Science.gov

Sample records for advanced meteorological radar

  1. The UAH/NSSTC Advanced Radar for Meteorological and Operational Research (ARMOR)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Knupp, Kevin; Carey, Lawrence D.; Phillips, Dustin; Deierling, Wiebke; Gatlin, Patrick

    2009-01-01

    The past four years have seen a marked enhancement in meteorological-radar infrastructure and radar-research capability at the University of Alabama-Huntsville (UAH) and National Space Science and Technology Center (NSSTC; a collaborative center supported by UAH, NASA-MSFC and USRA). This enhancement is due in part to the development of the ARMOR C-band dual-polarimetric radar facility (amongst other mobile radar facilities also discussed in this conference). The ARMOR radar, located at Huntsville International Airport, originated as a unique collaboration between university, government and broadcast meteorologists (the very first of its kind relative to concurrent operational, research and broadcast applications of dual-polarimetry). Contributions from each of these entities resulted in the upgrade of a surplus National Weather Service WSR-74C radar to a research-grade C-band polarimetric radar. The initial upgrade of the radar took place in late 2004 with WHNT-TV purchase and installation of a SIGMET (now Vaisala) Antenna Mounted Receiver (AMR), RVP8/RCP8 radar processor/antenna controller, new radome, and a new dual-polarimetric antenna feed. The AMR enabled simultaneous transmit and receive (STSR) capability and hence collection of dual-polarimetric moments. During the initial part of the AMR upgrade the original WSR74C antenna reflector and 250 kW magnetron-transmitter were used. In early 2005, a new 350 kW magnetron transmitter was purchased from Baron Services and installed. In October of 2006 a new high performance parabolic antenna and dual-pol feed (Seavey) were installed together with a new Orbit pedestal. ARMOR Radar control and data delivery are facilitated through the use of T-1 lines that run from the airport to both NSSTC and WHNT-TV in Huntsville. Under current operating protocols radar scanning and product development are completed at NSSTC, though meteorologists at WHNT-TV can also control the radar if desired. In its default scanning

  2. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    NASA Astrophysics Data System (ADS)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  3. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  4. Meteorological Radar Facility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Eckerman, J.

    1975-01-01

    A proposed meteorological radar facility for Space Shuttle missions is described as a device suitable for providing vertical profiles of the precipitation distribution in the atmosphere above land masses and over ocean, thus ensuring three-dimensional mapping of the hydrometeor-precipitation distribution in the atmosphere. Some performance characteristics essential to orbiting meteorological radar systems and typical parameters are discussed, including large swath width, narrow beamwidth, frequency agility, and antenna configuration and orientation. Also discussed are the capabilities of the device as a test bed sensor with multiple mode capability, being able to operate in real aperture/pulse radar, real aperture/pulse Doppler and synthetic azimuth processing modes.

  5. Applications of MST radars: Meteorological applications

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1989-01-01

    Applications of mesosphere stratosphere troposphere radar to mesoscale meteorology are discussed. The applications include using the radar either as a research tool to improve our understanding of certain dynamical systems or as part of a network used to provide input data for weather forecasting. The workhorse of the operational observing network is the radiosonde balloon which provides measurements of pressure, temperature, humidity, and winds up to heights of 16 to 20 km. Horizontal and vertical measurement capabilities, reflectivity data, derivable quantities and parameters, and special operational requirements are surveyed.

  6. Meteorological radar facility (MRF) slot conductance investigations

    NASA Technical Reports Server (NTRS)

    Ratkevich, A. E.

    1977-01-01

    A preliminary meteorological radar facility (MRF) array design was completed in support of the slot conductance measurement program. Three different slot measurement techniques were evaluated. The selection of the probe comparison measurement technique was selected as the principal experimental method with the impedance measurement technique chosen to measure a few higher conductance slots to be used as reference slots. The impedance of 43 slots in 0.9 x 0.4 inch standard waveguide and of 40 slots in 0.835 x 0.4 inch waveguide was measured. Also, impedance measurements were made of a few slots using image planes to simulate mutual coupling effects. The measured and theoretical conductance, susceptance, and radiation phase data are presented in graphic form as a function of slot displacement for constant slot length, and of slot length for constant slot displacement. It is concluded that the proposed MRF array design approach is a feasible one.

  7. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  8. Radar detection of low-altitude targets in a maritime environment. Volume 2: Meteorological and radar data

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1993-11-01

    Results from a unique analytical and measurement effort to assess low-altitude short-range radar detection in an evaporation ducting environment validate propagation model predictions of reduced radar detection ranges within the radio horizon. Discrepancies between measured and predicted radar data demand a close examination of both meteorological data and surface layer theory. At ranges near and beyond the horizon, radar detection crucially depends both on the surface layer refractivity profile and on the adjacent mixed layer refractivity profile. An empirical model is described that merges the surface layer with the mixed layer forming a unified boundary layer. Other discrepancies, which are thought to be caused either by inadequate surface layer modeling (perhaps the moisture stability function) or by inadequate boundary layer meteorological measurements, suggest the need for improvements in surface layer modeling and new techniques to measure the refractivity structure. The combination of direct boundary layer (surface and mixed layer) meteorological measurements, remotely sensed radar measurements, and advanced numerical modeling capability provides valuable insight for a better understanding of the atmospheric boundary layer and its effects on the radar detection of low-altitude short-range targets.

  9. Mesospheric turbulence detection and characterization with AMISR-class radars under consistent meteorological conditions

    NASA Astrophysics Data System (ADS)

    Li, J.; Collins, R. L.; Newman, D.; Nicolls, M. J.; Varney, R. H.; Thurairajah, B.

    2015-12-01

    A recent study has shown the ability of the Advanced Modular Incoherent Scatter Radar (AMISR) at Poker Flat Research Range (PFRR, PFISR) to characterize turbulence in the mesosphere (D-Region) [Nicolls et. al, 2011]. We present case studies of AMISR measurements of turbulence where the meteorological conditions are defined by the presence of persistent Mesospheric Inversion Layers (MILs). We consider MILs that are detected by satellite over a day and are also detected by Rayleigh lidar at PFRR [Irving et. al, 2014]. MILs are a signature of large-scale planetary wave breaking in the upper atmosphere, where a region with a temperature inversion lies below a region with an adiabatic lapse rate. The region with the inversion allows small-scale waves to become unstable, break, and generate turbulence. The region with the adiabatic lapse rate is indicative of a well-mixed layer and the presence of turbulence. AMISR-class radars have a steerable narrow beam (1°) and high vertical resolution (750 m). We review the principles and practices of incoherent scatter radar with a focus on detection of D-region turbulence using radar spectra. We present the geometry of the turbulence and the radar, comparing the turbulent, plasma, and radar spatial scales. We develop a turbulence retrieval algorithm using a Voigt function spectral line. We fit the spectra to a Voigt function using the Levenberg-Marquardt method and use the Gaussian component of the Voigt spectra to calculate the RMS velocity, and hence the turbulent energy dissipation rate. With the environmental conditions characterized by satellite and lidar and the turbulence characterized by radar data, we can test the ability of PFISR to characterize mesospheric turbulence under consistent meteorological conditions and develop robust technique for turbulence measurements.

  10. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    NASA Astrophysics Data System (ADS)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  11. Meteorological radar services: a brief discussion and a solution in practice

    NASA Astrophysics Data System (ADS)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  12. AEGIS - Advanced Multi-Function Array Radar

    NASA Astrophysics Data System (ADS)

    Phillips, C. C.

    1981-12-01

    The AMFAR (Advanced Multi-Function Array Radar), a radar system technology developed in the late 1960s, has demonstrated automatic detection and tracking of all air targets plus inherent resistance to natural and man-made clutter with computer control of the radar. The major elements of the AMFAR - a high-power radar frequency transmitter, a phased-array antenna, a signal processor system, a computer control system, and an automated test system - are described in detail. The capabilities of the radar are demonstrated in a series of pictures showing processing steps to provide automatic target detection and track in both ground clutter zones and rain clutter. The success of AMFAR laid the foundation of Radar System AN/SPY-1A, the Weapon Control Radar System now being produced as a major element of the AEGIS Weapon System for the U.S. Navy guided missile cruiser Ticonderoga.

  13. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  14. Meteorological and dynamical requirements for MST radar networks: Waves

    NASA Technical Reports Server (NTRS)

    Avery, S. K.

    1983-01-01

    Studies of wave motions using the MST radar have concentrated on single station time series analyses of gravity waves and tides. Since these radars collect high time resolution data they have the potential to become a significant tool for mesoscale research. In addition, radars are operated almost continuously unattended and, consequently, data sets are available for analyzing longer period wave motions such as tides and planetary scale waves. Although there is much to learn from single station data, the possibilities of new knowledge from a network of radars is exciting. The scales of wave motions in the atmosphere cover a broad range. Consequently the choice of a radar network depends to a large extent on the types of wave motions that are studied. There are many outstanding research problems that would benefit from observations from a MST radar network. In particular, there is a strong need for measurements of gravity wave parameters and equatorial wave motions. Some of the current problems in wave dynamics are discussed.

  15. System characteristics design of WindRadar on FengYun-3E meteorological satellite

    NASA Astrophysics Data System (ADS)

    Yin, Honggang; Fan, Ziping; Dou, Fangli

    2014-11-01

    Spaceborne microwave scatterometers have successfully provided global ocean surface wind field for two decades. However current scatterometers still cannot satisfy the requirement of achieve ocean wind vectors in nearly all weather and all wind conditions. A new microwave scatterometer - the WindRadar with dual frequency onboard Chinese FengYun-3E meteorological satellite is being developed to attempt to overcome their shortcomings. This paper introduces the objectives of the WindRadar, then describes the design of its some key system characteristics, and the performance of the WindRadar is also analyzed at the end.

  16. Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars

    NASA Technical Reports Server (NTRS)

    Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee

    2013-01-01

    This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.

  17. [Hygienic standardization of electromagnetic radiation from two-channel meteorological radar stations].

    PubMed

    Nikitina, N G; Tomashevskaia, L A

    1990-08-01

    The study was designed to analyze the impact of the combined electromagnetic fields (EMF) with the wavelength of 10 and 0.8 cm and various levels of energy current density on the central nervous system, metabolic processes, immune resistance and reproductive function. Proceeding from the obtained data maximum allowable levels of EMF produced by the prospective two-channel meteorological++ radars were established. PMID:2283071

  18. A family of radars for advanced systems

    NASA Astrophysics Data System (ADS)

    Giaccari, Ennio; Penazzi, Carlo Alberto

    1989-04-01

    The military and air traffic control radars developed by Selenia are reviewed. The design, production, and testing aspects of the radar development process are discussed, focusing on shipborne, ground based, and air traffic control radars. An overview of radar subsystems is given, including the antenna, transmitter, receiver-exciter, signal processor, data processor, and radar controller subsystems.

  19. Mercury's perihelion advance - Determination by radar.

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Pettengill, G. H.; Ash, M. E.; Ingalls, R. P.; Campbell, D. B.; Dyce, R. B.

    1972-01-01

    Measurement of echo delays of radar signals transmitted from earth to Mercury, yielding an accurate value for the advance of the latter's perihelion position. Given that the sun's gravitational quadrupole moment is negligible, the result in terms of the Eddington-Robertson parameters is (2 + 2 gamma-beta)/3 approximately equal to 1.005 plus or minus 0.007, where gamma = beta = 1 in general relativity, and where 0.007 represents the statistical standard error. Inclusion of the probable contribution of systematic errors raises the uncertainty to about 0.02.

  20. Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments

    NASA Astrophysics Data System (ADS)

    Dufton, D. R. L.; Collier, C. G.

    2015-10-01

    The ability of a fuzzy logic classifier to dynamically identify non-meteorological radar echoes is demonstrated using data from the National Centre for Atmospheric Science dual polarisation, Doppler, X-band mobile radar. Dynamic filtering of radar echoes is required due to the variable presence of spurious targets, which can include insects, ground clutter and background noise. The fuzzy logic classifier described here uses novel multi-vertex membership functions which allow a range of distributions to be incorporated into the final decision. These membership functions are derived using empirical observations, from a subset of the available radar data. The classifier incorporates a threshold of certainty (25 % of the total possible membership score) into the final fractional defuzzification to improve the reliability of the results. It is shown that the addition of linear texture fields, specifically the texture of the cross-correlation coefficient, differential phase shift and differential reflectivity, to the classifier along with standard dual polarisation radar moments enhances the ability of the fuzzy classifier to identify multiple features. Examples from the Convective Precipitation Experiment (COPE) show the ability of the filter to identify insects (18 August 2013) and ground clutter in the presence of precipitation (17 August 2013). Medium-duration rainfall accumulations across the whole of the COPE campaign show the benefit of applying the filter prior to making quantitative precipitation estimates. A second deployment at a second field site (Burn Airfield, 6 October 2014) shows the applicability of the method to multiple locations, with small echo features, including power lines and cooling towers, being successfully identified by the classifier without modification of the membership functions from the previous deployment. The fuzzy logic filter described can also be run in near real time, with a delay of less than 1 min, allowing its use on future

  1. Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia radar network

    NASA Astrophysics Data System (ADS)

    Trapero, Laura; Bech, Joan; Rigo, Tomeu; Pineda, Nicolau; Forcadell, David

    In order to quantify the uncertainty of the radar-derived surface point quantitative precipitation estimates (QPE) from a regional radar network, a comparison has been made with a network of rain gauges. Three C-band Doppler radars and 161 telemetered gauges have been used. Both networks cover the area of Catalonia (NE Spain). Hourly accumulations integrated in daily amounts are studied. For each radar, three different precipitation products are obtained: short range, long range, and short range corrected radar QPE. The corrected product is generated by the Hydrometeorological Integrated Forecasting Tool (EHIMI), a software package designed to correct radar observations in real time for its use in hydrometeorological applications. Among other features, EHIMI includes a topographical beam blockage correction procedure. The first part of the analysis examines the bias found in the radar. The three radars generally underestimate precipitation, an effect increased with range from the radar and beam blockage, which is examined in detail in this study. Moreover, corrected QPEs systematically improve the BIAS (2 dB) and RMSf for high blockages (50-70%). The second part of the analysis illustrates the temporal evolution of the daily mean bias. Finally, the uncertainty of each rain gauge has been compared to each rainfall radar product. Geographic distribution of daily BIAS is consistent with slight under-estimation at short range and substantial at long range, especially in the north of Catalonia, which is an area with important beam blockage (> 40%). These results contribute to improve the knowledge about the spatial distribution of the QPE error benefiting a number of applications including verification of high-resolution NWP precipitation forecasts and use of advanced hydrometeorological models.

  2. Comparisons of the NASA ER-2 meteorological measurement system with radar tracking and radiosonde data

    NASA Technical Reports Server (NTRS)

    Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.

    1992-01-01

    Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.

  3. Meteorological and aeronomical requirements for MST radar networks (keynote paper), part 1

    NASA Technical Reports Server (NTRS)

    Geller, M. A.

    1984-01-01

    Mesosphere - stratosphere - troposphere (MST) radar are phase coherent radars that measure the amplitude and Doppler shift of radio waves that are scattered back to the receiving antennas. For a monostatic system, the line-of-sight projection of the wind vector is obtained if one assumes that the atmospheric scatterers are being swept along with the wind velocity. The three-dimensional wind is then derived either by using multiple beams or by beam swinging. The turbulence intensity is derived either by measuring the backscattered power or by deriving the width of the autocorrelation function for the wind. Furthermore, some information on sharp changes in the atmospheric static stability (e.g., at the tropopause) can be obtained by looking for specular reflections. The discussion addresses the question of how these MST measurement capabilities can contribute to various meteorological and aeronomical research areas.

  4. Recent advances in radar applications to agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1970-01-01

    A series of remote radar sensing studies are summarized. These efforts comprise geoscience interpretations of such complex phenomena as those manifested in agricultural patterns. Considered are basic remote sensing needs in agriculture and the design and implementation of radar keys in the active microwave region as well as fine resolution radar imagery techniques for agriculture determinations and soil mapping.

  5. Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications

    NASA Astrophysics Data System (ADS)

    Lo Conti, Francesco; Francipane, Antonio; Pumo, Dario; Noto, Leonardo V.

    2015-12-01

    The aim of this study is to evaluate the potential use of a low-cost single polarization X-band weather radar, verified by a disdrometer and a dense rain gauge network, installed as a supporting tool for hydrological applications and for monitoring the urban area of Palermo (Italy). Moreover, this study focuses on studying the temporal variability of the Z-R relation for Mediterranean areas. The radar device is provided with an automatic operational ground-clutter filter developed by the producer. Attention has been paid to the development of blending procedures between radar measurements and other auxiliary instruments and to their suitability for both meteorological and hydrological applications. A general scheme enveloping these procedures and achieving the combination of data retrieved from the weather radar, the optical disdrometer, and the rain gauge network distributed within the monitored area has been designed. The first step of the procedure consists in the calibration of the radar equation by comparing the match between the radar raw data and the disdrometer reflectivity. The second step is the calibration of the Z-R relationship based on the retrieval of parameters that optimize the transformation of disdrometer reflectivity into rainfall intensity, starting from the disdrometer rainfall intensity measurements. The Z-R calibration has been applied to the disdrometer measurements retrieved during a 1 year observation period, after a preliminary segmentation into separated rainfall events. This analysis allows for the characterization of the variability of the Z-R relationship from event to event, deriving some considerations about its predictability as well. Results obtained from this analysis provide a geographical specific record, for the Mediterranean area, for the study of the spatial variability of the Z-R relationship. Finally, the set of operational procedures also includes a correction procedure of radar estimates based on rain gauge data. Each

  6. Simulation of operational typhoon rainfall nowcasting using radar reflectivity combined with meteorological data

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Chiang

    2014-06-01

    In this study, a practical typhoon effective rainfall nowcasting (TERN) model was developed for use in real-time forecasting. The TERN model was derived from a data-driven adaptive network-based fuzzy inference system (ANFIS). The model inputs include meteorological data and radar reflectivity data. The model simulation process begins with an online typhoon warning issued by the Central Weather Bureau (CWB) of Taiwan. It is then determined whether the typhoon approaches the study area according to the typhoon track predicted by the CWB. When a typhoon hits Taiwan, various data are received from sensor instruments, including the ground precipitation data, typhoon climatological data, and radar reflectivity factor by using Weather Surveillance Radar, 1988, Doppler (WSR-88D) products. The study site was Shihmen Catchment. A maximum of 10 typhoon events from 2000 to 2010 were collected. Regarding the model construction, the input combinations of the ground precipitations and reflectivity factors over the catchment functioned as optimal input variables. To verify the practicability of the ANFIS-based TERN model, Typhoon Krosa, which hit Taiwan in 2007, was simulated. The results demonstrated that the proposed methodology of real-time rainfall forecasts during typhoon warning periods yielded favorable performance levels, reliably predicting results regarding 1 h to 6 h forecasting horizons.

  7. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  8. In-flight performance of the Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffrey J.; Osgood, Roderic; Auchter, Joseph; Hurt, W. Todd; Hitomi, Miyamoto; Sasaki, Masayuki; Tahara, Yoshihiko; Tadros, Alfred; Faller, Ken; Mclaren, Mark; Sheffield, Jonathan; Gaiser, John; Kamel, Ahmed; Gunshor, Mathew

    2006-08-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. MTSAT-1R was launched from the Tanegashima Space Center on 2005 February 26 and became formally operational on 2005 June 28. This paper compares in-flight performance of JAMI with predictions made before launch. The performance areas discussed include radiometric sensitivity (NEDT and SNR) versus spectral channel, calibration accuracy versus spectral channel derived from comparisons of JAMI and AIRS measurements and image navigation and registration.

  9. Advanced Meteor radar at Tirupati: System details and first results

    NASA Astrophysics Data System (ADS)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  10. Identification and removal of non-meteorological echoes in dual-polarization radar data based on a fuzzy logic algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Bo-Young; Lee, GyuWon; Park, Hong-Mok

    2015-09-01

    A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter, chaff, clear air echoes etc. In this study, a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek. For selected precipitation and non-meteorological events, the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values. The membership functions and weights are then determined by these density functions. Finally, the nonmeteorological echoes are identified by combining the membership functions and weights. The performance is qualitatively evaluated by long-term rain accumulation. The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection (POD), false alarm rate (FAR), and clutter-signal ratio (CSR). In addition, the issues in using filtered dual-polarization data are alleviated.

  11. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  12. Seasonal Characteristics of Non-Meteorological Radar Reflectivity Returns in Central Florida and Their Impact on TRMM Ground Validation

    NASA Technical Reports Server (NTRS)

    Robinson, Michael; Marks, David A.; Kulie, Mark S.; Ferrier, Brad S.

    1999-01-01

    Radar data quality control is a major component to the Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) effort. The quality control algorithm utilizes several adjustable height and reflectivity threshold parameters to remove non-precipitation echoes from ground-based radar data. Spurious radar reflectivity returns not removed during the quality control process may create biases in ground validation rainfall products used to evaluate rainfall measurements retrieved from aboard the TRMM satellite. To better evaluate the performance of the quality control algorithm, WSR-88D radar data from one primary GV site, Melbourne, Florida, are used to determine the seasonal characteristics of non-meteorological radar echoes in cast central Florida during the first year of the TRMM mission. It is demonstrated that unique spurious echo regimes develop throughout the year, leading to different levels of successful non-meteorological echo removal by the quality control algorithm. In addition to the type of non- precipitation echoes present, the success of the algorithm is also greatly dependent upon the amount of precipitation present. Less aggressive attempts to remove non-meteorological echoes must be employed when rain is observed so as not to remove these echoes as well. Therefore, precipitation statistics from ground validation monthly rainfall products will be utilized to further document the quality control algorithm performance. Moreover, these precipitation statistics will be used to demonstrate the relationship between dominant spurious echo regimes and rainfall amount. Finally, monthly statistics of contaminated ground validation radar data will be calculated and the effect on rainfall accumulation products will be discussed.

  13. The COST 731 Action: A review on uncertainty propagation in advanced hydro-meteorological forecast systems

    NASA Astrophysics Data System (ADS)

    Rossa, Andrea; Liechti, Katharina; Zappa, Massimiliano; Bruen, Michael; Germann, Urs; Haase, Günther; Keil, Christian; Krahe, Peter

    2011-05-01

    Quantifying uncertainty in flood forecasting is a difficult task, given the multiple and strongly non-linear model components involved in such a system. Much effort has been and is being invested in the quest of dealing with uncertain precipitation observations and forecasts and the propagation of such uncertainties through hydrological and hydraulic models predicting river discharges and risk for inundation. The COST 731 Action is one of these and constitutes a European initiative which deals with the quantification of forecast uncertainty in hydro-meteorological forecast systems. COST 731 addresses three major lines of development: (1) combining meteorological and hydrological models to form a forecast chain, (2) propagating uncertainty information through this chain and make it available to end users in a suitable form, (3) advancing high-resolution numerical weather prediction precipitation forecasts by using non-conventional observations from, for instance, radar to determine details in the initial conditions on scales smaller than what can be resolved by conventional observing systems. Recognizing the interdisciplinarity of the challenge COST 731 has organized its work forming Working Groups at the interfaces between the different scientific disciplines involved, i.e. between observation and atmospheric (and hydrological) modelling (WG-1), between atmospheric and hydrologic modelling (WG-2) and between hydrologic modelling and end-users (WG-3). This paper summarizes the COST 731 activities and its context, provides a review of the recent progress made in dealing with uncertainties in flood forecasting, and sets the scene for the papers of this Thematic Issue. In particular, a bibliometric analysis highlights the strong recent increase in addressing the uncertainty analysis in flood forecasting from an integrated perspective. Such a perspective necessarily involves the area of meteorology, hydrology, and decision making in order to take operational advantage

  14. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  15. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  16. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  17. Radar-driven high-resolution hydro-meteorological forecasts of the 26 September 2007 Venice flash flood

    NASA Astrophysics Data System (ADS)

    Rossa, Andrea M.; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel

    2010-11-01

    SummaryThis study aims to assess the feasibility of assimilating carefully checked radar rainfall estimates into a numerical weather prediction (NWP) to extend the forecasting lead time for an extreme flash flood. The hydro-meteorological modeling chain includes the convection-permitting NWP model COSMO-2 and a coupled hydrological-hydraulic model. Radar rainfall estimates are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood which impacted the coastal area of North-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the 90 km2 Dese river basin draining to the Venice Lagoon. The radar rainfall observations are carefully checked for artifacts, including rain-induced signal attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar rainfall estimates in the assimilation cycle of the NWP model is very significant. The main individual organized convective systems are successfully introduced into the model state, both in terms of timing and localization. Also, high-intensity incorrectly localized precipitation is correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities computed after assimilation underestimate the observed values by 20% and 50% at a scale of 20 km and 5 km, respectively. The positive impact of assimilating radar rainfall estimates is carried over into the free forecast for about 2-5 h, depending on when the forecast was started. The positive impact is larger when the main mesoscale convective system is present in the initial conditions. The improvements in the precipitation forecasts are propagated to the river flow simulations, with an extension of the forecasting lead time up to 3 h.

  18. Advances in remote sensing and modeling of terrestrial hydro-meteorological processes and extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is an indispensable tool for monitoring and detecting the evolution of the Earth’s hydro-meteorological processes. Fast-growing remote sensing observations and technologies have been a primary impetus to advancing our knowledge of hydro-meteorological processes and their extremes ove...

  19. Economic project perspectives: An overview of the impact resulting from recent advances in satellite meteorology

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Boness, F. H.

    1972-01-01

    The impact of advanced satellite meteorology on long range weather forecasts, agriculture, commerce, and resource utilization are examined. All data are geared to obtaining a picture of various user needs and possible benefits.

  20. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

    PubMed Central

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-01-01

    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments.

  1. Using Remote Sensing and Radar Meteorological Data to Support Watershed Assessments Comprising Integrated Environmental Modeling

    EPA Science Inventory

    Meteorological (MET) data required by watershed assessments comprising Integrated Environmental Modeling (IEM) traditionally have been provided by land-based weather (gauge) stations, although these data may not be the most appropriate for adequate spatial and temporal resolution...

  2. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  3. Radar analyses of mesoscale meteorological phenomena during the AVE/VAS correlation field experiment

    NASA Technical Reports Server (NTRS)

    Huebner, G. L.

    1984-01-01

    Radar data were collected during the selected critical times of the field experiment and subsequently analyzed for specific items. The analyses of the radar data for the AVE/VAS experiment provided statistically significant values for each of the 10 Km by 10 Km grids within radar range. The resulting information for correlation with satellite data included the following derived items that were averaged for each grid area: (1) rainfall rate in mm/hr; (2) dBZ (reflectivity) values; (3) accumulated rainfall values per hour; (4) accumulated rainfall values for a 6-hour period; (5) vertically integrated liquid water content per square meter; and (6) vertical height of the radar axis at the midpoint of each grid. Additional products derived from radar data are being investigated. An example of one such product is the derivation of the errors in integrated rainfall with different sampling periods. This is of significance for correlation with satellite data in that normally a step-function type of rainfall rate is used to derive the total rainfall over a period.

  4. Advanced ground-penetrating radar for digital soil mapping

    NASA Astrophysics Data System (ADS)

    Lambot, S.; Minet, J.; Jadoon, K. Z.; Slob, E.; Vereecken, H.

    2009-04-01

    Sustainable and optimal agricultural and environmental management of water and land resources particularly relies on the description and understanding of soil water distribution and dynamics at different scales. We present an advanced ground penetrating radar (GPR) method for mapping the shallow soil water content and unsaturated hydraulic properties at the field scale. The radar system is based on vector network analyzer technology, for which calibration is simple and constitutes an international standard. A directive horn antenna is used as both transmitter and receiver and operates off the ground. A full-waveform model describes accurately the radar signal, and is based on a linear system of complex transfer functions for efficiently describing electromagnetic phenomena within the antenna and its interaction with soil, and a specific solution of the three-dimensional Maxwell's equations for wave propagation in multilayered media. The soil electromagnetic properties and their vertical distribution are estimated by resorting to full-waveform inverse modeling using iterative global optimization methods. The proposed methodology has been validated for a series of model configurations of increasing complexity. The method is now routinely used for real-time mapping of soil surface water content and reconstruct a few number of shallow soil layers. For more complex configurations, it is necessary to regularize the inverse problem. We have shown that constraining radar data inversion using soil hydrodynamic modeling has the potential to reconstruct time-lapse, continuously variable, vertical soil water content profiles and identify the shallow unsaturated hydraulic properties. The proposed approach shows great promise for quantitative imaging of the soil properties at the field scale. The technique will be combined with electromagnetic induction in a mechanistic data fusion framework to further extend its capabilities in a digital soil mapping context.

  5. Use of meteorological radar to estimate leaf wetness as data input for application of territorial epidemiological model (downy mildew—Plasmopara viticola)

    NASA Astrophysics Data System (ADS)

    Cicogna, A.; Dietrich, S.; Gani, M.; Giovanardi, R.; Sandra, M.

