evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 + or - 15%. The coincidence in time between the observed ozone recovery and the Tunguska meteor fall suggests that the event may provide a test of current ozone depletion theories.

  12. Automatic Video System for Continues Monitoring of the Meteor Activity

    NASA Astrophysics Data System (ADS)

    Koten, Pavel; Fliegel, Karel; Vítek, Stanislav; Páta, Petr

    2011-05-01

    In this paper we present current progress in development of new observational instruments for the double station video experiment. The Meteor Automatic Imager and Analyser (MAIA) system is based on digital monochrome camera JAI CM-040 and well proved image intensifier XX1332. Both the observations as well as the data processing will be fully automatic. We are expecting the recorded data of better quality and both spatial and time resolution in comparison with currently used analogue system. The main goal of the MAIA project is to monitor activity of the meteor showers and sporadic meteor each night for the period of at least 3 years. First version of the system was already assembled and has been intensively tested in the optical laboratory. Optical properties were measured and the result confirmed our expectations according to image quality and resolution. First night sky observation was already carried out.

  13. The Toroidal Sporadic Sources: Looking for parent bodies of meteor streams

    NASA Astrophysics Data System (ADS)

    Pokorny, Petr; Brown, Peter G.; Moorhead, Althea V.; Wiegert, Paul; Janches, Diego

    2016-10-01

    The origin and characteristics of the North toroidal (NT) and South toroidal (ST) sporadic meteoroid sources remain poorly known. The NT was first noted in radar measurements in the late 1950s, however, its origin has puzzled astronomers for more than 50 years. The ST started being more thoroughly observed in recent years. The NT and ST meteoroid population shows orbital elements unlike any known contemporary parent population in the Solar System, dominated by particles with very high inclinations, modest semi-major axis values and low eccentricities. Recently, several dynamical models have suggested that the parent bodies of the NT source may be linked to the population of Halley-type comets. However, no model to date has been able to reproduce in detail the significant temporal variations in activity seen throughout the year.In this work we present observations of the NT meteoroid source made by the Canadian Meteor Orbit Radar (CMOR) between 2011 - 2015 and of the ST source obtained with the South Argentina Agile Meteor Radar (SAAMER) between 2011 - 2015. We use these results to define in detail the temporal and orbital element variations in the activity of both sources. We also present preliminary results from a model, in which we have identified 169 near-Earth objects that are potential contributors to the NT/ST meteoroid population at the current time. Furthermore, we integrate their orbits backward in time 25,000 years. For each potential parent body, we simulate 5 clones to span the range of possible parent body orbits as a function of time. From our initial epoch 25 ka, we eject 2000 test meteoroids per 100 years of sizes 30 μm to 1 mm per potential parent clone and examine the resulting dust trail intersecting the Earth to match the various temporally distinct portions of the NT/ST meteoroid complex. We find that while some of the observed features of both sources can be modeled as distinct past contributions from individual parent bodies, many major

  14. A Search for Meteor Shower Signatures in the LDEF IDE Data

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; McNamara, Heather A.

    2005-01-01

    For 346 days after the deployment of the LDEF satellite on April 7, 1984, the tape recorder belonging to the Interplanetary Dust Experiment (DE) stored information on over 15,000 impacts made by submicron and larger-size particles on its metal oxide silicon (MOS) detectors. These detectors were mounted on trays facing in six orthogonal directions - LDEF ram and trailing edge, the poles of the LDEF orbit (north and south), and radially inward (towards the Earth) and outward (towards space). The 13.1 second time resolution provided by the IDE electronics, combined with the high sensitivity of the MOS detectors and large collecting area (approximately 1 sq.m) of the experiment, conclusively showed that the small particle environment at the LDEF altitude of 480 km was highly time-variable, with particle fluxes spanning over four orders of magnitude. A large number of the 15,000 impacts recorded by IDE occurred in groups, which were of two types - the spikes, single, isolated events of high intensity and the multiple orbit event sequences (MOES), which were series of events separated in time by integer multiples of the LDEF orbital period. Even though the spikes were generally more intense, the MOES could be quite long-lived, some lasting for many days. A previous paper by Cooke et al. attributed the MOES to impacts by man-made debris particles in orbits intersecting that of LDEF. The 20 day longevity of one of these events - termed the May Swarm - led to the suggestion that the debris particles must be con- stantly replenished by their source, as the orbits of micron sized particles will rapidly decay under the influence of radiation pressure and other non-gravitational forces, entering Earth's atmosphere after only a few revolutions. However, the date of onset of the May Swarm (May 22) and the long duration of this event may indicate a possible correlation with the annual Arietid meteor shower, which peaks around June 8. As this seemed to hold the promise of a less

