Science.gov

Sample records for advanced microphysics prediction

  1. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  2. Remote measurement of cloud microphysics and its influence in predicting high impact weather events

    NASA Astrophysics Data System (ADS)

    Bipasha, Paul S.; Jinya, John

    2016-05-01

    Understanding the cloud microphysical processes and precise retrieval of parameters governing the same are crucial for weather and climate prediction. Advanced remote sensing sensors and techniques offer an opportunity for monitoring micro-level developments in cloud structure. . Using the observations from a visible and near-infrared lidar onboard CALIPSO satellite (part of A-train) , the spatial variation of cloud structure has been studied over the Tropical monsoon region . It is found that there is large variability in the cloud microphysical parameters manifesting in distinct precipitation regimes. In particular, the severe storms over this region are driven by processes which range from the synoptic to the microphysical scale. Using INSAT-3D data, retrieval of cloud microphysical parameters like effective radius (CER) and optical depth (COD) were carried out for tropical cyclone Phailine. It was observed that there is a general increase of CER in a top-down direction, characterizing the progressively increasing number and size of precipitation hydrometeors while approaching the cloud base. The distribution of CER relative to cloud top temperature for growing convective clouds has been investigated to reveal the evolution of the particles composing the clouds. It is seen that the relatively high concentration of large particles in the downdraft zone is closely related to the precipitation efficiency of the system. Similar study was also carried using MODIS observations for cyclones over Indian Ocean (2010-2013), in which we find that that the mean effective radius is 24 microns with standard deviation 4.56, mean optical depth is 21 with standard deviation 13.98, mean cloud fraction is 0.92 with standard deviation 0.13 and mainly ice phase is dominant. Thus the remote observations of microstructure of convective storms provide very crucial information about the maintenance and potential devastation likely to be associated with it. With the synergistic

  3. A comparison of cloud microphysical quantities with forecasts from cloud prediction models

    SciTech Connect

    Dunn, M.; Jensen, M.; Hogan, R.; O’Connor, E.; Huang, D.

    2010-03-15

    Numerical weather prediction models (ECMWF, NCEP) are evaluated using ARM observational data collected at the Southern Great Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical quantities, retrieved using a variety of parameterizations. Information gained from this comparison will be utilized during the FASTER project, as models are evaluated for their ability to reproduce fast physical processes detected in the observations. Here the model performance is quantified against the observations through a statistical analysis. Observations from remote sensing instruments (radar, lidar, radiometer and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content, ice effective radius and liquid effective radius. Unfortunately, discrepancies in the derived quantities arise when different retrieval schemes are applied to the observations. The uncertainty inherent in retrieving the microphysical quantities using various retrievals is estimated from the range of output microphysical values. ARM microphysical retrieval schemes (Microbase, Mace) are examined along with the CloudNet retrieval processing of data from the ARM sites for this purpose. Through the interfacing of CloudNet and “ARM” processing schemes an ARMNET product is produced and employed as accepted observations in the assessment of cloud model predictions.

  4. Advancements in the Representation of Cloud-Aerosol Microphysics in the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Lee, D.; Oreopoulos, L.; Sud, Y.; Barahona, D.; Nemes, A.; Bhattacharjee, P.

    2011-01-01

    Despite numerous challenges, the physical parameterization of cloud-aerosol interactions in atmospheric GCMs has become a top priority for advancement because of our need to simulate and understand past, current, and future indirect effects of aerosols on clouds. The challenges stem from the involvement of wide range of cloud-scale dynamics and aerosol activation physical processes. Cloud dynamics modulate cloud areal extent and condensate, while aerosol activation depends on aerosol mass load, size distribution, internal mixing state, and nucleating properties, and ultimately determines cloud optical properties via particle sizes. Both macro- and micro-scale processes are obviously important for cloud-radiation interactions. We will present the main features of cloud microphysical properties in the GEOS- 5 Atmospheric GCM (AGCM) as simulated by the McRAS-AC (Microphysics of Clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction) scheme. McRAS-AC uses Fountoukis and Nenes (2005) aerosol activation for liquid clouds, and has an option for either Liu and Penner (2005) or Barahona and Nenes (2008, 2009) aerosol activation for ice clouds. Aerosol loading (on-line or climatological) comes from GOCART, with an assumed log-normal size distribution. Other features of McRAS-AC are level-by-level cloud-scale thermodynamics, and Seifert-Beheng (2001)-type precipitation microphysics, particularly from moist convection. Results from Single-Column Model simulations will be shown to demonstrate how cloud radiative properties, lifetimes, and precipitation are influenced by different parameterization assumptions. Corresponding fields from year-long simulations of the full AGCM will also be presented with geographical distributions of cloud effective particle sizes compared to satellite retrievals. While the primary emphasis will be on current climate, simulation results with perturbed aerosol loadings will also be shown to expose the radiative sensitivity of the

  5. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  6. Investigating Microphysics of Intracluster Medium with Advanced Hydrodynamic Simulations and X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim

    ' -- sharp, arc-like contact discontinuities often observed in the cluster high- resolution X-ray images. Most of the observed cold fronts are very smooth, but some are visibly affected by instabilities. We will constrain the viscosity (largely independently of its exact physical nature) by including various levels of viscosity in the simulation of a strategically selected sample of cold front clusters. The forthcoming Astro-H mission opens another avenue to study the ICM viscosity and related phenomena -- by directly observing turbulence in merging and relaxed clusters. The turbulence in our merger simulations with varying viscosity could be directly compared to the levels eventually observed by Astro-H. Over the past several years, we have developed most of the machinery necessary for the above simulations by adding the appropriate code for diffusive physics into FLASH -- the high-resolution, grid-based magnetohydrodynamic code. As part of the proposed project, we will (a) add a few missing physical ingredients to the code and (b) simulate a sample of merging clusters, carefully selected from the XMM and Chandra archives to provide the strongest constraints on thermal conduction and viscosity in the ICM. The comparison with observations will result in strict limits on these microphysical quantities, adding an important element into the astrophysical foundation for the use of clusters as cosmological tools. The proposed research is directly relevant to the ROSES ATP solicitation, because it is a theoretical/numerical study of the physical processes in galaxy clusters, which will lead to predictions that can be tested with observations by the NASA space astrophysics missions XMM, Chandra and Astro-H.

  7. Examining the sensitivity of MM5-CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part I—Database, evaluation protocol, and precipitation predictions

    NASA Astrophysics Data System (ADS)

    Queen, Ashley; Zhang, Yang; Gilliam, Robert; Pleim, Jonathan

    2008-05-01

    Wet deposition of chemical species is one of the most difficult processes to simulate in three-dimensional (3-D) air quality models, due to the complex interplay among meteorology, cloud, and atmospheric chemistry. Different cloud microphysical treatments and horizontal grid resolutions in 3-D models can directly affect simulated clouds, precipitation, and wet deposition. In this study, the performance and sensitivity of the simulated precipitation, concentrations, and wet deposition to different explicit microphysics schemes and horizontal grid resolutions are evaluated for August and December 2002 for a domain centered over North Carolina (NC). Four explicit microphysics schemes in MM5 are examined: Reisner 1 (R1), Reisner 2 (R2), Dudhia (SI), and Hsie (WR). The precipitation evaluation indicates that monthly-average precipitation amounts are underpredicted by all schemes in both August and December at all sites except for the R1 August simulation that shows overpredictions at National Acid Deposition Program (NADP) sites. An increased sensitivity to microphysics schemes is found at locations in both the coastal plain and mountain regions in August and the mountain region in December. The differences in simulation results in August and December are mainly attributed to seasonal differences in dominant meteorological forcing (mesoscale vs. synoptic, respectively). Among the schemes tested, R2 and SI give the best overall performance in predicting precipitation for both months. These findings are applicable for NC and neighboring states with similar meteorological and emission characteristics.

  8. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  9. ISDAC Microphysics

    SciTech Connect

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  10. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhang, Yang; Glotfelty, Tim; He, Ruoying; Bennartz, Ralf; Rausch, John; Sartelet, Karine

    2015-03-01

    Earth system models have been used for climate predictions in recent years due to their capabilities to include biogeochemical cycles, human impacts, as well as coupled and interactive representations of Earth system components (e.g., atmosphere, ocean, land, and sea ice). In this work, the Community Earth System Model (CESM) with advanced chemistry and aerosol treatments, referred to as CESM-NCSU, is applied for decadal (2001-2010) global climate predictions. A comprehensive evaluation is performed focusing on the atmospheric component—the Community Atmosphere Model version 5.1 (CAM5.1) by comparing simulation results with observations/reanalysis data and CESM ensemble simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5). The improved model can predict most meteorological and radiative variables relatively well with normalized mean biases (NMBs) of -14.1 to -9.7% and 0.7-10.8%, respectively, although temperature at 2 m (T2) is slightly underpredicted. Cloud variables such as cloud fraction (CF) and precipitating water vapor (PWV) are well predicted, with NMBs of -10.5 to 0.4%, whereas cloud condensation nuclei (CCN), cloud liquid water path (LWP), and cloud optical thickness (COT) are moderately-to-largely underpredicted, with NMBs of -82.2 to -31.2%, and cloud droplet number concentration (CDNC) is overpredictd by 26.7%. These biases indicate the limitations and uncertainties associated with cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds). Chemical concentrations over the continental U.S. (CONUS) (e.g., SO42-, Cl-, OC, and PM2.5) are reasonably well predicted with NMBs of -12.8 to -1.18%. Concentrations of SO2, SO42-, and PM10 are also reasonably well predicted over Europe with NMBs of -20.8 to -5.2%, so are predictions of SO2 concentrations over the East Asia with an NMB of -18.2%, and the tropospheric ozone residual (TOR) over the globe with an NMB of -3.5%. Most meteorological and radiative variables

  11. Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops

    SciTech Connect

    Huret, N.; Chaumerliac, N.; Isaka, H.; Nickerson, E.C. |

    1994-09-01

    Three microphysical formulations are closely compared to evaluate their impact upon gas scavenging and wet deposition processes. They range from a classical bulk approach to a fully spectral representation, including an intermediate semispectral parameterization. Detailed comparisons among the microphysical rates provided by these three parameterizations are performed with special emphasis on evaporation rate calculations. This comparative study is carried out in the context of a mountain wave simulation. Major differences are essentially found in the contrasted spreading of the microphysical fields on the downwind side of the mountain. A detailed chemical module including the dissolution of the species and their transfer between phases (air, cloud, and rain) is coupled with the three microphysical parameterizations in the framework of the dynamical mesoscale model. An assessment of the accuracy of each scheme is then proposed by comparing their ability to represent the drop size dependency of chemical wet processes. The impact of evaporation (partial versus total) upon the partition of species between gas and aqueous phases is also studied in detail.

  12. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  13. A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics

    NASA Astrophysics Data System (ADS)

    Loftus, A. M.; Cotton, W. R.

    2014-12-01

    Microphysical parameterizations in numerical cloud models continue to grow in complexity as our capability to represent microphysical processes increases owing to greater knowledge of these processes as well as advances in computing power. In Part I of this study, a new triple-moment bulk hail microphysics scheme (3MHAIL) that predicts the spectral shape parameter of the hail size distribution was presented and evaluated against lower order-moment schemes. In this paper, the 3MHAIL scheme is verified in simulations of a well-observed supercell storm that occurred over northwest Kansas on 29 June 2000 during the Severe Thunderstorm and Electrification and Precipitation Study (STEPS). Comparisons of the simulation results with the observations for this case, as well as with results of simulations using two different two-moment (2M) configurations of the RAMS microphysics schemes, suggest a significant improvement of the simulated storm structure and evolution is achieved with the 3MHAIL scheme. The generation of large hail and subsequent fallout in the simulation using 3MHAIL microphysics show particularly good agreement with surface hail reports for this storm as well as with previous studies of hail-producing supercell storms. On the other hand, the simulation with 2M microphysics produces only small hail aloft and virtually no hail at the surface, whereas a 2M version of the 3MHAIL scheme (with a fixed spectral shape parameter) produces unrealistically high amounts of large hail at low levels as a result of artificial shifts in the hail size spectra towards larger diameter hail during the melting process.

  14. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  15. Predicting Career Advancement with Structural Equation Modelling

    ERIC Educational Resources Information Center

    Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia

    2012-01-01

    Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…

  16. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  17. Predictive markers in advanced renal cell carcinoma.

    PubMed

    Michaelson, M Dror; Stadler, Walter M

    2013-08-01

    Predictive markers of response to therapy are increasingly important in advanced renal cell carcinoma (RCC) due to the proliferation of treatment options in recent years. Different types of potential predictive markers may include clinical, toxicity-based, serum, tissue, and radiologic biomarkers. Clinical factors are commonly used in overall prognostic models of RCC but have limited utility in predicting response to therapy. Correlation between development of particular toxicities and response to therapy has been noted, such as the correlation between hypertension and response to angiogenesis-targeted therapy. Serum and tissue biomarkers will be covered in detail elsewhere, but factors such as serum lactate dehydrogenase (LDH) and circulating cytokines show promise in this regard. Finally, baseline or early treatment radiology studies may have predictive ability for longer term efficacy, with most studies to date focusing on functional imaging modalities such as positron emission tomography (PET) scans, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), and DCE ultrasound (US). The ultimate goal of developing predictive biomarkers is to enable rational and personalized treatment strategies for patients with advanced RCC. PMID:23972709

  18. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  19. Uncertainty of Microphysics Schemes in CRMs

    NASA Astrophysics Data System (ADS)

    Tao, W. K.; van den Heever, S. C.; Wu, D.; Saleeby, S. M.; Lang, S. E.

    2015-12-01

    Microphysics is the framework through which to understand the links between interactive aerosol, cloud and precipitation processes. These processes play a critical role in the water and energy cycle. CRMs with advanced microphysics schemes have been used to study the interaction between aerosol, cloud and precipitation processes at high resolution. But, there are still many uncertainties associated with these microphysics schemes. This has arisen, in part, from the fact microphysical processes cannot be measured directly; instead, cloud properties, which can be measured, are and have been used to validate model results. The utilization of current and future global high-resolution models is rapidly increasing and are at what has been traditional CRM resolutions and are using microphysics schemes that were developed in traditional CRMs. A potential NASA satellite mission called the Cloud and Precipitation Processes Mission (CaPPM) is currently being planned for submission to the NASA Earth Science Decadal Survey. This mission could provide the necessary global estimates of cloud and precipitation properties with which to evaluate and improve dynamical and microphysical parameterizations and the feedbacks. In order to facilitate the development of this mission, CRM simulations have been conducted to identify microphysical processes responsible for the greatest uncertainties in CRMs. In this talk, we will present results from numerical simulations conducted using two CRMs (NU-WRF and RAMS) with different dynamics, radiation, land surface and microphysics schemes. Specifically, we will conduct sensitivity tests to examine the uncertainty of the some of the key ice processes (i.e. riming, melting, freezing and shedding) in these two-microphysics schemes. The idea is to quantify how these two different models' respond (surface rainfall and its intensity, strength of cloud drafts, LWP/IWP, convective-stratiform-anvil area distribution) to changes of these key ice

  20. Impact of precipitating ice on the simulation of a heavy rainfall event with advanced research WRF using two bulk microphysical schemes

    NASA Astrophysics Data System (ADS)

    Efstathiou, G. A.; Zoumakis, N. M.; Melas, D.; Kassomenos, P.

    2012-11-01

    In this study, the Weather Research and Forecasting (WRF) model version 3.2 is used to examine the impact of precipitating ice and especially snow-graupel partitioning in the simulation of a heavy rainfall event over Chalkidiki peninsula in Northern Greece. This major precipitation event, associated with a case of cyclogenesis over the Aegean Sea, occurred on the 8th of October 2006 causing severe flooding and damage. Two widely used microphysical parameterizations, the Purdue Lin (PLIN) and WRF Single-Moment 6-class scheme (WSM6) are compared with available raingauge measurements over the complex topography of Chalkidiki. To further investigate the importance of snow and graupel relative mass content and the treatment of precipitating ice sedimentation velocity, two older versions of the WSM6 scheme were compiled and run with the current model. The verification results indicate that all simulations were found to match raingauge data more closely over the eastern mountainous Chalkidiki peninsula where maximum accumulations were observed. In other stations all schemes overestimate 24h accumulated rainfall except a station situated at the western part of the peninsula, where none of the simulations was able to reproduce observed rainfall. Graupel dominance in PLIN generates rapid precipitation fallout at the point of maximum predicted 24h accumulation. Similar behavior is shown in WSM6 from WRF version 2, but with significant less rainfall. Increasing snow amounts aloft, due to the unified treatment of precipitating ice in WSM6 from WRF version 3, modifies rain dynamics which decrease rainfall rates, but increases 24h accumulations. A sensitivity experiment where PLIN is used with snow accretion by graupel turned off, indicated that this process seems to be the most important factor controlling the differences in surface precipitation between PLIN and WSM6 from WRF version 3, determining the spatial and temporal distribution of this heavy precipitation event. The

  1. An Improved Bulk Microphysical Scheme for Studying Precipitation Processes: Comparisons with Other Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Lang, S.; Chen, S.; Hong, S-Y.; Peters-Lidard, C.

    2007-01-01

    Cloud microphysical processes play an important role in non-hydrostatic high-resolution simulations. Over the past decade both research and operational numerical weather prediction models have started using more complex cloud microphysical schemes that were originally developed for high-resolution cloud-resolving models. An improved bulk microphysical parameterization (adopted from the Goddard microphysics schemes) has recently implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options --- 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). In addition, this bulk microphysical parameterization is compared with WIRF's three other bulk microphysical schemes.

  2. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  3. Climatic implications of ice microphysics

    SciTech Connect

    Liou, K.N.

    1995-09-01

    Based on aircraft measurements of mid-latitude cirrus clouds, ice crystal size distribution and ice water content (IWC) are shown to be dependent on temperature. This dependence is also evident from the theoretical consideration of ice crystal growth. Using simple models of the diffusion and accretion growth of ice particles, the computed mean ice crystal size and IWC compare reasonably well with the measured mean values. The temperature dependence of ice crystal size and IWC has important climatic implications in that the temperature field perturbed by external radiative forcings, such as greenhouse warming, can alter the composition of ice crystal clouds. Through radiative transfer, ice microphysics can in turn affect the temperature field. Higher IWC would increase cloud solar albedo and infrared emissivity, while for a given IWC, larger crystals would reduce cloud albedo and emissivity. The competing effects produced by greenhouse temperature perturbations via ice micro-physics and radiation interactions and feedbacks are assessed by a one-dimensional radiative-convective climate model that includes an advanced radiation parameterization program. 3 figs.

  4. New, Improved Bulk-microphysical Schemes for Studying Precipitation Processes in WRF. Part 1; Comparisons with Other Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shi, J.; Chen, S. S> ; Lang, S.; Hong, S.-Y.; Thompson, G.; Peters-Lidard, C.; Hou, A.; Braun, S.; Simpson, J.

    2007-01-01

    Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)

  5. Advanced technology wind shear prediction system evaluation

    NASA Technical Reports Server (NTRS)

    Gering, Greg

    1992-01-01

    The program overviews: (1) American Airline (AA)/Turbulence Prediction Systems (TPS), which have installed forward looking infrared predictive windshear system on 3 MD-80 aircraft; (2) AA/TPS AWAS III evaluation, which is a joint effort and is installed in the noise landing gear (NLG) area and a data recorder installed in the E/E compartment.

  6. Substrate Deformation Predicts Neuronal Growth Cone Advance

    PubMed Central

    Athamneh, Ahmad I.M.; Cartagena-Rivera, Alexander X.; Raman, Arvind; Suter, Daniel M.

    2015-01-01

    Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant. PMID:26445437

  7. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  8. Predicting impact factor one year in advance.

    PubMed

    Ketcham, Catherine M

    2007-06-01

    The first impact factor (IF) to reflect the sole efforts of a new editorial team occurs 4 years into what is usually a 5-year editorship, owing to the lag times of: paper accrual and publication, accumulation of citations in derivative literature, and compiling of such citations by the Thomson ISI Web of Knowledge service. Through weekly collection of citation data from the Web of Science over the past 2 years, we now demonstrate that the evolution of IF can be tracked weekly over the course of a calendar year, enabling prediction of the next year's IF beginning at the middle of the previous year. The methodology used to track the developing IF for Lab Invest is presented in this study and a prediction made for the 2006 IF, along with IF predictions for other general pathology journals (American Journal of Pathology, Journal of Pathology, Modern Pathology, American Journal of Surgical Pathology, and Human Pathology). Despite the fact that the 2006 IF for Lab Invest will not be issued until June 2007, it became apparent as early as July 2006 that the Lab Invest IF would be greatly improved over 2004 and 2005 by a predicted 0.5 units. However, as important as IF can be to a journal, it is vital not to let IF considerations influence every aspect of the editors' decisions. Rather, the significance of early prediction lies in earlier validation of editorial policies for journal management as a whole, and reassurance that the philosophy for journal operations is on track.

  9. Microphysics of Pyrocumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  10. Tropical Anvil Cirrus Microphysics

    NASA Astrophysics Data System (ADS)

    Heymsfield, A.; Bansemer, A.; Schmitt, C.; Baumgardner, D.; Poellot, M.; Twohy, C.; Weinstock, E. M.; Smith, J. T.; Sayres, D.; Avallone, L.; Hallar, G.

    2003-12-01

    This study synthesizes data collected during a number of field campaigns by in-situ aircraft to characterize the microphysical properties of tropical, convectively-generated cirrus. The field campaigns include the Tropical Rain Measuring Mission KWAJEX campaign near Kwajalein, M. I., KAMP (the Keys Area Microphysics Project) and the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE), both over southern Florida, and CAMEX-4 (the fourth convection and moisture experiment), studying hurricanes off the east coast of Florida. The measurements include particle size distribution and particle shape information, direct measurements of the condensed water content (CRYSTAL-FACE), and radar imagery. We examine the temperature dependence and vertical variability of the ice water content (IWC), extinction, and effective radii, and deduce the ensemble-mean ice particle densities. Data obtained in quiescent regions outside of convection are compared to observations within convective cells. The relationship between the properties of the particle size distributions and proximity to convection are examined. The IWCs show a strong temperature dependence and dependence on distance below cloud top. The IWCs are larger in the convective regions than in the quiescent regions, and the particle size distributions are markedly broader. Ensemble-mean ice particle densities are a strong function of the breadth of the particle size distributions.