    The grapevine downy mildew ( Plasmopara viticola) represents the most important disease of the grapevine in Friuli-Venezia Giulia Region (Italy). The development of this disease depends from the meteorological conditions and particularly by air humidity, rain and leaf wetness (LW here after). Forecast models can help the technicians of the extension services to predict the timing and the best technique to use in operative programs. Unfortunately these models require data, coming from meteorological stations which are often variable in space (e.g. rain, leaf wetness) and hardly spatializable. In the first part of this work, a case study is presented to show the great difference between maps of daily rain duration, obtained by radar, and those created by spatialization of data and obtained by weather stations. Then the possibility to use the radar rain maps appears very interesting to estimate LW over a large area. LW and daily rain measurements, obtained by 14 weather stations of Friuli-Venezia Giulia plain (Italy), are compared with rain maps obtained by polarimetric radar GPM-500 placed in Fossalon di Grado (Friuli-Venezia Giulia, Italy). The reference measurements are made during two periods: from 1/4/2000 to 30/9/2000 and from 1/4/2001 to 30/9/2001. From radar maps rain measurements estimated are extracted above each weather station and these data are integrated for every hour. These radar data of hourly rain are compared to the corresponding measurementes of LW and rain obtained by weather stations. From this analysis it appears that there is a good correlation between the number of rain hours estimated by radar and the number of LW hours measured by stations: in the observed cases, the error found is lower than 2%; then radar has a good precision to estimate LW due to rain. Therefore the use of Radar is foretold to give meteorological inputs in simulation models that can work to evaluate the development of fungal diseases. In the second part a model to daily

  6. Coordinated study of scintillations recorded by Chinese FY-2 geostationary meteorological satellite and VHF coherent radar observations over south china

    NASA Astrophysics Data System (ADS)

    Zuo, Xiaomin; Yu, Tao; Xia, Chunliang; Huang, Jiang; Xu, Jie

    2016-09-01

    The first scintillation observations of Chinese FY-2 geostationary meteorological satellite (86.5°E) observed at Guangzhou (23.2°N, 113.3°E, dip 18°N) and simultaneous VHF (47.5 MHz) coherent radar measurements from Sanya (18.3°N, 109.6°E, dip 13°N) during equinoctial months of 2011 and 2012 have been presented here. The observations are used for a coordinated study for the relationship between the L-band scintillation patches on the propagation path of FY-2 satellite and the extended 3-m irregularity structures known as plumes over South China. The statistical results showed that the plumes and the scintillation patches have nearly a one-to-one correspondence. In case study, the zonal drift velocity of the irregularities was estimated by comparison of the onset times of the scintillation and plume and the irregularities were found to drift eastwards at a speed ranging about tens of meters to one hundred meters per second. From the derived value of drift speed and duration of scintillation events, the irregularity patches were found to have east-west extent about a few hundred kilometers. On the other hand, the scintillation did not always occur following the appearance of plume which might be due to the associated irregularities occurring at lower altitudes failing to reach the region of the ionosphere through which the satellite to ground link passes. In addition, weak scintillations were observed on FY-2 link without any plume structure on radar backscatter maps occasionally.

  7. Advances in systems for interactive processing and display of meteorological data

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1983-01-01

    Advances in systems for interactive processing and display of meteorological data are reviewed, with particular attention given to developments in hardware and software, meteorological data base, analysis and display, and systems availability. These developments include inexpensive minicomputers which give the user almost instantaneous results for many types of jobs; image terminals with the capability to enhance, quantify, animate, and compare image and graphical data; accessibility of a large meteorological data base and the capability of merging different types of data; and sophisticated analysis and multidimensional display techniques. Critical problems still to be solved include getting quick access to historical and real time data bases from any system and making it easy to transport software from one system to another.

  8. Impact of mesoscale meteorological processes on anomalous radar propagation conditions over the northern Adriatic area

    NASA Astrophysics Data System (ADS)

    Telišman Prtenjak, Maja; Horvat, Igor; Tomažić, Igor; Kvakić, Marko; Viher, Mladen; Grisogono, Branko

    2015-09-01

    The impact of mesoscale structures on the occurrence of anomalous propagation (AP) conditions for radio waves, including ducts, superrefractive, and subrefractive conditions, was studied. The chosen meteorological situations are the bora wind and the sporadic sea/land breeze (SB/LB) during three selected cases over a large portion of the northern Adriatic. For this purpose, we used available radio soundings and numerical mesoscale model simulations (of real cases and their sensitivity tests) at a horizontal resolution of 1.5 km and 81 vertical levels. The model simulated the occurrences of AP conditions satisfactorily, although their intensities and frequency were underestimated at times. Certain difficulties appeared in reproducing the vertical profile of the modified refractive index, which is mainly dependent on the accuracy of the modeled humidity. The spatial distributions of summer AP conditions reveal that the surface layer above the sea (roughly between 30 and 100 m asl) is often covered by superrefractive conditions and ducts. The SB is highly associated with the formations of AP conditions: (i) in the first 100 m asl, where trapping and superrefractive conditions form because of the advection of cold and moist air, and (ii) inside the transition layer between the SB body and the elevated return flow in the form of subrefractive conditions. When deep convection occurs, all three types of AP conditions are caused by the downdraft beneath the cumulonimbus cloud base in its mature phase that creates smaller but marked pools of cold and dry air. The bora wind usually creates a pattern of AP conditions associated with the hydraulic jump and influences distribution of AP conditions over the sea surface.

  9. Advances in Reservoir Monitoring Using High Resolution Radar Imagery

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.; Ferretti, A.; Novali, F.; Tamburini, A.; Fumagalli, A.; Rucci, A.; Falorni, G.

    2009-12-01

    Surface deformation monitoring provides unique data for observing and measuring the performance of producing hydrocarbon reservoirs, for Enhanced Oil Recovery (EOR) and for Carbon Dioxide Capture and Storage (CCS). To this aim, radar interferometry (InSAR) and, in particular, multi-interferogram Permanent Scatterer (PS) techniques are innovative, valuable and cost-effective tools. Depending on reservoir characteristics and depth, oil or gas production can induce surface subsidence or, in the cases of EOR and CCS, ground heave, potentially triggering fault reactivation and in some cases threatening well integrity. Mapping the surface effects of fault reactivation, due to either fluid extraction or injection, usually requires the availability of hundreds of measurement points per square km with millimeter-level precision, which is time consuming and expensive to obtain using traditional monitoring techniques, but can be readily obtained with InSAR data. Moreover, more advanced InSAR techniques developed in the last decade are capable of providing millimeter precision, comparable to optical leveling, and a high spatial density of displacement measurements, over long periods of time without need of installing equipment or otherwise accessing the study area. Until recently, a limitation to the application of InSAR was the relatively long revisiting time (24 or 35 days) of the previous generation of C-band satellites (ERS1-2, Envisat, Radarsat). However, a new generation of X-band radar satellites (TerraSAR-X and the COSMO-SkyMed constellation), which have been operational since 2008, are providing significant improvements. TerraSAR-X has a repeat cycle of 11 days while the two sensors of the COSMO-SkyMed constellation have an effective repeat cycle of just 8 days (the third sensor has already been successfully launched and is presently in the calibration phase). With the launch of the fourth satellite of the constellation, COSMO-SkyMed will have a revisiting time of

  10. Advanced meteor wind observations using meteor and MST radars

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Aso, T.; Hall, C.; Nakamura, T.; Sato, K.; Sato, T.

    A few topics from recent developments of radio meteor observation techniques are presented The Nippon Norway Tromsoe Meteor Radar NTMR has been in continuous operation since November 2003 in Tromsoe 69N One of the major advantages of the present meteor radar is its high echo rate 6000-20000 echoes a day despite the relatively small transmitting power 7 5kW peak From ambipolar diffusion coefficients we have successfully extracted atmospheric temperature fluctuations due to gravity waves assuming the Boussinesq approximation The time and height resolutions of horizontal winds and temperature fluctuations at the altitude of 90 km are 1 hour and 2km high enough for the study of gravity waves with a period longer than a few hours Horizontal propagation characteristics of gravity waves are further studied using a theoretical phase relation between the wind and temperature fluctuations MST radars in the VHF band have a great potential in meteor echo observations due to their high transmitting power The meteor measurement can be conducted throughout a day and complement the turbulent echo measurement in the mesosphere which is limited to daylight hours only The MU radar of Kyoto University is one of those radars and has been successfully applied to meteor studies by utilizing its very high versatility The MU radar was recently renewed Its signal processing unit is up-graded from a 4 analog receiver system to a 25 digital receiver system In the present study we try to improve the MU radar meteor measurement

  11. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

  12. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  13. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    SciTech Connect

    Raynal, Ann Marie; Hensley, William Heydon,; Burns, Bryan L.; Doerry, Armin Walter

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  14. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  15. Using the Scientific Python ecosystem to advance open radar science

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Helmus, J.

    2015-12-01

    The choice of a programming language or environment is rarely made with consideration of its benefits and disadvantages. Often it is something inherited from mentor or enforced by an institution. Python, developed as a "hobby" programming project, has seen increased migration of users from more traditional domain specific environments. This presentation charts our own journey in using the scientific python ecosystem, first as users and then as the developers of a community based toolkit for working with weather radar data, the Python ARM Radar Toolkit, Py-ART. We will highlight how a data model driven design approach can extend the usefulness and reusability of code and act as a bridge between amorphous mathematical algorithms and domain specific data. Finally we will showcase how Python and Py-ART can be used on clusters to tackle pleasantly parallel problems like deriving climatologies swiftly, painlessly and most importantly: reproducibly.

  16. Telescope performance near local midnight for the Japanese Advanced Meteorological Imager (JAMI)

    NASA Astrophysics Data System (ADS)

    Pavlov, Milutin M.; Bell, James L., Jr.; Hurt, W. Todd; Jacoby, Michael; Shreckengost, Belinda; Ravela, Russ; Schwarz, Mark A.

    2005-01-01

    Raytheon's Santa Barbara Remote Sensing (SBRS) division designed and built the MTSAT-1R Japanese Advanced Meteorological Imager for the Japanese Ministry of Transport between March, 1999 and July, 2002. In order to meet the stressing requirements of a geosynchronous orbit, a combination of structural, thermal, and optical (STOP) analyses were used to design and optimize the beryllium three-mirror anastigmat (TMA) telescope. This modeling approach was used to characterize and minimize the thermal distortion around local midnight. On-orbit temperatures and structural deformations were predicted using thermal Desktop/SINDA and PATRAN/NASTRAN software, respectively. The resulting optical performance was evaluated using Raytheon developed HEXAGON software. The telescope design was successfully optimized to attain specified visible channel performance for most of the 24 hour orbit.

  17. Ultrawideband radar target discrimination utilizing an advanced feature set

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Kapoor, Ravinder; Wong, David C.; Sichina, Jeffrey

    1998-09-01

    The Army Research Laboratory, as part of its mission-funded applied research program, has been evaluating the utility of a low-frequency, ultra wideband imaging radar to detect tactical vehicles concealed by foliage. Measurement programs conducted at Aberdeen Proving Grounds and elsewhere have yielded a significant and unique database of extremely wideband and (in some cases) fully polarimetric data. Prior work has concentrated on developing computationally efficient methods to quickly canvass large quantities of data to identify likely target occurrences--often called `prescreening.' This paper reviews recent findings from our phenomenology/detection efforts. Included is a reformulated prescreener that has been trained and tested against a significantly larger data set than was used in the prior work. Also discussed are initial efforts aimed at the discrimination of targets from the difficult clutter remaining after prescreening. Performance assessments are included that detail detection rates versus false alarm levels.

  18. Advanced application flight experiment breadboard pulse compression radar altimeter program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.

  19. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  20. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J., II

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  1. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  2. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report

    NASA Technical Reports Server (NTRS)

    Heffner, Robert

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.

  3. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  4. Vensis: Venus Advanced Radar For Subsurface And Ionosphere Sounding

    NASA Astrophysics Data System (ADS)

    Biccari, D.; Gurnett, D.; Jordan, R.; Huff, R.; Marinangeli, L.; Nielsen, E.; Ori, G. G.; Picardi, G.; Plaut, J.; Provvedi, F.; Seu, R.; Zampolini, E.

    Due to optically opaque atmosphere of Venus radar is the best way to observe the surface of the planet from orbit. Magellan has obtained global SAR imaging, as well as altimetry and emissivity. As a subsurface sounder, working at low frequency and preferably in the night time, VENSIS would obtain fundamentally different kinds of geologic information than Magellan, mapping of interfaces of geologic units (e.g. tessera, plains, lava flows, impact debris) could in fact be extended into the third di- mension. A subsurface investigation of the first 1-2 Km will show the internal defor- mations of the Venusian surface and will depict the structural styles of old crust which are essential to define the crust dynamics, an improved understanding of the evolu- tion of complex Venusian features is a key to define the geological evolution of the planet. Furthermore in standard subsurface sounding mode VENSIS will be able to transmit four different bandwidth, so the possibility of multi frequency observations will allow the estimate of the material attenuation in the crust and will give significant indications on the dielectric properties of the detected interfaces. Thus the Primary Scientific Objectives of VENSIS are the following: 1-Characterize surface roughness, composition and electrical properties at long wavelengths (orders of magnitude longer than Magellan) 2-Probe the subsurface of Venus (to few km depth) to detect and map geologic materials and large scale structures at planetary level VENSIS sounder, using active sounding in a frequency range of 100 kHz to 7 MHz, would also allow detailed characterization of the Venus ionosphere while in passive mode it can be used to detect lightning, the presence of which remains both controversial and critical to understand the behavior of the atmosphere and the possibility of present day volcanism. Therefore a secondary objective is to Probe the ionosphere to characterize interactions between the solar wind and the Venusian

  5. High resolution system for upper air (troposphere) wind and temperature profile measurements. [meteorological radar/Jimsphere system

    NASA Technical Reports Server (NTRS)

    Camp, D. W.; Vaughan, W. W.

    1973-01-01

    The Jimsphere/Jimsonde system is described and some possible applications of the system for air-sea interface measurements are presented. As space vehicles became larger and more sophisticated, an improved method for obtaining wind profile data had to be found. To satisfy this need the FPS-16 radar/Jimsphere system was developed. The Jimsphere is an aluminized mylar spherical balloon, two meters in diameter. The balloon is under superpressure, and is tracked with a high precision radar system. The development of this detailed wind profile system was started in 1963, and the present design was established in 1964. To improve the system, a program was initiated in 1965 to obtain high resolution temperature data simultaneously with the wind profile data.

  6. Backscattering by nonspherical hydrometeors as calculated by the coupled-dipole method - An application in radar meteorology

    NASA Technical Reports Server (NTRS)

    Dungey, Clifton E.; Bohren, Craig F.

    1993-01-01

    The severest test of a theory of scattering by particles is how well it calculates scattering in the backward direction. The coupled-dipole method can be used for accurately calculating backscattering at 94 GHz by hexagonal ice crystals. Backscattering by columns is markedly different from that by plates, which indicates that it might be possible to infer size and shape distributions of ice crystals using recently developed millimeter wave radar.

  7. Advanced Precipitation Radar Antenna to Measure Rainfall From Space

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen

    2008-01-01

    To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds

  8. Doppler radar observations of the evolution of a small convective storm during Cohmex. [Cooperative Huntsville Meteorological Experiment

    NASA Technical Reports Server (NTRS)

    Moore, Patrick D.; Ray, Peter S.

    1989-01-01

    Doppler radar observations of a deep convection that developed along the Alabama-Tennesse border on July 14, 1986 are analyzed. The evolution and structure of the convective storm are examined. Two convective cores are observed and both having a radius of about 1 km and maximum reflectivities of about 5 dBz; a third cell is also detected later in the region between the northern and southern cells. It is noted that the northern cell is the most dominant possessing an updraft through the region of maximum reflectivity. Diagrams of the vertical structure of the cells are provided.

  9. Detection of landmines and UXO using advanced synthetic aperture radar technology

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Dill, Stephan; Heinzel, Andreas; Bischeltsrieder, Florian

    2016-05-01

    A main problem of effective landmine and UXO decontamination is efficient and reliable detection and localization of suspicious objects in reasonable time. This requirement demands for fast sensors investigating large areas with sufficient spatial resolution and sensitivity. Ground penetrating radar (GPR) is a suitable tool and is considered as a complementing sensor since nearly two decades. However, most GPRs operate in very close distance to ground in a rather punctual method of operation. In contrast, synthetic aperture radar (SAR) is a technique allowing fast and laminar stand-off investigation of an area. TIRAMI-SAR is imaging radar at lower microwaves for fast close-in detection of buried and unburied objects on a larger area. This allows efficient confirmation of a threat by investigating such regions of detection by other sensors. For proper object detection sufficient spatial resolution is required. Hence the SAR principle is applied. SAR for landmine/UXO detection can be applied by side-looking radar moved on safe ground along the area of interest, being typically the un-safe ground. Additionally, reliable detection of buried and unburied objects requires sufficient suppression of background clutter. For that purpose TIRAMI-SAR is using several antennas in multi-static configuration and wave polarization together with advanced SAR processing. The advantages and necessity of a multi-static antenna configuration for this kind of GPR approach is illustrated in the paper.

  10. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    NASA Astrophysics Data System (ADS)

    Majurec, Ninoslav

    In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to

  11. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  12. Atmospheric Phenomena Observed Over The South China Sea By The Advanced Synthetic Aperture Radar Onboard the ENVISAT Satellite

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Huang, Weigen; Chan, Pak Wai; Wong, Wai Kin; Cheng, Cho Ming; Mouche, Alexis

    2010-10-01

    Atmospheric phenomena often leave fingerprints on the sea surface, which are detectable by synthetic aperture radar (SAR). Here we present some representative examples of SAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the Envisat satellite over the South China Sea (SCS) which show radar signatures of atmospheric gravity waves (AGWs) and of coastal wind fields. On SAR images of the SCS also often radar signatures of oceanic internal waves (OIWs) are visible which have similar spatial scales as the ones originating from AGWs. Therefore we first present criteria how to distinguish between them by analyzing the structure of the radar signatures. Then we present two examples of ASAR images which show radar signatures of AGWs over the SCS. Furthermore, we present a SAR image showing radar signatures of a northerly Winter Monsoon surge event over the coastal area south of Hong Kong and compare it with a cloud image and a weather radar image. From the ASAR image we retrieve the near-surface wind field and compare it with the wind field simulated by the AIR model of the Hong Kong Observatory. The comparison shows that the AIR model can simulate quite well the wind speed as well as the position and shape of the frontal line measured by ASAR.

  13. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Jasper, Karsten; Gurtz, Joachim; Lang, Herbert

    2002-10-01

    Flood forecasting may be improved by coupling atmospheric and hydrological models. To investigate the current potential of such an approach in complex mountain watersheds, the authors carried out a number of combined high-resolution one-way driven model experiments to generate runoff hydrographs for seven extreme flood events which occurred in the Lago Maggiore basin between 1993 and 2000. The Alpine Ticino-Verzasca-Maggia basin (2627 km 2) is located directly to the south of the main Alpine ridge embracing a great part of the drainage area of Lago Maggiore. For this basin, the grid-based hydrological catchment model WaSiM-ETH was employed to determine the continuous runoff hydrographs. In the model experiments, two different sets of meteorological input data were used: (1) surface observation data from station measurements and from weather radar, and (2) forecast data from five different high-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km. This paper presents and compares selected results of these flood runoff simulations with particular attention to the experimental design of the model coupling. The configuration and initialization of the hydrological model runs are outlined as well as the down-scale techniques which proved to provide an adequate spatial interpolation of the meteorological variables onto the 500 m×500 m grid of the hydrological model. In order to evaluate the various hydrological model results as generated from the different outputs from the five NWP models, some coupled experiments with 'non-standard' NWP model outputs have been carried out. In particular, the results of these sensitivity studies point to inherent limits of high-resolution flood runoff predictions in complex mountain terrain.

  14. Examination on accuracy of the radar rainfall estimated by using Korean dual-pol radar rainfall estimation algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Jungsoo; Choi, Dayoung; Suk, Mi-Kyung; Nam, Kyung-Yeub; Lee, Sangmi; Ko, Jeong-Seok

    2016-04-01

    Weather Radar Center (WRC) in Korea Meteorological Administration (KMA) have tried to improve the accuracy of the radar rainfall. WRC introduced Radar-AWS Rainrate (RAR) algorithm in 2001 to quantitatively improve the accuracy of the radar rainfall. Whereafter, RAR algorithm have been advanced and still used to estimate the radar rainfall. WRC has developed Korean dual-pol radar rainfall estimation algorithm from 2014 when the project of constructing the dual-pol radar network was initiated. WRC therefore suggested first Korean dual-pol radar rainfall estimation equations (R(Z), R(Z, ZDR), R(ZDR, KDP), and R(KDP)) in 2014 and developed the equations in 2015. Since WRC just suggested each equation, it needs to algorithmize the equations. This study suggested Korean dual-pol radar rainfall estimation algorithm and examined on the accuracy of the radar rainfall estimated by the algorithm. The radar measurements obtained by dual-pol radars (BRI, BSL, and SBS) which were introduced in 2015 were used.

  15. Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Liao, Jingjuan; Shen, Guozhuang; Dong, Lei

    2013-01-01

    Biomass estimation of wetlands plays a role in understanding dynamic changes of the wetland ecosystem. Poyang Lake is the largest freshwater lake in China, with an area of about 3000 km2. The lake's wetland ecosystem has a significant impact on leveraging China's environmental change. Synthetic aperture radar (SAR) data are a good choice for biomass estimation during rainy and dry seasons in this region. In this paper, we discuss the neural network algorithms (NNAs) to retrieve wetland biomass using the alternating-polarization ENVISAT advanced synthetic aperture radar (ASAR) data. Two field measurements were carried out coinciding with the satellite overpasses through the hydrological cycle in April to November. A radiative transfer model of forest canopy, the Michigan Microwave Canopy Scattering (MIMICS) model, was modified to fit to herbaceous wetland ecosystems. With both ASAR and MIMICS simulations as input data, the NNA-estimated biomass was validated with ground-measured data. This study indicates the capability of NNA combined with a modified MIMICS model to retrieve wetland biomass from SAR imagery. Finally, the overall biomass of Poyang Lake wetland vegetation has been estimated. It reached a level of 1.09×109, 1.86×108, and 9.87×108 kg in April, July, and November 2007, respectively.

  16. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  17. Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: A summary

    NASA Astrophysics Data System (ADS)

    Orosei, R.; Jordan, R. L.; Morgan, D. D.; Cartacci, M.; Cicchetti, A.; Duru, F.; Gurnett, D. A.; Heggy, E.; Kirchner, D. L.; Noschese, R.; Kofman, W.; Masdea, A.; Plaut, J. J.; Seu, R.; Watters, T. R.; Picardi, G.

    2015-07-01

    Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian-US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder, transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes. The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS) data are processed on board by stacking together a batch of echoes acquired at the same frequency. On ground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS) data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one. The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of ≈ 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could

  18. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  19. A Low-order Coupled Chemistry Meteorology Model for Testing Online and Offline Advanced Data Assimilation Schemes

    NASA Astrophysics Data System (ADS)

    Bocquet, M.; Haussaire, J. M.

    2015-12-01

    Bocquet and Sakov have recently introduced a low-order model based on the coupling of thechaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with thetransport of a tracer species advected by this wind field. It has been used to testadvanced data assimilation methods with an online model that couples meteorology andtracer transport. In the present study, the tracer subsystem of the model is replacedwith a reduced photochemistry module meant to emulate reactive air pollution. Thiscoupled chemistry meteorology model, the L95-GRS model, mimics continental andtranscontinental transport and photochemistry of ozone, volatile organic compounds andnitrogen dioxides.The L95-GRS is specially useful in testing advanced data assimilation schemes, such as theiterative ensemble Kalman smoother (IEnKS) that combines the best of ensemble andvariational methods. The model provides useful insights prior to any implementation ofthe data assimilation method on larger models. For instance, online and offline dataassimilation strategies based on the ensemble Kalman filter or the IEnKS can easily beevaluated with it. It allows to document the impact of species concentration observationson the wind estimation. The model also illustrates a long standing issue in atmosphericchemistry forecasting: the impact of the wind chaotic dynamics and of the chemical speciesnon-chaotic but highly nonlinear dynamics on the selected data assimilation approach.

  20. Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Lam-Dao, Nguyen; Le Toan, Thuy; Apan, Armando; Bouvet, Alexandre; Young, Frank; Le-van, Trung

    2009-11-01

    Changes in rice cultivation systems have been observed in the Mekong River Delta, Vietnam. Among the changes in cultural practices, the change from transplanting to direct sowing, the use of water-saving technology, and the use of high production method could have impacts on radar remote sensing methods previously developed for rice monitoring. Using Envisat (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) data over the province of An Giang, this study showed that the radar backscattering behaviour is much different from that of the reported traditional rice. At the early stage of the season, direct sowing on fields with rough and wet soil surface provides very high backscatter values for HH (Horizontal transmit - Horizontal receive polarisation) and VV (Vertical transmit - Vertical receive polarisation) data, as a contrast compared to the very low backscatter of fields covered with water before emergence. The temporal increase of the backscatter is therefore not observed clearly over direct sowing fields. Hence, the use of the intensity temporal change as a rice classifier proposed previously may not apply. Due to the drainage that occurs during the season, HH, VV and HH/VV are not strongly related to biomass, in contrast with past results. However, HH/VV ratio could be used to derive the rice/non-rice classification algorithm for all conditions of rice fields in the test province. The mapping results using the HH/VV polarization ratio at a single date in the middle period of the rice season were assessed using statistical data at different districts in the province, where very high accuracy was found. The method can be applied to other regions, provided that the synthetic aperture radar data are acquired during the peak period of the rice season, and that few training fields provide adjusted threshold values used in the method.

  1. Design and analysis of a beryllium three-mirror anastigmat telescope for the Japanese Advanced Meteorological Imager (JAMI)

    NASA Astrophysics Data System (ADS)

    Bell, James L., Jr.; Pavlov, Milutin M.

    2005-01-01

    Raytheon's Santa Barbara Remote Sensing facility in Goleta, California designed and built an advanced meteorological imager for the Japanese Ministry of Transport between March, 2000 and July, 2002 for MTSAT-1R. One of the most stressing requirements is visible band image quality near local midnight. The 30 month program schedule forced the design team to make key decisions about the telescope design based on very preliminary analyses. Subsequent detailed analyses revealed that thermal distortions in the beryllium three-mirror anastigmat telescope would cause unacceptable performance degradation during much of the orbit. Through careful thermal, structural, and optical (STOP) analysis, the design team was able to optimize the designs of the telescope and thermal control system while meeting the challenging procurement schedule for the telescope.

  2. Accurate Characterization of Winter Precipitation Using In-Situ Instrumentation, CSU-CHILL Radar, and Advanced Scattering Methods

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Notaros, B. M.; Bringi, V. N.; Kleinkort, C.; Huang, G. J.; Kennedy, P.; Thurai, M.

    2015-12-01

    We present a novel approach to remote sensing and characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced in-situ instrumentation for microphysical and geometrical measurements of ice and snow particles, image processing methodology to reconstruct complex particle three-dimensional (3D) shapes, computational electromagnetics to analyze realistic precipitation scattering, and state-of-the-art polarimetric radar. Our in-situ measurement site at the Easton Valley View Airport, La Salle, Colorado, shown in the figure, consists of two advanced optical imaging disdrometers within a 2/3-scaled double fence intercomparison reference wind shield, and also includes PLUVIO snow measuring gauge, VAISALA weather station, and collocated NCAR GPS advanced upper-air system sounding system. Our primary radar is the CSU-CHILL radar, with a dual-offset Gregorian antenna featuring very high polarization purity and excellent side-lobe performance in any plane, and the in-situ instrumentation site being very conveniently located at a range of 12.92 km from the radar. A multi-angle snowflake camera (MASC) is used to capture multiple different high-resolution views of an ice particle in free-fall, along with its fall speed. We apply a visual hull geometrical method for reconstruction of 3D shapes of particles based on the images collected by the MASC, and convert these shapes into models for computational electromagnetic scattering analysis, using a higher order method of moments. A two-dimensional video disdrometer (2DVD), collocated with the MASC, provides 2D contours of a hydrometeor, along with the fall speed and other important parameters. We use the fall speed from the MASC and the 2DVD, along with state parameters measured at the Easton site, to estimate the particle mass (Böhm's method), and then the dielectric constant of particles, based on a Maxwell-Garnet formula. By calculation of the "particle-by-particle" scattering

  3. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.

  4. Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Plaut, J. J.; Aharonson, O.; Safaeinili, A.

    2010-09-01

    An investigation of the internal structure of the ice-rich Planum Boreum (PB) deposit at the north pole of Mars is presented, using 178 orbits of Mars advanced radar for subsurface and ionospheric sounding data. For each radargram, bright, laterally extensive surface and subsurface reflectors are identified and the time delay between them is converted to unit thicknesses, using a real dielectric constant of 3. Results include maps of unit thickness, for PB and its two constituent units, the stratigraphically older basal unit (BU) and the stratigraphically younger north polar layered deposits (NPLD). Maps of the individual units' surface elevation are also provided. Estimates of water ice volume in each unit are (1.3 ± 0.2) × 106 km3 in PB, (7.8 ± 1.2) × 105 km3 in the NPLD, and (4.5 ± 1.0) × 105 km3 in the BU. No lithospheric deflection is apparent under PB, in agreement with previous findings for only the Gemina Lingula lobe, which suggests that a thick elastic lithosphere has existed at the north pole of Mars since before the emplacement of the BU. The extent of BU material in the Olympia Planum lobe of PB is directly detected, providing a more accurate map of BU extent than previously available from imagery and topography. A problematic area for mapping the BU extent and thickness is in the distal portion of the 290°E-300°E region, where MARSIS data show no subsurface reflectors, even though the BU is inferred to be present from other lines of evidence.

  5. An overview of current and advanced processing techniques for surveillance radar

    NASA Astrophysics Data System (ADS)

    Farina, A.; Galati, G.

    An evaluation is made of current and prospective signal processing techniques for air defense and surveillance radars, giving attention to surveillance performance-enhancement requirements, signal coding, and anticlutter and ECCM techniques for three-dimensional radars. Novel concepts and techniques anticipated for future application encompass low probability of intercept features, anti-ARM, and antistealth capabilities, digital beam forming, adaptivity, high resolution multidimensional processing, and target classification.

  6. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela

    2007-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study

  7. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  8. Overview of the Greater Lyon weather radar advances from 90's to 2008

    NASA Astrophysics Data System (ADS)

    Renard, F.; Comby, J.