  15. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  16. Evolution of the Quadrantid meteor stream

    NASA Technical Reports Server (NTRS)

    Jones, James; Jones, William

    1992-01-01

    According to previous orbital calculations, the last close approach of the Quadrantid stream with Jupiter occurred 3200 years ago at which time the parent comet of the stream may have been captured into its present short-period orbit. If this is the case the stream may only be a few thousand years old. We have modeled the evolution of the stream to determine if such a short time scale is consistent with the observed features of the Quadrantid/ delta- Aquarid/Arietid/Ursid complex. A detailed modeling of a stream consisting of 500 test particles released 4000 yr ago and which included the effects of the gravitational perturbations of 6 planets as well as the likely spread in the initial orbital elements resulting from the ejection of the grains from the comet was carried out. Our calculations indicate that an intense shower should be seen a few days before the Quadrantid shower, and that, 4000 yr is too short a period for the branch corresponding to the D-Arietid branch to appear. We have considered the quasi-constants of motion 1/a and J, the Tisserand quantity, and find that the Ursids and the D-Arietids are unlikely to be members of the complex, and that, the complex is probably be less than 4000 yr old.

  17. A Short Cultural-Astronomical History on Asteroids, Comets and Meteors in Romania

    NASA Astrophysics Data System (ADS)

    Grigore, V.; Gheorghe, A. D.

    2012-05-01

    The poster presents significant moments in astronomy history and culture of meteors, comets and asteroids in Romania and the modern role of the Romanian Society for Meteors and Astronomy (SARM) in research, education, and culture in these fields.

  18. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  19. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases [1]. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission [2]. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  20. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heat shields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kWcm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses.With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  1. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is less than 13 km/s (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/cm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to greater than 20 km/s; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current

  2. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  3. Results of the IMO Video Meteor Network - September 2015

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-02-01

    The September 2015 report of IMO Video Meteor Network observations is presented, covering more than 11 000 hours of observations with over 53 000 meteors being recorded. A recently discovered minor shower of the kappa-Cepheids cannot be identified in the 2015 Network data. The chi-Cygnids, a minor shower discovered in 2015, is confirmed based on the 2015 data, and data going back to 1999. The flux density profiles are shown for the shower for the period 2012-2015. The peak in 2015 is reached between September 14 and 17.

  4. Hemispherical radiating pattern antenna design for radio meteor observation

    NASA Astrophysics Data System (ADS)

    Kákona, J.

    2016-01-01

    A highly directional pattern antenna is usually used for radio meteor observations, but these types of antennas became impractical in cases where we have multiple transmitters spread around a reception station. In that situation the hemispherical sensitivity of the antenna is more important than directional antenna gain. We present a hemispherical radiation pattern antenna design which could be modified for almost any observational frequency reflective by a meteor trail. The symmetry of the radiation pattern of such antenna allows an easy construction of antenna arrays which could be used for the angular measurement of received signals.

  5. A simplified interferometer design for use with meteor radars

    NASA Astrophysics Data System (ADS)

    Poole, L. M. G.