  11. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  12. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmmicrophysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 h

  13. Predicting Malignancy in Thyroid Nodules: Molecular Advances

    PubMed Central

    Melck, Adrienne L.; Yip, Linwah

    2016-01-01

    Over the last several years, a clearer understanding of the genetic alterations underlying thyroid carcinogenesis has developed. This knowledge can be utilized to tackle one of the greatest challenges facing thyroidologists: management of the indeterminate thyroid nodule. Despite the accuracy of fine needle aspiration cytology, many patients undergo invasive surgery in order to determine if a follicular or Hurthle cell neoplasm is malignant, and better diagnostic tools are required. A number of biomarkers have recently been studied and show promise in this setting. In particular, BRAF, RAS, PAX8-PPARγ, microRNAs and loss of heterozygosity have each been demonstrated as useful molecular tools for predicting malignancy and can thereby guide decisions regarding surgical management of nodular thyroid disease. This review summarizes the current literature surrounding each of these markers and highlights our institution’s prospective analysis of these markers and their subsequent incorporation into our management algorithms for thyroid nodules. PMID:21818817

  14. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  15. Advances in tilt rotor noise prediction

    NASA Astrophysics Data System (ADS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  16. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  17. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  18. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the

  19. Predicting the acceptance of advanced rider assistance systems.

    PubMed

    Huth, Véronique; Gelau, Christhard

    2013-01-01

    The strong prevalence of human error as a crash causation factor in motorcycle accidents calls for countermeasures that help tackling this issue. Advanced rider assistance systems pursue this goal, providing the riders with support and thus contributing to the prevention of crashes. However, the systems can only enhance riding safety if the riders use them. For this reason, acceptance is a decisive aspect to be considered in the development process of such systems. In order to be able to improve behavioural acceptance, the factors that influence the intention to use the system need to be identified. This paper examines the particularities of motorcycle riding and the characteristics of this user group that should be considered when predicting the acceptance of advanced rider assistance systems. Founded on theories predicting behavioural intention, the acceptance of technologies and the acceptance of driver support systems, a model on the acceptance of advanced rider assistance systems is proposed, including the perceived safety when riding without support, the interface design and the social norm as determinants of the usage intention. Since actual usage cannot be measured in the development stage of the systems, the willingness to have the system installed on the own motorcycle and the willingness to pay for the system are analyzed, constituting relevant conditions that allow for actual usage at a later stage. Its validation with the results from user tests on four advanced rider assistance systems allows confirming the social norm and the interface design as powerful predictors of the acceptance of ARAS, while the extent of perceived safety when riding without support did not have any predictive value in the present study.

  20. Evaluation of Mixed-Phase Microphysics Within Winter Storms using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Stephen

    2014-01-01

    It is hypothesized that microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixedphased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations

  1. Evaluation of cloud microphysical schemes on aerosol indirect effects from different scale models

    NASA Astrophysics Data System (ADS)

    Shiu, C. J.; Chen, Y. H.; Hashino, T.; Tsai, I. C.; Chen, W. T.; Chen, J. P.; Hsu, H. H.

    2014-12-01

    Quantification of aerosol indirect effects in climate modeling remain unresolved and of large uncertainties. The complicated aerosol-cloud-precipitation interactions in climate model are suggested to be quite sensitive to some tunable microphysical parameters such as the threshold radius associated with autoconversion of cloud droplets to rain droplets. More fundamental studies regarding to different microphysical processes used in various cloud microphysical schemes should be devoted, evaluated and investigated. In this study, we apply a synergy of different scale models with the same cloud and aerosol microphysical schemes (Chen and Liu, 2004; Cheng et al., 2007; and Chen et al., 2013) to understand and evaluate how cloud microphysical processes can be influenced by different microphysical schemes and their interaction with aerosols and radiation. These models include Kinematic Driver (KiD), Single Column Model of Community Atmosphere Model (SCAM), Large Eddy Simulation (LES), and NCAR CESM model. Simulation results from these models will be further validated and compared to either field campaign or satellite observations depending on the scale of the models. Off-line satellite simulator approach (i.e. Joint-Simulator) will also be applied for evaluating cloud microphysics against CloudSat and CALIPSO. Such type of synergy of models can be very useful for improvement, development and evaluation of physical parameterizations for global climate prediction and weather forecast in the near future especially for processes related to cloud macrophysics and microphysics.

  2. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2015-12-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  3. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2016-01-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in "cloudiness" of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  4. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather A.; Yung, Yuk L.

    2015-11-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  5. 76 FR 52954 - Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting Adverse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting... ``Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health...

  6. Predicting binary merger event rates for advanced LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Holz, Daniel; Belczynski, Chris; O'Shaughnessy, Richard; Bulik, Tomek; LIGO Collaboration

    2016-03-01

    We discuss estimates of the rates of mergers of binary systems composed of neutron stars and/or stellar mass black holes. We use the StarTrack population synthesis code, and make predictions for the detection rate of compact binary coalescences with the advanced LIGO/Virgo gravitational wave detectors. Because these instruments are sensitive to massive (M > 20M⊙) stellar-mass binary black holes mergers out to high redshift (z > 1), we discuss the cosmological effects which must be taken into account when calculating LIGO detection rates, including a generalization of the calculation of the ``peanut factor'' and the sensitive time-volume.

  7. Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2011-01-01

    The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.

  8. Improved microphysics in neutron star merger simulations

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-09-01

    Neutron star mergers are expected to be among the main sources of gravitational waves detectable by the Advance LIGO/VIRGO/KAGRA detector network. In many cases, these mergers are also likely to power bright electromagnetic transients, including short gamma-ray bursts and ``kilonovae,'' the optical/infrared emission due to the radioactive decay of neutron rich elements in material unbound by the merger. These EM counterparts can provide important information on the environment in which the merger takes place and the nature of the binary, and their detection could shed a light on the origin of short gamma-ray bursts and of r-process elements. Numerical simulations of neutron star mergers using general relativistic codes are required to understand the merger dynamics, the impact of the equation of state of the neutron star on the gravitational wave signal, and the potential of a given binary to power electromagnetic counterparts to that signal. Until recently, however, general relativistic codes used very simple models for the neutron star - often a simple gamma-law equation of state without any additional microphysics. Although sufficient to model the gravitational wave signal before merger, this cannot be used to follow the post-merger evolution of the system, or even some aspects of the disruption of the neutron star. To do so, nuclear-theory based equations of state with temperature and composition dependence have to be used, and the effects of neutrinos and magnetic fields should be taken into account. In this talk, I will discuss current efforts to include more advanced microphysics in general relativistic simulations, what we can do so far, and what the remaining computational challenges are. I will also show how existing numerical simulations have helped us constrain the outcome of neutron star mergers, and what remains to be done in order to extract as much information as possible from upcoming gravitational wave and electromagnetic observations. Neutron

  9. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

    1991-01-01

    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  10. Optical-Microphysical Cirrus Model

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  11. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  12. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2014-01-01

    It is hypothesized microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixed phased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations. The WRF realistically simulated the warm frontal snowband at relatively short lead times (1014 h). The snowband structire is sensitive to the microphysical parameterization used in WRF. The Goddard and SBUYLin most realistically predicted the band structure, but overpredicted snow content. The double moment Morrison scheme best produced the slope of the snow distribution, but it underpredicted the intercept. All schemes and the radar derived (which used dry snow ZR) underpredicted the surface precipitation amount, likely because there was more cloud water than expected. The Morrison had the most cloud water and the best precipitation prediction of all schemes.

  13. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for

  14. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  15. Role of model resolution and microphysical properties in simulating flash flood induce storms

    NASA Astrophysics Data System (ADS)

    Bartsotas, Nikolaos; Solomos, Stavros; Nikolopoulos, Efthymios I.; Anagnostou, Emmanouil; Kallos, George

    2013-04-01

    Flash flood induce storms are mainly of convective nature and develop at small space and short time scales making their predictability a particularly challenging task. The tremendous societal and economical impact of this hazard necessitates the development of accurate forecasting systems in order to advance warnings and mitigate the risk. To be able to develop a forecasting system that can accurately represent flash flood storms, we need to understand the key elements that control the generation and evolution of this type of events. This study examines the effect of topographic representation, model grid resolution and cloud microphysical properties in simulating three major flash flood storms that occurred in Northern Italy. To simulate those heavy precipitation events, the high-resolution integrated atmospheric model RAMS / ICLAMS was used with grid resolutions of 250 m, in order to properly resolve the complex physical processes and convective activity. In addition, a high resolution topography dataset of 3 arcsec from the NASA SRTM mission was implemented in the model. The sensitivity of microphysical properties and aerosol cloud interactions towards convection and precipitation over the area were examined through various model setups and simulations. The specific properties proved to play a significant role in the correct estimation of spatial distribution and quantity of precipitation, as indicated from the comparison of the model outputs with bias adjusted radar data.

  16. Budget Comparison of Parameterized Microphysical Processes in Tropical Cyclone Simulations

    NASA Astrophysics Data System (ADS)

    Michelson, Sara A.; Bao, Jian-Wen; Grell, Evelyn D.

    2015-04-01

    Despite the fact that microphysics parameterization schemes used in numerical models for tropical cyclone (TC) prediction can be as complex as being capable of resolving the evolution of hydrometeor size spectra, operational centers still cannot computationally afford to run any TC prediction models with spectrum-resolving schemes operationally. To strike an optimal balance between computational cost and physical effect, there is a need to understand what minimal complexity of microphysics parameterizations is required in operational TC prediction models that are run at affordable resolutions. In order to address this need, we have been investigating whether or not the microphysics schemes currently used in NOAA's operational TC models are complex enough to enable us to use these models for high-resolution prediction of tropical cyclones. In this study, we used the Weather Research and Forecasting (WRF) model to investigate the impact of parameterized warm-rain processes in four widely-used bulk microphysics parameterization schemes on the model-simulated tropical cyclone (TC) development. The schemes investigated, ranging from a single-moment simple 3-category scheme to a complex double-moment 6-category scheme, produce different TC intensification rates and average vertical hydrometeor distributions, as well as different accumulated precipitation. By diagnosing the source and sink terms of the hydrometeor budget equations, we found that the differences in the warm-rain production rate, particularly by conversion of cloud water to rain water, contribute significantly to the variations in the frozen hydrometeor production and in the overall latent heat release above the freezing level. These differences in parameterized warm-rain production reflect the differences of the four schemes in the definition of rain droplet size distribution and consequently in spectrum-dependent microphysical processes, such as accretion growth of frozen hydrometeors and their

  17. A Microphysics Guide to Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Krämer, Martina; Rolf, Christian; Luebke, Anna; Afchine, Armin; Spelten, Nicole; Costa, Anja; Zöger, Martin; Smith, Jessica; Herman, Robert; Buchholz, Bernhard; Ebert, Volker; Baumgardner, Darrel; Borrmann, Stephan; Klingebiel, Marcus; Avallone, Linnea

    2015-04-01

    Cirrus clouds still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013) since their microphysical and radiative properties remain poorly or only partially characterized. One major reason is that it is difficult to measure these properties on fast-flying, high altitude aircraft. Another problem is that aircraft measurements cannot capture the evolution of the cirrus clouds properties with time. The most common parameters that are measured in cirrus clouds -besides the meteorological variables- are ice water content (IWC), number of ice crystals (Nice) and relative humidity (with respect to ice, RHice), and sometimes vertical velocity. However, it is difficult to deduce on the history of ice nucleation and development of microphysical properties from these observations. Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as the field measurements, i.e. in the temperature - IWC parameter space. From this representation of simulated cirrus, we can relate the formation mechanism and history to specific combinations of IWC, Nice and RHice inside of cirrus as a function of temperature. We validate this analysis approach by evaluating measurements of about 60h in cirrus during fifteen aircraft campaigns conducted in the last fifteen years over Europe, Australia and Southern and Northern America. It can be shown that the field observations indeed show the characteristics expected from the cirrus guide. For example, high/low IWCs are found together with high/low Nice. As a result it is now possible to track, to a certain degree, the formation mechanism and history of the observed cirrus clouds only from the measurement of IWC and RHice. Important findings from our study are that (i) a substantial part of thick cirrus

  18. A numerical simulation of the microburst phenomenon - Comparison of a discrete and a parameterized microphysical representation

    NASA Technical Reports Server (NTRS)

    Coen, Janice L.

    1990-01-01

    Two versions of a microburst model that differ in how they represent microphysical processes are described and comparison of the numerical solutions is made. This study focuses on how the versions differ in representing the evaporation of raindrops and the differential sedimentation of drops that develops because of their fallspeeds. The two versions are then compared to demonstrate how predicted microburst characteristics are influenced by the choice of microphysical scheme.

  19. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2015-06-01

    Intense rainfall generated by convective clouds causes flash flooding in many parts of the world. Understanding the microphysical processes leading to the formation of precipitation is one of the main challenges to improving our capability to make quantitative precipitation forecasts. Here, we present microphysics observations of cumulus clouds measured over the Southwest Peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon as a result of new cell formation and stratiform regions forming downwind of the convective cells. Aircraft penetrations at -5 °C showed that all the required conditions of the Hallett-Mossop (H-M) ice multiplication process were met in developing regions, and ice concentrations up to 350 L-1 were measured in the mature stratiform regions, indicating that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, a few drizzle drops were measured, some of which froze to form graupel; the ice images are most consistent with freezing drizzle, rather than smaller cloud drops forming the first ice. As new cells developed in and around the cloud, ice concentrations up to two orders of magnitude higher than the predicted ice nuclei concentrations began to be observed and the cloud glaciated over a period of 12-15 min. Ice splinters were captured by supercooled drizzle drops causing them to freeze to form instant-rimers. Graupel and columns were observed in cloud penetrations up to the -12 °C level, though many ice particles were mixed-habit due to riming and growth by vapour diffusion at multiple temperatures. Frozen drizzle

  20. A Comprehensive Two-moment Warm Microphysical Bulk Scheme :

    NASA Astrophysics Data System (ADS)

    Caro, D.; Wobrock, W.; Flossmann, A.; Chaumerliac, N.

    The microphysic properties of gaz, aerosol particles, and hydrometeors have impli- cations at local scale (precipitations, pollution peak,..), at regional scale (inundation, acid rains,...), and also, at global scale (radiative forcing,...). So, a multi-scale study is necessary to understand and forecast in a good way meteorological phenomena con- cerning clouds. However, it cannot be carried with detailed microphysic model, on account of computers limitations. So, microphysical bulk schemes have to estimate the n´ large scale z properties of clouds due to smaller scale processes and charac- teristics. So, the development of such bulk scheme is rather important to go further in the knowledge of earth climate and in the forecasting of intense meteorological phenomena. Here, a quasi-spectral microphysic warm scheme has been developed to predict the concentrations and mixing ratios of aerosols, cloud droplets and raindrops. It considers, explicitely and analytically, the nucleation of droplets (Abdul-Razzak et al., 2000), condensation/evaporation (Chaumerliac et al., 1987), the breakup and collision-coalescence processes with the Long (1974) Ss kernels and the Berry and ´ Reinhardt (1974) Ss autoconversion parameterization, but also, the aerosols and gaz ´ scavenging. First, the parameterization has been estimated in the simplest dynamic framework of an air parcel model, with the results of the detailed scavenging model, DESCAM (Flossmann et al., 1985). Then, it has been tested, in the dynamic frame- work of a kinematic model (Szumowski et al., 1998) dedicated to the HaRP cam- paign (Hawaiian Rainband Project, 1990), with the observations and with the results of the two dimensional detailed microphysic scheme, DESCAM 2-D (Flossmann et al., 1988), implement in the CLARK model (Clark and Farley, 1984).

  1. Cloud Microphysics and Absorption Validation

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven

    2002-01-01

    Vertical distributions of particle size and habit were developed from in-situ data collected from three midlatitude cirrus field campaigns (FIRE-1, FIRE-2, and ARM IOP). These new midlatitude microphysical models were used to develop new cirrus scattering models at a number of wavelengths appropriate for use with the MODIS imager (Nasiri et al. 2002). This was the first successful collaborative effort between all the investigators on this proposal. Recent efforts have extended the midlatitude cirrus cloud analyses to tropical cirrus, using in-situ data collected during the Tropical Rainfall Measurement Mission (TRMM) Kwajalein field campaign in 1999. We note that there are critical aspects to the work: a) Improvement in computing the scattering and radiative properties of ice crystals; b) Requirement for copious amounts of cirrus in-situ data, presented in terms of both particle size and habit distributions; c) Development of cirrus microphysical and optical models for various satellite, aircraft, and ground-based instruments based on the theoretical calculations and in-situ measurements; d) Application to satellite data.

  2. Prediction of concurrent chemoradiotherapy outcome in advanced oropharyngeal cancer

    PubMed Central

    HASEGAWA, MASAHIRO; MAEDA, HIROYUKI; DENG, ZEYI; KIYUNA, ASANORI; GANAHA, AKIRA; YAMASHITA, YUKASHI; MATAYOSHI, SEN; AGENA, SHINYA; TOITA, TAKAFUMI; UEHARA, TAKAYUKI; SUZUKI, MIKIO

    2014-01-01

    The aim of this study was to investigate human papillomavirus (HPV) infection as a predictor of concurrent chemoradiotherapy (CCRT) response and indicator of planned neck dissection (PND) for patients with advanced oropharyngeal squamous cell carcinoma (OPSCC; stage III/IV). Overall, 39 OPSCC patients (32 men, 7 women; median age 61 years, range 39–79 years) were enrolled. The primary lesion and whole neck were irradiated up to 50.4 Gy, and subsequently the primary site and metastatic lymph nodes were boosted with a further 16.2 Gy. Although several chemotherapy regimens were employed, 82.1% of OPSCC patients received the combination of nedaplatin and 5-fluorouracil. HPV-related OPSCC (16 cases) was defined as both HPV DNA-positive status by polymerase chain reaction and p16INK4a overexpression by immunohistochemistry. Patients with N2 and N3 disease received PND 2–3 months after CCRT completion. Compared to non-responders, CCRT responders showed significantly lower nodal stage (N0 to N2b) and HPV-positive status in univariate analysis. Patients with HPV-related OPSCC had longer time to treatment failure (TTF) than those with HPV-unrelated OPSCC (p=0.040). Three-year TTF was 81.3 and 47.8% in the HPV-related and HPV-unrelated groups, respectively. There were also significant differences in disease-free survival (DFS) between the two OPSCC patient groups (p=0.042). Three-year DFS was 93.8 and 66.7% in patients with HPV-related and HPV-unrelated OPSCC, respectively. Multivariate logistic analysis showed a lower risk of TTF event occurrence in HPV-related OPSCC (p=0.041) than in HPV-unrelated OPSCC. Thus, HPV testing in addition to nodal stage was useful for predicting CCRT response, especially in advanced OPSCC. Because patients who received PND showed moderate locoregional control, PND is an effective surgical procedure for controlling neck lesions in patients with advanced HPV-unrelated disease. PMID:24969413

  3. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  4. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 μm is determined as a more

  5. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  6. Condensing Organic Aerosols in a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  7. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Stephens, Graeme L.

    2011-02-01

    Ship tracks observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were analyzed to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used to distinguish ship tracks embedded in closed, open, and undefined mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences were observed between regimes. In the open cell regime, polluted clouds had significantly higher cloud tops (16%) and more liquid water (39%) than nearby unpolluted clouds. However, in the closed cell regime, polluted clouds exhibited no change in cloud top height and had less liquid water (-6%). Both microphysical (effective radius) and macrophysical (liquid water path) cloud properties contribute to a fractional change in cloud optical depth; in the closed cell regime the microphysical contribution was 3 times larger than the macrophysical contribution. However, the opposite was true in the open cell regime where the macrophysical contribution was nearly 2 times larger than the microphysical contribution because the aerosol probably increased cloud coverage. The results presented here demonstrate key differences aerosols have on the microphysical and macrophysical responses of boundary layer clouds between mesoscale stratocumulus convective regimes.

  8. Effects of microphysics, shallow and deep convection on MJO simulations.

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pilon, R.; Dudhia, J.

    2015-12-01

    The nonhydrostatic global Model for Prediction Across Scale (MPAS) was used to simulate the November MJO event during the DYNAMO field campaign. Three mesh configurations were used: two with global uniform 60 km and 15 km grid spacing, respectively, and one with a 3 km grid spacing over the tropical Indian Ocean and 50 km for the rest of the world (50/3). The two cumulus parameterization schemes used in this study, Tiedtke and Grell-Freitas (GF), both include separated deep and shallow schemes that can be turned on and off individually. The GF scheme is scale aware. The Single Moment 6-class (WSM6) microphysics scheme was used. MPAS reproduced the MJO event with various degrees of success when the two cumulus schemes and their deep and shallow components were turned on and off. Microphysics and shallow convection each would help to reproduce MJO signals, with greater success at the 50/3 km mesh than 15 km. A deep cumulus scheme, on the other hand, may help or ruin MJO signals produced by microphysics and shallow schemes. The role of shallow convection is to provide moisture in the lower troposphere to reduce dry biases in the model and, in consequence, increase total precipitation. The capability of the model to produce MJO signals does not depend on the mean vertical profiles of diabatic heating profile, but are sensitive to mean vertical profiles of the moisture sink, which vary evidently with the shallow cumulus scheme.

  9. A microphysics guide to cirrus clouds - Part 1: Cirrus types

    NASA Astrophysics Data System (ADS)

    Krämer, M.; Rolf, C.; Luebke, A.; Afchine, A.; Spelten, N.; Costa, A.; Zöger, M.; Smith, J.; Herman, R.; Buchholz, B.; Ebert, V.; Baumgardner, D.; Borrmann, S.; Klingebiel, M.; Avallone, L.

    2015-11-01

    The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets - liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical

  10. Microphysical Retrieval and Rain Rates of Drizzling Stratocumulus

    NASA Astrophysics Data System (ADS)

    Elmer, N.; deSzoeke, S. P.

    2011-12-01

    Stratocumulus clouds play an important role in the radiation budget of the Earth. Climate models do a poor job modeling stratocumulus clouds, underestimating their radiative cooling effect, and resulting in large sea surface temperature discrepancies, the most noticeable of which is located in the southeast tropical Pacific Ocean. An understanding of the microphysical processes within the cloud can provide vital insight into how to better model stratocumulus clouds. In 2008, the NOAA 94-GHz cloud radar measured reflectivity, Doppler velocity, and Doppler width data aboard the Ronald H. Brown on the VOCALS research cruise in the southeast Pacific Ocean. Profiles with maximum reflectivity at least 100 m below cloud base are identified as drizzling. The drop size distribution, modal radius, liquid water content, and rain rates for the drizzling stratocumulus clouds in this region were computed with the microphysical retrieval of Frisch et al. (1995). Comparing the cloud-base rain rates from the microphysical retrieval to the cloud-base Z-R relationship proposed by Comstock et al. (2004), we find cloud base rain rates from the microphysical retrieval span a wider range than the rain rate predicted by the Comstock et al. (2004) Z-R relationship. Drop size distributions with the same modal radius follow the relationship Z=aR^b with the exponent b=1.3 proposed by Comstock. Drop size distributions with modal radius less than 5 micrometers lie below Comstock's rain rate range (a<11), while distributions with modal radii greater than 20 micrometers lie above Comstock's rain rate range (a>84).

  11. The microphysical pathway to contrail formation

    NASA Astrophysics Data System (ADS)

    Kärcher, B.; Burkhardt, U.; Bier, A.; Bock, L.; Ford, I. J.

    2015-08-01

    A conceptual framework to predict microphysical and optical properties of contrail particles within a wingspan behind the source aircraft is developed. Results from two decades of contrail observations and numerical simulations are reviewed forming the basis of theoretical model development. The model utilizes cloud theory applied to the dynamics and thermodynamics of jet aircraft exhaust plumes in upper tropospheric conditions. Droplet nuclei include soot particles emitted from aircraft engines and atmospheric particles entrained into the plume. These precursor particles activate into copious homogeneously freezing water droplets as the plume relative humidity rises beyond liquid water saturation. A unimodal size spectrum of ice particles develops wherein ice particles grow to micrometer mean sizes. Contrail particle formation is analyzed over a wide range of soot emissions relating to conventional jet fuels as well as to alternative aviation fuels producing much less soot and volatile particle emissions. For current aviation fuels and propulsion technology, the number of contrail ice particles scales roughly in proportion to the number of emitted soot particles that act as water condensation nuclei despite their poor hygroscopicity. Close to the contrail formation threshold, only few plume particles can be water activated and freeze. Implications for effects of alternative fuels on contrails, an arena for future scientific exploration, are outlined.