    2010-03-01

    The local weather radar of Lyon, part of the Aramis network of Meteo-France, is currently located 40 km from the urban community. The measurement quality of this tool is subjected to constant improvements from Meteo-France. Indeed, its hydrological measurement quality has steadily evolved from the early 90's until today. This article, therefore, proposes a return on these innovations, assessing measurement quality over the territory of Greater Lyon. This study is based on two successive radar locations, and also on raw reflectivity data and on rain accumulation over the past 15 min (Hydram) or 5 min (Panthere). The measurement performed on the site Satolas was unsatisfactory because of too many ground clutters; and therefore the radar was moved to Saint-Nizier. This new location associated with radar Hydram rain accumulation has reduced the problem of ground clutters. These rain accumulation data have given correct results in comparison with local data of the raingauge network of Greater Lyon, after a global and spatially uniform correction, based on these gauges. The latest generation of radar rain accumulation (Panthere) has, nearly completely, eliminated the problem of ground clutter in the urban area and provides very satisfactory measurements, especially during intense rain events.

  9. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The multidisciplinary studies explore and evaluate the impact of the meteorological satellite and the concomitant impact of the data derived from it on various user groups. As expected, the primary impact related to those who would use satellite data for weather prediction and related purposes. A secondary impact was in the area of international concerns where GARP and other international meteorological activities were affected and international law was developed. A tertiary impact was exemplified by satellite photographs utilized in advertisements and related materials. The case studies, supporting studies, and independent studies all emphasize the potential of the meteorological satellite.

  10. Motivational Meteorology.

    ERIC Educational Resources Information Center

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  11. Remote sensing of the evaporation duct using an X-band radar

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1992-02-01

    Results from a unique analytical and measurement effort to assess low-altitude short-range radar detection capabilities in an evaporation ducting environment are presented. Although the measurement effort is ongoing, current results for unstable conditions validate propagation model predictions of reduced radar detection ranges within the radio horizon. In addition, discrepancies between measured and predicted radar data demand a close examination of both meteorological data and surface layer theory. At ranges near and beyond the horizon, radar detection capabilities crucially depend both on the surface layer refractivity profile and on the refractivity profile determined from upper-air observation. An empirical model to merge the surface layer with the mixed layer is discussed. Other discrepancies, which are thought to be caused either by inadequate surface layer modeling or by inadequate surface layer meteorological measurements, suggest the need for an improved surface layer model. Remote sensing of the evaporation duct by radar measurements is not a viable tactical tool. However, the combination of direct surface and upper-air meteorological measurements with remotely sensed radar measurements and with advanced numerical modeling capabilities does provide valuable insight for a better understanding of the atmospheric surface layer and its effects on low-altitude short-range radar detection.

  12. Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement

    NASA Technical Reports Server (NTRS)

    Short, David

    2008-01-01

    The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

  13. FACILITATING ADVANCED URBAN METEOROLOGY AND AIR QUALITY MODELING CAPABILITIES WITH HIGH RESOLUTION URBAN DATABASE AND ACCESS PORTAL TOOLS

    EPA Science Inventory

    Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...

  14. Advanced system model for 1574-nm imaging, scannerless, eye-safe laser radar

    NASA Astrophysics Data System (ADS)

    Schael, Ulrich; Rothe, Hendrik

    2002-10-01

    Laser radar based on gated viewing uses narrow laser pulses to illuminate a whole scene for direct (incoherent) detection. Due to the time of flight principle and a very fast shutter with precisely controlled delay time, only light reflected in the range R (range slice ΔR) is detected by a camera. Scattered light which reaches the shutter outside a given exposure time (gate) is suppressed. Hence, it is possible to "look" along the optical axis through changing atmospheric transmissions (rain, haze, fog, snow). For each laser pulse, the grey value image ES(x,y) of the camera is captured by a framegrabber for subsequent evaluation. Image sequences from these laser radar systems are ideally suited to recognize objects, because of the automatic contrast generation of the technology. Difficult object recognition problems, detection, target tracking, or obstacle avoidance at bad weather conditions are favorite applications. In this paper we discuss improvements in the system modelling and simulation of our laser radar system. Formerly the system performance was calculated for the whole system using the signal-to-noise ratio (SNR), leading to a general estimation of the maximum range of target detection. Changing to a pixel oriented approach, we are now able to study the system response for targets with arbitrary two and even three dimensional form. We take into account different kinds of target reflectivity and the Gaussian nature of the illuminating laser spot. Hence it is possible to simulate gray value images (range slices) and calculate range images. This will lead to a modulation transfer function for the system in future. Finally, the theoretical considerations are compared with experimental results from indoor measurements.

  15. Basque meteorology monthly meteorological bulletins

    NASA Astrophysics Data System (ADS)

    Hernandez, R.; Gaztelumendi, S.; Otxoa de Alda, K.; Egaña, J.; Gelpi, I. R.

    2009-09-01

    In this work we present the monthly meteorological bulletins of the Basque Meteorology Agency (EUSKALMET). This bulletin includes a monthly meteorological summary for Basque Country Area, including some statistical data, graphs and maps for relevant variables, and descriptive test of meteorological situation, including monthly summary and a description for some relevant severe weather cases. An intensive use of Basque Country Automatic Weather Station (AWS) mesonet data is made in its elaboration. The Basque Meteorology Agency has among theirs functions to serve different requests that often include some type of statistical data, the elaboration of monthly bulletins and the meteorological annual bulletin, published by the Direction of Meteorology and Climatology - Department of Transports and Civil Works - Basque Government. For the monthly meteorological summary elaboration, use of data coming from the ten-minutes AWS network available in our territory is made. In this context, ten-minutes data are used for daily and monthly data statistics. Information is presented, for an easy interpretation, using different tabular format and graphics focused on air temperature and precipitation. The monitoring of this last meteorological element is completed with maps of monthly actual precipitation and its anomalies, expressed as the departure from normal precipitation and percent of normal precipitation.

  16. MARSIS: Latest Phobos Flyby. Data Processing Results and Advanced Radar Configuration Design

    NASA Astrophysics Data System (ADS)

    Cicchetti, A.; Cartacci, M.; Gim, Y.; Giuppi, S.; Heggy, E.; Hegler, S.; Ivanov, A. B.; Nenna, C.; Noschese, R.; Orosei, R.; Plaut, J. J.; Plettemeier, D.; Seu, R.

    2011-10-01

    The multi-frequency sounding radar MARSIS has successfully observed Phobos during the latest MEX science campaign on 9 January 2011. A new data acquisition technique has been developed and implemented during this fly-by, allowing to obtain an improvement of about 10 dB in Signal to Noise Ratio (SNR) and providing high quality data. MARSIS has collected two segments of data containing 6000 individual echoes, acquired in 50 sec of operation. The detection range was 180 ÷ 230 km between MEX and the Phobos surface, while the employed frequency was 4 MHz. The ground track covered new areas not explored by previous fly-bys.

  17. Advancing migratory bird conservation and management by using radar: An interagency collaboration

    USGS Publications Warehouse

    Ruth, Janet M.; Barrow, Wylie C.; Sojda, Richard S.; Dawson, Deanna K.; Diehl, Robert H.; Manville, Albert; Green, Michael T.; Krueper, David J.; Johnston, Scott

    2005-01-01

    Many technical issues make this work difficult, including complex data structures, massive data sets, digital recognition of birds, large areas not covered by weather radar, and model validation; however, progress will only be furthered by tackling the challenge. The new coalition will meets its goals by: (1) facilitating a productive collaboration with NOAA, Department of the Interior bureaus, state wildlife agencies, universities, power companies, and other potential partners; (2) building and strengthening scientific capabilities within USGS; (3) addressing key migratory bird management issues; and (4) ensuring full funding for the collaborative effort.

  18. Radar detection of low-altitude targets in a maritime environment. Volume 1: Final analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1993-10-01

    Results from a unique analytical and measurement effort to assess low-altitude, short-range, radar detection capabilities in an evaporation ducting environment validate propagation model predictions of reduced radar detection ranges within the radio horizon. In addition, discrepancies between measured and predicted radar data demand a close examination of both meteorological data and surface layer theory. At ranges near and beyond the horizon, radar detection crucially depends both on the surface layer refractivity profile and on the adjacent mixed layer refractivity profile. A unified boundary layer model, an empirical model to merge the surface layer with the mixed layer, is described. Other discrepancies, which are thought to be caused either by inadequate surface layer modeling (perhaps the moisture stability function) or by inadequate boundary layer meteorological measurements, suggest the need for improvements in surface layer modeling and the need for new techniques to measure the refractivity structure. The combination of direct boundary layer (surface and mixed layer) meteorological measurements, remotely sensed radar measurements, and advanced numerical modeling capability provides valuable insight for a better understanding of the atmospheric boundary layer and its effects on the radar detection of low-altitude short-range targets.

  19. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  20. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Ardhuin, Fabrice; Husson, Romain; Jiang, Haoyu; Chapron, Bertrand; Collard, Fabrice

    2016-04-01

    Swells are found in all oceans and strongly influence the wave climate and air-sea processes. The poorly known swell dissipation is the largest source of error in wave forecasts and hindcasts. We use synthetic aperture radar data to identify swell sources and trajectories, allowing a statistically significant estimation of swell dissipation. We mined the entire Envisat mission 2003-2012 to find suitable storms with swells (13 < T < 18 s) that are observed several times along their propagation. This database of swell events provides a comprehensive view of swell extending previous efforts. The analysis reveals that swell dissipation weakly correlates with the wave steepness, wind speed, orbital wave velocity, and the relative direction of wind and waves. Although several negative dissipation rates are found, there are uncertainties in the synthetic aperture radar-derived swell heights and dissipation rates. An acceptable range of the swell dissipation rate is -0.1 to 6 × 10-7 m-1 with a median of 1 × 10-7 m-1.

  1. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  2. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  3. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  4. Efficient Ways to Learn Weather Radar Polarimetry

    ERIC Educational Resources Information Center

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  5. Tracking radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.

    1972-01-01

    The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.

  6. Propagation of radar rainfall uncertainty in urban flood simulations

    NASA Astrophysics Data System (ADS)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    , 2010. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surveys in Geophysics 31: 107-129. [4] Rossa A, Liechti K, Zappa M, Bruen M, Germann U, Haase G, Keil C, Krahe P, 2011. The COST 731 Action: A review on uncertainty propagation in advanced hydrometeorological forecast systems. Atmospheric Research 100, 150-167. [5] Rossa A, Bruen M, Germann U, Haase G, Keil C, Krahe P, Zappa M, 2010. Overview and Main Results on the interdisciplinary effort in flood forecasting COST 731-Propagation of Uncertainty in Advanced Meteo-Hydrological Forecast Systems. Proceedings of Sixth European Conference on Radar in Meteorology and Hydrology ERAD 2010. [6] Germann U, Berenguer M, Sempere-Torres D, Zappa M, 2009. REAL - ensemble radar precipitation estimation for hydrology in a mountainous region. Quarterly Journal of the Royal Meteorological Society 135: 445-456. [8] Bowler NEH, Pierce CE, Seed AW, 2006. STEPS: a probabilistic precipitation forecasting scheme which merges and extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society 132: 2127-2155. [9] Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmospheric Science Letters 9, 80-87. [10] Liguori S, Rico-Ramirez MA. Quantitative assessment of short-term rainfall forecasts from radar nowcasts and MM5 forecasts. Hydrological Processes, accepted article. DOI: 10.1002/hyp.8415 [11] Liguori S, Rico-Ramirez MA, Schellart ANA, Saul AJ, 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research 103: 80-95. [12] Harrison DL, Driscoll SJ, Kitchen M, 2000. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications 7: 135-144. [13] Harrison DL, Scovell RW, Kitchen

  7. Very Long Microstrip Array Feeds of a Membrane Reflector for the Advanced Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Huang, John; Rahmat-Samii, Yahya; Durden, Stephen L.; Im, Eastwood

    2005-01-01

    Very long microstrip arrays have been developed at the Ku- and Ka-band frequencies. Each array having an electrical length of about 110 free-space wavelengths is used to feed a deployable thin-membrane cylindrical reflector for a spaceborne precipitation radar application. These arrays, designed for 0(deg) and 30(deg) beam directions, achieved peak sidelobes of -20 dB and average sidelobes below -30 dB with peak cross-pol levels below -20 dB. Several unique challenges were encountered during the development of these very long arrays, such as the strong coupling between very long power divider lines, the strong leakage radiation from the lengthy transmission lines, and the lack of computer analysis capability of these electrically large arrays.

  8. Meteorology Online.

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  9. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    USGS Publications Warehouse

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.

  10. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    NASA Astrophysics Data System (ADS)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  11. Radar derived spatial statistics of summer rain. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Ronnenburg, C.; Bassnett, A.; Knapp, H.; Vann, W. A.

    1975-01-01

    A collection of selected important memoranda written during the course of the experiment. It contains detailed information on: (1) frequency diversity, (2) radar controller and radar video processor, (3) SPANDAR calibration, and (4) meteorological summaries.

  12. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  13. 1999 IEEE radar conference

    SciTech Connect

    1999-07-01

    This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

  14. Characterization of Leonid meteor head echo data collected using the VHF-UHF Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR)

    NASA Astrophysics Data System (ADS)

    Close, S.; Hunt, S. M.; McKeen, F. M.; Minardi, M. J.

    2002-02-01

    The Leonid meteor shower, which was predicted to hit storm-like activity on 17 November 1998, was observed using radar and optical sensors at the Kwajalein Missile Range in order to study potential threats to orbiting spacecraft. Meteor head echo data were collected during the predicted peak of the ``storm'' primarily using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR). ALTAIR is a dual-frequency radar at VHF (160 MHz) and UHF (422 MHz) that is uniquely suited for detecting meteor head echoes due to high sensitivity, precise calibration, and the ability to record radar data at a high rate (Gb/min). ALTAIR transmits right-circular (RC) polarized energy and records left-circular (LC) sum, RC sum, LC azimuth angle difference, and LC elevation angle difference channels; these four measurements facilitate the determination of three-dimensional target position and velocity as a function of radar cross section and time. During the predicted peak of the storm, ALTAIR detected 734 VHF head echoes in 29 min of data and 472 UHF head echoes in 17 min of data, as well as numerous specular and nonspecular ionization trails. This paper contains analysis on the head echo data, including dual-frequency statistics and the variability of head echo decelerations. We also include results from the analysis of the radius-density parameter, which shows a strong correlation with deceleration.

  15. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  16. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  17. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  18. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  19. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  20. Recent Advancements in Quantitative Full-Wavefield Electromagnetic Induction and Ground Penetrating Radar Inversion for Shallow Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Van Der Kruk, J.; Yang, X.; Klotzsche, A.; von Hebel, C.; Busch, S.; Mester, A.; Huisman, J. A.; Vereecken, H.

    2014-12-01

    Ray-based or approximate forward modeling techniques have been often used to reduce the computational demands for inversion purposes. Due to increasing computational power and possible parallelization of inversion algorithms, accurate forward modeling can be included in advanced inversion approaches such that the full-wavefield content can be exploited. Here, recent developments of large-scale quantitative electromagnetic induction (EMI) inversion and full-waveform ground penetrating radar (GPR) inversions are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches due to the use of accurate modeling tools that are based on Maxwell's equations. For a limited number of parameters, a combined global and local search using the simplex search algorithm or the shuffled complex evolution (SCE) can be used for inversion. Examples will be shown where calibrated large-scale multi-configuration EMI data measured with new generation multi-offset EMI systems are inverted for a layered electrical conductivity earth, and quantitative permittivity and conductivity values of a layered subsurface can be obtained using on-ground GPR full-waveform inversion that includes the estimation of the unknown source wavelet. For a large number of unknowns, gradient-based optimization methods are commonly used that need a good start model to prevent it from being trapped in a local minimum. Examples will be shown where the non-linearity invoked by the presence of high contrast media can be tamed by using a novel combined frequency-time-domain full-waveform inversion, and a low-velocity waveguide layer can be imaged by using crosshole GPR full-waveform inversion, after adapting the starting model using waveguide identification in the measured data. Synthetic data calculated using the inverted permittivity and conductivity models show similar amplitudes and phases as observed in the measured data, which indicates the reliability of the

  1. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  2. MST radar detection of middle atmosphere tides

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1983-01-01

    Meteorological and dynamical requirements pertaining to the specification of middle atmosphere tides by the MST radar technique are outlined. Major issues addressed include: (1) the extraction of tidal information from measurements covering a fraction of a day; (2) the ramifications of transient effects (tidal variability) on the determination and interpretation of tides; (3) required temporal and spatial resolutions and; (4) global distributions of MST radars, so as to complement existing MST, meteor wind, and partial reflection drift radar locations.

  3. Women in Meteorology.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  4. Meteorological satellites

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Meteor-2 (second generation meteorological satellite) and an experimental satellite on which instruments are being tested and modified for the requirements of hydrometeorology and a determination of natural resources are presently operational in the U.S.S.R. Television devices with a 1-10 km terrain image resolution operating in the visible and infrared region are used to determine the space system, velocity and direction of cloud movements and provide information about the snow and ice cover, cyclones, storms, vortices in the atmosphere, and velocity and direction of wind. Images with a 50-1000 m resolution make possible geological and hydrological surveys, an evaluation of the state of vegetation and crops, detection of forest fires, determination of pollution of the atmosphere and sea and determination of optimal fishing regions in the ocean. Measurement of the intensity of atmospheric radiation in narrow infrared regions and very high frequencies allows remote evaluation of the temperature and humidity distribution in the vertical cross section of the Earth's atmosphere.

  5. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern

  6. Advancing Understanding of the Role of Belowground Processes in Terrestrial Carbon Sinks trhrough Ground-Penetrating Radar. Final Report

    SciTech Connect

    Day, Frank P.

    2015-02-06

    Coarse roots play a significant role in belowground carbon cycling and will likely play an increasingly crucial role in belowground carbon sequestration as atmospheric CO2 levels continue to rise, yet they are one of the most difficult ecosystem parameters to quantify. Despite promising results with ground-penetrating radar (GPR) as a nondestructive method of quantifying biomass of coarse roots, this application of GPR is in its infancy and neither the complete potential nor limitations of the technology have been fully evaluated. The primary goals and questions of this study fell into four groups: (1) GPR methods: Can GPR detect change in root biomass over time, differentiate live roots from dead roots, differentiate between coarse roots, fine roots bundled together, and a fine root mat, remain effective with varied soil moisture, and detect shadowed roots (roots hidden below larger roots); (2) CO2 enrichment study at Kennedy Space Center in Brevard County, Florida: Are there post-fire legacy effects of CO2 fertilization on plant carbon pools following the end of CO2application ? (3) Disney Wilderness Study: What is the overall coarse root biomass and potential for belowground carbon storage in a restored longleaf pine flatwoods system? Can GPR effectively quantify coarse roots in soils that are wetter than the previous sites and that have a high percentage of saw palmetto rhizomes present? (4) Can GPR accurately represent root architecture in a three-dimensional model? When the user is familiar with the equipment and software in a setting that minimizes unsuitable conditions, GPR is a relatively precise, non-destructive, useful tool for estimating coarse root biomass. However, there are a number of cautions and guidelines that should be followed to minimize inaccuracies or situations that are untenable for GPR use. GPR appears to be precise as it routinely predicts highly similar values for a given area across multiple

  7. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  8. Advances in ice radar studies of a temperate alpine glacier, South Cascade Glacier, Washington, U.S.A.

    USGS Publications Warehouse

    Fountain, A.G.; Jacobel, R.W.

    1997-01-01

    South Cascade Glacier, Washington, U.S.A., is one of the most extensively studied glaciers in the Western Hemisphere. In addition to mass-balance measurements, which date to 1958, numerous hydrological investigations have been carried out during the last three decades, and repeated ice-thickness determinations have been made using a variety of techniques. In the late 1960s, the basal topography was initially determined by gravitimetric methods. In the mid-1970s some of the first depth measurements using radar on temperate ice were made. The basal topography was remapped soon after from a series of point radar measurements and boreholes drilled to the glacier bottom. During the 1990s, the ice thickness was remapped using digital recording of continuous profiles that obtained over 5000 ice-thickness measurements. Profiles have been corrected for the finite beamwidth of the antenna radiation pattern and reflections in steep terrain, resulting in a significantly improved depiction of the basal surface and internal structures. The map based on our recent radar profiles confirms the large-scale features of the basal topography previously depicted and reveals more structural detail. A bright reflector was detected at the base of the glacier and could be traced in adjacent profiles. Comparison with results from water-level measurements in boreholes drilled to the bed indicates that the reflector is a subglacial conduit.

  9. ARMOR Dual-Polarimetric Radar Observations of Tornadic Debris Signatures

    NASA Technical Reports Server (NTRS)

    Petersen, W. A,; Carey, L. D.; Knupp, K. R.; Schultz, C.; Johnson, E.

    2008-01-01

    During the Super-Tuesday tornado outbreak of 5-6 February 2008, two EF-4 tornadoes occurred in Northern Alabama within 75 km range of the University of Alabama in Huntsville (UAH) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). This study will present an analysis of ARMOR radar-indicated dual-polarimetric tornadic debris signatures. The debris signatures were associated with spatially-confined large decreases in the copolar correlation coefficient (rho(hv)hv) that were embedded within broader mesocyclone "hook" signatures. These debris signatures were most obviously manifest during the F-3 to F-4 intensity stages of the tornado(s) and extended to altitudes of approximately 3 km. The rho(hv) signatures of the tornadic debris were the most easily distinguished relative to other polarimetric and radial velocity parameters (e.g., associated with large hail and/or the incipient mesocyclone). Based on our analysis, and consistent with the small number of studies found in the literature, we conclude that dual-polarimetric radar data offer at least the possibility for enhancing specificity and confidence in the process of issuing tornado warnings based only on radar detection of threatening circulation features.

  10. X-band radar field campaign data analysis for orographic/warm-rain precipitation processes

    NASA Astrophysics Data System (ADS)

    Porcacchia, Leonardo; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Anagnostou, Marios N.; Anagnostou, Emmanouil N.; Bousquet, Olivier; Cheong, Boon-Leng; Maggioni, Viviana; Hong, Yang

    2016-04-01

    Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows. It is usually hard to obtain reliable weather radar information in mountainous areas, due to difficulties connected to non-meteorological scattering and the elevation of the study sites. Such regions are particularly interested by orographic/warm-rain precipitation processes, characterized by no ice phase in the cloud and prevailing concentration of small drops in the drop size distribution. Field campaigns are able to provide complete and solid datasets in mountainous regions, thanks to mobile radars and the complementary information provided by rain gauges and disdrometers. This study analyzes datasets collected during the Hymex, IPHEX, and Colorado field campaigns in mountainous areas in Italy, France, North Carolina, and Colorado. Mobile X-band radars from the NOAA National Severe Storm Laboratory and the Advanced Radar Research Center at the University of Oklahoma are utilized. The X-band dual polarimetric radar data are corrected for attenuation through the SCOP algorithm, and evaluated against disdrometer and rain-gauge data. Warm-rain events are identified by looking at the Gorgucci, Cao-Zhang, and Kumjian-Ryzhkov parameter spaces relating polarimetric radar variables to precipitation development processes in the cloud and rain size distributions. A conceptual model for the vertical profile of precipitation and microphysical structure of the cloud is also derived, to be contrasted against other typical convective and stratiform profiles.

  11. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  12. Coherence-based land cover classification in forested areas of Chattisgarh, Central India, using environmental satellite--advanced synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Nizalapur, Vyjayanthi; Madugundu, Rangaswamy; Jha, Chandra Shekhar

    2011-01-01

    In the present work, the potential of synthetic aperture radar (SAR) interferometric coherence in land cover classification is studied over forested areas of Bilaspur, Chattisgarh, India using Environmental Satellite--Advanced Synthetic Aperture Radar (ENVISAT-ASAR) C-band data. Single look complex (SLC) interferometric pair ASAR data of 24th September 2006 (SLC-1) and 29th October 2006 (SLC-2) covering the study area were acquired and processed to generate backscatter and interferometric coherence images. A false colored composite of coherence, backscatter difference, and mean backscatter was generated and subjected to maximum likelihood classification to delineate major land cover classes of the study area viz., water, barren, agriculture, moist deciduous forest, and sal mixed forests. Accuracy assessment of the classified map is carried out using kappa statistics. Results of the study suggested potential use of ENVISAT-ASAR C-band data in land cover classification of the study area with an overall classification accuracy of 82.5%, average producer's accuracy of 83.69%, and average user's accuracy of 81%. The present study gives a unique scope of SAR data application in land cover classification over the tropical deciduous forest systems of India, which is still waiting for its indigenous SAR system.

  13. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  14. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  15. Classification and correction of the radar bright band with polarimetric radar

    NASA Astrophysics Data System (ADS)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  16. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  17. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  18. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  19. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  20. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  1. Space Radar Image of Patagonian Ice Fields

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , a direct indication of the steep meteorological gradients known to exist in this region. The bluer color of the outlet glaciers is probably due to a thin snow cover. A portion of the terminus of the outlet glacier at the top left center of the images has advanced approximately 600 meters (1,970 feet) in the five-and-a-half months between the two missions. Because of the persistent cloud cover this observation was only possible by using the orbiting, remote imaging radar system. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Capabilities and limitations of existing MST radars: Colorado wind profilers

    NASA Technical Reports Server (NTRS)

    Strauch, R. G.

    1983-01-01

    The Wave Propagation Laboratory is developing a ground-based remote sensing system called PROFILER to measure troposphere parameters currently measured in operational meteorology by radiosondes. The prototype PROFILER uses two radars for wind sounding: a 6-m radar located at Platteville, Colorado, and a 33-cm radar located at Denver's Stapleton International Airport. In addition, a network of three 6-m wind-profiling radars is being installed in Colorado, and a fourth site is planned. The location of the five radars, their characteristics, and their limitations are described.

  3. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  4. Radar Observations of Typhoon 9807

    NASA Astrophysics Data System (ADS)

    Kawano, Noriyuki; Shibagaki, Yoshiaki; Fukao, Shoichiro

    In east Asia, tropical cyclones are called Typhoon. We conducted the Doppler radar observation during the passage of Typhoon 9807(Vicky) on Sep. 1998 with the middle and upper atmosphere (MU) radar located in the central region of the Japan Islands (at Shigaraki). The center of T9807 passed about 40 km northwest of the MU site. T9807 caused much damage by strong wind, and MU radar observation was also interrupted due to power cut by strong surface wind. A remarkable downdraft exceeding 6 m/s was found at the low level just before power cut, at which time also a rainband was observed by a meteorological radar operated by Japan Meteorological Agency (JMA). Global objective analysis produced by JMA shows that cool-dried air advected in the tail of the Typhoon on the middle troposphere, we also confirmed this cool-dried air by means of a radiosonde launched at the MU observatory, and the rainband was located in front of this cool-dried air. In our presentation, we will show a case study observation for the Typhoon at mid- latitude in east Asia, and discuss the relations among the cool-dried air, the rainband, and the strong wind.

  5. Mars Radar Opens a Planet's Third Dimension

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders.

    The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.

  6. The problem of regime summaries of the data from radar observations. [for cloud system identification

    NASA Technical Reports Server (NTRS)

    Divinskaya, B. S.; Salman, Y. M.

    1975-01-01

    Peculiarities of the radar information about clouds are examined in comparison with visual data. An objective radar classification is presented and the relation of it to the meteorological classification is shown. The advisability of storage and summarization of the primary radar data for regime purposes is substantiated.

  7. ESTIMATING RAINFALL INTENSITIES FROM WEATHER RADAR DATA: THE SCALE DEPENDENCY PROBLEM 1490

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolution. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). In this paper we explore scale-dependency of the power-law Z-R parameters w...

  8. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  9. Acoustic radar investigations of boundary layer phenomena

    NASA Technical Reports Server (NTRS)

    Marks, J. R.

    1974-01-01

    A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.

  10. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  11. Least square spline decomposition in time-frequency analysis of weather radar signals

    NASA Astrophysics Data System (ADS)

    Shelevytska, K. I.; Semenova, O. S.; Shelevytsky, I. V.; Yanovsky, F. J.

    2011-10-01

    Meteorology plays an important role in aviation, as it enables to predict weather conditions and detect flight dangerous meteorological phenomena. Meteorological radar is used to detect the intensity and possible location of precipitation and dangerous zones in them. Doppler radar systems are able to measure the speed of scatteres that constitute meteorological formations and phenomena. The tasks of measurement accuracy increasing and reliability rise of hazardous meteorological phenomena detection become much more relevant after establishing new flight control system CNS ATM adopted by ICAO - the International Civil Aviation Organization.

  12. Urban change detection with polarimetric Advanced Land Observing Satellite phased array type L-band synthetic aperture radar data: a case study of Tai'an, China

    NASA Astrophysics Data System (ADS)

    Xu, Jinyan; Zhang, Lu; Wang, Yong; Wang, He; Liao, Mingsheng

    2013-01-01

    Change detection in Tai'an city of eastern China using a pair of qual-polarimetric Advanced Land Observing Satellite phased array type L-band synthetic aperture radar (ALOS PALSAR) data was studied. The procedures consisted of polarimetric features extraction, optimal polarimetric feature group selection, supervised classification, and result accuracy assessment. Feature extraction from PALSAR data was performed first, and then the polarimetric features were categorized into several groups. Polarimetric optimum index factor (POIF) and distance factor (DF) were selected to measure and evaluate the suitability of each feature group for urban change detection. The best group of features was identified including linear polarization correlation coefficient (ρ), right-left (R-L) circular polarization correlation coefficient (ρ), total power (TP), and cross-polarization isolation (XPI). Afterward, four difference images of the identified features extracted from the two PALSAR data were derived, respectively. Then, the random forest (RF) classifier was employed to perform a supervised classification of the four difference images. Three classes were quantified, including no-change, change from undeveloped area to developed area, and vice versa. The overall accuracy of change detection was about 84% and Cohen's Kappa coefficient was 0.71. Consequently, satisfactory outcomes were obtained in the application of the polarimetric ALOS PALSAR data of moderate resolution in detecting urban land use and land cover type changes.

  13. Obtaining high resolution polarimetric radar based precipitation estimates in Skjern catchment, Denmark for hydrological modeling

    NASA Astrophysics Data System (ADS)

    He, X.; Vejen, F.; Sonnenborg, T. O.; Jensen, K. H.