    2004-04-01

    A relatively simple design for a meteor radar interferometer with 4 receiving antennas is described. A basic 3 element interferometer provides a set of possible directions for each radio echo detected. The ambiguity is resolved using a 4th antenna, placed according to the results of a numerical simulation. Details of the procedure are provided. The resolution in echo direction is between ˜1° and ˜2° for altitudes (elevations) above ˜30° at all azimuths. A general purpose meteor radar based on this principle has been in use since 1986 at Grahamstown, South Africa.

  6. The METEOR trial: no rush to repair a torn meniscus.

    PubMed

    Hwang, Yong Gil; Kwoh, C Kent

    2014-04-01

    It is uncertain whether arthroscopic partial meniscectomy is better than physical therapy in patients who have a symptomatic torn meniscus on top of osteoarthritis of the knee. The Meniscal Repair in Osteoarthritis Research (METEOR) trial concluded that physical therapy is acceptable at first, and that surgery is not routinely needed. In patients assigned to physical therapy who eventually needed surgery, the delay resulting from a trial of conservative management did not impair outcomes at 12 months from the initial presentation. Here, we analyze the background, design, findings, and clinical implications of the METEOR trial.

  7. Performance of Watec 910 HX camera for meteor observing

    NASA Astrophysics Data System (ADS)

    Ocaña, Francisco; Zamorano, Jaime; Tapia Ayuga, Carlos E.

    2014-01-01

    The new Watec 910 HX model is a 0.5 MPix multipurpose video camera with up to ×256 frames integration capability. We present a sensitivity and spectral characterization done at Universidad Complutense de Madrid Instrument Laboratory (LICA). In addition, we have carried out a field test to show the performance of this camera for meteor observing. With respect to the similar model 902 H2 Ultimate, the new camera has additional set-up controls that are important for the scientific use of the recordings. However the overall performance does not justify the extra cost for most of the meteor observers.

  8. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  9. Meteor-Shower on Mars Indicates Cometary Activity Far Away From the Sun

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; ASHER, DAVID

    2015-08-01

    Introduction: The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on 2014 Oct 19 at 1830h (UT) generated a lot of interest and modelling work [1] [2] [3] in the solar system community. A recent (on 2014 Nov 7) press release from NASA implied that a meteor shower was detected on Mars by their space instruments some hours after the comet-Mars close encounter. Various work [4] [5] [6] has suggested that very specific meteoroid sizes and ejection conditions may be required to produce meteor phenomena at Mars at the given times.Stream dynamics: Meteoroid stream modelling and their orbital geometry calculations have gained high precision over the years. In this work, we compute in detail the structure of the cloud of meteoroids released by C/2013 A1, showing its dependence on heliocentric ejection distances, 3-dimensional ejection velocities, and particle sizes. Our calculations using numerical integrator MERCURY, [7], incorporating radiation pressure, [8], show that ejection of particles at large heliocentric distances (about 7 au to 13 au) from C/2013 A1 could lead to evolution of a dense meteoroid cloud which intersects Mars a few hours after the comet-Mars close encounter. Hence this detection of a meteor shower on Mars by space instruments is an indirect confirmation of cometary activity at large distances which has rarely been observed directly by telescopes so far. Furthermore it shows that comprehensive threat estimation needs to be done for satellites orbiting the Earth when dynamically new comets come very close to the Earth in future.References:[1] Vaubaillon J., Macquet L., Soja R. 2014. MNRAS. 439: 3294.[2] Moorhead A. V., Wiegert P. A., Cooke W. J. 2014. Icarus. 231:13.[3] Ye Q.-Z., Hui M.-T., 2014, ApJ, 787: 115.[4] Farnocchia D. et al. 2014. ApJL. 790: 114.[5] Kelley M. S. P. et al. 2014, ApJL, 792: 16.[6] Tricarico P. et al., 2014, ApJL, 787: 35.[7] Chambers J. E. 1999. MNRAS. 304: 793.[8] Burns J. A, Lamy P. L., Soter S. 1979. Icarus. 40: 1.