  12. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  13. Advances and computational tools towards predictable design in biological engineering.

    PubMed

    Pasotti, Lorenzo; Zucca, Susanna

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  14. Advanced GIS Exercise: Predicting Rainfall Erosivity Index Using Regression Analysis

    ERIC Educational Resources Information Center

    Post, Christopher J.; Goddard, Megan A.; Mikhailova, Elena A.; Hall, Steven T.

    2006-01-01

    Graduate students from a variety of agricultural and natural resource fields are incorporating geographic information systems (GIS) analysis into their graduate research, creating a need for teaching methodologies that help students understand advanced GIS topics for use in their own research. Graduate-level GIS exercises help students understand…

  15. Factors that Predict Who Takes Advanced Courses in Cognitive Therapy

    ERIC Educational Resources Information Center

    Pehlivanidis, Artemios

    2007-01-01

    Training in Cognitive Therapy (CT) includes theoretical and didactic components combined with clinical supervision. An introductory course in CT might satisfy training needs in psychotherapy and help in the selection of those trainees who wish to continue to an advanced training level. Predictors of success at such an introductory course have been…

  16. Perceptions and Predictions of Expertise in Advanced Musical Learners

    ERIC Educational Resources Information Center

    Papageorgi, Ioulia; Creech, Andrea; Haddon, Elizabeth; Morton, Frances; De Bezenac, Christophe; Himonides, Evangelos; Potter, John; Duffy, Celia; Whyton, Tony; Welch, Graham

    2010-01-01

    The aim of this article was to compare musicians' views on (a) the importance of musical skills and (b) the nature of expertise. Data were obtained from a specially devised web-based questionnaire completed by advanced musicians representing four musical genres (classical, popular, jazz, Scottish traditional) and varying degrees of professional…

  17. Advancements in decadal climate predictability: The role of nonoceanic drivers

    NASA Astrophysics Data System (ADS)

    Bellucci, A.; Haarsma, R.; Bellouin, N.; Booth, B.; Cagnazzo, C.; Hurk, B.; Keenlyside, N.; Koenigk, T.; Massonnet, F.; Materia, S.; Weiss, M.

    2015-06-01

    We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as "signal carriers," transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.

  18. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  19. Evaluation of Cloud Microphysical Parameterizations in Cloud Resolving Model Simulations using the ARM observations

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Muhlbauer, A.; Ackerman, T. P.

    2011-12-01

    Clouds modulate the distribution of energy and water within the atmosphere and regulate the hydrological cycle. Cloud microphysical parameterizations are critical for the representation of cloud microphysical properties in both cloud-resolving and climate models. In this study, we analyze the capabilities of a cloud-resolving model (CRM) with advanced bulk microphysics schemes to simulate the microphysical properties and evolution of convective clouds and anvil cirrus over the Southern Great Plains (SGP) site in the mid-latitudes and Kwajalein Atoll in the tropics. For evaluating simulated cloud properties, we use observations from the Atmospheric Radiation Measurement (ARM) Program 1997 summer Intensive Observations Period at the SGP site and the Kwajalein Experiment (KWAJEX) field campaign. The CRM simulations are evaluated with the ARM and KWAJEX observations, in particular using precipitation records, radiative fluxes, and radar reflectivity values observed by the ARM millimeter wavelength cloud radar (MMCR) and the Kwajalein precipitation radar. Preliminary analysis of the ARM SGP case shows that although the precipitation events during this period are well captured by the model, the outgoing longwave radiation (OLR) is considerably underestimated and the model generates too much high cloud, which is inconsistent with the MMCR observations. In our study we especially focus on the causes of the overproduction of ice and high clouds in the CRM simulations. Improvements of the ice microphysics scheme and resulting impacts on the simulation are presented.

  20. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  1. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  2. Microphysics and Southern Ocean Cloud Feedback

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.

    Global climate models (GCMs) change their cloud properties in the Southern Ocean (SO) with warming in a qualitatively consistent fashion. Cloud albedo increases in the mid-latitudes and cloud fraction decreases in the subtropics. This creates a distinctive 'dipole' structure in the SW cloud feedback. However, the shape of the dipole varies from model to model. In this thesis we discuss the microphysical mechanisms underlying the SW cloud feedback over the mid-latitude SO. We will focus on the negative lobe of the dipole. The negative SW cloud feedback in the mid-latitudes is created by transitions from ice to liquid in models. If ice transitions to liquid in mixed-phase clouds the cloud albedo increases because ice crystals are larger than liquid droplets and therefore more reflective for a constant mass of water. Decreases in precipitation efficiency further enhance this effect by decreasing sinks of cloud water. This transition is dependent on the mixed-phase cloud parameterization. Parameterizations vary wildly between models and GCMs disagree by up to 35 K on the temperature where ice and liquid are equally prevalent. This results in a wide spread in the model predictions of the increase in liquid water path (LWP, where the path is the vertically integrated mass of water) with warming that drives the negative optical depth cloud feedback. It is found that this disagreement also results in a wide array of climate mean-states as models that create liquid at lower temperatures have a higher mean-state LWP, lower ice water path (IWP), and higher condensed (ice and liquid) water path (CWP). This presents a problem in climate models. GCMs need to have a reasonable planetary albedo in their climate mean-state. We show evidence that GCMs have tuned cloud fraction to compensate for the variation in mid-latitude cloud albedo driven by the mixed-phase cloud parameterization. This tuning results in mid-latitude clouds that are both too few and too bright as well as a

  3. Toward improved durability in advanced combustors and turbines: Progress in the prediction of thermomechanical loads

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Ensign, C. Robert

    1986-01-01

    NASA is sponsoring the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to such loading, and life predictions for high temperature cyclic operation have been underway for several years and are showing promising results. Progress is reported in the development of advanced instrumentation and in the improvement of combustor aerothermal and turbine heat transfer models that will lead to more accurate prediction of thermomechanical loads.

  4. High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes

    NASA Astrophysics Data System (ADS)

    Khain, A.; Lynn, B.; Shpund, J.

    2016-01-01

    Recent studies have pointed to the possible sensitivity of hurricanes to aerosols via aerosol effects on microphysical and thermodynamic processes in clouds. Hurricane Irene, occurring in August 2011, is an excellent case study for investigating aerosol effects on tropical cyclone (TC) structure and intensity: it moved northward along the eastern coast of the United States, and weakened much faster than was predicted by the National Hurricane Center. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. In this study, we simulate Hurricane Irene with 1-km grid spacing using Spectral Bin Microphysics (SBM) and various bulk microphysical schemes in WRF. Simulations with SBM showed that aerosols penetrating the eyewall of Irene from the Saharan Air Layer (SAL) led to an intensification of convection at Irene's eyewall and to a deepening of the hurricane. When Irene moved along the eastern coast of the United States, continental aerosols led to an intensification of convection at Irene's periphery, which interfered with the re-forming of the inner eyewall and to Irene weakening. Sensitivity tests using different "bulk" microphysics schemes indicated a large dispersion of simulated minimum pressure and maximum wind between different simulations. This showed that the simulated hurricane intensity was very sensitive to microphysical processes. Moreover, in consequence, forecast hurricane intensity was highly dependent on the choice of microphysical scheme. New bulk-parameterization schemes simulated the tropical storm intensity of Irene reasonably well. Most bulk schemes that used saturation adjustment indicate the weak sensitivity to aerosols that prevents them from precisely predicting the time evolution of TC intensity and structure.

  5. Indian summer monsoon simulations with CFSv2: a microphysics perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Saha, Subodh K.; Dhakate, Ashish; Pokhrel, Samir

    2016-07-01

    The present study explores the impact of two different microphysical parameterization schemes (i.e. Zhao and Carr, Mon Wea Rev 125:1931-1953, 1997:called as ZC; Ferrier, Amer Meteor Soc 280-283, 2002: called as BF) of National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) on Indian summer monsoon (ISM). Critical relative humidity (RHcrit) plays a crucial role for the realistic cloud formation in a general circulation model (GCM). Hence, impact of RHcrit along with microphysical scheme on ISM is evaluated in the study. Model performance is evaluated in terms of simulation of rainfall, lower and upper tropospheric circulations, cloud fraction, cloud condensate and outgoing longwave radiation (OLR). Climatological mean features of rainfall are better represented by all the sensitivity experiments. Overall, ZC schemes show relatively better rainfall patterns as compared to BF schemes. BF schemes along with 95 % RHcrit (called as BF95) show excess precipitable water over Indian Ocean basin region, which seems to be unrealistic. Lower and upper tropospheric features are well simulated in all the sensitivity experiments; however, upper tropospheric wind patterns are underestimated as compared to observation. Spatial pattern and vertical profile of cloud condensate is relatively better represented by ZC schemes as compared to BF schemes. Relatively more (less) cloud condensate at upper level has lead to relatively better (low) high cloud fraction in ZC (BF) simulation. It is seen that OLR in ZC simulation have great proximity with observation. ZC (BF) simulations depict low (high) OLR which indicates stronger (weaker) convection during ISM period. It implies strong (weak) convection having stronger (weaker) updrafts in ZC (BF). Relatively more (less) cloud condensate at upper level of ZC (BF) may produce strong (weak) latent heating which may lead to relatively strong (weak) convection during ISM. The interaction among microphysics

  6. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  7. Recent advances using rodent models for predicting human allergenicity

    SciTech Connect

    Knippels, Leon M.J. . E-mail: Knippels@voeding.tno.nl; Penninks, Andre H.

    2005-09-01

    The potential allergenicity of newly introduced proteins in genetically engineered foods has become an important safety evaluation issue. However, to evaluate the potential allergenicity and the potency of new proteins in our food, there are still no widely accepted and reliable test systems. The best-known allergy assessment proposal for foods derived from genetically engineered plants was the careful stepwise process presented in the so-called ILSI/IFBC decision tree. A revision of this decision tree strategy was proposed by a FAO/WHO expert consultation. As prediction of the sensitizing potential of the novel introduced protein based on animal testing was considered to be very important, animal models were introduced as one of the new test items, despite the fact that non of the currently studied models has been widely accepted and validated yet. In this paper, recent results are summarized of promising models developed in rat and mouse.

  8. Investigation of advanced UQ for CRUD prediction with VIPRE.

    SciTech Connect

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinement for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and

  9. Advance prediction of hypotension at cesarean delivery under spinal anesthesia.

    PubMed

    Kinsella, S M; Norris, M C

    1996-01-01

    Cardiovascular responses to supine inferior vena cava compression might predict hypotension risk during elective cesarean delivery using spinal anesthesia. In this pilot study we investigated 27 women before operation by taking blood pressure and heart rate measurements for 5 min in the left lateral position, 5 min supine, and then performed one further reading in the left lateral position and one sitting. Anesthesia with hyperbaric bupivacaine was rigorously standardised. A pre-operative 'supine stress test', combining an increase in maternal heart rate of greater than 10 beats/min or leg flexion movements while supine, was analysed. A positive supine stress test (SST) was 4.1 times more frequent in those with severe systolic hypotension below 70% of baseline (12 out of 16 women) than in those without (2 out of 11 women), with a sensitivity of 75% (95% C.I. 48% to 93%) and specificity of 82% (95% C.I. 48% to 98%). A positive test was associated with twice as much vasopressor use as a negative test (30.7 +/-/14.5 mg versus 13.5 +/-/ 9.9 mg; P = 0.0014). Unlike the SST, cardiovascular responses to the change from recumbent to sitting (tilt test) were not useful as a predictor of hypotension.

  10. Advance prediction of hypotension at cesarean delivery under spinal anesthesia.

    PubMed

    Kinsella, S M; Norris, M C

    1996-01-01

    Cardiovascular responses to supine inferior vena cava compression might predict hypotension risk during elective cesarean delivery using spinal anesthesia. In this pilot study we investigated 27 women before operation by taking blood pressure and heart rate measurements for 5 min in the left lateral position, 5 min supine, and then performed one further reading in the left lateral position and one sitting. Anesthesia with hyperbaric bupivacaine was rigorously standardised. A pre-operative 'supine stress test', combining an increase in maternal heart rate of greater than 10 beats/min or leg flexion movements while supine, was analysed. A positive supine stress test (SST) was 4.1 times more frequent in those with severe systolic hypotension below 70% of baseline (12 out of 16 women) than in those without (2 out of 11 women), with a sensitivity of 75% (95% C.I. 48% to 93%) and specificity of 82% (95% C.I. 48% to 98%). A positive test was associated with twice as much vasopressor use as a negative test (30.7 +/-/14.5 mg versus 13.5 +/-/ 9.9 mg; P = 0.0014). Unlike the SST, cardiovascular responses to the change from recumbent to sitting (tilt test) were not useful as a predictor of hypotension. PMID:15321375

  11. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    being systematically evaluated to identify the principal relationships between ozone loss and aerosol state. Under this project, we formulated a detailed quantitative model that predicts the multicomponent composition of sulfate aerosols under stratospheric conditions, including sulfuric, nitric, hydrochloric, hydrofluoric and hydrobromic acids. This work defined for the first time the behavior of liquid ternary-system type-1b PSCS. The model also allows the compositions and reactivities of sulfate aerosols to be calculated over the entire range of environmental conditions encountered in the stratosphere (and has been incorporated into a trajectory/microphysics model-see above). Important conclusions that derived from this work over the last few years include the following: the HNO3 content of liquid-state aerosols dominate PSCs below about 195 K; the freezing of nitric acid ice from sulfate aerosol solutions is likely to occur within a few degrees K of the water vapor frost point; the uptake and reactions of HCl in liquid aerosols is a critical component of PSC heterogeneous chemistry. In a related application of this work, the inefficiency of chlorine injection into the stratosphere during major volcanic eruptions was explained on the basis of nucleation of sulfuric acid aerosols in rising volcanic plumes leading to the formation of supercooled water droplets on these aerosols, which efficiently scavenges HCl via precipitation.

  12. A microphysics guide to cirrus clouds - Part 1: Cirrus types

    NASA Astrophysics Data System (ADS)

    Krämer, Martina; Rolf, Christian; Luebke, Anna; Afchine, Armin; Spelten, Nicole; Costa, Anja; Meyer, Jessica; Zöger, Martin; Smith, Jessica; Herman, Robert L.; Buchholz, Bernhard; Ebert, Volker; Baumgardner, Darrel; Borrmann, Stephan; Klingebiel, Marcus; Avallone, Linnea

    2016-03-01

    The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets - liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high

  13. A Microphysics Guide to Cirrus Clouds - Part I: Cirrus Types

    NASA Astrophysics Data System (ADS)

    Krämer, Martina; Rolf, Christian; Anna, Luebke; Armin, Afchine; Nicole, Spelten; Anja, Costa; Jessica, Meyer; Martin, Zöger; Jessica, Smith; Robert, Herman; Bernhard, Buchholz; Volker, Ebert; Darrel, Baumgardner; Stephan, Borrmann; Marcus, Klingebiel; Linnea, Avallone

    2016-04-01

    The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study provides a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution (Krämer et al., 2015, ACPD). The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets - liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In

  14. The role of dataset selection in cloud microphysics parameterization development

    NASA Astrophysics Data System (ADS)

    Kogan, Y. L.

    2009-12-01

    A number of cloud microphysical parameterizations have been developed during the last decade using various datasets of cloud drop spectra. These datasets can be obtained either from observations, artificially produced by some drop size spectra generator (e.g. by solving the coagulation equation under different input conditions), or obtained as output of LES model which can predict cloud drop spectra explicitly. Each of the methods has its deficiencies, for example in-situ aircraft observations being constrained to the flight path and the dependence of coagulation equation solutions on input conditions. The ultimate aim is to create a cloud drop spectra dataset that mimics realistically drop parameters in real clouds. These parameters are closely related to the distribution of thermodynamical conditions, which are difficult, if not impossible, to obtain a priori. Using LES model with explicit microphysics (SAMEX) we have demonstrated high sensitivity of cloud parameterizations to the choice of a dataset. We emphasize that the development of accurate parameterizations should require the use of a dynamically balanced cloud drop spectra dataset. The accuracy of conversion rates can be increased by scaling them with precipitation intensity. We also demonstrate that the accuracy of the saturation adjustment scheme employed in calculations of latent heat release can be increased by accounting for the aerosol load. Finally we show how to formulate the new saturation adjustment in the framework of a two-moment cloud physics parameterization.

  15. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  16. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  17. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too

  18. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the

  19. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  20. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  1. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  2. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Wang, Jun; Allen Huang, H.-L.; Goldberg, Mitchell D.

    2013-03-01

    In recent years, graphics processing units (GPUs) have emerged as a low-cost, low-power and a very high performance alternative to conventional central processing units (CPUs). The latest GPUs offer a speedup of two-to-three orders of magnitude over CPU for various science and engineering applications. The Weather Research and Forecasting (WRF) model is the latest-generation numerical weather prediction model. It has been designed to serve both operational forecasting and atmospheric research needs. It proves useful for a broad spectrum of applications for domain scales ranging from meters to hundreds of kilometers. WRF computes an approximate solution to the differential equations which govern the air motion of the whole atmosphere. Kessler microphysics module in WRF is a simple warm cloud scheme that includes water vapor, cloud water and rain. Microphysics processes which are modeled are rain production, fall and evaporation. The accretion and auto-conversion of cloud water processes are also included along with the production of cloud water from condensation. In this paper, we develop an efficient WRF Kessler microphysics scheme which runs on Graphics Processing Units (GPUs) using the NVIDIA Compute Unified Device Architecture (CUDA). The GPU-based implementation of Kessler microphysics scheme achieves a significant speedup of 70× over its CPU based single-threaded counterpart. When a 4 GPU system is used, we achieve an overall speedup of 132× as compared to the single thread CPU version.

  3. Numerical Analysis Using WRF-SBM for the Cloud Microphysical Structures in the C3VP Field Campaign: Impacts of Supercooled Droplets and Resultant Riming on Snow Microphysics

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali

    2012-01-01

    Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.

  4. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  5. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery

    PubMed Central

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-01-01

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI. PMID:27527370

  6. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms

    NASA Astrophysics Data System (ADS)

    Erdal, Halil Ibrahim; Karakurt, Onur

    2013-01-01

    SummaryStreamflow forecasting is one of the most important steps in the water resources planning and management. Ensemble techniques such as bagging, boosting and stacking have gained popularity in hydrological forecasting in the recent years. The study investigates the potential usage of two ensemble learning paradigms (i.e., bagging; stochastic gradient boosting) in building classification and regression trees (CARTs) ensembles to advance the streamflow prediction accuracy. The study, initially, investigates the use of classification and regression trees for monthly streamflow forecasting and employs a support vector regression (SVR) model as the benchmark model. The analytic results indicate that CART outperforms SVR in both training and testing phases. Although the obtained results of CART model in training phase are considerable, it is not in testing phase. Thus, to optimize the prediction accuracy of CART for monthly streamflow forecasting, we incorporate bagging and stochastic gradient boosting which are rooted in same philosophy, advancing the prediction accuracy of weak learners. Comparing with the results of bagged regression trees (BRTs) and stochastic gradient boosted regression trees (GBRTs) models possess satisfactory monthly streamflow forecasting performance than CART and SVR models. Overall, it is found that ensemble learning paradigms can remarkably advance the prediction accuracy of CART models in monthly streamflow forecasting.

  7. Advancing Satellite-Based Flood Prediction in Complex Terrain Using High-Resolution Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.; Nikolopoulos, E. I.; Bartsotas, N. S.

    2015-12-01

    Floods constitute one of the most significant and frequent natural hazard in mountainous regions. Satellite-based precipitation products offer in many cases the only available source of QPE. However, satellite-based QPE over complex terrain suffer from significant bias that limits their applicability for hydrologic modeling. In this work we investigate the potential of a new correction procedure, which involves the use of high-resolution numerical weather prediction (NWP) model simulations to adjust satellite QPE. Adjustment is based on the pdf matching of satellite and NWP (used as reference) precipitation distribution. The impact of correction procedure on simulating the hydrologic response is examined for 15 storm events that generated floods over the mountainous Upper Adige region of Northern Italy. Atmospheric simulations were performed at 1-km resolution from a state-of-the-art atmospheric model (RAMS/ICLAMS). The proposed error correction procedure was then applied on the widely used TRMM 3B42 satellite precipitation product and the evaluation of the correction was based on independent in situ precipitation measurements from a dense rain gauge network (1 gauge / 70 km2) available in the study area. Satellite QPE, before and after correction, are used to simulate flood response using ARFFS (Adige River Flood Forecasting System), a semi-distributed hydrologic model, which is used for operational flood forecasting in the region. Results showed that bias in satellite QPE before correction was significant and had a tremendous impact on the simulation of flood peak, however the correction procedure was able to reduce bias in QPE and therefore improve considerably the simulated flood hydrograph.

  8. Analysis of Cirrus Cloud Microphysical Data

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Grainger, Cedric A.

    1999-01-01

    The First International Satellite Cloud Climatology Regional Experiment (FIRE) program has the goal of improving our capabilities to understand, model and detect the properties of climatically-important clouds. This is being undertaken through a three-pronged effort of modeling, long-term observations and short-term intensive field studies. Through examination of satellite and other data it is apparent that stratus and cirrus cloud types have the greatest impact on climate due to their radiative effects and ubiquitous nature. As a result, the FIRE program has developed two paths of investigation, each having its own subset of research objectives and measurement programs. The work conducted under this grant was directed toward furthering our understanding of cirrus cloud systems. While it is known that cirrus are climatically important, the magnitude and even sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to their physical depth and location in the atmosphere and their microphysical composition. However, significant uncertainties still exist in how cirrus clouds form and how they are maintained, what their physical properties are and how they can be parameterized in numerical models. Better remote sensing techniques for monitoring cirrus cloud systems and improved modeling of radiative transfer through ice particles are also needed. A critical element in resolving these issues is a better understanding of cirrus cloud microphysical properties and how they vary. The focus of the research to be conducted under this grant was th data collected in situ by the University of North Dakota Citation aircraft. The goals of this research were to add to the body of knowledge of cirrus cloud microphysics, particularly at the small end of the size spectrum; and analyze the spatial variation of cirrus clouds.

  9. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of

  10. Microphysical Model Studies of Venus Clouds

    NASA Astrophysics Data System (ADS)

    Meade, P. E.; Bullock, M. A.; Grinspoon, D. H.