    2015-12-01

    Precipitation is the main driving force for the terrestrial water cycle and therefore plays a critical role in determining the water budget at catchment scale. Traditionally, rain gauges are used to measure precipitation on the ground surface for hydrological modeling. However, the number of rain gauges in Denmark has significantly decreased in recent years, and it is no longer possible to represent the spatial heterogeneity of rainfall only by interpolating the rain gauge data given the current gauge density in Skjern catchment, Denmark. The quality of simulated hydrological patterns using such rain gauge based products is visibly decreased. Weather radar scans the atmosphere with large areal coverage and high spatial and temporal resolution, which makes it an ideal tool to overcome this problem. The Danish Meteorological Institute (DMI) operates C-band radars over the country. It has been previously attempted to use the single-polarization radar located at Rømø to estimate precipitation in Skjern catchment; however, the hydrological improvement by adding the single-polarization radar data was marginal due to many restrictions. A new radar located at Virring with upgraded dual-polarization technology opens new possibilities to further improve the precipitation estimation at Skjern catchment. New parameters retrieved from the Virring radar will be used to develop more advanced quantitative precipitation estimation algorithms which is an important supplement to the existing algorithm called ARNE. The development of the new algorithm will be based on the Open Source Library for Weather Radar Data Processing (WRadLib). The results of hydrological models using such product are expected to better close the water budget and improve the simulated hydrological pattern such as the land surface temperature.

  14. Meteorological Monitoring Program

    SciTech Connect

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  15. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Labert, Winifred; Jonathan Case; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the First Quarter of Fiscal Year 2004 (October - December 2003). Tasks reviewed are: (1) Objective Lightning Probability Forecast, (2) Mesonet Temperature and Wind Climatology, (3) Severe Weather Forecast Decision Aid and (4) Anvil Transparency Relationship to Radar Reflectivity

  16. Recent advances in efficient long-life, eye-safe solid state and CO2 lasers for laser radar applications

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    1989-01-01

    The key problems in the development of eye-safe solid-state lasers are discussed, taking into account the energy transfer mechanisms between the complicated energy level manifolds of the Tm, Ho, Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. Optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature is addressed. The tailoring of energy transfer times to provide efficient energy extraction for short pulses used in DIAL and Doppler lidar is considered. Recent advances in Pt/SnO2 oxide catalysts and other noble metal/metal oxide combinations for CO2 lasers are discussed. Emphasis is given to the dramatic effects of small quantities of H2O vapor for increasing the activity and lifetime of Pt/SnO2 catalysts and to increased lifetime operation with rare isotope (C-12)(O-18)2 lasing mixtures.

  17. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  18. Multiparameter radar analysis using wavelets

    NASA Astrophysics Data System (ADS)

    Tawfik, Ben Bella Sayed

    Multiparameter radars have been used in the interpretation of many meteorological phenomena. Rainfall estimates can be obtained from multiparameter radar measurements. Studying and analyzing spatial variability of different rainfall algorithms, namely R(ZH), the algorithm based on reflectivity, R(ZH, ZDR), the algorithm based on reflectivity and differential reflectivity, R(KDP), the algorithm based on specific differential phase, and R(KDP, Z DR), the algorithm based on specific differential phase and differential reflectivity, are important for radar applications. The data used in this research were collected using CSU-CHILL, CP-2, and S-POL radars. In this research multiple objectives are addressed using wavelet analysis namely, (1)space time variability of various rainfall algorithms, (2)separation of convective and stratiform storms based on reflectivity measurements, (3)and detection of features such as bright bands. The bright band is a multiscale edge detection problem. In this research, the technique of multiscale edge detection is applied on the radar data collected using CP-2 radar on August 23, 1991 to detect the melting layer. In the analysis of space/time variability of rainfall algorithms, wavelet variance introduces an idea about the statistics of the radar field. In addition, multiresolution analysis of different rainfall estimates based on four algorithms, namely R(ZH), R( ZH, ZDR), R(K DP), and R(KDP, Z DR), are analyzed. The flood data of July 29, 1997 collected by CSU-CHILL radar were used for this analysis. Another set of S-POL radar data collected on May 2, 1997 at Wichita, Kansas were used as well. At each level of approximation, the detail and the approximation components are analyzed. Based on this analysis, the rainfall algorithms can be judged. From this analysis, an important result was obtained. The Z-R algorithms that are widely used do not show the full spatial variability of rainfall. In addition another intuitively obvious result

  19. 2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL DATA ACQUISITION TERMINAL (MDAT) INSIDE BUILDING - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Meteorology impact on ATC system design

    NASA Technical Reports Server (NTRS)

    Vandemark, F. E.

    1981-01-01

    The impact of meteorology on air traffic control (ATC) system design for designs, and for cost benefit evaluations is discussed. The myriad of choices for implementation is a problem of great magnitude, given the economic climate of today. Cost versus benefit requires greater emphasis. Expanding and improving weather data acquisition, increasing the speed of weather data transmission and automating those actions that lend themselves to standardization for automated data processing are outlined. Three programs are mentioned: (1) automated weather observations, (2) weather radar and improvements to the national airspace system as related to the handling of weather data; and (3) products.

  1. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  2. Past-time Radar Rainfall Estimates using Radar AWS Rainrate system with Local Gauge Correction method

    NASA Astrophysics Data System (ADS)

    Choi, D.; Lee, M. H.; Suk, M. K.; Nam, K. Y.; Hwang, J.; Ko, J. S.

    2015-12-01

    The Weather Radar Center at Korea Meteorological Administration (KMA) has radar network for warnings for heavy rainfall and severe storms. We have been operating an operational real-time adjusted the Radar-Automatic Weather Station (AWS) Rainrate (RAR) system developed by KMA in 2006 for providing radar-based quantitative precipitation estimation (QPE) to meteorologists. This system has several uncertainty in estimating precipitation by radar reflectivity (Z) and rainfall intensity (R) relationship. To overcome uncertainty of the RAR system and improve the accuracy of QPE, we are applied the Local Gauge Correction (LGC) method which uses geo-statistical effective radius of errors of the QPE to RAR system in 2012. According to the results of previous study in 2014 (Lee et al., 2014), the accuracy of the RAR system with LGC method improved about 7.69% than before in the summer season of 2012 (from June to August). It has also improved the accuracy of hydrograph when we examined the accuracy of flood simulation using hydrologic model and data derived by the RAR system with LGC method. We confirmed to have its effectiveness through these results after the application of LGC method. It is required for high quality data of long term to utilize in hydrology field. To provide QPE data more precisely and collect past-time data, we produce that calculated by the RAR system with LGC method in the summer season from 2006 to 2009 and investigate whether the accuracy of past-time radar rainfall estimation enhance or not. Keywords : Radar-AWS Rainrate system, Local gauge correction, past-time Radar rainfall estimation Acknowledgements : This research is supported by "Development and application of Cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration in 2015.

  3. Lasting Impressions in Meteorology.

    ERIC Educational Resources Information Center

    Herold, James M.

    1992-01-01

    Describes activities integrating science and art education in which students examine slides of impressionist paintings or photographs of meteorological phenomena to determine the weather conditions depicted and to make and defend weather predictions. Includes a reproducible worksheet. (MDH)

  4. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  5. Climate and meteorology

    SciTech Connect

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  6. Meteorological image processing applications

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Hasler, A. F.; Adler, R. F.

    1979-01-01

    Meteorologists at NASA's Goddard Space Flight Center are conducting an extensive program of research in weather and climate related phenomena. This paper focuses on meteorological image processing applications directed toward gaining a detailed understanding of severe weather phenomena. In addition, the paper discusses the ground data handling and image processing systems used at the Goddard Space Flight Center to support severe weather research activities and describes three specific meteorological studies which utilized these facilities.

  7. Characterizing Radar Raingauge Errors for NWP Assimilation

    NASA Astrophysics Data System (ADS)

    Dance, S.; Seed, A.

    2012-04-01

    The statistical characterisation of errors in quantitative precipitation estimates (QPE) is needed when generating QPE ensembles, combining multiple radars into a single mosaic, and when assimilating QPE into numerical weather prediction (NWP) models. The first step in the analysis was to characterise the errors at pixel resolution (1 km) as a function of radar specification, geographical location under the radar, and meteorology using data from 18 radars and 1500 rain gauges over a two-year period. The probability distribution of the radar - rain gauge residuals was evaluated and, as expected, the log-Normal distribution was found to fit the data better than the Normal distribution. Therefore the subsequent analysis was performed on the residuals expressed as decibels. The impact of beam width on the estimation errors was evaluated by comparing the errors from a one-degree S band radar (S1) with a two-degree S band radar (S2) for the same location (Brisbane) and time period. The standard deviation of the errors was found to increase by 0.2 dB per km for the S2 radar while the standard deviation for the S1 radar was constant out to the maximum range of 150 km. When data from all the S1 radars over the two years were pooled and compared with the S2 radars the standard deviation of the errors for the S1 radars increased by 0.1 dB per km compared with 0.25 dB per km for the S2 radars. The mean of the errors was found to vary significantly with range for all radars with underestimation at close range (< 30 km) and at far range (> 100 km). We think that this points to artefacts in the data due to clutter suppression at close range and over shooting the echo tops at the far range. The spatial distribution of the errors as a function of the altitude and roughness of the topography was investigated using the data from the S1 and S2 radars in Brisbane, but no relationship was found although there is clearly structure in the field. We also attempted to quantify the

  8. Meteorology for public

    NASA Astrophysics Data System (ADS)

    Špoler Čanić, Kornelija; Rasol, Dubravka; Milković, Janja

    2013-04-01

    The Meteorological and Hydrological Service in Croatia (MHSC) is, as a public service, open to and concentrated on public. The organization of visits to the MHSC for groups started in 1986. The GLOBE program in Croatia started in 1995 and after that interest for the group tours at the MHSC has increased. The majority of visitors are school and kindergarten children, students and groups of teachers. For each group tour we try to prepare the content that is suitable for the age and interest of a group. Majority of groups prefer to visit the meteorological station where they can see meteorological instruments and learn how they work. It is organized as a little workshop, where visitors can ask questions and discuss with a guide not only about the meteorological measurements but also about weather and climate phenomena they are interested in. Undoubtedly the highlight of a visit is the forecaster's room where visitors can talk to the forecasters (whom they can also see giving a weather forecast on the national TV station) and learn how weather forecasts are made. Sometimes we offer to visitors to make some meteorological experiments but that is still not in a regular program of the group tours due to the lack of performing space. Therefore we give them the instructions for making instruments and simulations of meteorological phenomena from household items. Visits guides are meteorologists with profound experience in the popularization of science.

  9. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  10. Radar optimisation in a changing technology

    NASA Astrophysics Data System (ADS)

    Radford, M. F.

    1983-10-01

    The optimum balance of parameters in a radar system varies with advances in techology. The trends in mean power, aperture area, processing capability and other factors are discussed and related to underlying trends in technology and operational requirements.

  11. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  12. Compendium of Lecture Notes for Training Class III Meteorological Personnel.

    ERIC Educational Resources Information Center

    Retallack, B. J.

    This compendium of lecture notes provides a course of study for persons who may be involved in a variety of specialized meteorological tasks. The course is considered to be advanced and assumes students have had introductory experiences in meteorology and earth science (covered in a similar compendium). The material is presented in seven units…

  13. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  14. Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY-08

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Dreher, Joseph

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2008 (April - June 2008). Tasks reported on are: Peak Wind Tool for User Launch Commit Criteria (LCC), Anvil Forecast Tool in AWIPS Phase II, Completion of the Edward Air Force Base (EAFB) Statistical Guidance Wind Tool, Volume Averaged Height Integ rated Radar Reflectivity (VAHIRR), Impact of Local Sensors, Radar Scan Strategies for the PAFB WSR-74C Replacement, VAHIRR Cost Benefit Analysis, and WRF Wind Sensitivity Study at Edwards Air Force Base

  15. Penn State Radar Systems: Implementation and Observations

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  16. The time to independence for a scanning radar

    NASA Astrophysics Data System (ADS)

    Eccles, P. J.

    A computer model of a completely uniform reflectivity stationary storm containing stationary particles shows that the number of independent samples obtainable per pulse-volume by a scanning meteorological radar is a minimum of about 5.5. This is universal for such radars and is independent of any radar parameters, such as wavelength, PRF, scanning speed, beamwidth, or dish size. It is due to the total effect of two parts, (1) averaging which occurs when the main-lobe 'window' sweeps by a meteorological target, and (2) averaging which occurs when the pulse-window sweeps past the meteorological targets in range. The total effect provides an equivalent Doppler variance, to which the Doppler variance within the scanned volume may be added. This sum results in a smaller time-to-independence, and more independent samples per resolution volume than current theory predicts.

  17. Measurements of vertical velocity over flat terrain by ST radar and other related uses of the radar data set

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Nastrom, G. D.

    1984-01-01

    The need to study vertical velocity measurements from an ST radar located on the plains, far from the mountains is pointed out, as all presently available clear-air radars are located in or near mountains. The construction and operation of a VHF Doppler (ST) radar in the midwestern part of the United States to make meteorological measurements is also discussed. While primary interest is in measuring the synoptic-scale vertical velocities in the troposphere and lower stratosphere, it should be stressed, however, that the radar data set generated during the radar experiment would have many other valuable uses of interest to us and others some of whom are listed below. The required radar parameters, approximate costs, and recommended mode of operation are also detailed.

  18. Probabilistic forecasts based on radar rainfall uncertainty

    NASA Astrophysics Data System (ADS)

    Liguori, S.; Rico-Ramirez, M. A.

    2012-04-01

    The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at

  19. Meteorological satellites in support of weather modification

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Vonder Haar, T. H.; Grant, L. O.

    1978-01-01

    During the past several years, many weather modification programs have been incorporating meteorological satellite data into both the operations and the analysis phase of these projects. This has occurred because of the advancement of the satellite as a mesoscale measurement platform, both temporally and spatially, and as the availability of high quality data has increased. This paper surveys the applications of meteorological satellite data to both summer and winter weather modification programs. A description of the types of observations needed by the programs is given, and an assessment of how accurately satellites can determine these necessary parameters is made.

  20. Transport and Meteorological Analysis

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Legg, Marion J.

    2002-01-01

    The objectives of this work are twofold. First, to provide real-time meteorological satellite guidance to airborne field missions for NASA's Upper Atmosphere Research Program, the Global Tropospheric Experiment, and the Atmospheric Effects of Aviation Project. Extensive meteorological satellite datasets were provided for use by the mission scientist and by the science team. These same data were then archived for postdeployment data analysis by the science team. Second, to provide scientific analysis of the data from the airborne field missions supported. The results of these analyses were made public through peer-reviewed publications.

  1. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  2. Information on bird navigation obtained by British long range radars

    NASA Technical Reports Server (NTRS)

    Evans, P. R.

    1972-01-01

    Radar observations of the migratory habits of passerine birds over a 10 year period are presented. The relationships between intensity of cloud cover and the frequency and density of migration are illustrated. The aspects of migration which were determined by the radar were: (1) migration under total overcast, (2) compensation for wind drift, (3) changes in flight direction during migration, and (4) effects of meteorological parameters.

  3. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  4. Special Issue on Results from Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (Sir-C/X-SAR): Foreword

    NASA Technical Reports Server (NTRS)

    Plaut, Jefferey J.

    1996-01-01

    The two flights of the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour represent a major advance in remote sensing technology for studies of planetary surfaces.

  5. Report on the Radar/PIREP Cloud Top Discrepancy Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.

  6. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  7. Computer Exercises in Meteorology.

    ERIC Educational Resources Information Center

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  8. General aviation's meteorological requirements

    NASA Technical Reports Server (NTRS)

    Newton, D.

    1985-01-01

    Communication of weather theory and information about weather service products to pilots in an accurate and comprehensible manner is essential to flying safety in general. Probably no one needs weather knowledge more than the people who fly through it. The specific subject of this overview is General Aviation's Meteorological Requirements.

  9. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    NASA Astrophysics Data System (ADS)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  10. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  11. Web Based Access to Real-Time Meteorological Products Optimized for PDA- Smartphones

    NASA Astrophysics Data System (ADS)

    Dengel, R. C.; Bellon, W.; Robaidek, J.

    2006-05-01

    Recent advances in wireless broadband services and coverage have made access to the internet possible in remote locations. Users can now access the web via an ever increasing number of small, handheld devices specifically designed to allow voice and data exchange using this expanding service. So called PDA phones or smartphones blend the features of traditional PDA devices with telecommunications capabilities. The University of Wisconsin - Madison, Space Science and Engineering Center (SSEC) has produced a web site holding a variety of meteorological image and text displays optimized for this new technology. The site features animations of real-time radar and satellite clouds with value added graphical overlays of severe watches and warnings. Products focus on remotely sensed information supplemented with conventional ground observations. The PDA Animated Weather (PAW) website has rapidly been adopted by numerous institutions and individuals desiring access to real-time meteorological information independent of their location. Of particular note are users that can be classified as first responders, including foreign and domestic based police and file departments. This paper offers an overview of the PAW project including product design, automated production and web presentation. Numerous examples of user applications will be presented, planned future products and functionality will be discussed.

  12. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  13. Radar observations of land breeze fronts.

    NASA Technical Reports Server (NTRS)

    Meyer, J. H.

    1971-01-01

    Description of a radar-observed apparent land breeze front 12 to 14 n mi off the coast of Wallops Island, Va. Accompanying meteorological data show the land breeze at the shore to be a layer of cold air less than 300 ft deep moving seaward at approximately 2 knots. The radar observations show the land breeze vertical frontal surface sloping landward at about 20 deg, with convection over the warm water increasing the layer thickness to 2000 ft near the frontal zone. The radar-observed horizontal frontal surface is a sharp scalloped line echo in the lower 1000 ft, but becomes diffuse above. As the local circulation during daylight hours changes to a sea breeze, the land breeze front recedes toward land and dissipates.

  14. Current status of Dual Ka-band radar field campaign in Japan for GPM/DPR mission

    NASA Astrophysics Data System (ADS)

    Kaneko, Yuki; Nakagawa, Katsuhiro; Nishikawa, Masanori; Nakamura, Kenji; Fujiyoshi, Yasushi; Hanado, Hiroshi; Minda, Haruya; Yamamoto, Kazuhide; Oki, Riko; Furukawa, Kinji

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  15. A study on weather radar data assimilation for numerical rainfall prediction

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bray, M.; Han, D.

    2012-09-01

    Mesoscale NWP model is gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations especially the weather radar data can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in Southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three dimensional variational (3D-Var) data assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauges, the radar data is assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types or combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation is evaluated by examining the rainfall cumulative

  16. A study on WRF radar data assimilation for hydrological rainfall prediction

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bray, M.; Han, D.

    2013-08-01

    Mesoscale numerical weather prediction (NWP) models are gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations, especially the weather radar data, can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three-dimensional variational (3D-Var) data-assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauge observations, the radar data are assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types/combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation are

  17. Survey: National Meteorological Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The National Meteorological Center (NMC) is comprised of three operational divisions (Development, Automation, and Forecast) and an Administrative Division. The Development Division develops and implements mathematical models for forecasting the weather. The Automation Division provides the software and processing services to accommodate the models used in daily forecasts. The Forecasting Division applies a combination of numerical and manual techniques to produce analyses and prognoses up to 120 hr into the future. This guidance material is combined with severe storm information from the National Hurricane Center and the National Severe Storms Forecasting Center to develop locally tailored forecasts by the Weather Service Forecast Offices and, in turn, by the local Weather Service Offices. A very general flow of this information is shown. A more detailed illustration of data flow into, within, and from the NMC is given. The interrelations are depicted between the various meteorological organizations and activities.

  18. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  19. Bias Correction of Polarimetric Variables and Uncertainty Quantification of Dual-Polarization Radar Rainfall Estimation

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Suk, M. K.; Nam, K. Y.; Ko, J. S.; Kim, H. L.

    2015-12-01

    Radar rainfall is generally less than gauge rainfall and it deteriorates in the case of high rainfall. Introduction of dual-polarization radar, however, has shed some light on the problem to underestimate radar rainfall in single-polarization radar. Dual-polarization radar provides various variables such like the differential reflectivity, differential phase, specific differential phase, and correlation coefficient, etc. as well as the reflectivity. Due to the advantage of dual-polarization radar providing various information available on the precipitation, the quality of the radar rainfall becomes much higher. Total five dual-polarization radars (Baengnyeongdo, Yongin-Testbed, Bislsan, Sobaeksan and Mohusan Radar) were introduced in Korea until now and the project, "Development and application of Cross governmental dual-pol radar harmonization", is on the way. Weather Radar Center (WRC), Korea Meteorological Adminstration (KMA) has played a leading role in the dual-polarization radar technology in Korea. WRC has been researching the quality control (QC) for the polarimetric variables, the classification of the precipitation, the radar rainfall estimation algorithm, and the composite dual-polarimetric varaiables field, etc. WRC (2014) suggested Korean polarimetric radar variables relation (Z-ZDR relation and Z-KDP relation) and Korean radar rainfall estimation algorithm (R(Z, ZDR) WRC algorithm). This study examined on the six radar rainfall estimation algorithms including R(Z, ZDR) WRC algorithm and corrected the bias of polarimetric variables using Korean polarimetric variables relation. Plus, this study quantified the uncertainty of the radar rainfall estimated from six algorithms before and after the correction. As a result, the quality of the radar rainfall after the correction improved and Korean radar rainfall estimation algorithm had the best quality among the algorithms using the Z and ZDR,

  20. Radar Studies of Ionospheric Plasma Irregularities

    NASA Astrophysics Data System (ADS)

    Rao, P. B.

    2006-11-01

    High power high resolution VHF radars have proven to be powerful diagnostics to study ionospheric plasma irregularities, a space weather phenomenon of immense importance in view of its impact on space communication and navigation. The VHF radars at Jicamarca, Peru and Trivandrum, India have contributed greatly over the past four decades in arriving at the current understanding of the basic characteristics of the equatorial spread-F (ESF) and equatorial electrojet (EEJ) irregularities and the underlying plasma instability processes. Recent advances, involving high resolution radar observations of equatorial plasma irregularities, include the detection of supersonic plasma bubbles rising to heights beyond 1000 km, 150 km echoes and kilometric scale waves. The new and more recent developments in plasma irregularity studies came from the middle and upper atmosphere (MU) radar at Shigaraki, Japan and the mesosphere stratosphere troposphere (MST) radar at Gadanki, India. The new types of plasma irregularity structures observed by this mid- and low latitude VHF radars cover the well known quasi- periodic (QP) waves, tidal ion layers, kilometric scale waves and structures in the collision dominated lower E region. The paper presents an overview on the recent advances in the radar technique and the above mentioned new developments in observation and theory of the equatorial and low latitude ionospheric plasma irregularities.

  1. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  2. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Darden, Christopher B.

    2011-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar - 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores "The use of dual-polarimetric tornadic

  3. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  4. Thermal structure and radar backscatter

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Stepanczak, M.; Guymer, Trevor H.; Cotton, David P.

    1994-12-01

    Infrared (IR) remote sensing from satellites is a well-proven technique for measuring sea surface temperature (SST) and for detecting and monitoring oceanographic features which have strong thermal contrast. Unfortunately, cloud cover often limits the continuity of the datasets and therefore their usefulness. There is some evidence that radar backscatter can be modified by sea surface temperature structure which raises the possibility that sensors such as synthetic aperture radar, scatterometers and altimeters could provide an all-weather complement to those operating in the IR. As a background, the results of a project which used coincident airborne radar and IR measurements of an eddy system in the Tyrrhenian Sea during October 1989 are briefly described. During a 5-day period, variations in radar backscatter of several dB occurred in a region where SST varied by 2 - 3 degree(s)C. The correlation between normalized radar cross section, sigma naught ((sigma) 0 or sigma-0) and SST appeared to depend on the ambient wind. Unfortunately, no satellite radar data were available during the experiment, since Geosat had just failed and ERS-1 was not due for launch until 1991. Building on this work, a study has commenced in which preliminary analyses of ERS-1 altimeter data, from tracks which repeat every 3 days, have been conducted for a section of the Gulf Stream after it has separated from the US coast. The along track variation of sigma naught has been compared with contemporaneous NOAA AVHRR-2 imagery and the relationship between SST structure and sigma naught for individual passes is discussed in terms of environmental parameters such as the local wind field and ocean currents. The possibility of the interaction of environmental parameters such as waves and currents are explored and some evidence for both wave enhancement and attenuation at the north wall of the Gulf Stream is illustrated. Tentative explanations for relationships observed by the various analysis

  5. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  6. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  7. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  8. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  9. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1990-01-01

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  10. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  11. Monitoring the urban heat island of Bucharest (Romania) through a network of automatic meteorological sensors - first results

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Lucaschi, Bogdan; Ioja, Cristian; Dumitrescu, Alexandru; Manea, Ancuta; Radulescu, Adrian; Dumitrache, Catalin; Tudorache, George; Vanau, Gabriel; Onose, Diana

    2015-04-01

    Extreme warm temperatures and heat waves represent one of the major climate hazards which impact the city of Bucharest (Romania), favoured by the climate background and by the urban characteristics. Previous studies based either on sparse ground sensors or satellite remote sensing indicate that the average differences between the monthly temperature of the built area and the neighbouring rural buffers of Bucharest can reach 3-4°C, but instantaneous values are certainly higher. Since the city shelters about 2 million residents, as well as the major administrative and economic facilities of the country, the hazard management should receive a vivid attention. The meteorological monitoring of the city is currently performed in a systematic manner by the National Meteorological Administration (NMA) through 3 ground-based stations following the standards of the World Meteorological Organization, and through radar and satellite remote sensing. In 2014, NMA set up 7 automatic sensors in specific urban conditions, while the University of Bucharest deployed 30 mobile sensors in a joint effort for enhancing the accuracy of the urban heat island monitoring. Both sensor devices are designed for continuous monitoring (24/7). This presentation focuses on the technical characteristics of the recently implemented network (1), and brings to the public the first results of the monitoring (2), including the implementation experience, the observed benefits and plans for development and applications. The data obtained are compared with the existing data sets from meteorological stations and satellite products, and they are currently integrated in a common database, providing valuable information about the Bucharest's urban heat island. The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-Development-Innovation for Space Technology and

  12. Meteorological Instruction Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    At Florida State University and the Naval Postgraduate School, meteorology students have the opportunity to apply theoretical studies to current weather phenomena, even prepare forecasts and see how their predictions stand up utilizing GEMPAK. GEMPAK can display data quickly in both conventional and non-traditional ways, allowing students to view multiple perspectives of the complex three-dimensional atmospheric structure. With GEMPAK, mathematical equations come alive as students do homework and laboratory assignments on the weather events happening around them. Since GEMPAK provides data on a 'today' basis, each homework assignment is new. At the Naval Postgraduate School, students are now using electronically-managed environmental data in the classroom. The School's Departments of Meteorology and Oceanography have developed the Interactive Digital Environment Analysis (IDEA) Laboratory. GEMPAK is the IDEA Lab's general purpose display package; the IDEA image processing package is a modified version of NASA's Device Management System. Bringing the graphic and image processing packages together is NASA's product, the Transportable Application Executive (TAE).

  13. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  14. Meteorological Sensor Calibration Facility

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1988-01-01

    The meteorological sensor calibration facility is designed to test and assess radiosonde measurement quality through actual flights in the atmosphere. United States radiosonde temperature measurements are deficient in that they require correction for errors introduced by long- and short-wave radiation. The effect of not applying corrections results in a large bias between day time and night time measurements. This day/night bias has serious implications for users of radiosonde data, of which NASA is one. The derivation of corrections for the U.S. radiosonde is quite important. Determination of corrections depends on solving the heat transfer equation of the thermistor using laboratory measurements of the emissivity and absorptivity of the thermistor coating. The U.S. radiosonde observations from the World Meteorological Organization International Radiosonde Intercomparison were used as the data base to test whether the day/night height bias can be removed. Twenty-five noon time and 26 night time observations were used. Corrected temperatures were used to calculate new geopotentials. Day/night bias in the geopotentials decreased significantly when corrections were introduced. Some testing of thermal lag attendant with the standard carbon hygristor took place. Two radiosondes with small bead thermistors imbedded in the hygristor were flown. Detailed analysis was not accomplished; however, cursory examination of the data showed that the hygristor is at a higher temperature than the external thermistor indicates.

  15. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  16. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  17. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  18. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  19. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  20. Measurements of refractive variability in the marine boundary layer in comparison with mesoscale meteorological model predictions

    NASA Astrophysics Data System (ADS)

    Förster, J.; Riechen, J.

    2006-09-01

    In the marine boundary layer, air-sea interaction processes have an impact on radar and infrared propagation. Range performance near the sea surface depends on the meteorological conditions and sea surface roughness. Strong gradients of humidity and temperature close to the air-water interface are most often the reason for abnormal propagation effects such as ducting or mirage. For ship borne radars the evaporation duct is the dominant propagation mechanism affecting the maximum detection range of horizon-search radars. Ducting can also increase sea clutter return within and beyond the geometric horizon. Surface-based ducts can enhance land clutter return from extended ranges. During a sea trial in the Baltic Sea in 2005, FWG characterized the environmental boundary layer. In-situ measurements included recordings of atmospheric and sea surface parameters. Simultaneous investigations were carried out at the land based test site and on board two ships. Based on FWG-buoy measurements and radiosoundings the sea surface and meteorological conditions were analyzed to study refractive variability within the maritime boundary layer. We compared measurement results with predictions of the mesoscale meteorological Local Model (LM), developed by German Weather Service. Radar propagation was measured in addition to atmospheric conditions. A research vessel was illuminated by radar operating at X-band on outbound and inbound runs. The radar system was located at the pier of the land based test site. Radar propagation characteristics were measured on board the ship with two omni directional antennas mounted in 5.5 m and 16.8 m height above mean sea level. Results of refractive variability are presented in conjunction with radar propagation data and model outputs.

  1. Design of an harmonic radar for the tracking of the Asian yellow-legged hornet.

    PubMed

    Milanesio, Daniele; Saccani, Maurice; Maggiora, Riccardo; Laurino, Daniela; Porporato, Marco

    2016-04-01

    The yellow-legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On-field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low-cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow-legged Asian hornet. PMID:27069583

  2. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  3. Uncertainty in dispersion forecasts using meteorological ensembles

    SciTech Connect

    Chin, H N; Leach, M J

    1999-07-12

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes.