  10. The Cyclone meteor radar system for routine wind measurements in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Lysenko, I. A.; Mikhailiek, P. P.; Petrov, B. I.

    1987-01-01

    A new meteor wind radar system called Cyclone was devised to extend and update the meteor radar network and for unattended operation. The Cyclone meteor radar system obtains information from four directions simultaneously. To automate data processing a special digital device was developed. An algorithm used to determine the Doppler shifts was adopted, which makes it possible to eliminate selectivity with respect to slow velocity meteor drifts. The operation of the Cyclone system is described.

  11. Detecting Forward-Scattered Radio Signals from Atmospheric Meteors Using Low-Cost Software Defined Radio

    NASA Astrophysics Data System (ADS)

    Snjegota, Ana; Rattenbury, Nicholas James

    2017-02-01

    The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be replicated in any part of the world and is a suitable, low-cost project designed for students who are interested in astronomy.

  12. SCARLET Solar Array Delivered for METEOR Mission

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is a joint NASA Lewis Research Center/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology for future space missions. This advanced power system technology uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The concentrator design is based on previous work conducted at Lewis under a Small Business Innovation Research Program (SBIR) with Entech, Inc.

  13. A test of the comet hypothesis of the Tunguska Meteor Fall - Nature of the meteor 'thermal' explosion paradox

    NASA Technical Reports Server (NTRS)

    Liu, V. C.

    1978-01-01

    The hypothesis that a comet was responsible for the Tunguska Meteor Fall is rejected because the hypothesis does not seem to account for the intense terminal spherical shock. A porous meteoroid model is proposed, and an analysis indicates that an entity of this type might produce an aerodynamic heat flux large enough to account for the terminal meteor explosion. It is suggested that the presence of olivine and of highly irregular macrostructure in meteors might indicate the presence of some porosity. For a highly porous meteoroid, it is postulated that during entry into the atmosphere the aerodynamic heat transfer at its external or pore walls would become so intensified as to cause either complete ablation with popping or a solid-liquid-vapor phase transition accompanied by an explosion.

  14. An attempt to explain VLF propagation perturbations associated with single meteors

    NASA Astrophysics Data System (ADS)

    Rault, J.-L.; Delcourt, J.-J.

    2016-01-01

    A first evidence of sudden changes in the amplitude of distant VLF radio transmissions related to single meteors was found during GEM 2010 meteor shower radio observations. Based on many similar observations gathered during different meteor showers, this paper is dedicated to the corresponding physical phenomena involved at the level of the D layer of the Earth ionosphere.

  15. Analysis of molecular nitrogen emisson bands on TV spectrograms of meteors

    NASA Astrophysics Data System (ADS)

    Mukhamednazarov, S.; Amandurdyev, D.; Mal'Tseva, N. V.

    TV spectrograms of three sporadic meteors are compared with photographic spectrograms. It is shown that intense air luminescence is observed in the spectra of fast and relatively faint meteors. It is noted that this luminescence should be taken into account when determining meteor parameters. Emissions of molecular bands and atomic lines of air in the TV spectra are analyzed.

  16. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases.1 Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission.2 Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an Advanced Design Methods (ADM) based approach. This approach applies the concepts of Design of Experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development e ort. In order to t a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  17. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  18. Comets, meteors, and eclipses: Art and science in early Renaissance Italy

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    2002-11-01

    We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more believable, convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (circa 1301-1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards. Halley's Comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and "astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328-30; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20) contain dazzling meteor showers that reveal the artist's observed astronomical phenomena, such as the "radiant" effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent

  19. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  20. Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Asteroids, Meteors, Comets includes the following topics: 1) Where Some Asteroid Parent Bodies; 2) The Collisional Evolution of the Main Belt Population; 3) On Origin of Ecliptic Families of Periodic Comets; 4) Mineralogy and Petrology of Laser Irradiated Carbonaceous Chondrite Mighei; and 5) Interaction of the Gould Belt and the Earth.