    2004-11-01

    We have adapted a standard cloud microphysics model to construct a self-consistent microphysical model of Venus' cloud layer which reproduces and extends previous studies (e.g. James et al. 1997). Our model is based on the Community Aerosol and Radiation Model Atmosphere (CARMA), which is a widely used computer code for terrestrial cloud microphysics, derived from the work of Toon et al. (1988). The standard code has been adapted to treat H2O and H2SO4 as co-condensing vapor species onto aqueous H2SO4 cloud droplets, as well as the nucleation of condensation nuclei to droplets. Vapor condensation and evaporation follows the method of James et al. (1997). Microphysical processes included in this model include nucleation of condensation nuclei, condensation and evaporation of H2O and H2SO4 vapor, and droplet coagulation. Vertical transport occurs though advection, eddy diffusion, sedimentation for both droplets and condensation nuclei. The cloud model is used to explore the sensitivity of Venus' cloud layer to environmental changes. Observations of the Venus' lower cloud from the Pioneer Venus, Venera, and Galileo spacecraft have suggested that the properties of the lower cloud may be time-variable, and at times may be entirely absent (Carlson et al. 1993, Grinspoon et al. 1993, Esposito et al. 1997). Our model explores the dependence of such behavior on environment factors such as variations in water or SO2 abundance. We have also calculated the optical properties of the model atmosphere using both the conventional optical constants for H2SO4 (Palmer and Williams, 1975), and the new data of Tisdale et al. (1998). This work has been supported by NASA's Exobiology Program. References Carlson, R.W., et al., 1993. Planetary and Space Science, 41, 477-486. Esposito, L.W., et al., 1997. In Venus II, eds. S.W. Bougher et al., pp. 415-458, University of Arizona Press, Tucson. Grinspoon, D.H., et al., 1993. Planetary and Space Science, 41 (July 1993), 515-542. James, E. P

  11. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  12. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  13. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kontos, K. B.; Janardan, B. A.; Gliebe, P. R.

    1996-01-01

    Recent experience using ANOPP to predict turbofan engine flyover noise suggests that it over-predicts overall EPNL by a significant amount. An improvement in this prediction method is desired for system optimization and assessment studies of advanced UHB engines. An assessment of the ANOPP fan inlet, fan exhaust, jet, combustor, and turbine noise prediction methods is made using static engine component noise data from the CF6-8OC2, E(3), and QCSEE turbofan engines. It is shown that the ANOPP prediction results are generally higher than the measured GE data, and that the inlet noise prediction method (Heidmann method) is the most significant source of this overprediction. Fan noise spectral comparisons show that improvements to the fan tone, broadband, and combination tone noise models are required to yield results that more closely simulate the GE data. Suggested changes that yield improved fan noise predictions but preserve the Heidmann model structure are identified and described. These changes are based on the sets of engine data mentioned, as well as some CFM56 engine data that was used to expand the combination tone noise database. It should be noted that the recommended changes are based on an analysis of engines that are limited to single stage fans with design tip relative Mach numbers greater than one.

  14. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01

    Measured and predicted rotor performance for the Solar Energy Research Institute (SERI) advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction.

  15. Speeding up a Lagrangian ice microphysics code

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Sölch, I.

    2013-07-01

    This paper presents various techniques to speed up the Lagrangian ice microphysics code EULAG-LCM. The amount of CPU time (and also memory and storage data) depends heavily on the number of simulation ice particles (SIPs) used to represent the bulk of real ice crystals. It was found that the various microphysical processes require different numbers of SIPs to reach statistical convergence (in a sense that a further increase of the SIP number does not systematically change the physical outcome of a cirrus simulation). Whereas deposition/sublimation and sedimentation require only a moderate number of SIPs, the (non-linear) ice nucleation process is only well represented, when a large number of SIPs is generated. We introduced a new stochastic nucleation implementation which reallistically mimics the stochastic nature of nucleation and greatly reduces numerical sensitivities. Furthermore several strategies (SIP merging and splitting) are presented which flexibly adjust and reduce the number of SIPs. These may well serve as an inspiration for developers of other Lagrangian particle tracking models. These efficiency measures reduce the computational costs of present cirrus studies and allow extending the temporal and spatial scales of upcoming studies.

  16. Comparison of Advection–Diffusion Models and Neural Networks for Prediction of Advanced Water Treatment Effluent

    PubMed Central

    Mortula, Mohammed Maruf; Abdalla, Jamal; Ghadban, Ahmad A.

    2012-01-01

    Abstract An artificial neural network (ANN) can help in the prediction of advanced water treatment effluent and thus facilitate design practices. In this study, sets of 225 experimental data were obtained from a wastewater treatment process for the removal of phosphorus using oven-dried alum residuals in fixed-bed adsorbers. Five input variables (pH, initial phosphorus concentration, wastewater flow rate, porosity, and time) were used to test the efficiency of phosphorus removal at different times, and ANNs were then used to predict the effluent phosphorus concentration. Results of experiments that were conducted for different values of the input parameters made up the data used to train and test a multilayer perceptron using the back-propagation algorithm of the ANN. Values predicted by the ANN and the experimentally measured values were compared, and the accuracy of the ANN was evaluated. When ANN results were compared to the experimental results, it was concluded that the ANN results were accurate, especially during conditions of high phosphorus concentration. While the ANN model was able to predict the breakthrough point with good accuracy, the conventional advection–diffusion equation was not as accurate. A parametric study conducted to examine the effect of the initial pH and initial phosphorus concentration on the effluent phosphorus concentration at different times showed that lower influent pH values are the most suitable for this advanced treatment system. PMID:22783063

  17. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  18. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  19. Sexual selection predicts advancement of avian spring migration in response to climate change

    PubMed Central

    Spottiswoode, Claire N; Tøttrup, Anders P; Coppack, Timothy

    2006-01-01

    Global warming has led to earlier spring arrival of migratory birds, but the extent of this advancement varies greatly among species, and it remains uncertain to what degree these changes are phenotypically plastic responses or microevolutionary adaptations to changing environmental conditions. We suggest that sexual selection could help to understand this variation, since early spring arrival of males is favoured by female choice. Climate change could weaken the strength of natural selection opposing sexual selection for early migration, which would predict greatest advancement in species with stronger female choice. We test this hypothesis comparatively by investigating the degree of long-term change in spring passage at two ringing stations in northern Europe in relation to a synthetic estimate of the strength of female choice, composed of degree of extra-pair paternity, relative testes size and degree of sexually dichromatic plumage colouration. We found that species with a stronger index of sexual selection have indeed advanced their date of spring passage to a greater extent. This relationship was stronger for the changes in the median passage date of the whole population than for changes in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting these. PMID:17015341

  20. Microphysical Modelling of Polar Stratospheric Clouds During the 1999-2000 Winter

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Schoeberl, Mark; Rosenfield, Joan; Gore, Warren J. (Technical Monitor)

    2000-01-01

    The evolution of the 1999-2000 Arctic winter has been examined using a microphysical/photochemical model run along diabatic trajectories. A large number of trajectories have been generated, filling the vortex throughout the region of polar stratospheric cloud (PSC) formation, and extending from November until the vortex breakup, in order to provide representative sampling of the evolution of PSCs and their effect on stratospheric chemistry. The 1999-2000 winter was particularly cold, allowing extensive PSC formation. Many trajectories have ten-day periods continuously below the Type I PSC threshold; significant periods of Type II PSCs are also indicated. The model has been used to test the extent and severity of denitrification and dehydration predicted using a range of different microphysical schemes. Scenarios in which freezing only occurs below the ice frost point (causing explicit coupling of denitrification and dehydration) have been tested, as well as scenarios with partial freezing at warmer temperatures (in which denitrification can occur independently of dehydration). The sensitivity to parameters such as aerosol freezing rates and heterogeneous freezing have been explored. Several scenarios cause sufficient denitrification to affect chlorine partitioning, and in turn, model-predicted ozone depletion, demonstrating that an improved understanding of the microphysics responsible for denitrification is necessary for understanding ozone loss rates.

  1. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  2. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there?

    PubMed Central

    Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii

    2015-01-01

    Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC. PMID:26420960

  3. Comparison of two imaging programs in predicting the soft tissue changes with mandibular advancement surgery.

    PubMed

    Ravindranath, Sneha; Krishnaswamy, Nathamuni Rengarajan; Sundaram, Venkateswaran

    2011-01-01

    Establishing common objectives and expectations concerning the outcome of proposed surgical orthodontic therapy is a crucial part of the treatment planning process, which has been greatly simplified by imaging software. The purpose of this study was to investigate the reliability of two surgical imaging programs--Dolphin Imaging 10 and Vistadent OC--in simulating the actual outcome of mandibular advancement surgery by using a visual analog scale (VAS) judged by a panel of orthodontists, oral surgeons, and laypersons. The predictions were also analyzed with soft tissue cephalometric evaluation. The results of the study showed that in predicting the surgical outcome evaluated by the VAS, both programs received a mean rating of fair. One was marginally superior for the overall assessment among all three panelist groups. Region-wise, rating indicated the lower lip region to be the least accurate, and the submental region received the highest scores. The soft tissue cephalometric parameters showed minimal differences except for the lower lip parameters. Thus, Dolphin Imaging 10 and Vistadent OC are reliable in predicting mandibular advancement surgical outcomes with inaccuracies chiefly in the lower lip region. PMID:22299108

  4. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there?

    PubMed

    Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii

    2015-09-28

    Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC.

  5. Exploring dark matter microphysics with galaxy surveys

    SciTech Connect

    Escudero, Miguel; Mena, Olga; Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline E-mail: omena@ific.uv.es E-mail: ryan.wilkinson@durham.ac.uk

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  6. Cloud microphysical relationships in continental stratocumulus clouds measured during the RACORO campaign

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Yum, S. S.; Liu, Y.; Lu, C.

    2015-12-01

    Cloud microphysical relationships are determined by various processes that occur in clouds. The simplest and the most important process that occurs during cloud development would be the adiabatic condensational growth of cloud droplets. However, what have been observed in real clouds are often different from the cloud microphysical relationships predicted based on adiabatic condensational growth. There could be various reasons why the measured relationships deviated from adiabatic prediction but turbulent entrainment and mixing of the air above cloud top is considered to be the most important process that modulates cloud microphysical relationships especially in stratocumulus clouds. There were many studies on this issue for marine stratocumulus clouds but studies on continental stratocumulus clouds are rare. Compared to maritime stratocumulus clouds, continental stratocumulus clouds usually have very different thermodynamic and aerosol conditions. So in this study we examined microphysical relationships in continental stratocumulus clouds measured during the Routine AAF CLOUD Optical Radiative Observations (RACORO) campaign as an attempt to reveal the most dominant entrainment-mixing mechanism in these clouds. We used so called the mixing diagram and found that most cases suggested homogeneous mixing of entrained air. We also estimated the scale parameters (i.e., transition length and scale number) because they are indicative of whether entrainment-mixing mechanism is homogeneous or inhomogeneous. The estimated values were found to be critically dependent on turbulent dissipation rate and were suggestive of homogeneous mixing, compared to those estimated for marine stratocumulus clouds in our recent study. We will try to explain why such is the case for continental stratocumulus clouds.

  7. Insights on TTL dehydration mechanisms from microphysical modelling of aircraft observations

    NASA Astrophysics Data System (ADS)

    Ueyama, R.; Pfister, L.; Jensen, E. J.

    2013-12-01

    The dynamical and microphysical processes that influence water vapor concentrations in the Tropical Tropopause Layer (TTL) are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the tropics and elucidate the dominant processes in the winter and summer seasons. Implications of the TTL dehydration processes for the regulation of global stratospheric humidity will be discussed.

  8. Simulation studies of the impact of advanced observing systems on numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Susskind, J.; Reuter, D.; Baker, W. E.; Halem, M.

    1984-01-01

    To study the potential impact of advanced passive sounders and lidar temperature, pressure, humidity, and wind observing systems on large-scale numerical weather prediction, a series of realistic simulation studies between the European Center for medium-range weather forecasts, the National Meteorological Center, and the Goddard Laboratory for Atmospheric Sciences is conducted. The project attempts to avoid the unrealistic character of earlier simulation studies. The previous simulation studies and real-data impact tests are reviewed and the design of the current simulation system is described. Consideration is given to the simulation of observations of space-based sounding systems.

  9. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation.

    PubMed

    Nishikawa, Hiroki; Hasegawa, Kunihiro; Ishii, Akio; Takata, Ryo; Enomoto, Hirayuki; Yoh, Kazunori; Kishino, Kyohei; Shimono, Yoshihiro; Iwata, Yoshinori; Nakano, Chikage; Nishimura, Takashi; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-08-01

    We created a predictive model using serum-based biomarkers for advanced fibrosis (F3 or more) in patients with chronic hepatitis B (CHB) and to confirm the accuracy in an independent cohort.A total of 249 CHB patients were analyzed. To achieve our study aim, a training group (n = 125) and a validation group (n = 124) were formed. In the training group, parameters related to the presence of advanced fibrosis in univariate and multivariate analyses were examined, and a formula for advanced fibrosis was created. Next, we verified the applicability of the predictive model in the validation group.Multivariate analysis identified that gamma-glutamyl transpeptidase (GGT, P = 0.0343) and platelet count (P = 0.0034) were significant predictors of the presence of advanced fibrosis, while Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA-M2BP, P = 0.0741) and hyaluronic acid (P = 0.0916) tended to be significant factors. Using these 4 parameters, we created the following formula: GMPH score = -0.755 - (0.015 × GGT) - (0.268 × WFA-M2BP) + (0.167 × platelet count) + (0.003 × hyaluronic acid). In 8 analyzed variables (WFA-M2BP, aspartate aminotransferase-to-platelet ratio index, FIB-4 index, prothrombin time, platelet count, hyaluronic acid, Forns index, and GMPH score), GMPH score had the highest area under the receiver operating characteristic (AUROC) curve for advanced fibrosis with a value of 0.8064 in the training group and in the validation group, GMPH score also had the highest AUROC (0.7782). In all subgroup analyses of the hepatitis B virus (HBV) status (HB surface antigen quantification, HBV-DNA quantification, and HBe antigen seropositivity), GMPH score in F3 or F4 was significantly lower than that in F0 to F2. In the above mentioned 8 variables, differences between the liver fibrosis stages (F0 to F1 vs F2, F2 vs F3, F3 vs F4, F0 to F1 vs F3, F0 to F1 vs F4, and F2 vs F4) for the entire

  10. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation

    PubMed Central

    Nishikawa, Hiroki; Hasegawa, Kunihiro; Ishii, Akio; Takata, Ryo; Enomoto, Hirayuki; Yoh, Kazunori; Kishino, Kyohei; Shimono, Yoshihiro; Iwata, Yoshinori; Nakano, Chikage; Nishimura, Takashi; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-01-01

    Abstract We created a predictive model using serum-based biomarkers for advanced fibrosis (F3 or more) in patients with chronic hepatitis B (CHB) and to confirm the accuracy in an independent cohort. A total of 249 CHB patients were analyzed. To achieve our study aim, a training group (n = 125) and a validation group (n = 124) were formed. In the training group, parameters related to the presence of advanced fibrosis in univariate and multivariate analyses were examined, and a formula for advanced fibrosis was created. Next, we verified the applicability of the predictive model in the validation group. Multivariate analysis identified that gamma-glutamyl transpeptidase (GGT, P = 0.0343) and platelet count (P = 0.0034) were significant predictors of the presence of advanced fibrosis, while Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA+-M2BP, P = 0.0741) and hyaluronic acid (P = 0.0916) tended to be significant factors. Using these 4 parameters, we created the following formula: GMPH score = −0.755 − (0.015 × GGT) − (0.268 × WFA+-M2BP) + (0.167 × platelet count) + (0.003 × hyaluronic acid). In 8 analyzed variables (WFA+-M2BP, aspartate aminotransferase-to-platelet ratio index, FIB-4 index, prothrombin time, platelet count, hyaluronic acid, Forns index, and GMPH score), GMPH score had the highest area under the receiver operating characteristic (AUROC) curve for advanced fibrosis with a value of 0.8064 in the training group and in the validation group, GMPH score also had the highest AUROC (0.7782). In all subgroup analyses of the hepatitis B virus (HBV) status (HB surface antigen quantification, HBV-DNA quantification, and HBe antigen seropositivity), GMPH score in F3 or F4 was significantly lower than that in F0 to F2. In the above mentioned 8 variables, differences between the liver fibrosis stages (F0 to F1 vs F2, F2 vs F3, F3 vs F4, F0 to F1 vs F3, F0 to F1 vs F4, and F2 vs

  11. Predictive and preventive strategies to advance the treatments of cardiovascular and cerebrovascular diseases: the Ukrainian context

    PubMed Central

    2012-01-01

    Despite great efforts in treatments of cardiovascular diseases, the field requires innovative strategies because of high rates of morbidity, mortality and disability, indicating evident deficits in predictive vascular diagnosis and individualized treatment approaches. Talking about the vascular system, currently, physicians are not provided with integrated medical approaches to diagnose and treat vascular diseases. Only an individual global approach to the analysis of all segments in the vascular system of a patient allows finding the optimal way for vascular disease treatment. As for the existing methodology, there is a dominance of static methods such as X-ray contrast angiography and magnetic resonance imaging in angiomode. Taking into account the world experience, this article deals with innovative strategies, aiming at predictive diagnosis in vascular system, personalization of the biomedical treatment approaches, and targeted prevention of individual patient cohorts. Clinical examples illustrate the advances in corresponding healthcare sectors. Recommendations are provided to promote the field. PMID:23083430

  12. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes

  13. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke

    Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and

  14. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  15. A Model to Predict Nitrogen Losses in Advanced Soil-Based Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Morales, I.; Cooper, J.; Loomis, G.; Kalen, D.; Amador, J.; Boving, T. B.

    2014-12-01

    Most of the non-point source Nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds are considered environmental pollutants because they deplete the oxygen availability in water bodies and produce eutrophication. The objective of this study was to simulate the fate and transport of Nitrogen in OWTS. The commercially-available 2D/3D HYDRUS software was used to develop a transport and fate model. Experimental data from a laboratory meso-cosm study included the soil moisture content, NH4 and NO3- data. That data set was used to calibrate the model. Three types of OWTS were simulated: (1) pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (SND) and (3) Geomat (GEO), a variation of SND. To better understand the nitrogen removal mechanism and the performance of OWTS technologies, replicate (n = 3) intact soil mesocosms were used with 15N-labelled nitrogen inputs. As a result, it was estimated that N removal by denitrification was predominant in P&S. However, it is suggested that N was removed by nitrification in SND and GEO. The calibrated model was used to estimate Nitrogen fluxes for both conventional and advanced OWTS. Also, the model predicted the N losses from nitrification and denitrification in all OWTS. These findings help to provide practitioners with guidelines to estimate N removal efficiencies for OWTS, and predict N loads and spatial distribution for identifying non-point sources.

  16. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer

    PubMed Central

    Du, Meijun; Dittmar, Rachel L.; Lee, Adam; Nandy, Debashis; Yuan, Tiezheng; Guo, Yongchen; Wang, Yuan; Tschannen, Michael R.; Worthey, Elizabeth; Jacob, Howard; See, William; Kilari, Deepak; Wang, Xuexia; Hovey, Raymond L.; Huang, Chiang-Ching; Wang, Liang

    2015-01-01

    Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locus-specific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p < 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer. PMID:25915538

  17. Can primary optimal cytoreduction be predicted in advanced epithelial ovarian cancer preoperatively?

    PubMed Central

    2010-01-01

    Introduction Prediction of optimal cytoreduction in patients with advanced epithelial ovarian caner preoperatively. Methods Patients with advanced epithelial ovarian cancer who underwent surgery for the first time from Jan. to June 2008 at gynecologic oncology ward of TUMS (Tehran University of Medical Sciences) were eligible for this study. The possibility of predicting primary optimal cytoreduction considering multiple variables was evaluated. Variables were peritoneal carcinomatosis, serum CA125, ascites, pleural effusion, physical status and imaging findings. Univariate comparisons of patients underwent suboptimal cytoreduction carried out using Fisher's exact test for each of the potential predictors. The wilcoxon rank sum test was used to compare variables between patients with optimal versus suboptimal cytoreduction. Results 41 patients met study inclusion criteria. Statistically significant association was noted between peritoneal carcinomatosis and suboptimal cytoreduction. There were no statistically significant differences between physical status, pleural effusion, imaging findings, serum CA125 and ascites of individuals with optimal cytoreduction compared to those with suboptimal cytoreduction. Conclusions Because of small populations in our study the results are not reproducible in alternate populations. Only the patient who is most unlikely to undergo optimal cytoreduction should be offered neoadjuvant chemotherapy, unless her medical condition renders her unsuitable for primary surgery. PMID:20170515

  18. Evaluations of microphysics schemes from the microwave rainfall measurement perspective

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shin, D.

    2008-12-01

    Passive microwave remote sensing of precipitation has been successfully used to monitor the global hydrologic cycle and rainfall retrieval algorithms continue to improve for accurate measurement. In the framework of current retrieval algorithms, the cloud resolving model (CRM) and its microphysical processes play an important role together with the radiative transfer model and their inversion technique. In this study, we construct various a-priori databases using the Weather Research and Forecasting (WRF) model with four different microphysics schemes. Due to different characteristics of microphysical processes especially in their frozen hydrometeors, retrieval results of precipitation fields and rainfall amounts are found to be different. This study discusses a sensitivity of microwave rainfall retrievals to microphysical parameterization in the CRM.

  19. Effects of Wildfire Pollution on the Microphysical and Electrical Properties of Pyrocumulus

    NASA Astrophysics Data System (ADS)

    Duff, R.; Grant, L. D.; van den Heever, S. C.

    2014-12-01

    Pyrocumulus clouds form over wildfires when hot, smoke-filled air rises, cools and condenses. These clouds have higher cloud condensation nuclei (CCN) concentrations, which affect their microphysical and electrical properties. It is important to better understand pyrocumulus cloud microphysical characteristics and lightning formation, which have implications for the prediction of wildfire growth as well as the radiative and chemical characteristics of the upper troposphere. A recent observational study documented an electrified pyrocumulus over the May 2012 Hewlett Gulch fire located to the west of Fort Collins, Colorado. This cloud produced approximately 20 intracloud lightning flashes, and its electrical activity differed from surrounding convection that was not directly impacted by the fire and associated smoke. The goal of this research is to investigate aerosol-induced cloud-scale microphysical differences between clean clouds and polluted pyrocumulus to better characterize the mechanisms that cause pyrocumulus electrification. In order to address this goal, idealized cloud-resolving model simulations were performed using the Regional Atmospheric Modeling System (RAMS). The model environment was initialized with an average of the 12Z 16 May and 00Z 17 May 2012 observed Denver soundings to represent the conditions when the Hewlett Gulch pyrocumulus occurred. Five simulations were performed using surface aerosol concentrations from 100 to 5000 #/mg. The results demonstrate that in moderately polluted pyrocumulus, rain processes are suppressed while graupel production increases. Extremely polluted pyrocumulus, however, experience a complete shut-down of graupel production, which favors the production of large amounts of liquid water and smaller ice species such as ice crystals and snowflakes. The processes responsible for these microphysical changes, as well as inferred pyrocumulus electrification mechanisms, will be compared with those discussed in previous

  20. Cloud Microphysical Characteristics over East Asia

    NASA Astrophysics Data System (ADS)

    Yin, J.; Wang, D.; Zhai, G.

    2012-04-01

    A survey of the existing literature on in-situ measurements of cloud-precipitation microphysical properties was undertaken. Then, a database was established to contain microphysical properties for raindrop, cloud droplet, fog, ice nuclei (IN), snow crystal, as well as the relationship between radar reflectivity (Z) and rainfall rate (R). The time span of the in-situ probe measurements ranges from 1960 to 2008 over East Asia and from 1940 to 2008 in the other regions (which is defined as those include the Americas, Europe, and Australia). From the datasets, dividing the data coverage into East Asia and the other regions, several parameters are presented, including mean concentration of hydrometeor particles, liquid water content (LWC), as well as functional fit parameters of particles size distributions. The main properties of hydrometeor particles were presented, and the functional fitted parameters of particle size distributions over East Asia have been compared with those over the other regions. Note that the all measurements taken in other regions do not mean that all cloud systems in the other regions are similar. Our main method of the present study is to put all measurement results taken in different regions over the world together. If the cloud systems over East Asia have their own characteristics, it will be grouped together. Thus, the difference between East Asia and other regions is readily discernible. The results show that there are differences, sometimes even large differences, between East Asia and the other regions in terms of these cloud-precipitation microphysical characteristics. More specific conclusions are as follows: (1) Both exponential- and gamma-size distributions are used to fit RSD of rains originating from stratiform clouds. Average intercept N0 of exponential-size distribution over East Asia is one order of magnitude smaller than that over the other regions, and average slope λ is slight smaller. As for gamma-size distributions, the

  1. Microphysical and radiative characteristics of convective clouds during COHMEX

    NASA Technical Reports Server (NTRS)

    Fulton, Richard; Heymsfield, Gerald M.