  4. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  5. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are

  6. Bracknell Meteorological Office

    NASA Technical Reports Server (NTRS)

    Flood, Colin R.

    1988-01-01

    The Bracknell (U.K.) Meteorological Office runs a global weather model twice a day, providing the following data: surface and radiosonde; aircraft reports; and satellite soundings and wind. A human forecast is made every six hours. The model runs on a 150 km grid with 15 levels, and takes about four minutes on a Cyber-205. The standard output from the global products are wind, temperature, height, tropopause, and maximum wind. Various experiments have been conducted to see if short-range forecasters could improve on the upper-wind forecasts over the numerical model; the numerical model remains of paramount importance. Small-scale models are being run in the U.S. and the U.K. A fine-mesh model covers Europe and the Atlantic. A mesoscale model is under development. A great deal of verification work is done to see how good the models are.

  7. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  8. Meteorology as an infratechnology

    NASA Astrophysics Data System (ADS)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  9. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  10. The study and real-time implementation of attenuation correction for X-band dual-polarization weather radars

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang

    Attenuation of electromagnetic radiation due to rain or other wet hydrometeors along the propagation path has been studied extensively in the radar meteorology community. Recently, use of short range dual-polarization X-band radar systems has gained momentum due to lower system cost compared with the much more expensive S-band systems. Advances in dual-polarization radar research have shown that the specific attenuation and differential attenuation between horizontal and vertical polarized waves caused by oblate, highly oriented raindrops can be estimated using the specific differential phase. This advance leads to correction of the measured reflectivity (Zh) and the differential reflectivity (Zdr) due to path attenuation. This thesis addresses via theory, simulations and data analyses the accuracy and optimal estimation of attenuation-correction procedures at X-band frequency. Real-time implementation of the correction algorithm was developed for the first generation of X-band dual-polarized Doppler radar network (Integration Project 1, IP1) operated by the NSF Center for Collaborate Adaptive Sensing of the Atmosphere (CASA). We evaluate the algorithm for correcting the Zh, and the Zdr for rain attenuation using simulations and X-band radar data under ideal and noisy situations. Our algorithm is able to adjust the parameters according to the changes in temperature, drop shapes, and a certain class of drop size distributions (DSD) with very fast convergence. The X-band radar data were obtained from the National Institute of Earth Science and Disaster Prevention (NIED), Japan, and from CASA IP1. The algorithm accurately corrects NIED's data when compared with ground truth calculated from in situ disdrometer-based DSD measurements for a Typhoon event. We have implemented, in real-time, the algorithm in all the CASA IP1 radar nodes. We also evaluate our preliminary method that separately estimates rain and wet ice attenuation using microphysical outputs from a

  11. Middle Atmosphere Program. Handbook for MAP. Volume 14: URSI/SCOSTEP Workshop on Technical Aspects of MST Radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1984-01-01

    Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.

  12. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  13. Geosynchronous Meteorological Satellite Data Seminar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A seminar was organized by NASA to acquaint the meteorological community with data now available, and data scheduled to be available in the future, from geosynchronous meteorological satellites. The twenty-four papers were presented in three half-day sessions in addition to tours of the Image Display and LANDSAT Processing Facilities during the afternoon of the second day.

  14. Radiocommunications for meteorological satellite systems

    NASA Technical Reports Server (NTRS)

    Walton, B. A.

    1975-01-01

    A general overview is presented of the spectrum utilization and frequency requirements of present and planned meteorological satellite programs. The sensors, and TIROS operational systems are discussed along with the Nimbus and Synchronous Meteorological Satellites. STORMSAT, SEASAT, and the Spacelab are briefly described.

  15. Digital signal processing of data from conventional weather radar: The DISPLACE method

    NASA Astrophysics Data System (ADS)

    Terblanche, Deon Etienne

    1997-09-01

    This thesis describes the development, testing and implementation of a new method to process the output from a weather radar's logarithmic receiver. The processing method, called DISPLACE, has proven to have many applications, and is computationally efficient and accurate. Its applications include the processing of digitized logarithmic receiver output in order to simulate different receiver transfer functions, the processing of multi-parameter radar measurements and the filtering of ground clutter. It facilitates the computation of CAPPI's and radar-rainfall accumulation. The thesis also deals with the upgrading of South African weather radars since about 1990 through the in-house developed radar data acquisition system and the procedures established to ensure accurate calibrations. In addition, the hydrometeorological infrastructure deployed in the Bethlehem research are is used in an integrated manner to verify data obtained using the new method. This work is well timed to address the needs that are now emerging in South Africa and clearly illustrate the role the NPRP played in reviving radar meteorology. The DISPLACE method is proving once again that the potential of conventional weather radar has not been fully exploited. It has also stimulated the interest of young technicians and scientists in the field of radar meteorology. This augurs well for the future use of weather radar in South Africa, both in the field of rainfall stimulation and as an integral part of systems designed to forecast and to help manage the effects of severe weather conditions.

  16. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  17. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was

  18. Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent

  19. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1989-01-01

    To date, five years of hydrologic and meteorologic data have been collected at Imnavait Creek near Toolik Lake, Alaska. This is the most complete set of field data of this type collected in the Arctic of North America. These data have been used in process-oriented research to increase our understanding of atmosphere/hydrosphere/biosphere/lithosphere interactions. Basically, we are monitoring heat and mass transfer between various spheres to quantify rates. These could be rates of mass movement such as hillslope flow or rates of heat transfer for active layer thawing or combined heat and mass processes such as evapotranspiration. We have utilized a conceptual model to predict hydrologic processes. To test the success of this model, we are comparing our predicted rates of runoff and snowmelt to measured valves. We have also used a surface energy model to simulate active layer temperatures. The final step in this modeling effort to date was to predict what impact climatic warming would have on active layer thicknesses and how this will influence the hydrology of our research watershed by examining several streambeds.

  20. Architecture of scalability file system for meteorological observation data storing

    NASA Astrophysics Data System (ADS)

    Botygin, I. A.; Popov, V. N.; Tartakovsky, V. A.; Sherstnev, V. S.

    2015-11-01

    The approach allows to organize distributed storage of large amounts of diverse data in order to further their parallel processing in high performance cluster systems for problems of climatic processes analysis and forecasting. For different classes of data was used the practice of using meta descriptions - like formalism associated with certain categories of resources. Development of a metadata component was made based on an analysis of data of surface meteorological observations, atmosphere vertical sounding, atmosphere wind sounding, weather radar observing, observations from satellites and others. A common set of metadata components was formed for their general description. The structure and content of the main components of a generalized meta descriptions are presented in detail on the example of reporting meteorological observations from land and sea stations.

  1. Development of the Application techniques for KMA dual-pol. radar network in Korea

    NASA Astrophysics Data System (ADS)

    Suk, Mi-Kyung; Nam, Kyung-Yeub; Jung, Sung-A.; Ko, Jeong-Seok

    2016-04-01

    Korea is located between the Eurasian continent and Northwestern pacific. So East Asian Monsoon affects the country every season and every year with the rainy season (Chang-ma front), convective stroms, snow storms, and sometimes typhoons. Korea Meteorological Administration (KMA) has been operating many kinds of meteorological observation networks, including 10 operational radars and 1 testbed radar. Weather Radar Center (WRC) of Korea Meteorological Administration (KMA) performs a task of development and application of cross governmental dual-pol. radar harmonization for the effective use of the national resources from 2013 since the tri-agencies (KMA, Ministry of Land, Infrastructure and Transport, Ministry of National Defense) singed the MOU for the co-utilization of cross governmental dual-pol. radar. This task develops the techniques of the high-quality data processing, the support of the forecasting, etc. The techniques of the high-quality data processing are the quality control for the removal of non-meteorological echoes, the classification of the hydrometeors. The techniques for support of the forecasting are the computation and verification of the rainfall estimation of dual-pol. and single-pol. radars, etc. And it is developed the application techniques by using Yong-In Testbed dual-pol. radar, the merged rainfall field of the radars and the satellites, etc. Further works are the computation of the high-resolution 3-dimensional wind field, the quantitative precipitation forecasting, the development of the application and the information service techniques for the hydrology, climate, industry, aviation for the prevention techniques against the severe weather by using multi-wavelengths ( X, C, S-band radars) of the cross governments, etc.

  2. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-08-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  3. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-03-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  4. TOPEX Project Radar Altimeter Development Requirements and Specifications, Version 6.0

    NASA Technical Reports Server (NTRS)

    Rossi, Laurence C.

    2003-01-01

    This document provides the guidelines by which the TOPEX Radar Altimeter hardware development effort for the TOPEX flight project shall be implemented and conducted. The conduct of this activity shall take maximum advantage of the efforts expended during the TOPEX Radar Altimeter Advanced Technology Model development program and other related Radar Altimeter development efforts. This document complies with the TOPEX Project Office document 633-420 (D-2218), entitled, "TOPEX Project Requirements and Constraints for the NASA Radar Altimeter" dated December 1987.

  5. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  6. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  7. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  8. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Simulation of Radar Rainfall Fields: A Random Error Model

    NASA Astrophysics Data System (ADS)

    Aghakouchak, A.; Habib, E.; Bardossy, A.

    2008-12-01

    Precipitation is a major input in hydrological and meteorological models. It is believed that uncertainties due to input data will propagate in modeling hydrologic processes. Stochastically generated rainfall data are used as input to hydrological and meteorological models to assess model uncertainties and climate variability in water resources systems. The superposition of random errors of different sources is one of the main factors in uncertainty of radar estimates. One way to express these uncertainties is to stochastically generate random error fields to impose them on radar measurements in order to obtain an ensemble of radar rainfall estimates. In the method introduced here, the random error consists of two components: purely random error and dependent error on the indicator variable. Model parameters of the error model are estimated using a heteroscedastic maximum likelihood model in order to account for variance heterogeneity in radar rainfall error estimates. When reflectivity values are considered, the exponent and multiplicative factor of the Z-R relationship are estimated simultaneously with the model parameters. The presented model performs better compared to the previous approaches that generally result in unaccounted heteroscedasticity in error fields and thus radar ensemble.

  10. EUMETCast: The Meteorological Data Dissemination Service

    NASA Astrophysics Data System (ADS)

    Gaertner, V. K.; Koenig, M.

    2006-05-01

    EUMETCast is EUMETSAT's broadcast system for environmental data. It utilises telecommunications satellites and the services of telecommunication providers to distribute data files using Digital Video Broadcast (DVB) standards to a wide audience located within the combined geographical coverage zones of the individual telecommunication satellites used to transmit the data. The telecommunication zones are now covering Europe, Africa, South America and parts of Asia and North America. This service has been established to provide the meteorological communities with satellite data and other meteorological products in near real-time for operational, but also research, education and training purposes. The following EUMETSAT services are currently available via EUMETCast: - Second Generation Meteosat - High Rate SEVIRI Image Data (every 15 minutes) - First Generation Meteosat - Indian Ocean Data Coverage (IODC) (every 30 minutes) - Other Geostationary Data from NOAA (GOES E/W) and JMA (MTSAT), (every 3 hours) - Data Collection and Retransmission (DCP) and Meteorological Data Dissemination (MDD) - Basic Meteorological Data (BMD) (Ku-band Europe only) - Meteorological Products (including some Satellite Application Facility products) - EUMETSAT Advanced Retransmission Service (EARS) (Ku-band Europe only) - DWDSAT (Ku-band Europe only) - VEGETATION data (C-band Africa only) Progressively during 2006 users will find an increasing amount of polar satellite data and products available on EUMETCast. As part of the extension of the EUMETCast Advanced Retransmission Service (EARS), ERS scatterometer data and NOAA satellite AVHRR data have already been introduced in early 2006. The ERS- SCAT demonstration service is a forerunner for the future pilot EARS-ASCAT service and the pilot EARS- AVHRR service will continue to expand during 2006 with the inclusion of data from additional AVHRR stations in the EARS network. The EUMETCast System will be also be used to provide dissemination of

  11. Processing for spaceborne synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Lybanon, M.

    1973-01-01

    The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.

  12. Meteorological Observations During CLIMODE

    NASA Astrophysics Data System (ADS)

    Edson, J. B.; Jonathan, W.; Faluotico, S. M.; Weller, R. A.; Plueddemann, A. J.; Lord, J.; Bigorre, S.

    2006-12-01

    The NSF sponsored CLIvar MOde Water Dynamic Experiment (CLIMODE) is designed to investigate the formation, evolution, storage, and dispersal of Eighteen Degree Water (EDW), the subtropical mode water of the North Atlantic. A main goal of CLIMODE is to better understand air-sea exchange in the wintertime Gulf Stream region, where EDW is formed. This region of the North Atlantic provides the largest wintertime exchange of heat from the ocean to the atmosphere. Therefore, accurate measurement of the heat, mass and momentum fluxes is of crucial importance to these studies and linkages to the global climate system. This talk provides an overview of the meteorological measurements being made to estimate these fluxes. Additionally, since the spatial distribution of these fluxes is what ultimately controls the formation of EDW, we are working with colleagues using numerical models and remotely sensed products to provide maps of the flux field over the EDW formation region. Additional talks in this session will describe these efforts. During the initial phase of CLIMODE, instruments were deployed aboard three platforms to estimate the heat, mass and momentum fluxes using the direct covariance and bulk aerodynamic methods. These platforms included the R/V Atlantis, an Air-Sea Interaction Spar (ASIS), and a traditional 3-m discus buoy deployed with an untraditional mooring designed to survive a 1-year deployment in the Gulf Stream. The ship and ASIS packages included Direct Covariance Flux Systems (DCFS) used in the development of the TOGA-COARE bulk algorithm. A low-power version of the DCFS was developed at WHOI and deployed on the discus mooring. The buoy was deployed with the DCFS and ASIMET instrumentation in November of 2005 and operates to date. Wind speed in excess of 20 m/s where measured on the buoy. Direct estimates of the drag coefficient are in good agreement with TOGA-COARE estimates with slight discrepancies at the highest wind speeds. The ship-based and ASIS

  13. Meteorological satellites: Past, present, and future

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Past developments, accomplishments and future potential of meteorological satellites are discussed. Meteorological satellite design is described in detail. Space platforms and their meteorological applications are discussed. User needs are also discussed.

  14. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1983-03-01

    The present investigation is concerned with planetary radar research reported during the time from 1979 to 1982. A brief synopsis of radar definitions and technical terminology is also provided. In connection with the proximity of the moon to earth, lunar radar studies have been performed over a wider range of wavelengths than radar investigations of other planetary targets. The most recent study of lunar quasispecular scattering is due to Simpson and Tyler (1982). The latest efforts to interpret the lunar radar maps focus on maria-highlands regolith differences and models of crater ejecta evolution. The highly successful Pioneer Venus Radar Mapper experiment has provided a first look at Venus' global distributions of topography, lambda 17-cm radar reflectivity, and rms surface slopes. Attention is given to recent comparisons of Viking Orbiter images of Mars to groundbased radar altimetry of the planet, the icy Galilean satellites, radar observations of asteroids and comets, and lambda 4-cm and lambda 13-cm observations of Saturn's rings.

  15. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    NASA Astrophysics Data System (ADS)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  16. Mathematics and Meteorology: Perfect Partners.

    ERIC Educational Resources Information Center

    Bomeli, Cynthia L.

    1991-01-01

    The integration of science and mathematics in the middle school using the topic of meteorology is discussed. Seven selected activities for this approach are suggested. Lists of materials and resources for use in this teaching approach are appended. (CW)

  17. Meteorological measurements from satellite platforms

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1972-01-01

    Quantitative exploitation of meteorological data from geosynchronous satellites is starting to move from the laboratory to operational practice. Investigations of the data applications portion of the total meteorological satellite system include: (1) tropospheric wind shear and the related severe storm circulations; (2) kinematic properties of the tropical atmosphere as derived from cloud motion vectors; (3) application of a geostationary satellite rake system to measurements of rainfall; and (4) pointing error analysis of geosynchronous satellites.

  18. BOREAS Derived Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Twine, Tracy; Rinker, Donald; Knapp, David

    2000-01-01

    In 1995, the BOREAS science teams identified the need for a continuous surface meteorological and radiation data set to support flux and surface process modeling efforts. This data set contains actual, substituted, and interpolated 15-minute meteorological and radiation data compiled from several surface measurements sites over the BOREAS SSA and NSA. Temporally, the data cover 01-Jan-1994 to 31-Dec-1996. The data are stored in tabular ASCII files, and are classified as AFM-Staff data.

  19. A Conceptual Titan Orbiter Mission Using Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.; Spilker, Thomas R.

    2006-01-01

    This study details a conceptual follow-on Titan orbiter mission that would provide full global topographic coverage. surface imaging, and meteorological characterization of the atmosphere over a nominal 5-year science mission duration. The baseline power requirement is approx.1 kWe at EOM and is driven by a high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography. While this power level is moderately higher than that of the Cassini spacecraft. higher efficiency advanced RPSs could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini spacecraft. The Titan Orbiter mission is assumed to launch in 2015. It would utilize advanced RPSs to provide all on-board power.

  20. Polarimetric radar observations during an orographic rain event

    NASA Astrophysics Data System (ADS)

    Frech, M.; Steinert, J.

    2015-03-01

    An intense orographic precipitation event on 5 January 2013 is analyzed using a polarimetric C-band radar situated north of the Alps. The radar is operated at the meteorological observatory Hohenpeißenberg (MHP, 1006 m a.s.l. - above sea level) of the German Meteorological Service (DWD). The event lasted about 1.5 days and in total 44 mm precipitation was measured at Hohenpeißenberg. Detailed high resolution observation on the vertical structure of this event is obtained through a birdbath scan at 90° elevation which is part of the operational scanning. This scan is acquired every 5 min and provides meteorological profiles at high spatial resolution which are often not available in other radar networks. In the course of this event, the melting layer (ML) descends until the transition from rain into snow is observed at ground level. This transition from rain into snow is well documented by local weather observers and a present-weather sensor. The orographic precipitation event reveals mesoscale variability above the melting layer which can be attributed to a warm front. This variability manifests itself through substantially increased hydrometeor fall velocities. Radiosounding data indicate a layered structure in the thermodynamic field with increased moisture availability in relation to warm air advection. Rimed snowflakes and aggregation in a relatively warm environment lead to a signature in the radar data which is attributed to wet snow. The passage of the warm front leads to a substantial increase in rain rate at the surface. We use the newly implemented hydrometeor classification scheme "Hymec" to illustrate issues when relating radar products to local observations. For this, we employ data from the radar near Memmingen (MEM, 65 km west of MHP, 600 m a.s.l.) which is part of DWD's operational radar network. The detection, in location and timing, of the ML agrees well with the Hohenpeißenberg radar data. Considering the size of the Memmingen radar sensing

  1. Simulation of meteorological satellite (METSAT) data using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Austin, W. W.; Ryland, W. E.

    1983-01-01

    The information content which can be expected from the advanced very high resolution radiometer system, AVHRR, on the NOAA-6 satellite was assessed, and systematic techniques of data interpretation for use with meteorological satellite data were defined. In-house data from LANDSAT 2 and 3 were used to simulate the spatial, spectral, and sampling methods of the NOAA-6 satellite data.

  2. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  3. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  4. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  5. Decoders for MST radars

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  6. Radar illusion via metamaterials.

    PubMed

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results. PMID:21405918

  7. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  8. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  9. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  10. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  11. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  12. Multiparameter radar study of rainfall: Potential application to area-time integral studies

    NASA Technical Reports Server (NTRS)

    Raghavan, R.; Chandrasekar, V.

    1994-01-01

    Multiparameter radars measure one or more additional parameters in addition to the coventional reflectivity factor. The combination of radar observations from a multiparameter radar is used to study the time evolution of rainstorms. A technique is presented to self-consistently compare the area-time integral (ATI) and rainfall volume estimates from convective storms, using two different measurements from a multiparameter radar. Rainfall volumes for the lifetime of individual storms are computed using the reflectivity at S band (10-cm wavelength) as well as one-way specific attenuation at X band (3-cm wavelength). Area-time integrals are computed by summing all areas in each radar snapshot having reflectivities (S band) in excess of a preselected threshold. The multiparameter radar data used in this study were acquired by the National Center for Atmospheric Research (NCAR) CP-2 radar during the Cooperative Huntsville Meteorological Experiment (COHMEX) and the Convection and Precipitation/Electrification Experiment (CaPE), respectively. ATI studies were accomplished in this work using multiparameter radar data acquired during the lifetime of six convective events that occurred in the COHMEX radar coverage area. A case study from the COMHEX field campaign (20 July 1986) was selected to depict the various stages in the evolution of a storm over which the ATI and rainfall volume computations were performed using multiparameter radar data. Another case study from the CaPE field campaign (12 August 1991) was used to demonstrate the evolution of a convective cell based on differential reflectivity observations.

  13. Automatic morphing using image registration: Application to continuous tracking of radar reflectivity and rain fields

    NASA Astrophysics Data System (ADS)

    Vongsaard, Jearanai

    Rainfall is one of the most important natural phenomenon that influences human life. Accurate rainfall estimation and prediction are crucial for flood forecasting, flood control, climate diagnostics, and water resource management. Rain data may be collected from numerous sources. Conventional rain gauge networks or meteorological radars provide continuous coverage in time. Satellite observations provide snap-shots of precipitation fields at poor temporal resolution. While a number of spaceborne platforms have been deployed for rain observation, the development of continuous space/time rainfall remains a major challenge. This dissertation seeks alternative techniques to automatically generate continuous data streams of rainfall data from sparse or intermittent observations. In order to avoid human intervention in the process, an automatic procedure is needed for real-time operations. For this purpose, Automatic Morphing Using Image Registration (AMIR) model is developed by integrating automatic image registration and image morphing algorithm. The new AMIR technique uses automatic image registration as the basis for finding control points for the morphing process. In the study of data assimilation for weather forecasting, there is a need to generate continuous streams of rainfall data to alleviate the so-called "spin up" problem, or the inability to provide short-term forecasts [Road90]. The proposed algorithm has been tested using remote sensing images from Next Generation Weather Radars (NEXRAD) and Tropical Rainfall Measuring Mission (TRMM). Three cases of rainfall data have been used. These include the passage of a storm in Florida, hurricane Floyd, and scattered rain in the southwestern of the United States for the same period using NEXRAD radar data as surrogate for spaceborne observations. These cases have drastically different spatial and temporal characteristics and hence provide tests on the applicability of the AMIR method. Comparative experimental results

  14. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  16. Space Shuttle interactive meteorological data system study

    NASA Technical Reports Server (NTRS)

    Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.

    1985-01-01

    Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.

  17. Flight test evaluation of a video tracker for enhanced offshore airborne radar approach capability

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Cooper, P. G.

    1982-01-01

    As a part of NASA's Rotorcraft All-Weather Operations Research Program, advanced airborne radar approach (ARA) concepts are being investigated. Since data from previous NASA/FAA flight tests showed significant ARA limitations, a research program was initiated at NASA Ames Research Center to determine the benefit that could be derived by automating certain radar functions and superimposing course display data on the radar display. To evaluate these concepts, a newly developed video tracking system which interfaces with weather radar was acquired. After the pilot designates a destination target, the system tracks the target video as it moves on the radar indicator. Using a small, efficient microprocessor, the autotracker presents valuable approach data on the radar screen and automatically adjusts the radar gain and tilt. Results of a limited flight test evaluation of the autotracker show that the course display concept, combined with automated gain and tilt functions, is effective for improving ARA's and reducing radar operator workload.

  18. An overview of neural network applications for soil moisture retrieval from radar satellite sensors

    NASA Astrophysics Data System (ADS)

    Santi, E.; Paloscia, S.; Pettinato, S.

    2014-10-01

    Frequent and spatially distributed measurements of soil moisture (SMC), at different spatial scales, are advisable for all applications related to the environmental disciplines, such as climatology, meteorology, hydrology and agriculture. Satellite sensors operating in the low part of microwave spectrum are very suitable for this purpose, and their signals can be directly related to the moisture content of the observed surfaces, provided that all the contributions from soil and vegetation to the measured signal are properly accounted for. Among the algorithms used for the retrieval of SMC from both active (i.e. Synthetic Aperture Radar, SAR or real aperture radars) and passive (radiometers) microwave sensors, the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at different spatial resolutions, varying from hundreds of meters to tens of kilometers. These algorithms, which use the ANN techniques for inverting theoretical and semi-empirical models, such as Advanced Integral Equation (AIEM), Oh models, and Radiative transfer Theory (RTT), have been adapted to the C-band acquisitions from SAR (Envisat/ASAR) and real aperture radar (ASCAT) and to the X-band SAR acquisitions of Cosmo-SkyMed and TerraSAR-X. Moreover, a specific ANN algorithm has also been implemented for the L-band active and passive acquisitions of the incoming SMAP mission. The latter satellite will carry onboard simultaneously one radar and one radiometer operating at the same frequency, but with different spatial resolutions (3 and 40 km, respectively). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites located worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these

  19. Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1993-01-01

    Radar is a powerful technique that has furnished otherwise unavailable information about solar system bodies for three decades. The advantages of radar in planetary astronomy result from: (1) the observer's control of all the attributes of the coherent signal used to illuminate the target, especially the wave form's time/frequency modulation and polarization; (2) the ability of radar to resolve objects spatially via measurements of the distribution of echo power in time delay and Doppler frequency; (3) the pronounced degree to which delay-Doppler measurements constrain orbits and spin vectors; and (4) centimeter-to-meter wavelengths, which easily penetrate optically opaque planetary clouds and cometary comae, permit investigation of near-surface macrostructure and bulk density, and are sensitive to high concentrations of metal or, in certain situations, ice. Planetary radar astronomy has primarily involved observations with Earth-based radar telescopes, but also includes some experiments with a spaceborne transmitter or receiver. In addition to providing a wealth of information about the geological and dynamical properties of asteroids, comets, the inner planets, and natural satellites, radar experiments have established the scale of the solar system, have contributed significantly to the accuracy of planetary ephemerides, and have helped to constrain theories of gravitation. This review outlines radar astronomical techniques and describes principal observational results.

  20. Passive optical detection of meteorological parameters in launch vehicle environments.

    PubMed

    Krause, F R; Su, M Y; Klugman, E H

    1970-05-01

    New optical detection systems are being developed which combine conventional passive photometry with advanced data processing and statistical analysis methods. These crossed-beam detection systems can continuously monitor meteorological parameters in rocket or aircraft environments. The outputs from several photometers are analyzed by cross correlation techniques to retrieve the transit times or transit distance of light emitting, absorbing, or scattering particles between the photometer lines of sight. These transit times and distances are then transformed into wind components and turbulence levels for preselected altitudes. A continuous near real time display of these meteorological parameters is also under development. PMID:20076328

  1. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  2. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  3. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  4. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  5. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  6. EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Lehtinen, Markku; Kangas, Jorma

    1992-02-01

    The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap Radar (PMR) and areas where the Finnish contribution could be important are addressed: radar techniques; sporadic E layers in the polar cap; atmospheric models; auroral studies in the polar cap; nonthermal plasmas in the F region; coordinated measurements with the Cluster satellites; studies of the ionospheric traveling; convection vortices; polar cap absorption; studies of lower atmosphere; educational program. A report on the design specification of an ionospheric and atmospheric radar facility based on the archipelago of Svalbard (Norway) is summarized.

  7. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  8. Radar Observations Of Lake Breeze Induced Summer Convective Storms

    NASA Astrophysics Data System (ADS)

    Donaldson, N.; Firanski, B.; Hudak, D.; Sills, D.; Taylor, P.

    Observations of convective precipitation made with a portable X-band radar are com- pared to images retrieved from the Exeter C-band operational radar situated in south- ern Ontario during Elbow 2001: The Effect of Lake Breezes On Weather. Attempts were made to locate and identify convective precursors of summer severe weather due to lake breeze boundary interactions with the X-band radar. As a diagnostic and prog- nostic observation and analysis tool, the X-band was able to make contributions to the research from the perspective of scanning flexibility. In comparison, the more sensitive C-band operational radar performed far better as a means of detecting boundary in- teractions well in advance of severe weather, making it a more effective research tool. The boundary interactions on June 19, July 19, and July 23 of 2001, are presented as case studies to illustrate the performance strengths of each radar.

  9. Scientific reasons for a network of ST radars and cooperative campaigns

    NASA Technical Reports Server (NTRS)

    Petitdidier, M.; Crochet, M.

    1986-01-01

    Due to their capabilities of measuring wind profiles in the troposphere and stratosphere with good time and height resolution, whatever the weather conditions, stratosphere-troposphere (ST) radars are well adapted to carry out atmospheric research in many fields as well as to fulfill the meteorological forecasting needs. Examples are presented from previous and future national or international campaigns planned in France. The ST radars were used first by themselves with the adjunction of radiosonde data. Then networks were built and used to get horizontal parameters. It appears that ST radar networks should naturally be included in cooperative campaigns.

  10. A new microtelesensor chip for meteorology

    SciTech Connect

    Manges, W.W.; Smith, S.F.; Britton, C.L.

    1997-03-04

    A new technology exploiting commercial, micro-sensors developed for atomic force microscopy offers breakthrough capability in high accuracy wireless sensors for meteorological measurements. Historically sensors used in air-borne and buoy-based platforms required compromises in performance to achieve the low-weight and low power requirements of the mobile platforms. Recent innovations in microelectromechanical systems (MEMS) provided opportunities to reduce size, weight, and power requirements but each sensor required a specially fabricated device with inherent calibration, repeatability, and traceability problems. This new approach allows identical sensors to be fabricated on the same semiconductor substrate as the conditioning electronics and the telemetry components. Exploiting semiconductor fabrication technology offers the potential to reduce fabrication costs to a few dollars per component. Sensing humidity, temperature and pressure have been demonstrated with plans for meteorological deployment scheduled for later in 1997. Cost, reliability, size, power consumption, and accuracy are key factors in the deployment of advanced meteorological sensor arrays. ORNL is actively integrating the sensing technologies, electronic processing, and telemetry that build a family of sensors with multiple-input capabilities. One of the key elements in ORNL`s sensor technology is coated microcantilever arrays, which form a powerful universal platform for multiple physical and chemical measurements. Telemetry is also being developed to add robust spread-spectrum data transmission capabilities to the necessary signal processing electronics. In collaboration with the NOAA Atmospheric Turbulence and Diffusion Lab, a chip-level temperature/humidity module with onboard telemetry is slated for demonstration later in 1997. Future additions would include sensors for atmospheric pressure, wind velocity, turbulence measurement, and radiometry.