    1990-01-01

    The microphysical structure and the evolution of two strong isolated thunderstorms that occurred on July 11, 1986 in northern Alabama were investigated using data obtained during the Cooperative Huntsville Meteorological Experiment by CP-2 multiparameter radar, together with passive microwave measurements from ER-2 aircraft. A correlation was found between the magnitude of the microwave T(B) depression and the storm intensity, although a clear relationship was not always obvious between radar-deduced microphysical characteristics and passive microwave radiative observations.

  2. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  3. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  4. Early Identification of Students Predicted to Enroll in Advanced, Upper-Level High School Courses: An Examination of Validity

    ERIC Educational Resources Information Center

    DeRose, Diego S.; Clement, Russell W.

    2011-01-01

    Broward County Public Schools' Research Services department uses logistic regression analysis to compute an indicator to predict student enrollment in advanced high school courses, for students entering ninth grade for the first time. This prediction indicator, along with other student characteristics, supports high school guidance staffs in…

  5. Greater Influence of Aerosol on Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Jha, V.; Hudson, J. G.; Noble, S.

    2009-12-01

    CCN and cloud microphysics measurements are presented from four projects: RICO, PASE,ICE-L and POST. Correlations coefficients (R) between 1% supersaturation CCN concentrations and total cloud droplet concentrations were 0.80 in all four projects and for the combined data. R between CCN and larger cloud droplet concentrations progressively decreased with increasing sizes (Fig. 1A). At ~20 µm R was maximum negative and then reversed to smaller negative and even positive at larger drop sizes. R is positive for CCN with total cloud droplets because droplets are proportional to the concentrations of nuclei that they condensed upon, CCN. The negative R for CCN with larger droplets is due to competition among droplets for condensate. Competition for condensate is greater when CCN concentrations are higher and this limits droplet sizes, more so for higher concentrations. Negative R ensues because this reduces droplet concentrations above specific sizes to a greater extent for higher CCN concentrations. The greatest negative R thus occurs at the size range where droplet concentrations are the largest, the mode of the droplet size distributions. In Fig. 1 this is just beyond the average mode. At larger sizes droplet concentrations are lower (Fig. 1B) and thus there is less competition for condensate. The more numerous small sized droplets do not have enough surface area to affect the growth of the larger less numerous droplets. Thus at larger sizes with reduced competition, droplet concentrations are again proportional to the concentrations of the nuclei that they condensed upon. Often particle concentrations at various sizes are proportional. When this is the case there will be a positive R for CCN at 1% with such larger droplet concentrations such as PASE in Fig. 1A. Thus there are two directly conflicting influences on R; the usual positive R between CCN and droplets and the negative R due to competition for condensate. Thus lower R between CCN and droplet

  6. Microphysical Interpretation of Cirrus Measurements With Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Lin, Ruei-Fong; Reichardt, Susanne; McGee, Thomas J.; Starr, David OC.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 N in January 1997 reveal a strong correlation between the particle optical properties, specifically depolarization ratio delta and extinct ion-to-backscatter ratio S, for ambient cloud temperatures above approximately -45 C (delta less than approximately 40%), and an anti-correlation for colder temperatures (delta greater than approximately 40%). Over the length of the measurements (4-7.5 hours) the particle properties vary systematically: Initially, delta approximately equal to 60% and S approximately equal to 10sr are observed. Then, with decreasing delta, S first increases to approximately 27 sr(delta approximately equal to 40%) before decreasing to values around 10 sr again (delta approximately equal to 20%). The particle optical properties distinctly depend on the ambient temperature. For the microphysical analysis of the lidar observations. ray-tracing computations of particle scattering properties and a size-distribution resolving cirrus model with explicit microphysics have been used. The theoretical studies show that the optical properties and their temporal evolution can be interpreted in terms of size, shape, and growth of the cirrus particles: Near the cloud top in the early stage of the cirrus development, light scattering by small hexagonal columns with aspect ratios close to one is dominant. Over time the cloud base height extends to lower altitudes with warmer temperatures, the ice particles grow and get morphologically diverse (the scattering contributions of hexagonal columns and plates are roughly the same for large S and depolarization values of approximately 40%). In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like or complex ice particles. Mid-latitude cirrus data measured with the same instrument at 53.4 N between 1994 and 1996 follow closely the correlation between delta and S found in the warmer regions of the Arctic

  7. Advances in Rosetta structure prediction for difficult molecular-replacement problems

    SciTech Connect

    DiMaio, Frank

    2013-11-01

    Modeling advances using Rosetta structure prediction to aid in solving difficult molecular-replacement problems are discussed. Recent work has shown the effectiveness of structure-prediction methods in solving difficult molecular-replacement problems. The Rosetta protein structure modeling suite can aid in the solution of difficult molecular-replacement problems using templates from 15 to 25% sequence identity; Rosetta refinement guided by noisy density has consistently led to solved structures where other methods fail. In this paper, an overview of the use of Rosetta for these difficult molecular-replacement problems is provided and new modeling developments that further improve model quality are described. Several variations to the method are introduced that significantly reduce the time needed to generate a model and the sampling required to improve the starting template. The improvements are benchmarked on a set of nine difficult cases and it is shown that this improved method obtains consistently better models in less running time. Finally, strategies for best using Rosetta to solve difficult molecular-replacement problems are presented and future directions for the role of structure-prediction methods in crystallography are discussed.

  8. The prediction of the building precision in the Laser Engineered Net Shaping process using advanced networks

    NASA Astrophysics Data System (ADS)

    Lu, Z. L.; Li, D. C.; Lu, B. H.; Zhang, A. F.; Zhu, G. X.; Pi, G.

    2010-05-01

    Laser Engineered Net Shaping (LENS) is an advanced manufacturing technology, but it is difficult to control the depositing height (DH) of the prototype because there are many technology parameters influencing the forming process. The effect of main parameters (laser power, scanning speed and powder feeding rate) on the DH of single track is firstly analyzed, and then it shows that there is the complex nonlinear intrinsic relationship between them. In order to predict the DH, the back propagation (BP) based network improved with Adaptive learning rate and Momentum coefficient (AM) algorithm, and the least square support vector machine (LS-SVM) network are both adopted. The mapping relationship between above parameters and the DH is constructed according to training samples collected by LENS experiments, and then their generalization ability, function-approximating ability and real-time are contrastively investigated. The results show that although the predicted result by the BP-AM approximates the experimental result, above performance index of the LS-SVM are better than those of the BP-AM. Finally, high-definition thin-walled parts of AISI316L are successfully fabricated. Hence, the LS-SVM network is more suitable for the prediction of the DH.

  9. Trajectory and Microphysical Modeling of TTL Water

    NASA Astrophysics Data System (ADS)

    Ueyama, R.; Jensen, E. J.; Pfister, L.

    2014-12-01

    Processes that influence H2O concentrations in the Tropical Tropopause Layer (TTL) and consequently regulate stratospheric humidity are investigated in simulations of clouds along backward trajectories of TTL parcels initialized with H2O measurements from Microwave Limb Sounder (MLS). Trajectories are calculated using offline calculations of seasonal mean radiative heating rates in the tropics merged with MERRA extratropical heating rates and ERA-Interim temperature and wind data that have been modified to enhance wave-driven variability in the TTL. We also examine the impact of convective influence along parcel trajectories on cloud formation and dehydration. The distribution of 100 hPa H2O mixing ratios simulated on the final day of the trajectories in boreal winter 2006-07 resembles that of MLS with distinct minima over the western and eastern tropical Pacific, but exhibits an overall dry bias of approximately 20%. Averaged over the tropics, subgrid-scale waves dehydrate the 100 hPa level by ~0.5 ppmv, while convection and cloud microphysical processes moisten by ~0.5 and ~0.7 ppmv, respectively. These three processes combined increase the tropical mean H2O estimate by roughly 20% compared to that based solely on the Lagrangian Dry Point of the trajectories. Possible causes of the model dry bias and TTL cirrus statistics in comparison to those of recent aircraft campaigns will also be discussed.

  10. Cloud Microphysics by Thermal Wave Methods

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Bowdle, D. A.; Reischel, M.

    1985-01-01

    This experiments series is the first application of a low-gravity experimental technique to the study of cloud microphysics. The low-gravity environment is provided by the parabolic maneuver of NASA's KC-135 aircraft. The primary objective is to compare experimental observations of cloud droplet growth and evaporation in a convection free environment with a numerical model of the process. Beyond that, the work also involves the development and testing of low-gravity research techniques. In particular, passive methods of thermal control have been devised and used effectively. The study to date has shown that the method is particularly suitable for looking at interactions between adjoining portions of the cloud drop field and interactions of the drop field with a solid interface. After final analysis of the data, it is expected the results will shed light on the development of cloud droplet size spectra in natural clouds as well as the performance of certain types of cloud physics instrumentation, particularly continuous flow diffusion chambers and loud condensation nuclei counters.

  11. Edge Fracture Prediction ofTraditional and Advanced Trimming Processes for AA6111-T4 Sheets

    SciTech Connect

    Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Golovashchenko, Segey F.

    2014-02-15

    This work examines the traditional and advanced trimming of AA6111-T4 aluminum sheets with finite element simulations. The Rice-Tracy damage model is used for the simulation with damage parameters estimated from experimental observation of grain aspect ratio near the fracture surface of trimmed parts. Fine meshes at the shearing zone, adaptive meshing, and adaptive contact techniques are used to accurately capture the contact interactions between the sharp corner of the trimming tools and the blank to be trimmed. To the knowledge of the authors, these are the first trimming simulations that can predict the effects of shearing clearance on burr heights with quantitative accuracy for AA6111-T4 aluminum sheets. In addition, the models have also accurately reproduced the crack initiation site as well as burr and sliver formation mechanisms observed experimentally.

  12. Prediction of response to preoperative chemoradiotherapy and establishment of individualized therapy in advanced rectal cancer.

    PubMed

    Nakao, Toshihiro; Iwata, Takashi; Hotchi, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Nishi, Masaaki; Takasu, Chie; Eto, Shohei; Teraoku, Hiroki; Shimada, Mitsuo

    2015-10-01

    Preoperative chemoradiotherapy (CRT) has become the standard treatment for patients with locally advanced rectal cancer. However, no specific biomarker has been identified to predict a response to preoperative CRT. The aim of the present study was to assess the gene expression patterns of patients with advanced rectal cancer to predict their responses to preoperative CRT. Fifty-nine rectal cancer patients were subjected to preoperative CRT. Patients were randomly assigned to receive CRT with tegafur/gimeracil/oteracil (S-1 group, n=30) or tegafur-uracil (UFT group, n=29). Gene expression changes were studied with cDNA and miRNA microarray. The association between gene expression and response to CRT was evaluated. cDNA microarray showed that 184 genes were significantly differentially expressed between the responders and the non‑responders in the S-1 group. Comparatively, 193 genes were significantly differentially expressed in the responders in the UFT group. TBX18 upregulation was common to both groups whereas BTNL8, LOC375010, ADH1B, HRASLS2, LOC284232, GCNT3 and ALDH1A2 were significantly differentially lower in both groups when compared with the non-responders. Using miRNA microarray, we found that 7 and 16 genes were significantly differentially expressed between the responders and non-responders in the S-1 and UFT groups, respectively. miR-223 was significantly higher in the responders in the S-1 group and tended to be higher in the responders in the UFT group. The present study identified several genes likely to be useful for establishing individualized therapies for patients with rectal cancer.

  13. Surprise Questions for Survival Prediction in Patients With Advanced Cancer: A Multicenter Prospective Cohort Study

    PubMed Central

    Hamano, Jun; Morita, Tatsuya; Inoue, Satoshi; Ikenaga, Masayuki; Matsumoto, Yoshihisa; Sekine, Ryuichi; Yamaguchi, Takashi; Hirohashi, Takeshi; Tajima, Tsukasa; Tatara, Ryohei; Watanabe, Hiroaki; Otani, Hiroyuki; Takigawa, Chizuko; Matsuda, Yoshinobu; Nagaoka, Hiroka; Mori, Masanori; Yamamoto, Naoki; Shimizu, Mie; Sasara, Takeshi

    2015-01-01

    Background. Predicting the short-term survival in cancer patients is an important issue for patients, family, and oncologists. Although the prognostic accuracy of the surprise question has value in 1-year mortality for cancer patients, the prognostic value for short-term survival has not been formally assessed. The primary aim of the present study was to assess the prognostic value of the surprise question for 7-day and 30-day survival in patients with advanced cancer. Patients and Methods. The present multicenter prospective cohort study was conducted in Japan from September 2012 through April 2014, involving 16 palliative care units, 19 hospital-based palliative care teams, and 23 home-based palliative care services. Results. We recruited 2,425 patients and included 2,361 for analysis: 912 from hospital-based palliative care teams, 895 from hospital palliative care units, and 554 from home-based palliative care services. The sensitivity, specificity, positive predictive value, and negative predictive value of the 7-day survival surprise question were 84.7% (95% confidence interval [CI], 80.7%–88.0%), 68.0% (95% CI, 67.3%–68.5%), 30.3% (95% CI, 28.9%–31.5%), and 96.4% (95% CI, 95.5%–97.2%), respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for the 30-day surprise question were 95.6% (95% CI, 94.4%–96.6%), 37.0% (95% CI, 35.9%–37.9%), 57.6% (95% CI, 56.8%–58.2%), and 90.4% (95% CI, 87.7%–92.6%), respectively. Conclusion. Surprise questions are useful for screening patients for short survival. However, the high false-positive rates do not allow clinicians to provide definitive prognosis prediction. Implications for Practice: The findings of this study indicate that clinicians can screen patients for 7- or 30-day survival using surprise questions with 90% or more sensitivity. Clinicians cannot provide accurate prognosis estimation, and all patients will not always die within the defined periods. The

  14. Ductile damage prediction in metal forming processes: Advanced modeling and numerical simulation

    NASA Astrophysics Data System (ADS)

    Saanouni, K.

    2013-05-01

    This paper describes the needs required in modern virtual metal forming including both sheet and bulk metal forming of mechanical components. These concern the advanced modeling of thermo-mechanical behavior including the multiphysical phenomena and their interaction or strong coupling, as well as the associated numerical aspects using fully adaptive simulation strategies. First a survey of advanced constitutive equations accounting for the main thermomechanical phenomena as the thermo-elasto-plastic finite strains with isotropic and kinematic hardenings fully coupled with ductile damage will be presented. Only the macroscopic phenomenological approach with state variables (monoscale approach) will be discussed in the general framework of the rational thermodynamics for generalized micromorphic continua. The micro-macro (multi-scales approach) in the framework of polycrystalline inelasticity is not presented here for the sake of shortness but will be presented during the oral presentation. The main numerical aspects related to the resolution of the associated initial and boundary value problem will be outlined. A fully adaptive numerical methodology will be briefly described and some numerical examples will be given in order to show the high predictive capabilities of this adaptive methodology for virtual metal forming simulations.

  15. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  16. [Plasma Biomarkers as Predictive Factors for Advanced Hepatocellular Carcinoma with Sorafenib].

    PubMed

    Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Matsukiyo, Yasushi; Kogame, Michio; Shinohara, Mie; Kikuchi, Yoshinori; Igarashi, Yoshinori; Sumino, Yasukiyo

    2016-07-01

    We examined plasma biomarkers as predictive factors for advanced hepatocellular carcinoma(ad-HCC)patients treated with sorafenib. We analyzed a-fetoprotein(AFP), AFP-L3, des-g-carboxy prothrombin(DCP), neutrophil-to-lymphocyte ratio(NLR), platelet-to-lymphocyte ratio(PLR), and vascular endothelial growth factor(VEGF)before sorafenib therapy, and changes in AFP-L3, NLR, PLR, and VEGF 1 month after sorafenib therapy in 16 patients. High AFP-L3(hazard ratio: 1.058, 95%CI: 1.019-1.098, p=0.003)and high NLR(hazard ratio: 1.475, 95%CI: 1.045-2.082, p=0.027)were significantly associated with poor prognosis in ad-HCC patients treated with sorafenib. There were no significant differences in changes in AFP-L3, NLR, PLR, and VEGF 1 month after sorafenib therapy. We suggest that AFP-L3 and NLR levels before sorafenib therapy in patients with ad-HCC are an important predictive factor for the therapeutic effect of sorafenib and patient survival. PMID:27431630

  17. Longitudinal Temporal and Probabilistic Prediction of Survival in a Cohort of Patients With Advanced Cancer

    PubMed Central

    Perez-Cruz, Pedro E.; dos Santos, Renata; Silva, Thiago Buosi; Crovador, Camila Souza; Nascimento, Maria Salete de Angelis; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo; Hui, David

    2014-01-01

    Context Survival prognostication is important during end-of-life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized. Objectives To examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches. Methods Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at day −14 (baseline) with accuracy at each time point using a test of proportions. Results 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 (4, 20) days. Temporal CPS had low accuracy (10–40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (p<.05 at each time point) but decreased close to death. Conclusion Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary. PMID:24746583

  18. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  19. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  20. Advances and applications of binding affinity prediction methods in drug discovery.

    PubMed

    Parenti, Marco Daniele; Rastelli, Giulio

    2012-01-01

    Nowadays, the improvement of R&D productivity is the primary commitment in pharmaceutical research, both in big pharma and smaller biotech companies. To reduce costs, to speed up the discovery process and to increase the chance of success, advanced methods of rational drug design are very helpful, as demonstrated by several successful applications. Among these, computational methods able to predict the binding affinity of small molecules to specific biological targets are of special interest because they can accelerate the discovery of new hit compounds. Here we provide an overview of the most widely used methods in the field of binding affinity prediction, as well as of our own work in developing BEAR, an innovative methodology specifically devised to overtake some limitations in existing approaches. The BEAR method was successfully validated against different biological targets, and proved its efficacy in retrieving active compounds from virtual screening campaigns. The results obtained so far indicate that BEAR may become a leading tool in the drug discovery pipeline. We primarily discuss advantages and drawbacks of each technique and show relevant examples and applications in drug discovery.

  1. The microphysics of collisionless shock waves

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  2. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics. PMID:27007555

  3. Effects of ice-phase cloud microphysics in simulating wintertime precipitation

    SciTech Connect

    Kim, Jinwon; Cho, Han-Ru; Soong, Sy-Tzai

    1995-11-01

    We compare two numerical experiments to investigate the effects of ice-phase cloud microphysical processes on simulations of wintertime precipitation in the southwestern United States. Results of these simulations, one with and the other without ice-phase microphysics, suggest that an inclusion of ice-phase microphysics plays a crucial role in simulating wintertime precipitation. The simulation that employs both the ice and water-phase microphysics better reproduced the observed spatial distribution of precipitation compared to the one without ice-phase microphysics. The most significant effect of ice-phase microphysics appeared in local production of precipitating particles by collection processes, rather than in local condensation.

  4. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    NASA Astrophysics Data System (ADS)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  5. Bayesian Exploration of Cloud Microphysical Sensitivities in Mesoscale Cloud Systems

    NASA Astrophysics Data System (ADS)

    Posselt, D. J.

    2015-12-01

    It is well known that changes in cloud microphysical processes can have a significant effect on the structure and evolution of cloud systems. In particular, changes in water phase and the associated energy sources and sinks have a direct influence on cloud mass and precipitation, and an indirect effect on cloud system thermodynamic properties and dynamics. The details of cloud particle nucleation and growth, as well as the interactions among vapor, liquid, and ice phases, occur on scales too small to be explicitly simulated in the vast majority of numerical models. These processes are represented by approximations that introduce uncertainty into the simulation of cloud mass and spatial distribution and by extension the simulation of the cloud system itself. This presentation demonstrates how Bayesian methodologies can be used to explore the relationships between cloud microphysics and cloud content, precipitation, dynamics, and radiative transfer. Specifically, a Markov chain Monte Carlo algorithm is used to compute the probability distribution of cloud microphysical parameters consistent with particular mesoscale environments. Two different physical systems are considered. The first example explores the multivariate functional relationships between precipitation, cloud microphysics, and the environment in a deep convective cloud system. The second examines how changes in cloud microphysical parameters may affect orographic cloud structure, precipitation, and dynamics. In each case, the Bayesian framework can be shown to provide unique information on the inter-dependencies present in the physical system.

  6. Remote Sensing Microphysical Processes From Space: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Mace, G. G.

    2015-12-01

    The theoretical treatment of cloud and precipitation microphysics in models is becoming increasingly sophisticated as computing power increases. As grid resolutions reduce in size to a few kilometers and less, the explicit parameterization of microphysical processes are being found to cause the greatest uncertainty in simulations where clouds and precipitation are predominant. Constraining these processes with remote sensing data is highly desirous in order to improve parameterizations. However, because these processes typically involve two hydrometeor species interacting in a particular volume, remotely sensing their interactions range from challenging to impossible. Using in situ data collected during various field programs we seek to determine what sets of radar measurables at which frequencies and resolutions provide the most information regarding the processes of riming and aggregation in convective and stratiform clouds. We accomplish this by applying standard parameterizations of particle collection microphysics to particle size distributions measured by probes from aircraft flying in situ. From this we calculate radar observables (reflectivity and Doppler velocity) at a number of standard frequencies at varying resolutions. The information content regarding the microphysical processes present within various combinations of radar measurables at variable resolution is then quantified. Our objective is to show 1) whether diagnosis of certain microphysical processes is possible with radar remote sensing and 2) if so, which combinations of measurements at which resolutions are optimal.

  7. Simulation of the recent evolution of stratospheric aerosols by the MOSTRA Simulation of the recent evolution of stratospheric aerosols by the MOSTRA microphysical/transport model

    NASA Astrophysics Data System (ADS)

    Bingen, Christine; Errera, Quentin; Vanhellemont, Filip; Fussen, Didier; Mateshvili, Nina; Dekemper, Emmanuel; Loodts, Nicolas

    2010-05-01

    We present recent advances in the development of a microphysical/transport model for stratospheric aerosols, called MOdel for STRatospheric Aerosols (MOSTRA). MOSTRA is a 3D model describing the evolution in time and space of the stratospheric aerosol distribution described using a set of discrete size bins. The microphysical module used in this model makes use of the PSCBOX model developed by Larsen (2000). The transport module is based on the flux-form semi-Lagragian scheme by Lin and Rood (1996). The model structure will be presented with simulations of the evolution of the volcanic aerosol plume after recent volcanic eruptions. References: N. Larsen, Polar Stratospheric Clouds, Microphysical and optical models, Scientific Report 00-06, Danish Meteorological Institute, 2000 Lin, S.-J. Rood, R.B., Multidimensional Flux-Form Semi-Lagrangian Transport Schemes, Monthly Weather Review, 124, 2046-2070, 1996.