  11. Shuttle imaging radar-C science plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit.

  12. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  13. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  14. Distributed array radar

    NASA Astrophysics Data System (ADS)

    Heimiller, R. C.; Belyea, J. E.; Tomlinson, P. G.

    1983-11-01

    Distributed array radar (DAR) is a concept for efficiently accomplishing surveillance and tracking using coherently internetted mini-radars. They form a long baseline, very thinned array and are capable of very accurate location of targets. This paper describes the DAR concept. Factors involving two-way effective gain patterns for deterministic and random DAR arrays are analyzed and discussed. An analysis of factors affecting signal-to-noise ratio is presented and key technical and performance issues are briefly summarized.

  15. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  16. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  17. 5 year radar-based rainfall statistics: disturbances analysis and development of a post-correction scheme for the German radar composite

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2015-02-01

    A radar-based rainfall statistic demands high quality data that provide realistic precipitation amounts in space and time. Instead of correcting single radar images, we developed a post-correction scheme for long-term composite radar data that corrects corrupted areas, but preserves the original precipitation patterns. The post-correction scheme is based on a 5 year statistical analysis of radar composite data and its constituents. The accumulation of radar images reveals artificial effects that are not visible in the individual radar images. Some of them are already inherent to single radar data such as the effect of increasing beam height, beam blockage or clutter remnants. More artificial effects are introduced in the process of compositing such as sharp gradients at the boundaries of overlapping areas due to different beam heights and resolution. The cause of these disturbances, their behaviour with respect to reflectivity level, season or altitude is analysed based on time-series of two radar products: the single radar reflectivity product PX for each of the 16 radar systems of the German Meteorological Service (DWD) for the time span 2000 to 2006 and the radar composite product RX of DWD from 2005 through to 2009. These statistics result in additional quality information on radar data that is not available elsewhere. The resulting robust characteristics of disturbances, e.g. the dependency of the frequencies of occurrence of radar reflectivities on beam height, are then used as a basis for the post-correction algorithm. The scheme comprises corrections for shading effects and speckles, such as clutter remnants or overfiltering, as well as for systematic differences in frequencies of occurrence of radar reflectivities between the near and the far ranges of individual radar sites. An adjustment to rain gauges is also included. Applying this correction, the Root-Mean-Square-Error for the comparison of radar derived annual rain amounts with rain gauge data

  18. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Economic benefits of meteorological services

    NASA Astrophysics Data System (ADS)

    Freebairn, John W.; Zillman, John W.

    2002-03-01

    There is an increasing need for more rigorous and more broadly based determination of the economic value of meteorological services as an aid to decision-making on the appropriate level of funding to be committed to their provision at the national level. This paper develops an overall framework for assessment of the economic value of meteorological services based on the recognition that most national meteorological infrastructure and services possess the non rival properties of public goods. Given this overall framework for determination of both total and marginal benefits, four main methodologies appropriate for use in valuation studies - market prices, normative or prescriptive decision-making models, descriptive behavioural response studies and contingent valuation studies - are outlined and their strengths and limitations described. Notwithstanding the methodological limitations and the need for a much more comprehensive set of studies for the various application sectors, it is clear that the actual and potential benefits to individuals, firms, industry sectors and national economies from state-of-the-art meteorological and related services are substantial and that, at this stage, they are inadequately recognised and insufficiently exploited in many countries.

  20. Diagnosing Meteorological Conditions Associated with Sprites and Lightning with Large Charge Moment Changes (CMC) over Oklahoma

    NASA Technical Reports Server (NTRS)

    Flores-Rivera, Lizxandra; Lang, Timothy J.

    2014-01-01

    Sprites are a category of Transient Luminous Events (TLEs) that occur in the upper atmosphere above the tops of Mesoscale Convective Systems (MCSs). They are commonly associated with lightning that produce large charge moment changes (CMCs). Synergistic use of satellite and radar-retrieved observations together with sounding data, forecasts, and lightning-detection networks allowed the diagnosis and analysis of the meteorological conditions associated with sprites as well as large-CMC lightning over Oklahoma.

  1. Operational observations of atypical meteorological features using the WSR-88D

    SciTech Connect

    Tongue, J.S.; Lehenbauer, G.J.; Michael, P.A.; Miller, M.A.

    1996-09-01

    The Weather Surveillance Radar-1988 Doppler (WSR-88D) provides invaluable information on a variety of meteorological phenomena. The high sensitivity of the WSR-88D allows for the observation of phenomena that were not observable with previous WSR`s. Precipitation phase, land-sea breeze circulations, and clouds are examples of phenomena that are now observable by the WSR-88D. The detection of these features has an enormous impact on forecast operations.

  2. IEEE National Radar Conference, 3rd, University of Michigan, Ann Arbor, MI, Apr. 20, 21, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in radar systems and subsystems, radar techniques, radar signal processing, and radar phenomenology. Attention is given to mm-wave radar system tradeoffs, polarimetric X/L/C-band SAR, a VHF radar for tropical jungle terrain elevation modeling, low probability of intercept techniques and implementations, target tracking in maneuver-centered coordinates, advanced techniques for extension of SAR depth-of-focus under arbitrary aircraft maneuvers, and iterative noncoherent angular superresolution. Also discussed are the effect of codebook size on the vector quantization of SAR data, the application of knowledge-based systems to surveillance, digital filters for SAR, novel radar pulse compression waveforms, the theory and application of SAR oceanography, autoregressive modeling of radar data with application to target identification, and a coherent model of radar weather clutter.

  3. On wave radar measurement

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Feld, Graham; Jonathan, Philip

    2014-09-01

    The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.

  4. Three-dimensional mosaicking of the South Korean radar network

    NASA Astrophysics Data System (ADS)

    Berenguer, Marc; Sempere-Torres, Daniel; Lee, GyuWon

    2016-04-01

    Dense radar networks offer the possibility of improved Quantitative Precipitation Estimation thanks to the additional information collected in the overlapping areas, which allows mitigating errors associated with the Vertical Profile of Reflectivity or path attenuation by intense rain. With this aim, Roca-Sancho et al. (2014) proposed a technique to generate 3-D reflectivity mosaics from the multiple radars of a network. The technique is based on an inverse method that simulates the radar sampling of the atmosphere considering the characteristics (location, frequency and scanning protocol) of each individual radar. This technique has been applied to mosaic the observations of the radar network of South Korea (composed of 14 S-band radars), and integrate the observations of the small X-band network which to be installed near Seoul in the framework of a project funded by the Korea Agency for Infrastructure Technology Advancement (KAIA). The evaluation of the generated 3-D mosaics has been done by comparison with point measurements (i.e. rain gauges and disdrometers) and with the observations of independent radars. Reference: Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres (2014), An inverse method to retrieve 3D radar reflectivity composites, Journal of Hydrology, 519, 947-965, doi: 10.1016/j.jhydrol.2014.07.039.

  5. Radar Sensing for Intelligent Vehicles in Urban Environments

    PubMed Central

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  6. Radar Sensing for Intelligent Vehicles in Urban Environments.

    PubMed

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  7. Signal processing techniques for surveillance radar - An overview

    NASA Astrophysics Data System (ADS)

    Farina, A.; Galati, G.

    1985-06-01

    The present paper is concerned with a survey of the signal processing techniques presently employed in modern air defense and surveillance radars and those techniques likely to be applied in the future. Attention is given to the requirements for enhancing performance in surveillance radar, current processing techniques, advanced techniques, low probability of intercept (LPI) and anti-ARM (anti-radiation missile), anti-stealth, digital beamforming (DBF), adaptivity, high directivity and high resolution, multidimensional processing, target classification, and fieldability. Stealth is the term given to means of reducing the radar cross section of a target and the reduction of infrared emissions from the engine exhaust.

  8. Hughes integrated synthetic aperture radar: High performance at low cost

    SciTech Connect

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8 figs.

  9. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  10. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  11. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    aircraft in its fleet for airborne atmospheric measurements, including dropsonde, and in situ sampling and remote sensing of clouds, chemistry and aerosols. Therefore, the addition of a precipitation radar to the NSF/NCAR C-130 platform will produce transformational change in its mission. This new design can be cloned for C-130s operated by a number of agencies, including NOAA and the Air Force hurricane reconnaissance fleet. This paper presents a possible configuration of a novel, airborne phased array radar (APAR) to be installed on the NSF/NCAR C-130 aircraft with improved spatial resolution and polarimetric capability to meet or exceed that of ELDORA. The preliminary design, an update of the APAR project, and a future plan will be presented. References: Bell, M. M. , M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, Vol. 136, Issue 6, pp. 2023-2046. Hildebrand, P. H., W.-C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Metoro. Soc., 77, 213-232 Howard B. Bluestein, Roger M. Wakimoto, 2003: Mobile Radar Observations of Severe Convective Storms re Convective Storms. Meteorological Monographs, Vol. 30, Issue 52, pp. 105-105. Montgomery, M. T., M. M. Bell, S. D. Aberson, M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. of the American Meteorl. Soc., Vol. 87, Issue 10, pp. 1335-1347.

  12. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  13. Compositing radar reflectivity observations with an inverse method

    NASA Astrophysics Data System (ADS)

    Roca-Sancho, Jordi; Berenguer, Marc; Sempere-Torres, Daniel

    2013-04-01

    Quantitative Precipitation Estimation (QPE) has been one of the main applications of weather radars since its early stages. Nowadays, many advances have improved such estimates and radar networks have been deployed in many countries. In parallel, uncertainty in radar QPE has become a subject of interest by itself because of its significant role in the quality of estimates. When several radars cover the same area, some sources of uncertainty (e.g. path attenuation by intense precipitation, beam blockage or beam broadening), can be dealt using information from the least-affected radars instead of only reproducing a single radar approach in each one. So far, composites of radar observations are carried out through simple criteria (by picking the closest observation, the maximum value…) or quality indices -that need a priori definition of quality descriptors. This study proposes an alternative methodology to retrieve the 3-dimensional reflectivity field most compatible with the measurements from the different radars of the network. With this aim, the methodology uses a model that simulates the radar sampling of the atmosphere. The model settings consider the specific features of each radar such as the location, hardware parameters (frequency, beam width, pulse length…) and scanning strategy. The methodology follows the concept of an inverse method based on the minimization of a cost function that penalizes discrepancies between the simulated and actual observations for each radar of the network. It is worth noting that for radar at attenuating wavelengths, the proposed methodology implicitly corrects the effect of attenuation due to intense rainfall. The methodology has been applied on the network of C-band radars in the vicinity of Barcelona, Spain. The retrievals have been obtained for a 12 hours of rainfall with reflectivity observations of two radars; observations from a third independent radar have been used for verification at different heights. Conventional

  14. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.

  15. Implementation and evaluation of the new wind algorithm in NASA's 50 MHz doppler radar wind profiler

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Manobianco, John T.; Schumann, Robin S.; Wheeler, Mark M.; Yersavich, Ann M.

    1993-01-01

    The purpose of this report is to document the Applied Meteorology Unit's implementation and evaluation of the wind algorithm developed by Marshall Space Flight Center (MSFC) on the data analysis processor (DAP) of NASA's 50 MHz doppler radar wind profiler (DRWP). The report also includes a summary of the 50 MHz DRWP characteristics and performance and a proposed concept of operations for the DRWP.

  16. Support of imaging radar for the shuttle system and subsystem definition study, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An orbital microwave imaging radar system suggested for use in conjunction with the space shuttle is presented. Several applications of the system are described, including agriculture, meteorology, terrain analysis, various types of mapping, petroleum and mineral exploration, oil spill detection and sea and lake ice monitoring. The design criteria, which are based on the requirements of the above applications, are discussed.

  17. NASA's DC-8 With Rain Mapping Radar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In a joint venture between NASA and Japan's NASDA, scientists have been using satellites, airplanes, and boats to measure rain physics in and under thunderstorms over open water. This Quick Time movie shows NASA's DC-8 jet with the instruments like the airborne rain mapping radar, i.e., the Advanced Microwave Precipitation Radiometer (AMPR) and a lightening imaging sensor. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  18. Radar Technology Development at NASA/JPL

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2011-01-01

    Radar at JPL and worldwide is enjoying a period of unprecedented development. JPL's science-driven program focuses on exploiting commercially available components to build new technologies to meet NASA's science goals. Investments in onboard-processing, advanced digital systems, and efficient high-power devices, point to a new generation of high-performance scientific SAR systems in the US. Partnerships are a key strategy for US missions in the coming decade

  19. Corporate/commuter airlines meteorological requirements

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.

    1985-01-01

    The meteorological information requirements of corporate and commuter airlines are reviewed. The skill level and needs of this class of aviator were assessed. An overview of the methodology by which meteorological data is communicated to these users is presented.

  20. 76 FR 490 - Marking Meteorological Evaluation Towers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...-2251. FOR FURTHER INFORMATION CONTACT: Sheri Edgett-Barron, Obstruction Evaluation Services, Air... Federal Aviation Administration 14 CFR Part 77 Marking Meteorological Evaluation Towers AGENCY: Federal... to include guidance for Meteorological Evaluation Towers (METs). These towers are erected in...

  1. SELECT RESEARCH GROUP IN AIR POLLUTION METEOROLOGY

    EPA Science Inventory

    Six individual investigators, who have conducted different but related meteorological research, present in-depth technical reviews of their work. Prime conclusions are that (1) a scale analysis shows that different models are necessary for meteorological processes on urban, regio...

  2. Probabilistic quantitative precipitation estimation using dual polarization radar measurements

    NASA Astrophysics Data System (ADS)

    Lim, S.; Noh, S.; Lee, D.

    2013-12-01

    Weather radars have become a popular tool for meteorological applications such as quantitative precipitation estimation (QPE) with high spatiotemporal resolution. Especially, in the last decade, QPE performance has been improved by introduction of polarimetric technology. However, QPEs using dual polarization radar data are still subject to uncertainties resulted in rainfall conversion relationships, combination methods of different parameters, and sampling errors. Deterministic QPE typically based on decision tree method ignores such uncertainties which exacerbate performance in hydrologic flood forecasting. Probabilistic precipitation models provide an alternative framework for QPE to understand temporal and spatial variations of uncertainty. In this study, we propose a probabilistic QPE method from dual polarization radar measurements via data assimilation. The proposed method utilizes QPE ensembles based on different parameters of a polarimetric radar considering uncertainty of conversion equations and rainfall parameters. Ground observations are assimilated with QPE ensembles at each measurement time step. Rejection sampling based on Bayesian filtering is implemented to estimate posterior distribution of QPE and compare multiple models. The strength of the proposed method is that it can improve accuracy of QPE compared to deterministic QPE, identify uncertainty of QPE, and provide sound spatial precipitation fields including error structure, which is essential for hydrological data assimilation to improve flood forecasting. The real experiments are implemented to demonstrate applicability of this method using S-band dual polarization radar located in Mt. Biseul, Korea. The discussion will be focused on analysis of multi-model selection results by Bayesian filtering and comparison of accuracy between deterministic and probabilistic QPE methods.

  3. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  4. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology. PMID:23748420

  5. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  6. Meteorological forecasting for emergency preparedness and response at the Kennedy Space Center of Florida

    SciTech Connect

    Lee, R.L.; Albritton, J.R.; Ermak, D.L.; Hodur, R.; Liou, C.S.

    1995-10-13

    The NORAPS model has been used to simulate the motion of Hurricane Erin over Florida. A triplynested grid was used to capture the meteorological features which span from regional to local scales with the highest resolution nest centered at the Kennedy Space Center area. The simulated storm track agreed remarkably well with the observed path of the hurricane. There was also good qualitative agreement between the computed surface precipitation pattern and observations based on radar signatures. Although the validity of the Kuo- type cumulus parameterization scheme used in the model was marginal and even questionable on the finest resolution (4 km) nest, the simulated results were nevertheless qualitatively reasonable. The results generated by NORAPS from the simulation of such a numerical challenging meteorological event were very encouraging. Our next step is to use the meteorological information from the model to provide wind fields for dispersion model simulations of potential atmospheric releases.

  7. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  8. Meteorological Satellites and Their Data

    NASA Technical Reports Server (NTRS)

    Vaughn, W.

    1982-01-01

    This paper presents an overview of the meteorological satellite programs that have been evolving from 1958 to the present and reviews plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third-generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational polar-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  9. Synoptic Analysis of Heavy Rainfall and Flood Observed in Izmir on 20 May 2015 Using Radar and Satellite Images

    NASA Astrophysics Data System (ADS)

    Avsar, Ercument

    2016-07-01

    In this study, a meteorological analysis is conducted on the sudden and heavy rainfall that occurred in Izmir on May 20, 2015. The barotropic model that is observed in upper carts is shown in detail. We can access the data of and analyze the type, severity and amount of many meteorological parameters using the meteorological radars that form a remote sensing system. The one field that uses the radars most intensively is rainfall. Images from the satellite and radar systems are used in the meteorological analysis of the heavy rainfall that occurred in Izmir on 20 May 2015, and the development of the system that led to this rainfall is shown. In this study, data received from Bornova Automatic Meteorological Observation Station (OMGI), which is under the management of Meteorology General Directorate (MGM), Izmir 2. Regional Directorate; satellite images; Radar PPI (Plan Position Indicator) and Radar MAX (Maximum Display) images are evaluated. In addition, synoptic situation, outputs of numerical estimation models, indices calculated from Skew T Log-P diagram are shown. All these results are mapped and analyzed. At the end of these analyses, it is found that this sudden rainfall had developed according to the frontal system motion. A barotropic model occurred on the day of the rainfall over the Aegean Region. As a result of the rainfall that happened in Izmir at 12.00 UTC (Universal Coordinated Time), the May month rainfall record for the last 64 years is achieved with a rainfall amount of 67.7 mm per meter square. Keywords: Izmir, barotropic model, heavy rainfall, radar, synoptic analysis

  10. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  11. Technology and Meteorology. An Action Research Paper.

    ERIC Educational Resources Information Center

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  12. Syllabi for Instruction in Agricultural Meteorology.

    ERIC Educational Resources Information Center

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  13. Correction of Sampling Errors in Ocean Surface Cross-Sectional Estimates from Nadir-Looking Weather Radar

    NASA Technical Reports Server (NTRS)

    Caylor, I. Jeff; Meneghini, R.; Miller, L. S.; Heymsfield, G. M.

    1997-01-01

    The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.

  14. Quality Control of Meteorological Observations

    NASA Technical Reports Server (NTRS)

    Collins, William; Dee, Dick; Rukhovets, Leonid

    1999-01-01

    For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.

  15. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. Scanning ARM Cloud Radars Part I. Operational Sampling Strategies

    SciTech Connect

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2013-12-03

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  17. Cross-validation of spaceborne radar and ground polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven Matthew

    There is great potential for spaceborne weather radar to make significant observations of the precipitating medium on global scales. The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall in the tropics from space using radar. The Precipitation Radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit at 350 km altitude and 35 degree inclination. The PR is a single frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant, which can be as high as 10--15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR returns. Direct inter-comparison of meteorological measurements between space and ground radar observations can be used to evaluate spaceborne processing algorithms. Though conceptually straightforward, this can be a challenging task. Differences in viewing aspects between space and earth point observations, propagation frequencies, resolution volume size and time synchronization mismatch between measurements can contribute to direct point-by-point inter-comparison errors. The problem is further complicated by spatial geometric distortions induced into the space-based observations caused by the movements and attitude perturbations of the spacecraft itself. A method is developed to align space and ground radar observations so that a point-by-point inter-comparison of measurements can be made. Ground-based polarimetric observations are used to estimate the attenuation of PR signal returns along individual PR beams, and a technique is formulated to determine the true PR return from GR measurements via theoretical modeling of specific attenuation (k) at PR wavelength with ground-based S-band radar observations. The statistical behavior of the parameters

  18. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  19. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  20. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  1. Characteristics of Sunset radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Located in a narrow canyon 15 km west of Boulder, Colorado, the Sunset pulsed Doppler radar was the first radar designed and constructed specifically as a VHF ST radar. The antenna system is a phased array of coaxial-colinear dopoles with computer-controlled phase shifters for each line of dipoles. It operates at a frequency of 40.475 MHz and a wavelength of 7.41M. Peak transmitter power is 100 kW. Aperture efficiency is 0.58 and resistive loss is 0.30 for its 3600 sq m area. The practical steering rate is 1 record/minute/position to any arbitrary antenna beam position. The first clear-air turbulence echoes and wind velocity measurements were obtained in 1974. Significant accomplishments are listed.

  2. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (A MU) activities for the fourth quarter of Fiscal Year 2004 (July -Sept 2004). Tasks covered are: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Shuttle Ascent Camera Cloud Obstruction Forecast, (5) Advanced Regional Prediction System (ARPS) Optimization and Training Extension and (5) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest.

  3. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  4. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  5. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  6. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  7. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  8. Microwave radar oceanographic investigations

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1988-01-01

    The Radar Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour Radar (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.

  9. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  10. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  11. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  12. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-05-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  13. The new approach of polarimetric attenuation correction for improving radar quantitative precipitation estimation(QPE)

    NASA Astrophysics Data System (ADS)

    Gu, Ji-Young; Suk, Mi-Kyung; Nam, Kyung-Yeub; Ko, Jeong-Seok; Ryzhkov, Alexander

    2016-04-01

    To obtain high-quality radar quantitative precipitation estimation data, reliable radar calibration and efficient attenuation correction are very important. Because microwave radiation at shorter wavelength experiences strong attenuation in precipitation, accounting for this attenuation is the essential work at shorter wavelength radar. In this study, the performance of different attenuation/differential attenuation correction schemes at C band is tested for two strong rain events which occurred in central Oklahoma. And also, a new attenuation correction scheme (combination of self-consistency and hot-spot concept methodology) that separates relative contributions of strong convective cells and the rest of the storm to the path-integrated total and differential attenuation is among the algorithms explored. A quantitative use of weather radar measurement such as rainfall estimation relies on the reliable attenuation correction. We examined the impact of attenuation correction on estimates of rainfall in heavy rain events by using cross-checking with S-band radar measurements which are much less affected by attenuation and compared the storm rain totals obtained from the corrected Z and KDP and rain gages in these cases. This new approach can be utilized at shorter wavelength radars efficiently. Therefore, it is very useful to Weather Radar Center of Korea Meteorological Administration preparing X-band research dual Pol radar network.

  14. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  15. Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Bray, Michaela; Srivastava, Prashant K.

    2013-04-01

    The advent of polarimetry makes it possible to categorize hydrometeor inferences more accurately by providing detailed information of the scattering properties. In light of this, the authors have developed a fuzzy logic based system for the recognition of melting layer in the atmosphere. The fuzzy system is based on characterizing melting layer scatterers from non-melting scatterers using five crisp inputs, namely, horizontal reflectivity ( Z H), differential reflectivity ( Z DR), co-polar correlation coefficient ( ρ HV), linear depolarization ratio (LDR) and height of radar measurements ( H). For the implementation of melting layer recognition, the study employs the dual polarized signatures from the 3 GHz Chilbolton Advanced Meteorological Radar (CAMRA). Furthermore, a simple but effective averaging procedure for melting level estimation from a volume RHI scan is proposed. The proposed scheme has been evaluated with Weather Research and Forecasting (WRF) model simulated and radio soundings retrieved melting level height over a total of 84 RHI scan-based bright band cases. The results confirm that the estimated melting level heights from the proposed method are in good agreement with the WRF model and radio sounding observations. The 3 GHz radar melting level height estimates correspond with the R 2 and RMSE values of 0.92 and 0.24 km, respectively, when compared to the radio soundings, and 0.93 and 0.21 km, respectively, when compared to the WRF model results. Moreover, the related R 2 and RMSE values are reported as 0.93 and 0.22 km respectively between the WRF and radio soundings retrievals. This implies that the downscaled WRF modelled melting level height may also be used for operational or research needs.

  16. A study of radar backscattering from water surface in response to rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Zheng, Quanan; Liu, Ren; Wang, Dan; Duncan, James H.; Huang, Shih-Jen

    2016-03-01

    In this paper, radar backscattering from a water surface in response to rainfall was studied. The paper consists of two parts. First, the spatial characteristics of raindrops in rain fields were analyzed based on published data and the response of a water surface to rainfall was experimentally studied in the laboratory. Rain-generated surface features including stalks, crowns, ring waves, and secondary drops were measured. It was found that stalks and crowns are dominant in terms of their height and energy. Second, the radar signatures of a rainfall event simultaneously observed by C band ENVISAT (European satellite), ASAR (Advanced Synthetic Aperture Radar), and ground-based weather radar in the Northwest Pacific were investigated. The relationship between the radar return intensity extracted from the C band ASAR image and the reflectivity factor (rain rate) obtained from ground-based weather radar was analyzed. For light/moderate rain (with low reflectivity factors), the radar backscattering intensity increases as the reflectivity factor increases. For heavy rain (with high reflectivity factors), the radar backscattering intensity decreases as the reflectivity factor increases. The maximum radar backscattering intensity occurs at a reflectivity factor of 45 dBZ (with rain rate of 24 mm/h). It was found that the spaceborne radar backscattering intensity strongly correlates with the average distance between the stalks on the water surface in the rain field in a nonlinear manner. The physics of the radar signatures of the rain event are explored.

  17. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  18. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  19. Properties of echo spectra observed by MST radars

    NASA Technical Reports Server (NTRS)

    Wakasugi, K.

    1983-01-01

    Turbulent scatter and Fresnel reflection are the fundamental echoing mechanisms to interpret the signals observed by Mesosphere-stratosphere-troposphere (MST) radars. Turbulent scattered echoes provide information about the turbulence structure and mean flow of the atmosphere. Observational results with VHF MST radars, however, show the importance of Fresnel reflection due to the infinite gradient of reflectivity at the edges of a scattering layer. This condition is excluded for the weak fluctuation models but it is still possible to include the observed aspect sensitivity by assuming an anisotropic structure of fluctuations. Another explanation of the aspect sensitivity observed by MST radars is advanced. Spectral estimates by the widely used periodogram were related to a four-dimensional spectrum of atmospheric fluctuations with anisotropic structure. Effects of the radar system such as antenna beam width, beam direction and Fast Fourier Transformations (FFT) data length were discussed for the anisotropic turbulent atmosphere. Echo parameters were also estimated.

  20. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  1. The Newcastle meteor radar

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  2. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  3. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  4. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  5. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  6. The Meteorology of Storms that Produce Narrow Bipolar Events

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; McCaul, Eugene W.; Cummer, Steven A.

    2013-01-01

    Narrow Bipolar Events (NBEs) are compact intracloud discharges that produce the most powerful lightning-related radio frequency signals that have been observed. However, their luminosity is below the threshold for detectability from current and past spaceborne optical sensors. NBEs have been loosely associated with convective intensity, but their occurrence tends to be highly localized in time and space within a thunderstorm, and there remain many questions about whether and to what extent they are significantly related to meteorological processes within thunderstorms. Using the North Alabama Lightning Mapping Array (NALMA), the National Lightning Detection Network, and available Doppler and polarimetric radar data, case studies will be presented for storm events that produced large numbers of NBEs (10s-100s) during their lifetimes. NBEs are documented via a method that identifies high peak power (>40-50 dBW) initial VHF sources within a specific altitude band in the upper levels of thunderstorms. The production of NBEs, including spatial and temporal variability, will be compared to the radar-inferred kinematic and microphysical structure and evolution of thunderstorms, as well as their NALMA- and NLDN-inferred electrical characteristics. The results should provide new insights into the relationships between NBEs and thunderstorm processes.

  7. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  8. Automated emergency meteorological response system

    SciTech Connect

    Pepper, D W

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance.

  9. Website for popularization of meteorology

    NASA Astrophysics Data System (ADS)

    Špoler Čanić, K.; Rasol, D.

    2012-04-01

    Little meteorological workshop (LMW) is an educational project that has started in 2007 at the Science Festival in Zagreb, Croatia. In 2009 began a new phase of the project which was introduction of the LMW as an extracurricular school activity for pupils. To reach more users the authors of the LMW published a booklet of experiments which were conducted at the workshops in schools. Furthermore, a website (www.malameteo.com) that shows how to make those experiments was developed. The website has some more educational information as well. Here, the content of the website will be presented.

  10. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  11. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  12. Generic evaluation tracker database for OTH radar

    NASA Astrophysics Data System (ADS)

    Flanders, Lorraine E.; Hartnett, Michael P.; Vannicola, Vincent C.

    1999-10-01

    This paper provides a real world target and clutter model for evaluation of radar signal processing algorithms. The procedure is given for target and clutter data collection which is then followed by the equalization and superposition method. We show how the model allows one to vary the target signal to clutter noise ratio so that system performance may be assessed over a wide range of target amplitudes, i.e. detection probability versus target signal to noise ratio. Three candidate pre-track algorithms are evaluated and compared using this model as input in conjunction with an advanced tracker algorithm as a post processor. Data used for the model represents airborne traffic operating over the body of water bounded by North, Central, and South America. The processors relate to the deployment of Over the Horizon Radar for drug interdiction. All the components of this work, model as well as the processors, are in software.