  8. The impact of hydrometeors on the microphysical parameterization in the WRF modelling system over southern peninsular India

    NASA Astrophysics Data System (ADS)

    Ragi, A. R.; Sharan, Maithili; Haddad, Z. S.

    2016-05-01

    This study examines the influence of Purdue-Lin microphysical parameterization scheme (Lin et al.,1983) on quantitative precipitation for pre-monsoon/monsoon conditions over southern peninsular India in the Weather Research and Forecasting (WRF) model. An ideal microphysical scheme has to describe the formation, growth of cloud droplets and ice crystals and fall out as precipitation. Microphysics schemes can be broadly categorized into two types: bin and bulk particle size distribution (Morrison, 2010). Bulk schemes predict one or more bulk quantities and assume some functional form for the particle size distribution. For better parameterization, proper interpretation of these hydrometeors (Cloud Droplets, Raindrops, Ice Crystals and Aggregates, Rimed Ice Particles, Graupel, Hail) and non-hydrometeors (Aerosols vs. Condensation Nuclei vs. Cloud Condensation Nuclei vs. Ice Nuclei) is very important. The Purdue-Lin scheme is a commonly used microphysics scheme in WRF model utilizing the "bulk" particle size distribution, meaning that a particle size distribution is assumed. The intercept parameter (N0) is, in fact, turns out to be independent of the density. However, in situ observations suggest (Haddad et al., 1996, 1997) that the mass weighted mean diameter is correlated with water content per unit volume (q), leading to the fact that N0 depends on it. Here, in order to analyze the correlation of droplet size distribution with the convection, we have carried out simulations by implementing a consistent methodology to enforce a correlation between N0 and q in the Purdue-Lin microphysics scheme in WRF model. The effect of particles in Indian Summer Monsoon has been examined using frequency distribution of rainfall at surface, daily rainfall over the domain and convective available potential energy and convective inhibition. The simulations are conducted by analyzing the maximum rainfall days in the pre-monsoon/monsoon seasons using Tropical Rainfall Measuring Mission

  9. Using Daily GCM Rainfall for Crop Yield Predictions: Advances and Challenges

    NASA Astrophysics Data System (ADS)

    Ines, A. M.; Hansen, J. W.; Robertson, A. W.; Baethgen, W.; Sun, L.; Indeje, M.

    2010-12-01

    Global climate models (GCMs) are promising for crop yield predictions not only because of their ability to simulate seasonal climate in advance of the growing season but also of their ability to simulate long-term climate changes. Despite this potential, a lot of challenges exist in using directly raw GCM data to crop models. First, because of the spatial scale mismatch between GCMs and crop models (10^2 km vs. 10^1 m), and second, due to biases and temporal structure mismatches in daily GCM rainfall relative to station observations. Crop growth is very sensitive to daily variations of rainfall thus any mismatch in daily rainfall statistics could adversely impact simulation of crop yields. In view of this, a lot of efforts have been made to correct biases in daily GCM rainfall relative to the climatology of a station or set of stations, and recently on some attempts to correct time structure in climate model rainfall. Here, we will present some advances in tailoring daily GCM rainfall for crop yield predictions and discuss some challenges underlying those methods. Specifically, we will present an improved nested GCM bias correction-stochastic disaggregation (BC-DisAg) method for improving the use of daily GCM rainfall for crop simulations and show some testing and evaluation results in different regions (Northeastern Kenya, Uruguay, Southern and Northeast Brazil). We also examined several ways of weighting GCM grid cells to better summarize their information contents for the nested approach, including inverse-distance weighting, arithmetic averaging, multiple linear regression and genetic algorithms. Finally, we will show a comparison between the GCM bias correction and Model Output Statistics (MOS)-correction downscaling in one of the selected sites at Katumani, Kenya. Our results showed that there is a significant improvement in the simulation of yields if the GCM bias correction (BC) is nested with stochastic disaggregation than just BC alone because of the

  10. Microphysical development of a pulsating cumulus tower - A case study

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Sax, R. I.

    1981-01-01

    In-cloud microphysical data collected within a 22-minute period during seven consecutive passes at the -13 C sampling level of a deep (base +22 C) convective cloud provide observational evidence for a secondary ice production mechanism at work in the Florida environment. The observed microphysical characteristics of the convective tower, particularly the spatial distribution and habit of the ice phase relative to the updraft, are consistent with a rime-splintering hypothesis for secondary ice production. It is shown that the cloud's updraft structure is critically important in governing the timing of the ice production by controlling the flux of graupel particles through the critical temperature zone (-3 C to -8 C). The importance of the cloud's pulsation growth dynamics on the microphysics is emphasized, particularly as it relates to rapidly glaciating cumuli.

  11. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  12. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  13. Evidence of Mineral Dust Altering Cloud Microphysics and Precipitation

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Li, Rui; Lin, Bing; Joseph, Everette; Wang, Shuyu; Hu, Yongxiang; Morris, Vernon; Chang, F.

    2008-01-01

    Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. It is clearly evident that for a given convection strength,small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation process of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation.

  14. Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter

    2010-05-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the

  15. The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  16. Cloud-radiative and microphysical impacts from precipitating hydrometeors in South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Wanchen

    A sensitivity test was performed to examine the radiative and microphysical feed- back of large hydrometeors (LHR) to both large-scale environment (LSE) and convec- tive systems in South Asian Summer Monsoon by Weather Research and Forecasting Advanced Research Model (WRF-ARW) equipped with Single-moment 6-class Mi- crophysics Scheme (WSM6) and new Goddard radiative transfer model. The cloud processes are fully represented and featured by WSM6. The results show ignoring LHR-radiative feedback can result in an average of SW gain around 20˜30 W/m2 at surface and LW loss around 5˜20 W/m2 at TOA over BoB, which are slightly larger than 3 ˜5 W/m2 estimated by Waliser at. el. (2011) for both surface SW gain and TOA LW loss. The absent of LHR-radiative effects only have slight difference in magnitude of monthly mean state compared to control run, while the exclusion of LHR can have a north shift of convective area which results in a huge bias in the monthly mean state. The results indicate the bias from exclusion of LHR is mainly from instantaneous fallout of LHR instead of neglect of LHR-radiative feedback. This study reveals the importance of LHR in microphysical parameterization. The MD cir- culation and convective structure could be changed substantially due to the absent of LHR. The cloud water and ice in convective systems as well as precipitation are greatly increased due to the absent of LHR, while the downdraft area is largely re- duced because of the incomplete microphysical processes. Overall, the overestimated the intensity, frequency and lifetime of MDs have substantial and profound influences on LSE and monthly mean state, which serves as an upper bound of the bias due to instantaneous fallout of LHR in GCM.

  17. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate

  18. Predicting compliance for mandible advancement splint therapy in 96 obstructive sleep apnea patients.

    PubMed

    Ingman, Tuula; Arte, Sirpa; Bachour, Adel; Bäck, Leif; Mäkitie, Antti

    2013-12-01

    The treatment of choice in obstructive sleep apnea (OSA) is continuous positive airway pressure (CPAP). Mandible advancement splint (MAS) offers an option for patients with mild or moderate OSA, who refuse or are unable to tolerate CPAP. The aim of the study was to find predictive factors in OSA for MAS therapy. The study group comprised 96 consecutive OSA patients who were sent for MAS therapy during 2008. Data were collected on the patients' general and dental condition, diagnosis, and treatment for OSA. Panoramic and cephalometric radiographs were analysed. The treatment compliance rate and problems with the use of the MAS were recorded. This rate was 57% and the significant affecting factors were protrusion of the mandible with MAS during the adaptation to the appliance as well as shorter maxillary and mandible lengths. The compliance of the MAS therapy was best in patients with short maxilla and mandible, which should be taken into consideration when planning MAS therapy for OSA patients. Finally, a sleep study should be part of the follow-up in this patient population. PMID:23159421

  19. A Priori Attitudes Predict Amniocentesis Uptake in Women of Advanced Maternal Age: A Pilot Study.

    PubMed

    Grinshpun-Cohen, Julia; Miron-Shatz, Talya; Rhee-Morris, Laila; Briscoe, Barbara; Pras, Elon; Towner, Dena

    2015-01-01

    Amniocentesis is an invasive procedure performed during pregnancy to determine, among other things, whether the fetus has Down syndrome. It is often preceded by screening, which gives a probabilistic risk assessment. Thus, ample information is conveyed to women with the goal to inform their decisions. This study examined the factors that predict amniocentesis uptake among pregnant women of advanced maternal age (older than 35 years old at the time of childbirth). Participants filled out a questionnaire regarding risk estimates, demographics, and attitudes on screening and pregnancy termination before their first genetic counseling appointment and were followed up to 24 weeks of gestation. Findings show that women's decisions are not always informed by screening results or having a medical indication. Psychological factors measured at the beginning of pregnancy: amniocentesis risk tolerance, pregnancy termination tolerance, and age risk perception affected amniocentesis uptake. Although most women thought that screening for Down syndrome risk would inform their decision, they later stated other reasons for screening, such as preparing for the possibility of a child with special needs. Findings suggest that women's decisions regarding amniocentesis are driven not only by medical factors, but also by a priori attitudes. The authors believe that these should be addressed in the dialogue on women's informed use of prenatal tests. PMID:26065331

  20. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  1. Predicting compliance for mandible advancement splint therapy in 96 obstructive sleep apnea patients.

    PubMed

    Ingman, Tuula; Arte, Sirpa; Bachour, Adel; Bäck, Leif; Mäkitie, Antti

    2013-12-01

    The treatment of choice in obstructive sleep apnea (OSA) is continuous positive airway pressure (CPAP). Mandible advancement splint (MAS) offers an option for patients with mild or moderate OSA, who refuse or are unable to tolerate CPAP. The aim of the study was to find predictive factors in OSA for MAS therapy. The study group comprised 96 consecutive OSA patients who were sent for MAS therapy during 2008. Data were collected on the patients' general and dental condition, diagnosis, and treatment for OSA. Panoramic and cephalometric radiographs were analysed. The treatment compliance rate and problems with the use of the MAS were recorded. This rate was 57% and the significant affecting factors were protrusion of the mandible with MAS during the adaptation to the appliance as well as shorter maxillary and mandible lengths. The compliance of the MAS therapy was best in patients with short maxilla and mandible, which should be taken into consideration when planning MAS therapy for OSA patients. Finally, a sleep study should be part of the follow-up in this patient population.

  2. Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies.

    PubMed

    Ullah, R; Turner, P J; Khambay, B S

    2015-02-01

    Prediction of postoperative facial appearance after orthognathic surgery can be used for communication, managing patients' expectations,avoiding postoperative dissatisfaction and exploring different treatment options. We have assessed the accuracy of 3dMD Vultus in predicting the final 3-dimensional soft tissue facial morphology after Le Fort I advancement osteotomy. We retrospectively studied 13 patients who were treated with a Le Fort I advancement osteotomy alone. We used routine cone-beam computed tomographic (CT) images taken immediately before and a minimum of 6 months after operation, and 3dMD Vultus to virtually reposition the preoperative maxilla and mandible in their post operative positions to generate a prediction of what the soft tissue would look like. Segmented anatomical areas of the predicted mesh were then compared with the actual soft tissue. The means of the absolute distance between the 90th percentile of the mesh points for each region were calculated, and a one-sample Student's t test was used to calculate if the difference differed significantly from 3 mm.The differences in the mean absolute distances between the actual soft tissue and the prediction were significantly below 3 mm for all segmented anatomical areas (p < 0.001), and ranged from 0.65 mm (chin) to 1.17 mm (upper lip). 3dMD Vultus produces clinically satisfactory 3-dimensional facial soft tissue predictions after Le Fort I advancement osteotomy. The mass-spring model for prediction seems to be able to predict the position of the lip and chin, but its ability to predict nasal and paranasal areas could be improved.

  3. Derivation and validation of a prediction rule for estimating advanced colorectal neoplasm risk in average-risk Chinese.

    PubMed

    Cai, Quan-Cai; Yu, En-Da; Xiao, Yi; Bai, Wen-Yuan; Chen, Xing; He, Li-Ping; Yang, Yu-Xiu; Zhou, Ping-Hong; Jiang, Xue-Liang; Xu, Hui-Min; Fan, Hong; Ge, Zhi-Zheng; Lv, Nong-Hua; Huang, Zhi-Gang; Li, You-Ming; Ma, Shu-Ren; Chen, Jie; Li, Yan-Qing; Xu, Jian-Ming; Xiang, Ping; Yang, Li; Lin, Fu-Lin; Li, Zhao-Shen

    2012-03-15

    No prediction rule is currently available for advanced colorectal neoplasms, defined as invasive cancer, an adenoma of 10 mm or more, a villous adenoma, or an adenoma with high-grade dysplasia, in average-risk Chinese. In this study between 2006 and 2008, a total of 7,541 average-risk Chinese persons aged 40 years or older who had complete colonoscopy were included. The derivation and validation cohorts consisted of 5,229 and 2,312 persons, respectively. A prediction rule was developed from a logistic regression model and then internally and externally validated. The prediction rule comprised 8 variables (age, sex, smoking, diabetes mellitus, green vegetables, pickled food, fried food, and white meat), with scores ranging from 0 to 14. Among the participants with low-risk (≤3) or high-risk (>3) scores in the validation cohort, the risks of advanced neoplasms were 2.6% and 10.0% (P < 0.001), respectively. If colonoscopy was used only for persons with high risk, 80.3% of persons with advanced neoplasms would be detected while the number of colonoscopies would be reduced by 49.2%. The prediction rule had good discrimination (area under the receiver operating characteristic curve = 0.74, 95% confidence interval: 0.70, 0.78) and calibration (P = 0.77) and, thus, provides accurate risk stratification for advanced neoplasms in average-risk Chinese. PMID:22328705

  4. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  5. Development of a Measure for Predicting Learning Advancement through Cooperative Education: Reliability and Validity of the PLACE Scale.

    ERIC Educational Resources Information Center

    Parks, Donald K.; Onwuegbuzie, Anthony J.; Cash, Shannon H.

    2001-01-01

    Exploratory factor analysis of data from 2,309 cooperative education students tested a measure of co-op outcomes. Three factors were identified: work skills development, career development, and academic functions. The Predicting Learner Advancement through Cooperative Education Scale appeared to have good psychometric properties. (Contains 27…

  6. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  7. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    USGS Publications Warehouse

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  8. The Impact of One- and Two-Moment Microphysical Schemes on Precipitation in an Ordinary Thunderstorm

    NASA Astrophysics Data System (ADS)

    Parker, E.; Igel, A. L.; van den Heever, S. C.

    2013-12-01

    Simulations of idealized thunderstorms were performed with the Regional Atmospheric Modeling System (RAMS) using single- and double-moment microphysics schemes. Analyzing the outcomes of storm simulations such as these allows us to better imitate what is observed in nature through enhancing our understanding of which parameters to implement when using such models, either for research or forecasting purposes. In this study, five different model simulations were examined, four of which used single-moment schemes, and one of which used a double-moment scheme. Each of the four single-moment simulations used either a fixed value of mean cloud droplet diameter or number concentration; the values chosen were 5 μm and 25 μm for the mean diameter, and 100 cc-1 and 1000 cc-1 for number concentration. These fixed values were chosen as approximate upper and lower limits of the two parameters. The double-moment simulation predicted the mixing ratio and number concentration. The results of these five simulations indicate that the thunderstorm simulations for the diameter of 25 μm and the double-moment are the strongest storms, are able to dynamically sustain themselves, and accumulate the most precipitation, due to their (a) ability to better create rain through collision-coalescence and melting of ice; (b) deeper evaporative cooling in the lower two kilometers; and (c) greater cold pool intensities. These findings show that atmospheric models are highly sensitive to the fixed values of various cloud microphysical properties in single-moment schemes. It was also observed that accumulated precipitation was more sensitive to changes in the cloud droplet diameter than to changes in cloud droplet number concentration. Investigating the differences in these simulations can give better insight into how changes in the microphysical parameterization schemes impact the life of a simulated thunderstorm.

  9. Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model

    NASA Astrophysics Data System (ADS)

    Khain, A.; Pokrovsky, A.; Sednev, I.

    formula) are unsuitable for an adequate description of cloud-aerosol interaction. The Kessler formula predicts an incorrect tendency in the rate of raindrop formation while increasing APs' concentration. Prediction errors concerning the rate of raindrop formation can easily result in a 10-fold increase. It indicates that the spectral (bin) microphysics scheme (or parameterizations based on the bin schemes) can be used for an adequate description of cloud-aerosol interaction.

  10. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  11. Indian summer monsoon precipitating clouds: role of microphysical process rates

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Pokhrel, Samir; Saha, Subodh K.

    2016-04-01

    The budget analysis of microphysical process rates based on Modern Era Retrospective-analysis for Research and Applications (MERRA) products are presented in the study. The relative importance of different microphysical process rates, which is crucial for GCMs, is investigated. The autoconversion and accretion processes are found to be vital for Indian Summer Monsoon (ISM). The map-to-map correlations are examined between observed precipitation and MERRA reanalysis. The pattern correlations connote the fidelity of the MERRA datasets used here. Results of other microphysical parameters (e.g. ice water content from CloudSat, high cloud fraction from CALIPSO and MODIS, latent heating from TRMM, cloud ice mixing ratio from MERRA) are presented in this study. The tropospheric temperature from reanalysis product of MERRA and NCEP are also analyzed. Furthermore, the linkages between cloud microphysics production rates and dynamics, which are important for North-South tropospheric temperature gradient for maintaining the ISM circulation, are also discussed. The study demonstrates the microphysical process rates, which are actually responsible for the cloud hydrometeors and precipitation formation on the monsoon intraseasonal oscillations timescale. Cloud to rain water auto-conversion and snow accretion rates are the dominant processes followed by the rain accretion. All these tendency terms replicates the similar spatial patterns as that of precipitation. The quantification of microphysical process rates and precipitation over different regions are shown here. The freezing rate is also imperative for the formation of cloud ice as revealed by the observation. Freezing rates at upper level and snow accretion at middle level may have effect on latent heating release. Further it can modulate the north-south temperature gradient which can influence the large-scale monsoon dynamics. The rain water evaporation is also considered as a key aspect for controlling the low level

  12. Aerosols-Cloud-Microphysics Interactions in Tropical Cyclone Earl

    NASA Astrophysics Data System (ADS)

    Luna-Cruz, Yaitza

    Aerosols-cloud-microphysical processes are largely unknown in their influence on tropical cyclone evolution and intensification; aerosols possess the largest uncertainty. For example: What is the link between aerosols and cloud microphysics quantities? How efficient are the aerosols (i.e. dust from the Saharan Air Layer -SAL) as cloud condensation nuclei (CCN) and ice nuclei (IN)? Does aerosols affect the vertical velocity, precipitation rates, cloud structure and lifetime? What are the dominant factors and in which sectors of the tropical cyclone? To address some of the questions in-situ microphysics measurements from the NASA DC-8 aircraft were obtained during the Genesis and Rapid Intensification Processes (GRIP) 2010 field campaign. A total of four named storms (Earl, Gaston, Karl and Mathew) were sampled. Earl presented the excellent opportunity to study aerosols-cloud-microphysics interactions because Saharan dust was present and it underwent rapid intensification. This thesis seeks to explore hurricane Earl to develop a better understanding of the relationship between the SAL aerosols and cloud microphysics evolution. To assist in the interpretation of the microphysics observations, high resolution numerical simulations of hurricane Earl were performed using the Weather Research and Forecasting (WRF-ARW) model with the new Aerosol-Aware bulk microphysics scheme. This new version of Thompson scheme includes explicit activation of cloud condensation nuclei (CCN) from a major CCN source (i.e. sulfates and sea salt) and explicit ice nucleation (IN) from mineral dust. Three simulations are performed: (1) the Control case with the old Thompson scheme and initial conditions from GFS model, (2) the Aerosol-Aware first baseline case with GOCART aerosol module as an input conditions, and (3) the Aerosol-Aware increase case in which the GOCART aerosols concentrations were increased significantly. Overall, results of model simulations along with aircraft observations

  13. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.

    2001-01-01

    The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.

  14. Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Bagayoko, Diola

    2010-10-01

    Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.

  15. Vertical profile of fog microphysics : a case study

    NASA Astrophysics Data System (ADS)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  16. Microphysical sensitivities of cloud-resolving model simulations of KWAJEX

    NASA Astrophysics Data System (ADS)

    Blossey, P. N.; Bretherton, C. S.

    2005-05-01

    Cloud-resolving model simulations of the conditions around Kwajalein Island during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX), July 24--September 15, 1999, are performed to understand the sensitivities of the results to changes in the model's microphysics and radiation parameterizations. An extensive set of observations were collected during KWAJEX, including high quality estimates of precipitation by an S-band ground validation radar. Large-scale forcings for the simulations --- which use cyclic boundary conditions --- have been derived from the observations by Minghua Zhang. The cloud-resolving model used here is the System for Atmospheric Modeling (SAM), developed by Marat Khairoutdinov at Colorado State University, to which the authors have added a second microphysical package (Fu et al 1995) and radiation scheme (from CAM3.0). While the alternate microphysics represents all hydrometeor interactions and has prognostic equations for water vapor, rain, snow, graupel, cloud water and cloud ice, SAM's default microphysics uses temperature to partition the condensate and precipitate among the phases and has prognostic equations only for total water (vapor+cloud) and precipitating water. The simulations are able to track the observed conditions over the full 52 day period without nudging. The different versions of the model generally reproduce the observed precipitation rate, temperature and relative humidity profiles, with mean temperature biases of less than 2K below the tropopause. However, detailed comparisons of simulated ISCCP cloud amounts and radar reflectivities with observations from ISCCP and the ground validation radar reveal important differences that are also reflected in the top-of-atmosphere radiative fluxes. Such discrepancies are strongest in the suppressed periods during KWAJEX, and these are explored in detail to reveal factors that contribute to model biases. The different microphysical and radiation

  17. Aerosol-Cloud microphysical closure in warm tropical cumulus during CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Conant, W. C.; Lu, M.; Vanreken, T.; Rissman, T.; Varutbangkul, V.; Jonsson, H. H.; Nenes, A.; Jimenez, J. L.; Delia, A. E.; Bahreini, R.; Roberts, G. C.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    We present a closure study between aerosol and warm-cloud microphysics using field data collected during the NASA CRYSTAL-FACE campaign. CRYSTAL-FACE was conducted in continental and marine environments near southern Florida in July, 2002. Detailed profiles of thirteen cumulus clouds were made by the CIRPAS Twin Otter aircraft, which was equipped with four aerosol sizing systems, two CCN counters operated at 0.4% and 0.7% supersaturation, an Aerodyne aerosol mass spectrometer, a MOUDI filter sampler system, two cloud drop sizing probes, and two turbulence probes. A wide range of CCN (300 to >3500 cm-3) and cloud drop concentrations (200 to >1600 cm-3) provides an ideal case study for aerosol-cloud interactions and the first and second indirect effects. Vertical characterization of the young and mature cumulus clouds are obtained from multiple horizontal passes from below cloud base to cloud top. A detailed adiabatic cloud activation model accurately predicts the cloud drop concentration 100 m above cloud base. The model is constrained by observed updraft velocity and below-cloud aerosol properties (i.e. concentration, size distribution, composition, and supersaturation spectrum). Each cloud contains a core often exceeding 500 m in height in which the equivalent potential temperature follows a moist-adiabatic vertical profile. Effective radius most often follows an adiabatic profile, even in regions where liquid water content and/or equivalent potential temperature are sub-adiabatic. Large cloud-to-cloud variations in the vertical profile of effective radius are primarily driven by below-cloud aerosol concentration and to a lesser degree by cloud dynamics (i.e. vertical velocity). Six of the thirteen clouds are simulated using the RAMS large-eddy-simulation model. RAMS is integrated with bulk and bin microphysical models and is coupled to an offline 3-D radiative transfer model to study the aerosol effects on cloud microphysics and radiative properties. More

  18. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    PubMed

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  19. Assimilation of Dual-Polarimetric Radar Observations with WRF 3DVAR and its Impact on Ice Microphysics

    NASA Astrophysics Data System (ADS)

    Li, X.; Mecikalski, J. R.; Fehnel, T.; Posselt, D. J.

    2013-12-01

    Studies have shown that radar data assimilation can help with short-term prediction of convective weather by providing more accurate initial condition. However, it remains a big challenge to accurately describe the moist convective processes, especially the ice microphysics of convection, which is crucial for the modeling of quantitative precipitation forecast (QPF). Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, information on the type, shape, size, and orientation of cloud and precipitation microphysical particles are obtained, more accurate measurement of liquid and solid cloud and precipitation particles can be provided. The assimilation of dual-pol radar data is however, challenging work as few guidelines have been provided on dual-pol radar data assimilation research. It is our goal to examine how to use dual-pol radar data to improve forecast initialization for microphysical properties. This presentation will demonstrate our recent work on developing the forward operators for ice processes with assimilating dual-pol radar data for real case storms. In this study, high-resolution Weather Research and Forecasting (WRF) model and its 3-Dimensional Variational (3DVAR) data assimilation system are used for real convective storms. Our recent research explores the use of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms and snowfall events, with a significant focus on improving representation of ice hydrometeors. Our previous research indicated that the use of ZDR can bring additional benefit into the hydrometeor fields than the use of ZH only. Furthermore, the combination of KDP and ZDR data provide the best initialization for precipitation particles with warm-rain radar data assimilation. Our ongoing work includes the development of

  20. Predicting Advanced Placement Examination Success from FCAT Scores. Research Brief. Volume 0709

    ERIC Educational Resources Information Center

    Froman, Terry; Brown, Shelly; Tirado, Arleti

    2008-01-01

    Advanced Placement courses are offered at M-DCPS for students to acquire college credit or advanced college academic standing. A system has been developed in the past by the College Board to use the PSAT for 10th grade students to estimate their potential for AP Examination success. The same test has recently been applied in this district to 9th…

  1. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  2. Improving Representation of Convective Transport for Scale-Aware Parameterization – Part I: Convection and Cloud Properties Simulated with Spectral Bin and Bulk Microphysics

    SciTech Connect

    Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man; North, Kirk; Collis, Scott M.; Dong, Xiquan; Zhang, Guang J.; Chen, Qian; Ghan, Steven J.

    2015-04-27

    The ultimate goal of this study is to improve representation of convective transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of convective cores, and the vertically decreasing trend of radar reflectivity than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates radar reflectivity in convective cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude convective systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.

  3. An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds

    NASA Technical Reports Server (NTRS)

    Comstock, Jennifer M.; d'Entremont, Robert; DeSlover, Daniel; Mace, Gerald G.; Matrosov, Sergey Y.; McFarlane, Sally A.; Minnis, Patrick; Mitchell, David; Sassen, Kenneth; Shupe, Matthew D.; Turner, David D.; Wang, Zhien

    2006-01-01

    The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth's radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth's future climate. A number of passive and active remote sensing retrieval algorithms exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade, however, there is room for improvement. Members of the Atmospheric Radiation measurement program (ARM) Cloud properties Working Group are involved in an intercomparison of optical depth(tau), ice water path, and characteristic particle size in clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement.

  4. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2016-01-01

    We present microphysical observations of cumulus clouds measured over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon due to new cell formation and stratiform regions forming downwind of the convective cells. Ice concentrations up to 350 L-1, well in excess of the expected ice nuclei (IN) concentrations, were measured in the mature stratiform regions, suggesting that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, drizzle concentrations increased from ˜ 0.5 to ˜ 20 L-1 in around 20 min. Ice concentrations developed up to a few per litre, which is around the level expected of primary IN. The ice images were most consistent with freezing drizzle, rather than smaller cloud drops or interstitial IN forming the first ice. As new cells emerged in and around the cloud, ice concentrations up to 2 orders of magnitude higher than the predicted IN concentrations developed, and the cloud glaciated over a period of 12-15 min. Almost all of the first ice particles to be observed were frozen drops, while vapour-grown ice crystals were dominant in the latter stages. Our observations are consistent with the production of large numbers of small secondary ice crystals/fragments, by a mechanism such as Hallett-Mossop or droplets shattering upon freezing. Some of the small ice froze drizzle drops on contact, while others grew more slowly by vapour deposition. Graupel and columns were seen in cloud penetrations up to the -12 °C level, though many ice particles were mixed habit due to riming and growth by vapour deposition at multiple temperatures

  5. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Peterson, Harold S.; Schultz, Elise V.; Matthee, Retha; Schultz, Christopher J.; Petersen, Walter A,; Bain, Lamont

    2012-01-01

    Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).

  6. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  7. Towards More Consistent Retrievals of Ice Cloud Optical and Microphysical Properties from Polar Orbiting Sensors

    NASA Astrophysics Data System (ADS)

    Baum, B. A.; Heymsfield, A.; Yang, P.

    2011-12-01

    Differences exist in the ice cloud optical thickness and effective particle size products provided by teams working with data from AVHRR (Advanced Very High Resolution Radiometer), MODIS (MODerate resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of the Earth Reflectance), Imaging Infrared Radiometer (IIR), and CALIOP (Cloud Aerosol LIdar with Orthogonal Polarization). The issue is in large part due to the assumed ice cloud single-scattering properties that each team uses in their retrievals. To gain insight into this problem, we are developing ice cloud single-scattering properties consistently from solar through far-infrared wavelengths by merging ice cloud microphysical data from in situ measurements with the very latest light scattering calculations for ice habits that include droxtals, solid/hollow columns, plates, solid/hollow bullet rosettes, aggregates of columns, and small/large aggregates of plates. The in-situ measurements are from a variety of field campaigns, including ARM-IOP, CRYSTAL-FACE, ACTIVE, SCOUT, MidCiX, pre-AVE, TC-4, and MACPEX. Among other advances, the light scattering calculations include the full phase matrix (i.e., polarization), incorporate a new treatment of forward scattering, and three levels of surface roughness from smooth to severely roughened. This talk will focus on improvements to our methodology for building both spectral and narrowband bulk scattering optical models appropriate for satellite imagers and hyperspectral infrared sensors. The new models provide a basis for investigating retrieval differences in the products from the sensor teams. We will discuss recent work towards improving the consistency of ice cloud microphysical/optical property retrievals between solar, polarimetric, and infrared retrieval approaches. It will be demonstrated that severely roughened ice particles correspond best in comparisons to polarization measurements. Further discussion will provide insight as to the

  8. Microphysical controls on the isotopic composition of wintertime orographic precipitation

    NASA Astrophysics Data System (ADS)

    Moore, M.; Blossey, P. N.; Muhlbauer, A.; Kuang, Z.

    2016-06-01

    The sensitivity of mixed-phase orographic clouds, precipitation, and their isotopic content to changes in dynamics, thermodynamics, and microphysics is explored in idealized two-dimensional flow over a mountain barrier. These simulations use the Weather Research and Forecasting (WRF) model with stable water isotopologues (HDO and H218O), which have been integrated into the Thompson microphysics scheme within WRF as part of the present project. In order to understand how the isotopic composition of precipitation (δ18Oprecip) is fixed, the mountain height, temperature, and the prescribed cloud droplet number concentration (CDNC) have been varied in a series of simulations. For the given range of values explored in this work, changes in mountain height and temperature induce stronger responses in domain-averaged δ18Oprecip than do changes in CDNC by a factor of approximately 10. The strongest response to changing CDNC leads to local variations of δ18Oprecip of about 3‰, though those occur in regions of weak precipitation (<0.1 mm h-1). Changes in δ18Oprecip can be understood through the microphysical pathways by which precipitable hydrometeors are formed and by the isotopic signature associated with each pathway. The decrease in δ18Oprecip with increasing mountain height is not just a function of decreasing temperature but also reflects the changing contributions and distinct isotopic signatures of riming of cloud liquid and vapor deposition onto snow, the leading sources of precipitation in these simulations. The changes in δ18Oprecip with mountain height, temperature, and CDNC are governed in part by the microphysical pathways through which precipitating hydrometeors are formed and grow.

  9. Impacts of PSC Microphysics on Modelled Ozone Loss

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Winter-long simulations of the 1999-2000 winter using a coupled microphysical/chemical model have been carried out to explore how PSC microphysics affects ozone loss. Although many models assures that water ice formation leads to denitrification, these simulations show that observed characteristics of the 1999-2000 winter can not be reproduced by such a denitrification mechanism. Instead, denitrification observations are best reproduced by a small number of particles freezing at temperatures near the nitric acid trihydration condensation point. Implications of such a mechanism for assessments of future ozone loss will be discussed. The simulations have also revealed that ozone loss during the 1999-2000 winter was sensitive to chlorine reactivation that occurred during February. Uncertainties in PSC microphysics and heterogeneous reaction rates both influence the modelled chlorine reactivation. For the 1999-2000 winter, these uncertainties have a larger effect on model ozone loss than denitrification. The role of denitrification would have increased if the Arctic vortex had persisted for a longer period.

  10. Airborne Cloud Microphysical Measurements During The Baltex Bridge Campaign

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Wendisch, M.; Jaekel, E.

    The purpose of the Baltex Bridge Campaign (BBC) was to study the effects of spatial and temporal variability of clouds on solar radiative transfer. The BBC was conducted in the Netherlands in September 2001. Ground-based measurements with several remote sensing instruments (radar, radiometers) were realised in conjunction with microphysical and radiative measurements by three aircraft. The aim is to extract 3-dimensional microphysical cloud parameters such as liquid water content (LWC) and droplet effective radius (Re) and to use these data in dynamical and radiative transfer models whose output is then compared with radiation measurements. In this presentation, the analysis of microphysical data from one of the aircraft is reported. Two different optical instruments were flown: The PVM-100A (Particle Volume Monitor) measures LWC and Re by analysing the scattering signal of a droplet population within the sample volume of a laser beam. It was run at a sampling frequency of 200 Hz, allowing a spatial resolution down to 30 cm. The PVM was complemented by the Fast FSSP (Forward Scattering Spectrometer Probe), a droplet sizing counter storing interarrival times, durations and diameters (2-40 µm) of droplets entering the sampling volume of a He-Ne laser beam. Spatial resolution is limited by the sampling statistics only. PVM and Fast FSSP measurements are compared. LWC, Re, concentration and size distribution are statistically analysed in order to find typical spatial scales in the observed clouds.

  11. The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.

  12. Advanced Methods for Determining Prediction Uncertainty in Model-Based Prognostics with Application to Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Sankararaman, Shankar

    2013-01-01

    Prognostics is centered on predicting the time of and time until adverse events in components, subsystems, and systems. It typically involves both a state estimation phase, in which the current health state of a system is identified, and a prediction phase, in which the state is projected forward in time. Since prognostics is mainly a prediction problem, prognostic approaches cannot avoid uncertainty, which arises due to several sources. Prognostics algorithms must both characterize this uncertainty and incorporate it into the predictions so that informed decisions can be made about the system. In this paper, we describe three methods to solve these problems, including Monte Carlo-, unscented transform-, and first-order reliability-based methods. Using a planetary rover as a case study, we demonstrate and compare the different methods in simulation for battery end-of-discharge prediction.

  13. Novel Pretreatment Scoring Incorporating C-reactive Protein to Predict Overall Survival in Advanced Hepatocellular Carcinoma with Sorafenib Treatment

    PubMed Central

    Nakanishi, Hiroyuki; Kurosaki, Masayuki; Tsuchiya, Kaoru; Yasui, Yutaka; Higuchi, Mayu; Yoshida, Tsubasa; Komiyama, Yasuyuki; Takaura, Kenta; Hayashi, Tsuguru; Kuwabara, Konomi; Nakakuki, Natsuko; Takada, Hitomi; Ueda, Masako; Tamaki, Nobuharu; Suzuki, Shoko; Itakura, Jun; Takahashi, Yuka; Izumi, Namiki

    2016-01-01

    Objectives This study aimed to build a prediction score of prognosis for patients with advanced hepatocellular carcinoma (HCC) after sorafenib treatment. Methods A total of 165 patients with advanced HCC who were treated with sorafenib were analyzed. Readily available baseline factors were used to establish a scoring system for the prediction of survival. Results The median survival time (MST) was 14.2 months. The independent prognostic factors were C-reactive protein (CRP) <1.0 mg/dL [hazard ratio (HR) =0.51], albumin >3.5 g/dL (HR =0.55), alpha-fetoprotein <200 ng/mL (HR =0.45), and a lack of major vascular invasion (HR =0.39). Each of these factors had a score of 1, and after classifying the patients into five groups, the total scores ranged from 0 to 4. Higher scores were linked to significantly longer survival (p<0.0001). Twenty-nine patients (17.6%) with a score of 4 had a MST as long as 36.5 months, whereas MST was as short as 2.4 and 3.7 months for seven (4.2%) and 22 (13.3%) patients with scores of 0 and 1, respectively. Conclusions A novel prognostic scoring system, which includes the CRP level, has the ability to stratify the prognosis of patients with advanced stage HCC after treatment with sorafenib. PMID:27781198

  14. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.

  15. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    SciTech Connect

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  16. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

    PubMed

    Booth, N; Robinson, A P L; Hakel, P; Clarke, R J; Dance, R J; Doria, D; Gizzi, L A; Gregori, G; Koester, P; Labate, L; Levato, T; Li, B; Makita, M; Mancini, R C; Pasley, J; Rajeev, P P; Riley, D; Wagenaars, E; Waugh, J N; Woolsey, N C

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  17. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    PubMed Central

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  18. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

    PubMed

    Booth, N; Robinson, A P L; Hakel, P; Clarke, R J; Dance, R J; Doria, D; Gizzi, L A; Gregori, G; Koester, P; Labate, L; Levato, T; Li, B; Makita, M; Mancini, R C; Pasley, J; Rajeev, P P; Riley, D; Wagenaars, E; Waugh, J N; Woolsey, N C

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  19. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  20. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; et al

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  1. How Prognostic and Predictive Biomarkers Are Transforming Our Understanding and Management of Advanced Gastric Cancer

    PubMed Central

    Mulder, Karen; Spratlin, Jennifer

    2014-01-01

    Background. Gastric cancer (GC) is the second leading cause of cancer death worldwide. GC is a heterogeneous disease in terms of histology, anatomy, and epidemiology. There is also wide variability in how GC is treated in both the resectable and unresectable settings. Identification of prognostic and predictive biomarkers is critical to help direct and tailor therapy for this deadly disease. Methods. A literature search was done using Medline and MeSH terms for GC and predictive biomarkers and prognostic biomarkers. The search was limited to human subjects and the English language. There was no limit on dates. Published data and unpublished abstracts with clinical relevance were included. Results. Many potential prognostic and predictive biomarkers have been assessed for GC, some of which are becoming practice changing. This review is focused on clinically relevant biomarkers, including EGFR, HER2, various markers of angiogenesis, proto-oncogene MET, and the mammalian target of rapamycin. Conclusion. GC is a deadly and heterogeneous disease for which biomarkers are beginning to change our understanding of prognosis and management. The recognition of predictive biomarkers, such as HER2 and vascular endothelial growth factor, has been an exciting development in the management of GC, validating the use of targeted drugs trastuzumab and ramucirumab. MET is another potential predictive marker that may be targeted in GC with drugs such as rilotumumab, foretinib, and crizotinib. Further identification and validation of prognostic and predictive biomarkers has the potential transform how this deadly disease is managed. PMID:25142842

  2. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Spichtinger, P.; Luo, B. P.; Weisenstein, D. K.; Wernli, H.; Lohmann, U.; Peter, T.

    2013-05-01

    In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2-10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed "troposphericity". Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. The geoengineering is predicted to cause changes in ice number density by up to 50%, depending on troposphericity and cooling rate. We estimate the resulting cloud radiative effects from a radiation transfer model. Complex interplay between the few large stratospheric and many small tropospheric H2SO4-H2O droplets gives rise to partly counteracting radiative effects: local increases in cloud radiative forcing up to +2 W/m2for low troposphericities and slow cooling rates, and decreases up to -7.5 W/m2for high troposphericities and fast cooling rates. The resulting mean impact on the northern midlatitudes by changes in cirrus is predicted to be low, namely <1% of the intended radiative forcing by the stratospheric aerosols. This suggests that stratospheric sulphate geoengineering is unlikely to have large microphysical effects on the mean cirrus radiative forcing. However, this study disregards feedbacks, such as temperature and humidity changes in the upper troposphere, which must be examined separately.

  3. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Schultz, E. V.; Matthee, R.; Schultz, C. J.; Petersen, W. A.; Bain, L.

    2012-12-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multi-cell) and 6 July 2007

  4. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007

  5. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  6. Advanced validation of CFD-FDTD combined method using highly applicable solver for reentry blackout prediction

    NASA Astrophysics Data System (ADS)

    Takahashi, Yusuke

    2016-01-01

    An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication.

  7. Advancing decadal-scale climate prediction in the North Atlantic sector.

    PubMed

    Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E

    2008-05-01

    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.

  8. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models

  9. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  10. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  11. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    SciTech Connect

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  12. Advances and Challenges In Uncertainty Quantification with Application to Climate Prediction, ICF design and Science Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Klein, R.; Woodward, C. S.; Johannesson, G.; Domyancic, D.; Covey, C. C.; Lucas, D. D.

    2012-12-01

    Uncertainty Quantification (UQ) is a critical field within 21st century simulation science that resides at the very center of the web of emerging predictive capabilities. The science of UQ holds the promise of giving much greater meaning to the results of complex large-scale simulations, allowing for quantifying and bounding uncertainties. This powerful capability will yield new insights into scientific predictions (e.g. Climate) of great impact on both national and international arenas, allow informed decisions on the design of critical experiments (e.g. ICF capsule design, MFE, NE) in many scientific fields, and assign confidence bounds to scientifically predictable outcomes (e.g. nuclear weapons design). In this talk I will discuss a major new strategic initiative (SI) we have developed at Lawrence Livermore National Laboratory to advance the science of Uncertainty Quantification at LLNL focusing in particular on (a) the research and development of new algorithms and methodologies of UQ as applied to multi-physics multi-scale codes, (b) incorporation of these advancements into a global UQ Pipeline (i.e. a computational superstructure) that will simplify user access to sophisticated tools for UQ studies as well as act as a self-guided, self-adapting UQ engine for UQ studies on extreme computing platforms and (c) use laboratory applications as a test bed for new algorithms and methodologies. The initial SI focus has been on applications for the quantification of uncertainty associated with Climate prediction, but the validated UQ methodologies we have developed are now being fed back into Science Based Stockpile Stewardship (SSS) and ICF UQ efforts. To make advancements in several of these UQ grand challenges, I will focus in talk on the following three research areas in our Strategic Initiative: Error Estimation in multi-physics and multi-scale codes ; Tackling the "Curse of High Dimensionality"; and development of an advanced UQ Computational Pipeline to enable

  13. Predicted and measured boundary layer refraction for advanced turboprop propeller noise

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Krejsa, Eugene A.

    1990-01-01

    Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.

  14. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    PubMed Central

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance. PMID:26346869

  15. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances.

    PubMed

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance.

  16. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    SciTech Connect

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-15

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  17. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1993-06-01

    This paper summarizes recent experimental results on creep and creep rupture behavior of a commercial grade of Si{sub 3}N{sub 4} ceramic in the temperature range of 1150 to 1300C obtained at ORNL; and introduces a tentative multiaxial deformation and life prediction model for ceramic materials under general thermomechanical loadings. Issues related to the possible standardization of the data analysis methodology and possible future research needs for high temperature structural ceramics in the area of development of data base and life prediction methodology are also discussed.

  18. Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Padula, S. L.

    1986-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  19. LiverTox: Advanced QSAR and Toxicogeomic Software for Hepatotoxicity Prediction

    SciTech Connect

    Lu, P-Y.; Yuracko, K.

    2011-02-25

    YAHSGS LLC and Oak Ridge National Laboratory (ORNL) established a CRADA in an attempt to develop a predictive system using a pre-existing ORNL computational neural network and wavelets format. This was in the interest of addressing national needs for toxicity prediction system to help overcome the significant drain of resources (money and time) being directed toward developing chemical agents for commerce. The research project has been supported through an STTR mechanism and funded by the National Institute of Environmental Health Sciences beginning Phase I in 2004 (CRADA No. ORNL-04-0688) and extending Phase II through 2007 (ORNL NFE-06-00020). To attempt the research objectives and aims outlined under this CRADA, state-of-the-art computational neural network and wavelet methods were used in an effort to design a predictive toxicity system that used two independent areas on which to base the system’s predictions. These two areas were quantitative structure-activity relationships and gene-expression data obtained from microarrays. A third area, using the new Massively Parallel Signature Sequencing (MPSS) technology to assess gene expression, also was attempted but had to be dropped because the company holding the rights to this promising MPSS technology went out of business. A research-scale predictive toxicity database system called Multi-Intelligent System for Toxicogenomic Applications (MISTA) was developed and its feasibility for use as a predictor of toxicological activity was tested. The fundamental focus of the CRADA was an attempt and effort to operate the MISTA database using the ORNL neural network. This effort indicated the potential that such a fully developed system might be used to assist in predicting such biological endpoints as hepatotoxcity and neurotoxicity. The MISTA/LiverTox approach if eventually fully developed might also be useful for automatic processing of microarray data to predict modes of action. A technical paper describing the

  20. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  1. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    NASA Technical Reports Server (NTRS)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  2. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Astrophysics Data System (ADS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  3. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  4. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  5. Advances in Toxico-Cheminformatics: Supporting a New Paradigm for Predictive Toxicology

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-throughput screening (HTS) data. The D...

  6. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  7. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results. PMID:25694074

  8. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  9. Microphysical properties of low clouds over the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maruyama, Takumi; Hayasaka, Tadahiro

    2012-11-01

    Low clouds are widespread over the North Pacific Ocean during summer. Past ship observations, which were carried out in the western region of the North Pacific Ocean, suggested that low clouds (stratus and fog) are likely to occur when sea surface temperature (SST) is lower than surface air temperature (SAT). In this study, we investigated the SST-SAT relationship and microphysical properties of low clouds for the first step of understanding the mechanism of cloud occurrence, maintenance and disappearance by using MODIS satellite observations, JAMSTEC ship observations and MERRA reanalysis data. We divided the North Pacific into four regions according to meteorological condition and made basic statistical analysis about cloud properties in each region by using monthly mean data for July 2011. The statistical analysis indicates that in the central region of the North Pacific where SST-SAT value is negative and the difference is the largest, cloud effective particle radius (re) is larger than those in other regions. We also used ship observation data and simultaneous satellite observation data to examine the relationship between SST-SAT and cloud microphysical properties in detail. This analysis indicates that re in the positive SST-SAT area is larger than that in the negative SSTSAT area. This feature is opposite to the monthly mean results. It suggests that other factors such as humidity and aerosols as well as SST-SAT have to be taken into account, although the SST-SAT relationship can be one of the important factors determining cloud microphysical properties in the summer North Pacific region.