  13. Propagation of radar rainfall uncertainty in urban flood simulations

    NASA Astrophysics Data System (ADS)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    This work discusses the results of the implementation of a novel probabilistic system designed to improve ensemble sewer flow predictions for the drainage network of a small urban area in the North of England. The probabilistic system has been developed to model the uncertainty associated to radar rainfall estimates and propagate it through radar-based ensemble sewer flow predictions. The assessment of this system aims at outlining the benefits of addressing the uncertainty associated to radar rainfall estimates in a probabilistic framework, to be potentially implemented in the real-time management of the sewer network in the study area. Radar rainfall estimates are affected by uncertainty due to various factors [1-3] and quality control and correction techniques have been developed in order to improve their accuracy. However, the hydrological use of radar rainfall estimates and forecasts remains challenging. A significant effort has been devoted by the international research community to the assessment of the uncertainty propagation through probabilistic hydro-meteorological forecast systems [4-5], and various approaches have been implemented for the purpose of characterizing the uncertainty in radar rainfall estimates and forecasts [6-11]. A radar-based ensemble stochastic approach, similar to the one implemented for use in the Southern-Alps by the REAL system [6], has been developed for the purpose of this work. An ensemble generator has been calibrated on the basis of the spatial-temporal characteristics of the residual error in radar estimates assessed with reference to rainfall records from around 200 rain gauges available for the year 2007, previously post-processed and corrected by the UK Met Office [12-13]. Each ensemble member is determined by summing a perturbation field to the unperturbed radar rainfall field. The perturbations are generated by imposing the radar error spatial and temporal correlation structure to purely stochastic fields. A

  14. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards

  15. Transhorizon microwave propagation and its relationship with meteorological conditions

    NASA Astrophysics Data System (ADS)

    Spillard, Candida

    1990-01-01

    The measurement and modeling of X-Band transhorizon propagation is addressed. Propagation of microwaves beyond the horizon can occur by the mechanism of scattering from eddies of atmospheric turbulence or from hydrometers, partial reflection from stable atmospheric layers of feuillets, diffraction, and ducting. The dominant mechanism operating on a link at any given time is dependent upon the weather conditions. From a network of X-Band links across the English Channel (La Manche) examples of propagation due to turbulent scatter, hydrometer scatter, partial reflections and ducting were identified. Models were developed for propagation due to turbulent and hydrometeor scatter and to partial reflections. The method for predicting the signal levels received due to scattering mechanisms is based on the Radar Equation, with the Rayleigh differential scattering cross-section in the case of rain scatter, and a differential scattering cross-section calculated using a Kolmogorov spectrum of eddy sizes in a turbulent atmosphere. The model for propagation by partial reflections is based on the Friis transmission equation together with the Fresnel reflection coefficients of layers with known refractivity profiles. A method for identifying which mechanism is operating over a link at a given time from the meteorological synoptic chart for that time was developed. In this study, ducting was modeled as total reflection, since at X-Band frequencies ray-tracing modeling can be used with negligible loss of accuracy. Turbulent scatter is the dominant mechanism when the link is under the influence of depressions or fronts. The meteorological classification method was applied to 12 months of data, from Jun. 1988 to May 1989. It was found that although most of the synoptic charts are relatively easily classified, discrete categories are not always easily applied to the continuous range of meteorological conditions. Some 5 percent of charts were difficult to classify. Some of these could

  16. Applications of ISES for meteorology

    NASA Technical Reports Server (NTRS)

    Try, Paul D.

    1990-01-01

    The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.

  17. From GNSS and meteorological data to NRT 4D water vapour distribution - GNSS meteorology activities at WUELS

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Kaplon, Jan; Rohm, Witold; Sierny, Jan; Wilgan, Karina; Hadas, Tomasz; Hordyniec, Pawel

    2014-05-01

    The GNSS and Meteo group at Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintain real-time (RT) service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The GNSS data are available from 124 reference stations located in Poland and neighbour countries, with the average 70km distance between stations. The ground meteorological observations in the area of Poland and neighbour countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR messages stations) and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). The first part of the paper presents the methodology of ASG-EUPOS GNSS data processing for NRT ZTD and ZTD horizontal gradients estimation in double-differenced mode (under Bernese GNSS Software V5.0) as well as new results from PPP mode (under Bernese GNSS Software V5.2) and their validation with respect to Rapid and Final troposphere products. The second part is describing the quality assessment of meteorological parameters interpolation methods for determination of ZHD at GNSS sites performed on GNSS stations equipped with meteorological sensors. The third part concerns on the comparisons of ZTD from GNSS data and meteorological parameters from SYNOP stations with data from COAMPS numerical weather prediction system (NWP) and IWV calculation. The fourth part presents the development of GNSS tomography model TOMO2. The last part describes methods of above products validation and visualization over the

  18. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  19. Planetary Geology with Imaging Radar: Insights from Earth-based Lunar Studies, 2001–2015

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    2016-06-01

    Radar exploration of the Solar System changed dramatically during and beyond the period of the Magellan mission to Venus. These changes included an expansion of the community familiar with microwave data, and the forging of a strong connection with polarimetric scattering models developed through terrestrial field measurements and airborne radar studies. During the period, advances in computing power and imaging techniques also allowed Earth-based radar experiments to acquire data at the highest spatial resolutions permitted by their transmitter systems. This paper traces these developments through a case study of lunar observations over the past 15 years, and their implications for ongoing and future Solar System radar studies.

  20. Dual-Polarimetric Radar-Based Tornado Debris Signatures and Paths Associated with Tornadoes Over Northern Alabama During the Historic Outbreak of 27 April 2011

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedloved, Gary J.; Carcione, Brian C.; Darden, Christopher B.; Crowe, Christina C.

    2012-01-01

    A historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by 40 tornadoes, including 6 that reached EF-4 to EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Many of these tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures in 6 tornadoes in North Alabama on April 27, 2011. Several of these debris signatures were disseminated in real-time to the NWS Huntsville and local media to confirm storm spotter reports, confidence to enhance wording within warnings, and accurately pinpoint the locations of tornadoes for residents downstream of the storm. Also, the debris signature locations were used in post-event storm surveys to help locate areas of damage in regions where damage went unreported, or to help separate tornado tracks that were in close proximity to each other. Furthermore, the relative locations of the debris and damage paths for long track EF-4 and EF-5 tornadoes will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys.

  1. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  2. Precipitation observations from high frequency spaceborne polarimetric synthetic aperture radar and ground-based radar: Theory and model validation

    NASA Astrophysics Data System (ADS)

    Fritz, Jason P.

    Global weather monitoring is a very useful tool to better understand the Earth's hydrological cycle and provide critical information for emergency and warning systems in severe cases. Developed countries have installed numerous ground-based radars for this purpose, but they obviously are not global in extent. To address this issue, the Tropical Rainfall Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is launched. However, a single precipitation radar satellite is still limited, so it would be beneficial if additional existing satellite platforms can be used for meteorological purposes. Within the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been launched and more are planned. While the primary SAR application is surface monitoring, and they are heralded as "all weather'' systems, strong precipitation induces propagation and backscatter effects in the data. Thus, there exists a potential for weather monitoring using this technology. The process of extracting meteorological parameters from radar measurements is essentially an inversion problem that has been extensively studied for radars designed to estimate these parameters. Before attempting to solve the inverse problem for SAR data, however, the forward problem must be addressed to gain knowledge on exactly how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR data starting from real measurements of a storm by ground-based polarimetric radar. In addition, real storm observations by current SAR platforms are also quantitatively analyzed by comparison to theoretical results using simultaneous acquisitions by ground radars even in single polarization. For storm simulation, a novel approach is presented here using neural networks to accommodate the oscillations present when the particle scattering requires the Mie solution, i

  3. Inter-comparison of radar rainfall rate using Constant Altitude Plan Position Indicator and hybrid surface rainfall maps

    NASA Astrophysics Data System (ADS)

    Kwon, Soohyun; Jung, Sung-Hwa; Lee, GyuWon

    2015-12-01

    Ground clutter and beam blockage caused by complex terrain deteriorates the accuracy of radar quantitative precipitation estimations (QPE). To improve radar QPE, we have developed a technique for radar rainfall estimation, the Kyungpook National University Hybrid Surface Rainfall (KHSR), based on a two-dimensional hybrid surface consisting of the lowest radar bins that are immune to ground clutter, beam blockage, and non-meteorological echoes. The KHSR map is a composite of a ground echo mask, a beam blockage mask, and a rain echo mask, and it was applied to an operational S-band dual-polarimetric radar that scans six PPIs at a low elevation angle every 2.5 min. By using three rainfall estimators, R(ZH), R(ZH, ZDR), and R(ZH, ξDR), this technique was compared with an operational Constant Altitude Plan Position Indicator (CAPPI) QPE of the Korea Meteorological Administration during a summer season from June-August 2012. In comparison with CAPPI, KHSR shows improved rainfall estimates for three algorithms, and it was more effective with dual-polarimetric rainfall algorithms than with single polarimetric rainfall algorithms. Error increased with increasing range from radar, but this increase was more rapid using CAPPI than using KHSR. KHSR using the R(ZH, ZDR) algorithm was the most accurate long range (>100 km from the radar) estimator.

  4. Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study

    SciTech Connect

    Brown, M.J.; Costigan, K.; Muller, C.; Wang, G.

    1999-02-01

    Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was captured in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.

  5. Meteorological simulations of ozone episode case days during the 1996 Paso del Norte ozone study

    SciTech Connect

    Brown, M.J.; Costigan, K.; Muller, C.; Wang, G.

    1999-07-01

    Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13, 1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were performed using the HOTMAC mesoscale meteorological model using a 1, 2, 4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11--13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawinsonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was captured in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. The authors found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.

  6. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  7. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  8. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  9. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  10. Proceedings of the International Meteorological Satellite Workshop

    NASA Technical Reports Server (NTRS)

    1962-01-01

    International Meteorological Satellite Workshop, November 13-22, 1961, presented the results of the meteorological satellite program of the United States and the possibilities for the future, so that-- the weather services of other nations may acquire a working knowledge of meteorological satellite data for assistance in their future analysis programs both in research and in daily synoptic application and guidance in their national observational support efforts; the world meteorological community may become more familiar with the TIROS program.; and the present activity may be put in proper perspective relative to future operational programs.

  11. Military applications evolution and future. [meteorological satellites

    NASA Technical Reports Server (NTRS)

    Kaehn, A. J., Jr.

    1982-01-01

    The Defense Meteorological Satellite Program is described with particular emphasis on the military applications of METSAT data. Satellite operational support, data processing and image quality requirements are discussed.

  12. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  13. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Polarimetric radar signatures of precipitation at S- and C-bands

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Hubbert, J.; Golestani, Y.; Chandrasekar, V.; Meischner, P.

    1991-04-01

    Polarimetric radar measurements in precipitation at S- and C-band frequencies are considered. Time series data were obtained from three advanced radars: the National Center for Atmospheric Research (NCAR) CP-2 radar, the National Severe Storms Laboratory's (NSSL) Cimarron radar, and the C-band Poldirad radar. Measurements of radar reflectivity, differential reflectivity Z(DR), differential propagation phase phi(DP), and the crosscorrelation between horizontal and vertical polarized waves are derived from time series data in rain, in rain mixed with ice, and in the stratiform ice phase of convective storms. By combining Z(DR) and phi(DP) it is possible to identify regions of mixed particle types, e.g., raindrops and hail, or ice crystals and snowflakes.

  16. ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena

    NASA Astrophysics Data System (ADS)

    Bedrina, T.; Parodi, A.; Quarati, A.; Clematis, A.

    2012-06-01

    It is widely recognised that an effective exploitation of Information and Communication Technologies (ICT) is an enabling factor to achieve major advancements in Hydro-Meteorological Research (HMR). Recently, a lot of attention has been devoted to the use of ICT in HMR activities, e.g. in order to facilitate data exchange and integration, to improve computational capabilities and consequently model resolution and quality. Nowadays, ICT technologies have demonstrated that it is possible to extend monitoring networks by integrating sensors and other sources of data managed by volunteer's communities. These networks are constituted by peers that span a wide portion of the territory in many countries. The peers are "location aware" in the sense that they provide information strictly related with their geospatial location. The coverage of these networks, in general, is not uniform and the location of peers may follow random distribution. The ICT features used to set up the network are lightweight and user friendly, thus, permitting the peers to join the network without the necessity of specialised ICT knowledge. In this perspective it is of increasing interest for HMR activities to elaborate of Personal Weather Station (PWS) networks, capable to provide almost real-time, location aware, weather data. Moreover, different big players of the web arena are now providing world-wide backbones, suitable to present on detailed map location aware information, obtained by mashing up data from different sources. This is the case, for example, with Google Earth and Google Maps. This paper presents the design of a mashup application aimed at aggregating, refining and visualizing near real-time hydro-meteorological datasets. In particular, we focused on the integration of instant precipitation depths, registered either by widespread semi-professional weather stations and official ones. This sort of information has high importance and usefulness in decision support systems and Civil

  17. Network ST radar and related measurements at Pennsylvania State University

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Fairall, C. W.; Peters, R. M.

    1984-01-01

    Mesoscale meteorological measurements, analysis and prediction are some of the principal areas of research in the Department of Meteorology at Penn State. In anticipation of a staged turn-on of the three systems during the Summer and Fall of 1984, the nonconstruction-related efforts have focused on the software development necessary to allow essentially immediate use of network data. A 16-bit microcomputer has been programmed to serve as the network controller, communications interface and, at least for real-time purposes, the operational display system. Insofar as possible we have in this task built upon our substantial accumulated experience in working with the processing and display of Doppler sodar system signals. Once the radar-derived wind and turbulence profiles are communicated to the various interconnected Departmental computers they become just one component of a comprehensive data base which can be applied to a diverse set of ongoing basic and operational research programs.

  18. The science case for the EISCAT_3D radar

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Aikio, Anita; Alfonsi, Lucilla; Belova, Evgenia; Buchert, Stephan; Clilverd, Mark; Engler, Norbert; Gustavsson, Björn; Heinselman, Craig; Kero, Johan; Kosch, Mike; Lamy, Hervé; Leyser, Thomas; Ogawa, Yasunobu; Oksavik, Kjellmar; Pellinen-Wannberg, Asta; Pitout, Frederic; Rapp, Markus; Stanislawska, Iwona; Vierinen, Juha

    2015-12-01

    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who

  19. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  20. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  1. Dual frequency Synthetic Aperture Radar (SAR) mission for monitoring our dynamic planet

    NASA Technical Reports Server (NTRS)

    Hilland, J.; Bard, S.; Key, R.; Kim, Y.; Vaze, P.; Huneycutt, B.

    2000-01-01

    Advances in spaceborne Synthetic Aperture Radar (SAR) remote sensing technology make it possible to acquire global-scale data sets that provide unique information about the Earth's continually changing surface characteristics.

  2. An application of a meteorological data assimilation system to an air quality simulation

    SciTech Connect

    Moon, D.; Pai, P.

    1999-07-01

    The need to calculate air pollutant exposure metrics for longer time periods, i.e., seasonal and annual, has generated a need to conduct long-term simulations using regional-scale Eulerian air quality models. Hourly-resolved meteorological and micro-meteorological fields for an entire year are required as input to the air quality models. In this paper, the authors describe the application of a meteorological data assimilation system to provide high-quality fields to drive a regional air quality model. The process of assimilation blends multiple data sources (large-scale gridded data, surface and upper air observations, satellite imagery, and radar data) into a unified atmospheric representation. The authors have used an assimilation system developed at the Center for the Analysis and Prediction of Storms at the University of Oklahoma. The modeling domain covers most of North America and 1995 was chosen as the simulation year. The data used in the assimilation include the NCAR/NCEP global reanalysis fields combined with North American surface and radiosonde data. The authors will describe modifications made to the assimilation system to enable estimation of a number of air-quality related quantities not normally calculated, such as Monin-Obhukov length and friction velocity. While the system supports a state-of-the-art three-dimensional cloud and hydrometeor field analysis based on background fields, surface observations, satellite, and radar; a simpler approach was developed in this study to estimate cloud fractional coverage based on the gridded relative humidity values.

  3. Case study of heavy rainfall using Yong-In Testbed (YIT) dual-pol. radar in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. M.; Suk, M. K.; Nam, K. Y.; Hwang, J. Y.; Kim, H. L.; Yoon, J. S.; Ko, J. S.

    2015-12-01

    Weather Radar Center (WRC) in Korea Meteorological Administration (KMA) installed the Yong-In Testbed radar to examine the dual-pol. radar (S-band) variables and to develop the algorithms for applying to the operational dual-pol. radar network on August 2014. And it established the verification site at Jincheon located 28 km distance from YIT radar for the investigation of dual-pol. radar data and products on March 2014. There are the instruments of 2DVD (2-Dimensional Video Disdrometer), PARSIVEL (the laser-optical Particle Size Velocity), the tipping-bucket raingauges and the weighting raingauges at the verification site. This study analyses the heavy rainfall case such as typhoon, Chang-ma front from 2014 to 2015. WRC investigates the bias of the reflectivities (Z), differential reflectivities (ZDR) and computes the hydrometeor classification and the radar rainfall estimation. And WRC also calculate Korean equations R(Z, ZDR) for the radar rainfall estimation using 2DVD data and verifies the accuracy of the rainfall estimation for the heavy rainfall cases. We will investigate the characteristics of Korean rainfall system by using YIT radar continuously.

  4. Meteorological annual report for 1994

    SciTech Connect

    Hunter, C.H.; Leard, L.M.

    1995-12-31

    Meteorology at SRS showed that the year 1994 was slightly warmer and drier than average. In most months, average minimum and maximum temperatures were near or slightly above the average for the 31-year period 1964-1991. Above-average warmth was particulary evident in Nov. and Dec. January 1994 was a relatively cold month because of a major influx of Arctic air during the middle of the month. Observed temperatures for the year ranged from 10 F in Jan. to 98 F in June and August. Although total annual precipitation was slightly below average, monthly total precipitation for October was the second highest since 1964. Observed wind direction for 1994 was consistent with long-term patterns. Persistent high pressure to the north of the area during the autumn months resulted in above average frequencies of NE winds.

  5. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  6. A review of ground penetrating radar research and practice in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Antonios; Alani, Amir

    2014-05-01

    Ground penetrating radar has been playing an important role for many years in assisting in the non-destructive evaluation of UK's built environment as well as being employed in more general shallow depth geophysical investigations. Ground penetrating radar, in the United Kingdom, has a long history of original work both in developing original research ideas on fundamental aspects of the technique, both in hardware and in software, and in exploring innovative ideas relating to the practical implementation of ground penetrating radar in a number of interesting projects. For example, the base of one of the biggest organisations that connects ground penetrating radar practitioners is in the United Kingdom. This paper will endeavour to review the current status of ground penetrating radar research - primarily carried out in UK Universities - and present some key areas and work that is carried out at a practical level - primarily by private enterprises. Although, the main effort is to concentrate on ground penetrating radar applications relating to civil engineering problems other related areas of ground penetrating radar application will also be reviewed. The aim is to create a current picture of ground penetrating radar use with a view to inform and potentially enhance the possibility of new developments and collaborations that could lead to the advancement of ground penetrating radar as a geophysical investigative method. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar.

  7. Spaceborne Imaging Radar Project

    NASA Technical Reports Server (NTRS)

    Herman, Neil

    1986-01-01

    In June of 1985 the Project Initiation Agreement was signed by the Jet Propulsion Laboratory and the NASA Office of Space Science and Applications for the Spaceborne Imaging Radar Project (SIR). The thrust of the Spaceborne Imaging Radar Project is to continue the evolution of synthetic aperture radar (SAR) science and technology developed during SEASAT, SIR-A and SIR-B missions to meet the needs of the Earth Observing System (EOS) in the mid 1990's. As originally formulated, the Project plans were for a reflight of the SIR-B in 1987, the development of a new SAR, SIR-C, for missions in mid 1989 and early 1990, and the upgrade of SIR-C to EOS configuration with a qualification flight aboard the shuttle in the 1993 time frame (SIR-D). However, the loss of the shuttle Challenger has delayed the first manifest for SIR to early 1990. This delay prompted the decision to drop SIR-B reflight plans and move ahead with SIR-C to more effectively utilize this first mission opportunity. The planning for this project is discussed.

  8. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  9. Development and behaviour of a radar-based operational tool for hailstorms identification

    NASA Astrophysics Data System (ADS)

    San Ambrosio, Ismael; Martín, Francisco; Elizaga, Fermín

    2007-02-01

    Hailstorms are a common meteorological phenomenon in Spain which causes substantial economic damage especially in spring and summer. During 2000 and 2001, a radar-based application for convective monitoring was developed at STAP (Forecasting and Analysis Techniques Department); in order to improve this nowcasting tool, it is needed to include an advanced procedure to estimate the presence of hail as a complementary module in the operational application. A preliminary study, carried out during 2001, showed that the Waldvogel technique, VIL (vertical integrated liquid) density and the hail detection algorithm (HDA) are the methodologies which proved more accurate in our latitudes. Throughout the spring and summer of 2001, all available information about hail events (time, place and hail size) and about storms without hail was used for tuning an experimental module to detect severe and non-severe hailstorms, taking into account the selected algorithms. During 2002, further information about storms was gathered in order to assess the behaviour of the developed hail module. Afterwards, a new module calibration was carried out with the information of the complete storms data set of 2001 and 2002. With this new calibration, the hail module became an operational tool during the spring and summer of 2003. Currently, the verification of the operational module using the data from the storms in 2003 is being elaborated. The aim of this work is to put forward the calibration procedure carried out, the verification results of 2002, and the performance of the hail estimate module in selected cases during 2003 in Spain.

  10. Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Daniels, Jaime; Stettner, David; Santek, David; Key, Jeff; Dunion, Jason; Holmlund, Kenneth; Dengel, Gail; Bresky, Wayne; Menzel, Paul

    2005-02-01

    The evolving constellation of environmental/meteorological satellites and their associated sensor technology is rapidly advancing. This is providing opportunities for creatively improving satellite-derived products used in weather analysis and forecasting. For example, the retrieval methods for deriving atmospheric motion vectors (AMVs) from satellites have been expanding and evolving since the early 1970s. Contemporary AMV processing methods are continuously being updated and advanced through the exploitation of new sensor technologies and innovative new approaches. It is incumbent upon the research community working in AMV extraction techniques to ensure that the quality of the current operational products meets or exceeds the needs of the user community. In particular, the advances in data assimilation and numerical weather prediction in recent years have placed an increasing demand on data quality.To keep pace with these demands, innovative research toward improving methods of deriving winds from satellites has been a focus of the World Meteorological Organization and Coordination Group for Meteorological Satellites (CGMS) cosponsored International Winds Workshops (IWWs). The IWWs are held every 2 yr, and bring together AMV researchers from around the world to present new ideas on AMV extraction techniques, interpretation, and applications. The NWP community is always well represented at these workshops, which provide an important exchange of information on the latest in data assimilation issues. This article draws from recent IWWs, and describes several new advances in satellite-produced wind technologies, derivation methodologies, and products. Examples include AMVs derived from Geostationary Operational Environmental Satellite (GOES) rapid scans and the short-wave IR channel, AMVs over the polar regions from the Moderate Resolution Imaging Spectroradiometer (MODIS), improved AMV products from the new Meteosat Second Generation satellite, and new processing

  11. A New Method for Radar Rainfall Estimation Using Merged Radar and Gauge Derived Fields

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Sharma, A.; Johnson, F.; Mariethoz, G.; Seed, A.

    2014-12-01

    Accurate estimation of rainfall is critical for any hydrological analysis. The advantage of radar rainfall measurements is their ability to cover large areas. However, the uncertainties in the parameters of the power law, that links reflectivity to rainfall intensity, have to date precluded the widespread use of radars for quantitative rainfall estimates for hydrological studies. There is therefore considerable interest in methods that can combine the strengths of radar and gauge measurements by merging the two data sources. In this work, we propose two new developments to advance this area of research. The first contribution is a non-parametric radar rainfall estimation method (NPZR) which is based on kernel density estimation. Instead of using a traditional Z-R relationship, the NPZR accounts for the uncertainty in the relationship between reflectivity and rainfall intensity. More importantly, this uncertainty can vary for different values of reflectivity. The NPZR method reduces the Mean Square Error (MSE) of the estimated rainfall by 16 % compared to a traditionally fitted Z-R relation. Rainfall estimates are improved at 90% of the gauge locations when the method is applied to the densely gauged Sydney Terrey Hills radar region. A copula based spatial interpolation method (SIR) is used to estimate rainfall from gauge observations at the radar pixel locations. The gauge-based SIR estimates have low uncertainty in areas with good gauge density, whilst the NPZR method provides more reliable rainfall estimates than the SIR method, particularly in the areas of low gauge density. The second contribution of the work is to merge the radar rainfall field with spatially interpolated gauge rainfall estimates. The two rainfall fields are combined using a temporally and spatially varying weighting scheme that can account for the strengths of each method. The weight for each time period at each location is calculated based on the expected estimation error of each method

  12. Cognitive processing for nonlinear radar

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Hedden, Abigail; Mazzaro, Gregory; McNamara, David

    2013-05-01

    An increasingly cluttered electromagnetic environment (EME) is a growing problem for radar systems. This problem is becoming critical as the available frequency spectrum shrinks due to growing wireless communication device usage and changing regulations. A possible solution to these problems is cognitive radar, where the cognitive radar learns from the environment and intelligently modifies the transmit waveform. In this paper, a cognitive nonlinear radar processing framework is introduced where the main components of this framework consist of spectrum sensing processing, target detection and classification, and decision making. The emphasis of this paper is to introduce a spectrum sensing processing technique that identifies a transmit-receive frequency pair for nonlinear radar. It will be shown that the proposed technique successfully identifies a transmit-receive frequency pair for nonlinear radar from data collected from the EME.

  13. Developments in radar and remote-sensing methods for measuring and forecasting rainfall.

    PubMed

    Collier, C G

    2002-07-15

    Over the last 25 years or so, weather-radar networks have become an integral part of operational meteorological observing systems. While measurements of rainfall made using radar systems have been used qualitatively by weather forecasters, and by some operational hydrologists, acceptance has been limited as a consequence of uncertainties in the quality of the data. Nevertheless, new algorithms for improving the accuracy of radar measurements of rainfall have been developed, including the potential to calibrate radars using the measurements of attenuation on microwave telecommunications links. Likewise, ways of assimilating these data into both meteorological and hydrological models are being developed. In this paper we review the current accuracy of radar estimates of rainfall, pointing out those approaches to the improvement of accuracy which are likely to be most successful operationally. Comment is made on the usefulness of satellite data for estimating rainfall in a flood-forecasting context. Finally, problems in coping with the error characteristics of all these data using both simple schemes and more complex four-dimensional variational analysis are being addressed, and are discussed briefly in this paper. PMID:12804253

  14. Determination of U, V, and W from single station Doppler radar radial velocities

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Green, J. L.; Warnock, J. M.

    1986-01-01

    The ST/MST (stratosphere troposphere/mesosphere stratosphere troposphere) clear air Doppler radar, or wind profiler, is an important tool in observational meteorology because of its capability to remote observe dynamic parameters of the atmosphere. There are difficulties in transforming the observed radial velocities into meteorological wind components. How this problem has been treated in the past is reviewed, and some of the analysis is recast to a form more suited to the high diagnostic abilities of a number of fixed beam configurations with reference to a linear wind field. The results, in conjunction with other works which treats problems such as the effects of finite sample volumes in the presence of nonhomogeneous atmospheric reflectivity, have implications important to the design of both individual MST/ST radars and MST/ST radar networks. The key parameters to uncoupling terms in the scaling equations are w sub x and w sub y. Whenever the stratiform condition, which states that these two parameters are negligible, is satisfied, a five beam ST radar may determine unbiased values of u, v, and w for sample volumes directly above the radar. The divergence and partial deformation of the flow may also be determined. Three beam systems can determine w and w sub z, but are unable to obtain u and v wind components uncontaminated by vertical sheer terms, even when the stratiform condition is satisfied.

  15. Frequency and site selection criteria for MST radars, part 5.1A

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.

    1984-01-01

    The majority of mesosphere-stratosphere-troposphere (MST) and ST radars are located in or near mountainous terrain. When measuring horizontal velocities, the terrain is a small factor, but when measuring vertical velocities, the meteorological noise induced by rough terrain can severely limit the usefulness of the observations. When the variance of the vertical velocity is too large, it is not possible to suitably filter the data to detect the small synoptic-scale signal with reasonable statistical confidence. The variance of vertical velocity at all tropospheric levels is directly related to the low level wind speed during flow over rough terrain. It is suggested that the synoptic-scale vertical velocity can be measured by ST radars where the terrain is smooth. The large-scale vertical velocity cannot always be reliably determined from MST radar data when the underlying terrain is rough. The vertical velocity is potentially on of future radar site selections, taking into account the desired meteorological applications of the data and engineering design factors. If the synoptic-scale vertical velocity is a desired variable, the radar should not be located near mountains.

  16. An effective method for incoherent scattering radar's detecting ability evaluation

    NASA Astrophysics Data System (ADS)

    Lu, Ziqing; Yao, Ming; Deng, Xiaohua

    2016-06-01

    Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.

  17. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  18. Radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  19. Shuttle ku-band communications/radar technical concepts

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.

    1985-01-01

    Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.

  20. COMBINING A MONOSTATIC SODAR WITH A RADAR WIND PROFILER AND RASS IN A POWER PLANT POLLUTION STUDY

    EPA Science Inventory

    A single-beam monostatic sodar, radar wind profiler, radio acoustic sounding system (RASS), and in situ sensors mounted on a 100-m tower were used to acquire meteorological data in the vicinity of a coal burning power plant in a northern Thailand valley. hese data were used to ex...

  1. Hands-On Learning Modules for Interdisciplinary Environments: An Example with a Focus on Weather Radar Applications

    ERIC Educational Resources Information Center

    Chilson, P. B.; Yeary, M. B.

    2012-01-01

    Learning modules provide an effective means of encouraging cognition and active learning. This paper discusses several such modules that have been developed within a course on weather radar applications intended for students from Electrical Engineering and Meteorology. The modules were designed both to promote interdisciplinary exchange between…

  2. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  3. Mars: Seasonally variable radar reflectivity

    NASA Technical Reports Server (NTRS)

    Roth, L. E.; Downs, G. S.; Saunders, R. S.; Schubert, G.

    1985-01-01

    The 1971/1973 Mars data set acquired by the Goldstone Solar System Radar was analyzed. It was established that the seasonal variations in radar reflectivity thought to occur in only one locality on the planet (the Solis Lacus radar anomaly) occur, in fact, over the entire subequatorial belt observed by the Goldstone radar. Since liquid water appears to be the most likely cause of the reflectivity excursions, a permanent, year-round presence of subsurface water (frozen or thawed) in the Martian tropics can be inferred.

  4. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  5. Python-ARM Radar Toolkit

    SciTech Connect

    Jonathan Helmus, Scott Collis

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  6. Mode S baseline radar tracking

    NASA Astrophysics Data System (ADS)

    Mancus, E. F.; Baker, L. H.

    1982-11-01

    The baseline performance characteristics of the moving target detector (MTD) and radar data acquisition system (RDAS) as an integral part of the Mode S sensor, were determined. The MTD and RDAS were separately evaluated to determine their capability to provide radar data suitable for utilization by the Mode S sensor and automated radar terminal system (ARTS). The design modifications made to the Mode S sensor to provide the capability of interfacing to either an MTD or RDAS were evaluated to determine if they were in compliance with the Federal Aviation Administration engineering requirement, FAA-ER-240-26. Radar baseline technical performance data was provided to characterize the MTD, RDAS, Mode S, and ARTS. The minimum radar tracking requirements are studied to determine if they are adequate to provide reliable radar track data to an air traffic control facility. It was concluded that the Mode S sensor, when integrated with an MTD-2 radar digitizer, can provide reliable primary radar track data to the ARTS III system for automated radar track acquisition.

  7. Diagnosing the Meteorological Conditions Associated with Sprites and Lightning with Large Change Moment Charges (CMC) over Oklahoma

    NASA Technical Reports Server (NTRS)

    Rivera Lizxandra Flores; Lang, Timothy

    2013-01-01

    Sprites are a category of Transient Luminous Events (TLE's) that occur in the upper atmosphere above the tops of Mesoscale Convective Systems (MCSs). They are commonly associated with lightning strokes that produce large charge moment changes (CMCs). Synergistic use of satellite and radar-retrieved observations together with sounding data, forecasts, and lightning-detection-networks allowed the diagnosis and analysis of the meteorological conditions associated with sprites as well as large-CMC lightning over Oklahoma

  8. Microradarnet: AN Innovative High-Resolution Low-Cost X-Band Weather Radar Network

    NASA Astrophysics Data System (ADS)

    Turso, S.; Zambotto, M.; Gabella, M.; Orione, F.; Notarpietro, R.; Perona, G.

    2009-09-01

    In this paper, an innovative micro radar network for meteorological purposes has been presented. The key aspects of this network, named MicroRadarNet (MRN), are a short range strategy (about thirty kilometers) and the implementation of effective enhancing techniques. High resolution spatial and temporal data is processed in real-time, yielding a synthetic and consistent evaluation of the information coming from the sensor network. This approach implies in turn a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range C-band approach.

  9. Remote sensing observing systems of the Meteorological Service of Catalonia (SMC): application to thunderstorm surveillance

    NASA Astrophysics Data System (ADS)

    Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.

    2009-09-01

    Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000

  10. Advanced signal processing

    NASA Astrophysics Data System (ADS)

    Creasey, D. J.

    1985-12-01

    A collection of papers on advanced signal processing in radar, sonar, and communications is presented. The topics addressed include: transmitter aerials, high-power amplifier design for active sonar, radar transmitters, receiver array technology for sonar, new underwater acoustic detectors, diversity techniques in communications receivers, GaAs IC amplifiers for radar and communication receivers, integrated optical techniques for acoustooptic receivers, logarithmic receivers, CCD processors for sonar, acoustooptic correlators, designing in silicon, very high performance integrated circuits, and digital filters. Also discussed are: display types, scan converters in sonar, display ergonomics, simulators, high throughput sonar processors, optical fiber systems for signal processing, satellite communications, VLSI array processor for image and signal processing, ADA, future of cryogenic devices for signal processing applications, advanced image understanding, and VLSI architectures for real-time image processing.

  11. Teaching a Course on Meteorological Instruments.

    ERIC Educational Resources Information Center

    Kohler, Fred

    A meteorological instruments course that provided undergraduate geography students the opportunity to use and/or observe meteorological equipment while also preparing for possible internships with the National Weather Service is evaluated and suggestions for improving it in the future are offered. The paper first provides a general course…

  12. Geostationary meteorological satellite systems - An overview

    NASA Astrophysics Data System (ADS)

    Blersch, Donald J.; Probert, Todd C.

    Past and present geosynchronous meteorological satellites developed in the USA, Europe, Japan, India, and the Soviet Union are reviewed. Particular attention is given to the Applications Technology Satellite Program, GOES and SMS/GOES, METEOSAT, GMS/Himawari, the Indian National Satellite, and a Soviet geostationary meteorological satellite program, GOMS.

  13. Lloyd Berkner: Catalyst for Meteorology's Fabulous Fifties

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2002-05-01

    In the long sweep of meteorological history - from Aristotle's Meteorologica to the threshold of the third millennium - the 1950s will surely be recognized as a defining decade. The contributions of many individuals were responsible for the combination of vision and institution building that marked this decade and set the stage for explosive development during the subsequent forty years. In the minds of many individuals who were active during those early years, however, one name stands out as a prime mover par excellence: Lloyd Viel Berkner. On May 1, 1957, Berkner addressed the National Press Club. The address was entitled, "Horizons of Meteorology". It reveals Berkner's insights into meteorology from his position as Chairman of the Committee on Meteorology of the National Academy of Sciences, soon to release the path-breaking report, Research and Education in Meteorology (1958). The address also reflects the viewpoint of an individual deeply involved in the International Geophysical Year (IGY). It is an important footnote to meteorological history. We welcome this opportunity to profile Berkner and to discuss "Horizons of Meteorology" in light of meteorology's state-of-affairs in the 1950s and the possible relevance to Berkner's ideas to contemporary issues.

  14. Meteorological needs of the aviation community

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1977-01-01

    A study was conducted to determine the important meteorological needs of the aviation community and to recommend research in those areas judged most beneficial. The study was valuable in that it provided a comprehensive list of suspected meteorological deficiencies and ideas for research programs relative to these deficiencies. The list and ideas were generated from contacts with various pilots, air traffic controllers, and meteorologists.

  15. Radar Soundings of the Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Picardi, Giovanni; Plaut, Jeffrey J.; Biccari, Daniela; Bombaci, Ornella; Calabrese, Diego; Cartacci, Marco; Cicchetti, Andrea; Clifford, Stephen M.; Edenhofer, Peter; Farrell, William M.; Federico, Costanzo; Frigeri, Alessandro; Gurnett, Donald A.; Hagfors, Tor; Heggy, Essam; Herique, Alain; Huff, Richard L.; Ivanov, Anton B.; Johnson, William T. K.; Jordan, Rolando L.; Kirchner, Donald L.; Kofman, Wlodek; Leuschen, Carlton J.; Nielsen, Erling; Orosei, Roberto

    2005-01-01

    The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

  16. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  17. The Science and Utility of Extended Runs and the Future Development of Incoherent Scatter Radar Observational Programs

    NASA Astrophysics Data System (ADS)

    van Eyken, T.

    2006-12-01

    Incoherent Scatter Radar (ISR) data represent the most comprehensive observations of the temporal behavior of the main parts of the ionosphere, and the associated atmosphere, available. As such, the radars are invaluable tools in characterizing the ionospheric response to energy flows in the Solar-Terrestrial system. Developments in radar operations and reliability now allow very extended data sets to be produced on a fairly routine basis and plans for the International Polar Year (IPY) include the continuous operation of at least one high latitude radar. Using data from two very different 30-day `World Day' co-ordinated observation periods in Autumn 2005 and Spring 2006, we illustrate the utility of such data sets for, inter alia, space weather observation and modeling and discuss the possible future development of such programs using the EISCAT Svalbard Radar, the soon to be completed Advanced Modular Incoherent Scatter Radar (AMISR), and the EISCAT_3D radar (currently being designed).

  18. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  19. Science Goals for the ARM Recovery Act Radars

    SciTech Connect

    JH Mather

    2012-05-29

    field. These additional microphysical measurements would allow detailed cloud properties to be derived even in the presence of light precipitation. It is important to couple these detailed measurements of cloud microphysics to vertical motion on the cloud scale to couple microphysics with meteorological processes. Vertically pointing Doppler radars provide the vertical motion of cloud particles but, to separate particle motion from air motion, a wind profiler is required. The American Recovery and Reinvestment Act provided the means to address these needs and implement a multi-frequency suite of radars, including scanning radars, at each of the ARM sites. In addition, Doppler lidars have been deployed at several sites. With these new measurement capabilities, ARM has the measurement capabilities to tackle the problems of improving microphysical profile descriptions and evaluating the relationship between our current narrow-field-of view, zenith perspective on clouds to a description of the full 3D cloud field and its temporal evolution.

  20. Sample interchange of MST radar data from the Urbana radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.; Rennier, A.

    1984-01-01

    As a first step in interchange of data from the Urbana mesosphere-stratosphere-troposphere (MST) radar, a sample tape has been prepared in 9-track 1600-bpi IBM format. It includes all Urbana data for April 1978 (the first month of operation of the radar). The 300-ft tape contains 260 h of typical mesospheric power and line-of-sight velocity data.

  1. Radar Stratigraphy of Ice on Earth and Mars: What are we Missing? An Evaluation of Multiple Radars and Processing Techniques.

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Corr, H. F.; Plaut, J. J.; Safaeinili, A.

    2007-12-01

    Radar sounding has been used for decades on Earth to map sub-ice topography, yet we are only beginning to fully make use of the information contained within the radar-detected, ice-internal layering. This internal layering serves as a guide to estimate accumulation rates and flow reorganization, to detect geothermal anomalies and to extrapolate ice core results over large regions. Radar layering in snow and ice on Earth is generally caused by variations in acidity due to deposits from volcanic eruptions, changes in ice crystal fabric, or variations in density (near the surface). Radar studies in Antarctica have been undertaken by a variety of means, most commonly airborne systems operating at 60 or 150 MHz, typically with 10 - 15 MHz bandwidths, but also sled-mounted systems generally operating in the 1 - 10 MHz range. The stratigraphy of icy deposits on Mars is also thought to hold important information about past climatic variations there and radar sounding has started to reveal new stratigraphic information to complement optical and spectral studies. Two orbital radar sounders are currently operating at Mars. MARSIS on Mars Express operates at 2 - 5 MHz, while SHARAD on Mars Reconnaissance Orbiter operates in the 15 - 25 MHz band. This is a tremendous advance over our ability to probe the subsurface of Mars just a few years ago; however, we don't know how much information we may be missing due to limited over-ice data at these frequencies on Earth. We therefore examine the impact of different wavelengths, bandwidths, and pulse types on the reconstruction of ice stratigraphy on both Earth and Mars by comparing data obtained from different radar systems over the same locations. Simulated results are also compared, as are the effects of data reduction schemes such as unfocused and focused synthetic aperture radar (SAR) processing.

  2. Atmospheric electricity/meteorology analysis

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Buechler, Dennis

    1993-01-01

    This activity focuses on Lightning Imaging Sensor (LIS)/Lightning Mapper Sensor (LMS) algorithm development and applied research. Specifically we are exploring the relationships between (1) global and regional lightning activity and rainfall, and (2) storm electrical development, physics, and the role of the environment. U.S. composite radar-rainfall maps and ground strike lightning maps are used to understand lightning-rainfall relationships at the regional scale. These observations are then compared to SSM/I brightness temperatures to simulate LIS/TRMM multi-sensor algorithm data sets. These data sets are supplied to the WETNET project archive. WSR88-D (NEXRAD) data are also used as it becomes available. The results of this study allow us to examine the information content from lightning imaging sensors in low-earth and geostationary orbits. Analysis of tropical and U.S. data sets continues. A neural network/sensor fusion algorithm is being refined for objectively associating lightning and rainfall with their parent storm systems. Total lightning data from interferometers are being used in conjunction with data from the national lightning network. A 6-year lightning/rainfall climatology has been assembled for LIS sampling studies.

  3. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  4. Meteorological rocket data processor and results from the solar eclipse of 7 March 1970.

    NASA Technical Reports Server (NTRS)

    Staffanson, F. L.; Kikkawa, S.; Phibbs, R. G.

    1972-01-01

    A comprehensive digital computer program is described which automatically processes precision digitized data from conventional rocketsondes and radars to produce accurately corrected temperatures and winds together with estimated uncertainties at each point. Underlying models for the systematic errors in the Arcasonde 1A temperature sensor and the radar-tracked parachute wind sensor, and for the uncertainty in corrected results are presented. Techniques used to automatically edit, synchronize and filter data are also given. Performance is illustrated by graphical output from the eight meteorological soundings in the rocket series conducted at Wallops Island, Va., during the Mar. 7, 1970 solar eclipse. An operational version (METROK) of the program is in use at NASA Wallops Station.

  5. Planetary radar studies. [radar mapping of the Moon and radar signatures of lunar and Venus craters

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    Progress made in studying the evolution of Venusian craters and the evolution of infrared and radar signatures of lunar crater interiors is reported. Comparison of radar images of craters on Venus and the Moon present evidence for a steady state Venus crater population. Successful observations at the Arecibo Observatory yielded good data on five nights when data for a mix of inner and limb areas were acquired. Lunar craters with radar bright ejects are discussed. An overview of infrared radar crater catalogs in the data base is included.

  6. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  7. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  8. Interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  9. Compression of spectral meteorological imagery

    NASA Technical Reports Server (NTRS)

    Miettinen, Kristo

    1993-01-01

    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients.

  10. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  11. Phantosmia as a meteorological forecaster

    NASA Astrophysics Data System (ADS)

    Aiello, S. R.; Hirsch, A. R.

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  12. CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Brown, D.; Callan, R.; Constant, G.; Davies, P. H.; Foord, R.

    CO2 laser-based radars operating at 10 microns are both highly energy-efficient and eye-safe, as well as compact and rugged; they also furnish covertness-enhancing fine pointing accuracy, and are difficult to jam or otherwise confuse. Two modes of operation are generally employed: incoherent, in which the laser is simply used as a high power illumination source, and in the presently elaborated coherent or heterodyne mode. Applications encompass terrain-following and obstacle avoidance, Doppler discrimination of missile and aircraft targets, pollutant gas detection, wind measurement for weapons-aiming, and global wind field monitoring.

  13. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  14. Venus radar images

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Green, R. R.; Rumsey, H. C.

    1976-01-01

    The paper presents a set of seven radar brightness images and the corresponding altitude contours of small portions (circular regions of 1500-km diameter) of the Venus surface located at the center of the disk taken in the winter of 1973-1974. The regions imaged are arranged in an equatorial belt on the one face of Venus which is always seen on the occasions of closest approach to earth. A real resolution for the images is, typically, 100 x 10 km, while altitude resolution is 500 m.

  15. 94 GHz doppler wind radar satellite mission concept

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Schüttemeyer, Dirk

    2015-10-01

    Extreme weather such as storms, hurricanes and typhoons, also called `high impact weather', is a high priority area of research for the atmospheric dynamics and meteorological science communities. 94 GHz Doppler wind radar satellite mission concepts have been elaborated, which use cloud and precipitation droplets/particles as tracers to measure 3-D wind fields. The so-called polarisation-diversity pulse-pair (PDPP) technique enables to derive line-of-sight wind speed with good accuracy (< 2-3 m/s) and large unambiguous dynamic range (e.g. 75 m/s). Two distinct system concepts have been elaborated: (1) a conically scanning radar concept with large coverage (> 800 km) and ˜50 km along-track sampling, and; (2) a stereo viewing concept with high sampling resolution (< 4 km) within an inclined cut through the atmosphere. The former concept is adequate for studying large-scale severe/extreme weather systems, whereas the latter would be more suitable for understanding of small-scale convective phenomena. For demonstrating the potential of the FDPP technique for deriving accurate Doppler observations, ground-based and airborne Doppler radar campaigns are in preparation. The Galileo 94 GHz radar, upgraded recently to include a FDPP capability, at Chilbolton in the UK, will be used for an extended ground-based campaign (6 months). For the airborne campaign, the dual-frequency (9.4 + 94 GHz) NAWX radar on board a Convair-580 aircraft of the National Science Council of Canada will be upgraded and flown. This paper describes the observation requirements, preliminary satellite mission concepts, associated wind retrieval aspects and the planned demonstration campaigns.

  16. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  17. SMAP's Radar OBP Algorithm Development

    NASA Technical Reports Server (NTRS)

    Le, Charles; Spencer, Michael W.; Veilleux, Louise; Chan, Samuel; He, Yutao; Zheng, Jason; Nguyen, Kayla

    2009-01-01

    An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed.

  18. Equatorial MST radars: Further consideration

    NASA Technical Reports Server (NTRS)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  19. Applied Meteorology Unit (AMU) Quarterly Report. First Quarter FY-05

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2005-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2005 (October - December 2005). Tasks reviewed include: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Stable Low Cloud Evaluation, (5) Shuttle Ascent Camera Cloud Obstruction Forecast, (6) Range Standardization and Automation (RSA) and Legacy Wind Sensor Evaluation, (7) Advanced Regional Prediction System (ARPS) Optimization and Training Extension, and (8) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest

  20. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  1. Role of Surface Characteristics in Urban Meteorology and Air Quality

    NASA Astrophysics Data System (ADS)

    Sailor, David Jean

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result in higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4^circ C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  2. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  3. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    NASA Astrophysics Data System (ADS)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  4. Radar frequency effect on the relationship between surface soil moisture vertical profile and radar backscatter

    NASA Astrophysics Data System (ADS)

    Zribi, Mehrez; Gorrab, Azza; Baghdadi, Nicolas; Lili-Chabaane, Zohra; Mougenot, Bernard; Boulet, Gilles

    2013-04-01

    Soil moisture plays a key role in hydrological and climatic studies. Considerable efforts have been devoted to the study of radar backscattering responses from natural surfaces in active microwave remote sensing. Electromagnetic analytical backscattering models (Kirchhoff models, the small perturbation method, and more recently the Integral Equation Model (IEM,the AIEM, …) have been used to estimate moisture parameter. However, various experimental measurements have shown that their use must be restricted to specific conditions. For studies in the L, C, and X frequency bands, empirical and semi-empirical models are often calibrated using soil samples collected down to a depth of five centimetres, in which the moisture content is assumed to be homogeneous. In recent years, some studies have revealed that using the actual, inhomogeneous soil moisture profile can make a significant difference in the results obtained from backscatter models. The aim of this paper is to discuss the influence of radar frequency on the relationship between surface soil moisture and the nature of radar backscatter over bare soils. In an attempt to answer this question, the Advanced Integral Equation Model (AIEM) was used to simulate backscatter from soil surfaces with various moisture vertical profiles, for three frequency bands: L, C and X. In these computations, we investigated the influence of the vertical heterogeneity of soil moisture on the characteristics of the backscattered signals. The influence of radar frequency is clearly demonstrated. A database produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ measurements of moisture content and ground surface roughness, was used to validate the usefulness of taking the soil moisture heterogeneity into account in the backscattering model. These results confirm the significant influence of soil moisture heterogeneities on the strength of radar backscatter. It also highlights the sensitivity of inversion

  5. Atmospheric radar sounding

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1972-01-01

    Monostatic and bistatic radar techniques for the measurement of the structure of volume targets in the troposphere and lower stratosphere are reviewed. The targets considered are thin turbulent layers in the lower stratosphere and rain in the troposphere. The measurements of scattering from thin turbulent layers show that layers are generally detected at or near the tropopause, and in 31 out of 34 sets of measurements, layers were detected above the tropopause in the lower 10 km of the stratosphere. The threshold for turbulent layer detection corresponds to an equivalent thickness product of ten to the minus 13th power times the cube root of m at a range of 100 km and for layers with less than 1000 m thickness. The measurement of scattering by rain shows that in the New England area both convective and widespread rain consists of a number of small cells. On average, the cells appear to have a half-intensity width of 3 to 4 km as measured with a radar system with a 1.8 km resolution cell size for cells at 100 km range.

  6. Meteorological Annual Report for 1997

    SciTech Connect

    Hunter, C.H.

    1998-12-17

    An analysis of meteorological data collected at the Savannah River Site (SRS) in 1997 shows that overall weather conditions for the year were relatively cool and wet. The average temperature for 1997 was 63.7 degree F which is about 1 degree F below the annual average for the 30-year period 1968-97. June 1997 had the lowest average temperature of any June in the 34 years for which temperature records are available at SRS ; moreover, the average temperature for the summer months (June, July, and August) was the third lowest for any summer on record. Conversely, the average temperature for March 1997 was the highest for any March in the 34-year record. Temperature extremes for 1997 ranged from a minimum of 18.6 degree F on January 18 to a maximum of 99.1 degree F on August 15.Wet weather during the last three months of the year was due to the development of a strong El Nino event (NOAA, 1998). Total rainfall for December 1997, 10.19 inches, was the highest for a December in the 46 year period of record for precipitation. Monthly rainfall was above average each month except March, May, and August. The greatest 24-hour rainfall during the year was 2.82 inches on December 24. Daily rainfall in excess of 2 inches occurred on April 28, June 28, and September 25. No snow was recorded.The annual average wind speed at the Central Climatology meteorology tower near N Area was 5.8 mph which is very nearly equal to the average wind speed at that station for the 7-year period 1991-97. The 1997 data also showed a slightly higher frequency of west to northwest winds and a slightly lower frequency of northeast winds than was observed in the 5-year period 1992-96. A winter storm which developed over the Mid-Atlantic States March 30-31 produced the most notable period of sustained strong winds. Daily and 15-minute average wind speeds of 15.3 miles per hour (mph) and 25.1 mph, respectively, were recorded at Central Climatology.Monthly average relative humidity for the year was lowest

  7. PREVIMER : Meteorological inputs and outputs

    NASA Astrophysics Data System (ADS)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  8. Phantosmia as a meteorological forecaster.

    PubMed

    Aiello, S R; Hirsch, A R

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted. PMID:23456373

  9. Communicating meteorology through popular music

    NASA Astrophysics Data System (ADS)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  10. Description of the RDCDS Meteorological Component

    SciTech Connect

    Pekour, Mikhail S.; Berg, Larry K.

    2007-10-01

    This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

  11. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. BOREAS AES READAC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  13. BOREAS AES MARSII Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  14. Meteorological Data Analysis Using MapReduce

    PubMed Central

    Fang, Wei; Sheng, V. S.; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability. PMID:24790576

  15. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Radar rainfall estimation in the context of post-event analysis of flash-flood events

    NASA Astrophysics Data System (ADS)

    Delrieu, G.; Bouilloud, L.; Boudevillain, B.; Kirstetter, P.-E.; Borga, M.

    2009-09-01

    Meteorology and Climatology, in press. Dinku, T., E.N. Anagnostou, and M. Borga, 2002: Improving Radar-Based Estimation of Rainfall over Complex Terrain. J. Appl. Meteor., 41, 1163-1178. Pellarin, T., G. Delrieu, G. M. Saulnier, H. Andrieu, B. Vignal, and J. D. Creutin, 2002: Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardeche Catchment (France). Journal of Hydrometeorology, 3, 539-555.

  17. A Comparison of the Automated Meteorological Profiling System High Resolution Flight Element to the Kennedy Space Center 50 MHz Doppler Wind Profiler

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2000-01-01

    Wind profile measurement and the simulation of aerodynamic loads on a launch vehicle play an important role in determining launch capability and post launch assessment of the vehicle's performance. To date, all United States range certified wind profile measurement systems have been based on balloon tracking. Since the 1960's, the standard used by the National Aeronautics and Space Administration and the Air Force at the Cape Canaveral Air Station (CCAS) for detailed wind profile measurements has been the radar tracked, aerodynamically stabilized Jimsphere balloon system. Currently, the Air Force is nearing certification and operational implementation of the Automated Meteorological Profiling System (AMPS) at CCAS and Vandenburg Air Force Base (VAFB). AMPS uses the Global Positioning System for tracking the Jimsphere balloon. It is anticipated that the AMPS/Jimsphere, named the High Resolution Flight Element (HRFE), will have equivalent, or better resolution than the radar tracked Jimsphere, especially when the balloon is far downrange, at a low elevation angle. By the 1980's, the development of Doppler Wind Profilers (DWP) had become sufficiently advanced to justify an experimental measurement program at Kennedy Space Center (KSC). In 1989 a 50 MHz DWP was installed at KSC. In principal, the 50 MHz DWP has the capability to track the evolution of wind profile dynamics within 5 minutes of a launch. Because of fundamental differences in the measurement technique, there is a significant time and space differential between 50 MHz DWP and HRFE wind profiles. This paper describes a study to quantify these differences from a sample of 50 MHz DWP/HRFE pairs obtained during the AMPS certification test program.

  18. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15

    electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  19. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  20. Is the Martian Water Table Hidden from Radar View?

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Plaut, J. J.; Cummer, S. A.; Gurnett, D. A.; Picardi, G.; Watters, T. R.; Safaeinili, A.

    2009-01-01

    Mars may possess a global sub-surface groundwater table as an integral part of its current hydrological system, However, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the 'Mars Express (MEx) spacecraft has yet to make a definitive detection of such a body of liquid water. In this work, we quantify. the conditions that would allow a detection of a deep aquifer and demonstrate that the lack of radar detection doses not uniquely role out the presence of such a body. Specifically, if the overlying crustal material has a conductivity above approximately 10(exp -5) S/m (equivalent to a loss tangent of 0.008), a radar echo frown an aquifer could be sufficiently attenuated by the intetvening medium to prevent its detection by MARSIS. As such, the lack of direct detection by MARSIS -- a "null result" does not rule out the possibility of the water table's existence.

  1. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-02-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Since nowadays signal processing techniques to mitigate Wind Turbine Clutter (WTC) are scarce, the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the Radar Cross Section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the Physical Optics theory, and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  2. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    NASA Astrophysics Data System (ADS)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  3. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the

  4. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  5. Radar Imaging of Asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1996-09-01

    Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) can synthesize images of near-Earth and main-belt asteroids (NEAs and MBAs) that traverse the detectability windows of groundbased radar telescopes. Under ideal circumstances, current radar waveforms can achieve decameter surface resolution. The number of useful pixels obtainable in an imaging data set is of the same order as the signal-to-noise ratio, SNR, of an optimally filtered, weighted sum of all the data. (SNR increases as the square root of the integration time.) The upgraded Arecibo telescope which is about to become operational, should be able to achieve single-date SNRs {\\underline>} (20,100) for an average of (35,5) MBAs per year and single-date SNRs {\\underline>} (20,100,1000) for an average of (10,6,2) of the currently catalogued NEAs per year; optical surveying of the NEA population could increase the frequency of opportunities by an order of magnitude. The strongest imaging opportunities predicted for Arecibo between now and the end of 1997 include (the peak SNR/date is in parentheses): 9 Metis (110), 27 Euterpe (170), 80 Sappho (100), 139 Juewa (140), 144 Vibilia (140), 253 Mathilde (100), 2102 Tantalus (570), 3671 Dionysus (170), 3908 1980PA (4400), 4179 Toutatis (16000), 4197 1982TA (1200), 1991VK (700), and 1994PC1 (7400). A delay-Doppler image projects the echo power distribution onto the target's apparent equatorial plane. One cannot know a priori whether one or two (or more) points on the asteroid contributed power to a given pixel, so accurate interpretation of delay-Doppler images requires modeling (Hudson, 1993, Remote Sensing Rev. 8, 195-203). Inversion of an imaging sequence with enough orientational coverage can remove "north/south" ambiguities and can provide estimates of the target's three-dimensional shape, spin state, radar scattering properties, and delay-Doppler trajectory (e.g., Ostro et al. 1995, Science 270, 80

  6. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  7. ISS Update: Spaceflight Meteorology Group, Part 1

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  8. ISS Update: Spaceflight Meteorology Group, Part 2

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  9. CloudSat and CALIPSO Help Meteorology

    NASA Video Gallery

    The study of meteorology presents significant challenges to scientists. One of the most challenging aspects is the inherent complexity of weather coupled with its high rate of change. In the case o...

  10. Interim report on the meteorological database

    SciTech Connect

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives.

  11. OVERVIEW OF PAMS METEOROLOGICAL MONITORING REQUIREMENTS

    EPA Science Inventory

    The Photochemical Assessment Monitoring Station (PAMS) requires theincorporation of surface and upper air meteorological instrumentation. he platform for the surface instrumentation is a 10 m tower. he variables to be collected include horizontal wind speed, horizontal wind direc...

  12. Evaporation duct assessment from meteorological buoys

    NASA Astrophysics Data System (ADS)

    Hitney, Herbert V.

    2002-07-01

    The evaporation duct over the sea is usually assessed using bulk meteorological measurements. This paper investigates the utility of meteorological buoys as a source for these bulk measurements and compares evaporation duct assessments using two buoys in southern California waters separated by 128 km. A simple radio propagation experiment at 2.4 GHz between one of the buoys and the coast on an 18.2 km path is described. Observed propagation loss from this experiment is compared to modeled loss based on the meteorological measurements at each buoy. The purpose of this paper is to investigate radio propagation effects using established and accepted methods already described in the literature. Accordingly, no discussion of atmospheric surface layer meteorology affecting radio propagation is given.

  13. Surface Meteorological Instruments for TWP (SMET) Handbook

    SciTech Connect

    Ritsche, MT

    2009-01-01

    The TWP Surface Meteorology station (SMET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure and rainfall amount.

  14. Definition of The Consert / Rosetta Radar Performances

    NASA Astrophysics Data System (ADS)

    Herique, A.; Kofman, W.

    A. et al. Kofman, Definition of the CONSERT / ROSETTA Radar perfor- mances, CEOS 2000 Japan - Kofman W., et al., Comet Nucleus Sounding Experiment by Radiowave Transmis- sion. Advances in Space Research, 1998, Vol 21, n11, pp 1589-1598.

  15. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  16. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  17. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  18. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  19. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  20. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....