  10. Latent cooling and microphysics effects in deep convection

    NASA Astrophysics Data System (ADS)

    Fernández-González, S.; Wang, P. K.; Gascón, E.; Valero, F.; Sánchez, J. L.

    2016-11-01

    Water phase changes within a storm are responsible for the enhancement of convection and therefore the elongation of its lifespan. Specifically, latent cooling absorbed during evaporation, melting and sublimation is considered the main cause of the intensification of downdrafts. In order to know more accurately the consequences of latent cooling caused by each of these processes (together with microphysical effects that they induce), four simulations were developed with the Wisconsin Dynamical and Microphysical Model (WISCDYMM): one with all the microphysical processes; other without sublimation; melting was suppressed in the third simulation; and evaporation was disabled in the fourth. The results show that sublimation cooling is not essential to maintain the vertical currents of the storm. This is demonstrated by the fact that in the simulation without sublimation, maximum updrafts are in the same range as in the control simulation, and the storm lifespan is similar or even longer. However, melting was of vital importance. The storm in the simulation without melting dissipated prematurely, demonstrating that melting is indispensable to the enhancement of downdrafts below the freezing level and for avoiding the collapse of low level updrafts. Perhaps the most important finding is the crucial influence of evaporative cooling above the freezing level that maintains and enhances mid-level downdrafts in the storm. It is believed that this latent cooling comes from the evaporation of supercooled liquid water connected with the Bergeron-Findeisen process. Therefore, besides its influence at low levels (which was already well known), this evaporative cooling is essential to strengthen mid-level downdrafts and ultimately achieve a quasi-steady state.

  11. Separating dynamical and microphysical impacts of aerosols on deep convection applying piggybacking methodology

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.

    2016-04-01

    Formation and growth of cloud and precipitation particles ("cloud microphysics") affect cloud dynamics and such macroscopic cloud field properties as the mean surface rainfall, cloud cover, and liquid/ice water paths. Traditional approaches to investigate the impacts involve parallel simulations with different microphysical schemes or with different scheme parameters (such as the assumed droplet/ice concentration for single-moment bulk schemes or the assumed CCN/IN concentration for double-moment schemes). Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between cloud microphysics and cloud dynamics. In a nutshell, changing the cloud microphysics leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is cumbersome. A novel modeling methodology, referred to as the microphysical piggybacking, was recently developed to separate purely microphysical effects from the impact on the dynamics. The main idea is to use two sets of thermodynamic variables driven by two microphysical schemes or by the same scheme with different scheme parameters. One set is coupled to the dynamics and drives the simulation, and the other set piggybacks the simulated flow, that is, it responds to the simulated flow but does not affect it. By switching the sets (i.e., the set driving the simulation becomes the piggybacking one, and vice versa), the impact on the cloud dynamics can be isolated from purely microphysical effects. Application of this methodology to the daytime deep convection development over land based on the observations during the Large-scale Biosphere-Atmosphere (LBA) field project in Amazonia will be discussed applying single-moment and double-moment bulk microphysics schemes. We show that the new methodology documents a small indirect aerosol impact on convective dynamics, and a strong microphysical effect. These results question the postulated strong

  12. On the microphysical state of the surface of Triton

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz

    1991-01-01

    The microphysical processes involved in the pressureless sintering of particulate materials and the physical conditions likely to prevail on Triton are examined in order to investigate the processes leading to the frost metamorphism on Triton. It is argued that the presence of a well-annealed transparent nitrogen layer offers a natural explanation for most of what is seen on the surface of Triton; results of observations suggest that such a layer can form on Triton at 37 K on a seasonal time scale (about 100 earth years), provided the initial grain diameter is less than 1 micron. Grains up to 10 microns are allowed if grain growth does not hinder densification.

  13. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  14. Advanced Predictive Model and Real-World Results for Medium Concentration CPV

    NASA Astrophysics Data System (ADS)

    Karney, Bruce; Finot, Marc

    2011-12-01

    Skyline Solar has developed a novel medium concentration PV product. The system is a linear concentrator that tracks the sun with a 1-axis horizontal tracker. Reflectors are used to concentrate sunlight 7-50x using non-imaging optics. The receivers use Silicon cells and passive cooling. The product's design has been guided by a detailed Performance Prediction Tool (PPT) that relates component characteristics and climate data to the overall energy production. In contrast with other tools, the PPT captures the non-linearity of conditions such as weather, system architecture (stringing, shadow management) and the value of energy as a function of time of day and season. This paper describes the key elements of the PPT and compares its predictions to real-world results from different locations with significantly different DNI. Moderate DNI sites are San Jose, California and Kona, Hawaii. The higher DNI site is Nipton, California (DNI ˜7.2). Skyline's PPT accurately predicts the energy harvest for two Skyline Solar systems including the HGS 1000 and the new Skyline Solar X14 System.

  15. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  16. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  17. Experimental Studies on the 3D Macro- and Microphysics of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2015-12-01

    Magnetic reconnection has been extensively studied in 2D geometries for many decades and considerable progress has been made in understating 2D reconnection physics, yet in real plasmas reconnection is fundamentally 3D in nature. Only recently has it become possible to study 3D reconnection using simulations, however some initial results have suggested that the inclusion of 3D effects does not strongly affect the basic properties of reconnection (e.g. reconnection rate or particle acceleration). Yet on the other hand, previous experiments, without direct 3D measurements, have implied that 3D effects could be important even in a quasi-2D system. Here we experimentally study both the (1) macro- and (2) microphysics of 3D reconnection in order to directly test the importance of 3D effects in a quasi-2D experiment. Using fully simultaneous 3D measurements, it is shown that during highly driven reconnection the macroscopic structure of the current sheet can become strongly 3D despite an essentially 2D upstream region. The correlation length along the current sheet is measured to be far shorter than suggested by kinetic simulations. Results from new experiments with stronger reconnection drive and diagnostics designed to estimate the 3D reconnection rate will be discussed. With regards to (2), the 3D microphysics, new diagnostics capable of measuring fluctuations at frequencies up to the electron cyclotron frequency (~ 300 MHz) have been developed and have identified the presence of very high frequency waves (~ 100 MHz) during asymmetric reconnection, localized to the low-density side. The detailed properties of these waves, including the measured power spectra and dispersion relation, will be discussed and compared with both previous satellite observations of high-frequency waves as well as with theoretical predictions on the generation of whistler waves during reconnection.

  18. An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice Clouds

    SciTech Connect

    Comstock, Jennifer M.; d'Entremont, Robert; DeSlover, Daniel; Mace, Gerald G.; Matrosov, S. Y.; McFarlane, Sally A.; Minnis, Patrick; Mitchell, David; Sassen, Kenneth; Shupe, Matthew D.; Turner, David D.; Wang, Zhien

    2007-02-01

    The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth’s radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth’s future climate. A number of passive and active remote sensing retrievals exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade; however, there is room for improvement. Members of the Atmospheric Radiation Measurement program (ARM) Cloud Properties Working Group are involved in an intercomparison of optical depth (tau), ice water path, and characteristic particle size in ice clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement. Currently, there is significant scatter in the algorithms for difficult clouds with very small optical depths (tau<0.3) and thick ice clouds (tau>1). The good news is that for thin cirrus (0.3

  19. Microphysics of KCl and ZnS Clouds on GJ 1214 b

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn

    2016-10-01

    Clouds are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds are likely composed of exotic condensates such as salts, sulfides, silicates, and metals. Treatment of these clouds in current exoplanet atmosphere models do not consider the microphysical processes that govern their formation, evolution, and distribution, such as nucleation and condensation/evaporation, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work, we apply a 1D microphysical cloud model to GJ 1214 b and investigate the properties of potassium chloride (KCl) and zinc sulfide (ZnS) clouds as a function of atmospheric metallicity, the intensity of vertical mixing, and the mode of nucleation. Our cloud model has been widely applied to planets in our own Solar System, and as such our work bridges a gap between planetary science and exoplanets. Using model background atmospheres calculated by the SCARLET code, we find that (1) the cloud distribution is not significantly affected by metallicity unless [Fe/H] > 2, (2) higher intensities of vertical mixing leads to more extended cloud decks, more cloud particles at all altitudes, and smaller mean particle radii, (3) the high surface energy of solid ZnS prevents the homogeneous nucleation of pure ZnS cloud particles, such that KCl clouds dominate; solid ZnS can only manifest by nucleating onto pre-existing surfaces (heterogeneous nucleation), such as KCl cloud particles, resulting in mixed clouds, and (4) formation of KCl clouds results in a KCl vapor abundance above the cloud deck ~5 orders of magnitude less than that calculated from equilibrium chemistry. We also examine the transmission spectra that would result from these different cases. Extension of this model to other planets and condensates will shed light on the observed continuum in the "cloudiness

  20. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  1. Investigating the Optical and Microphysical Properties of Particulate Matter during MEGAPOLI Field Campaigns

    NASA Astrophysics Data System (ADS)

    Hu, R.; Sokhi, R.; Chemel, C.; Vazhappilly-Francis, X.; Yu, Y.; Fisher, B.

    2010-09-01

    Particulate Matter (or aerosols) is one of major components affecting the air quality and climate change. Despite the abundance of PM in the atmosphere, the emissions, composition and transformation of PM are still poorly understood due partly to the large measurement uncertainties and chemical complexity, particularly a distinct lack of the optical and microphysical properties of PM over megacities. In this study, we use the global chemistry transport model (GEOS-Chem) and regional air quality model (WRF-CMAQ) to simulate the optical and microphysical properties of PM over megacities such as London and Paris. The intensive MEGAPOLI field campaigns were performed during summer 2009 in the Ile-de-France region and winter 2010 in Paris. Measurements have provided the detailed information on aerosol properties including size distribution, volatility, hygroscopicity, chemical composition and optical properties. We use the observational data from the intensive field campaigns to validate the simulations from global and regional air quality models. The model simulations of major aerosol species including sulphate, ammonium, nitrate and black carbon, particularly the organic compounds will be evaluated with measurement datasets. We analyses the effects of emissions, meteorology and chemistry on the aerosol properties over megacities. The impact of Megacity emissions on PM concentrations (PM10 and PM2.5) will be examined according to model simulations, particularly the factors such as speciation, temporal profile and contributions from the long range transport. We use the satellite observational data such as the Ozone Monitoring Instrument (OMI), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) for inter-comparison with the model simulations on regional and urban scales. The combining modeling and observations will improve our understanding of PM properties and the model prediction accuracy of PM episodes.

  2. Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  3. Predictive and prognostic biomarkers for neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

    PubMed

    Lim, S H; Chua, W; Henderson, C; Ng, W; Shin, J-S; Chantrill, L; Asghari, R; Lee, C S; Spring, K J; de Souza, P

    2015-10-01

    Locally advanced rectal cancer is regularly treated with trimodality therapy consisting of neoadjuvant chemoradiation, surgery and adjuvant chemotherapy. There is a need for biomarkers to assess treatment response, and aid in stratification of patient risk to adapt and personalise components of the therapy. Currently, pathological stage and tumour regression grade are used to assess response. Experimental markers include proteins involved in cell proliferation, apoptosis, angiogenesis, the epithelial to mesenchymal transition and microsatellite instability. As yet, no single marker is sufficiently robust to have clinical utility. Microarrays that screen a tumour for multiple promising candidate markers, gene expression and microRNA profiling will likely have higher yield and it is expected that a combination or panel of markers would prove most useful. Moving forward, utilising serial samples of circulating tumour cells or circulating nucleic acids can potentially allow us to demonstrate tumour heterogeneity, document mutational changes and subsequently measure treatment response. PMID:26032919

  4. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  5. The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.; Higgins, W.

    2013-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward

  6. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer.

    PubMed

    Caramés, Cristina; Cristobal, Ion; Moreno, Víctor; Marín, Juan P; González-Alonso, Paula; Torrejón, Blanca; Minguez, Pablo; Leon, Ana; Martín, José I; Hernández, Roberto; Pedregal, Manuel; Martín, María J; Cortés, Delia; García-Olmo, Damian; Fernández, María J; Rojo, Federico; García-Foncillas, Jesús

    2016-01-01

    Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients. PMID:27271609

  7. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer

    PubMed Central

    Caramés, Cristina; Cristobal, Ion; Moreno, Víctor; Marín, Juan P.; González-Alonso, Paula; Torrejón, Blanca; Minguez, Pablo; Leon, Ana; Martín, José I.; Hernández, Roberto; Pedregal, Manuel; Martín, María J.; Cortés, Delia; García-Olmo, Damian; Fernández, María J.; Rojo, Federico; García-Foncillas, Jesús

    2016-01-01

    Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients. PMID:27271609

  8. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer.

    PubMed

    Caramés, Cristina; Cristobal, Ion; Moreno, Víctor; Marín, Juan P; González-Alonso, Paula; Torrejón, Blanca; Minguez, Pablo; Leon, Ana; Martín, José I; Hernández, Roberto; Pedregal, Manuel; Martín, María J; Cortés, Delia; García-Olmo, Damian; Fernández, María J; Rojo, Federico; García-Foncillas, Jesús

    2016-06-03

    Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients.

  9. Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements

    NASA Astrophysics Data System (ADS)

    Gasteiger, J.; Freudenthaler, V.

    2014-11-01

    A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and

  10. In-Situ Microphysics from the RACORO IOP

    DOE Data Explorer

    McFarquhar, Greg

    2013-11-08

    These files were generated by Greg McFarquhar and Robert Jackson at the University of Illinois. Please contact mcfarq@atmos.uiuc.edu or rjackso2@atmos.uiuc.edu for more information or for assistance in interpreting the content of these files. We highly recommend that anyone wishing to use these files do so in a collaborative endeavor and we welcome queries and opportunities for collaboration. There are caveats associated with the use of the data which are difficult to thoroughly document and not all products for all time periods have been thoroughly examined. This is a value added data set of the best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during RACORO. These files contain best estimates of liquid size distributions N(D) in terms of droplet diameter D, liquid water content LWC, extinction of liquid drops beta, effective radius of cloud drops (re), total number concentration of droplets NT, and radar reflectivity factor Z at 1 second resolution.

  11. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  12. A Photochemically-Based Microphysical Study of Titan Hazes

    NASA Astrophysics Data System (ADS)

    Wilson, E. H.; West, R. A.; Edgington, S. G.; Atreya, S. K.

    2003-05-01

    Titan's haze region acts as an end product of Titan's hydrocarbon and nitrile chemistry and plays an important role in the distribution of atmospheric constituents, affecting the transfer of radiation that helps trigger that chemistry. Recent investigations into the chemical sources of Titan haze [1,2] have suggested that the source region of Titan haze might be lower than what is found in most conventional microphysical models. Furthermore, modeling [1] and laboratory studies [3] have shown that PAHs may be more prominent in Titan haze than previously thought. To analyze the implications of these results we use a microphysical model [4] to calculate a haze distribution of spherical particles based on a photochemical source profile. Results will be compared to observations and the possible consequences of fractal haze particles will be discussed. The effects of haze composition on the distribution of hazes as well as on the radiative transfer and resultant chemistry will be examined and placed in the context of the upcoming Cassini-Huygens mission. This research is supported by the National Research Council Research Associateship Program. [1] E. H. Wilson and S. K. Atreya, Planet. Space Sci., in press. [2] S. Lebonnois et al., Icarus, 159, 505-517, 2002. [3] B. N. Khare et al., Icarus, 160, 172-182, 2002. [4] O. B. Toon et al., J. Atmos. Sci., 45, 2123-2143, 1988.

  13. The microphysical properties of small ice particles measured during MACPEX

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; Schnaiter, M.; Heymsfield, A.; Bansemer, A.; Hirst, E.

    2012-12-01

    During the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) field campaign, the Small Ice Detector version 3 (SID-3) and the NCAR Video Ice Particle Sampler (VIPS) probes were operated onboard the NASA WB-57 aircraft to measure the microphysical properties of small ice particles in midlatitude cirrus clouds. The VIPS was optimized to measure the particle size distribution and projected area properties of ice particles between 20 and 200 microns and measurements agreed well with other microphysical probes. SID-3 measures the forward light scattering pattern from ice particles in the 1 to 100 micron size range. Forward scattering patterns can be used to characterize ice particle shape as well as surface roughness. Scattering patterns appear to be 'speckled' when particles have surface roughness and/or are polycrystalline. Scattering patterns can be used to identify quasi-spherical ice particles as well as particles which are sublimating. Sublimating crystals, spherical ice particles, and particles with surface roughness were all observed by SID-3 during MACPEX. Observed particle properties will be correlated to concurrent atmospheric observations. Measurements from the controlled environment of the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber will be related to atmospheric particle measurements.

  14. Improved Goddard Microphysics for simulating Typhoon Morakot 2009

    NASA Astrophysics Data System (ADS)

    Tao, W.; Shi, J. J.; Lin, P.

    2010-12-01

    Typhoon Morakot struck Taiwan on the night of Friday August 7th, 2009 as a category 2 storm with sustained winds of 85 knots (92 mph). Although the center made landfall in Hualien county along the central east coast of Taiwan and passed over the central northern part of the island, it was southern Taiwan that received the worst effects of the storm where locally as much as 2200 mm (2.2 m) of rain were reported, resulting in the worst flooding there in 50 years. The result of the enormous amount of rain has been massive flooding and devastating mudslides. More than 600 people are confirmed dead. In this paper, we will present the results from high-resolution (2-km) WRF with improved Goddard microphysics for this typhoon case. The results showed that the improved microphysical scheme captured both in terms of maximum rainfall area and intensity. The model results also showed that the heavy amounts of rain over the southern portion of the island is due to persistent southwesterly flow associated with Morakot and it's circulation was able to draw up copious amounts of moisture from the South China Sea into southern Taiwan where it was able to interact with the steep topography. In addition, tracer and trajectory calculations (high resolution visualization) will be conducted to identify the origins of air parcels coming in and getting out eye/eye wall and spiral bands.

  15. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  16. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  17. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  18. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    PubMed

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  19. Application of neural networks to prediction of advanced composite structures mechanical response and behavior

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Vary, A.; Berke, L.; Kautz, H. E.

    1992-01-01

    Two types of neural networks were used to evaluate acousto-ultrasonic (AU) data for material characterization and mechanical reponse prediction. The neural networks included a simple feedforward network (backpropagation) and a radial basis functions network. Comparisons of results in terms of accuracy and training time are given. Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of eight laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The frequency spectrum was dominated by frequencies of longitudinal wave resonance through the thickness of the specimen at the sending transducer. The magnitude of the frequency spectrum of the AU signal was used for calculating a stress-wave factor based on integrating the spectral distribution function and used for comparison with neural networks results.

  20. Advanced Prediction of Tool Wear by Taking the Load History into Consideration

    NASA Astrophysics Data System (ADS)

    Ersoy, K.; Nuernberg, G.; Herrmann, G.; Hoffmann, H.

    2007-04-01

    A disadvantage of the conventional methods of simulating the wear occurring in deep drawing processes is that the wear coefficient, and thus wear too, is considered to be constant along loading duration, which, in case of deep drawing, corresponds to sliding distance and number of punch strokes. However, in reality, it is a known fact that wear development is not constant over time. In former studies, the authors presented a method, which makes it possible to consider the number of punch strokes in the simulation of wear. Another enhancement of this method is introduced in this paper. It is proposed to consider wear as a function of wear work instead of the number of punch strokes. Using this approach, the wear coefficients are implemented as a function of wear work and fully take into account the load history of the respective node. This enhancement makes it possible to apply the variable wear coefficients to completely different geometries, where one punch stroke involves different sliding distance or pressure values than the experiments with which the wear coefficients were determined. In this study, deep drawing experiments with a cylindrical cup geometry were carried out, in which the characteristic wear coefficient values as well as their gradients along the life cycle were determined. In this case, the die was produced via rapid tooling techniques. The prediction of tool wear is carried out with REDSY, a wear simulation software which was developed at the Institute of Metal Forming and Casting, TU-Muenchen. The wear predictions made by this software are based on the results of a conventional deep drawing simulation. For the wear modelling a modified Archard model was used.

  1. Godunov-Based Model of Swash Zone Dynamics to Advance Coastal Flood Prediction

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Sanders, B. F.

    2012-12-01

    Urbanized lowlands in southern California are defended against coastal flooding by sandy beaches that dynamically adjust to changes in water level and wave conditions, particularly during storm events. Recent research has shown that coastal flood impacts are scaled by the volume of beach overtopping flows, and an improved characterization of dynamic overtopping rates is needed to improve coastal flood forecasting (Gallien et al. 2012). However, uncertainty in the beach slope and height makes it difficult to predict the onset of overtopping and the magnitude of resulting flooding. That is, beaches may evolve significantly over a storm event. Sallenger (Sallenger, 2000) describes Impact Levels to distinguish different impact regimes (swash, collision, overwash and inundation) on dunes and barrier islands. Our goal is to model processes in different regimes as was described by him. Godunov-based models adopt a depth-integrated, two-phase approach and the shallow-water hypothesis to resolve flow and sediment transport in a tightly coupled manner that resolves shocks in the air/fluid and fluid/sediment interface. These models are best known in the context of debris flow modeling where the ability to predict the flow of highly concentrated sediment/fluid mixtures is required. Here, the approach is directed at the swash zone. Existing Godunov-based models are reviewed and shown to have drawbacks relative to wetting and drying and "avalanching"—important processes in the swash zone. This nonphysical erosion can be described as the natural tendency of the schemes to smear out steep bed slopes. To denote and reduce these numerical errors, new numerical methods are presented to address these limitations and the resulting model is applied to a set of laboratory-scale test problems. The shallow-water hypothesis limits the applicability of the model to the swash zone, so it is forced by a time series of water level and cross-shore velocity that accounts for surf zone wave

  2. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    PubMed

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-01

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  3. Predictive biomarkers in advance of a companion drug: ahead of their time?

    PubMed

    Kelley, Robin K; Atreya, Chloe; Venook, Alan P; Febbo, Phillip G

    2012-03-01

    Because of a surge in molecular testing capabilities concurrent with the rising numbers of targeted therapies in clinical development, the commercial use of predictive biomarkers before clinical validation is available is a topic of growing relevance to medical oncologists. Increasingly, patients will present questions about, requests for, and results from commercial biomarker tests for their oncologists to address. The sheer numbers of tests reaching the market, along with forecasted American Medical Association reforms in current procedural terminology coding and increasing FDA oversight of in vitro companion diagnostic device development, are likely to draw intense scrutiny to the regulation of commercial molecular testing in the near future, which will also require clinicians to remain abreast of the level of clinical validation of the biomarker tests available in practice. In addition to the direct risks of novel biomarker testing, including financial cost and ethical issues, the indirect risks encompass those associated with any clinical decision based on the biomarker test results. A great need exists for comprehensive and dynamic practice guidelines for all types of biomarker testing according to tumor type. PMID:22393192

  4. The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    PubMed Central

    Omarjee, Saleha; Walker, Bruce D.; Chakraborty, Arup; Ndung'u, Thumbi

    2014-01-01

    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion

  5. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: Fracture Prediction Beyond BMD.

    PubMed

    Shepherd, John A; Schousboe, John T; Broy, Susan B; Engelke, Klaus; Leslie, William D

    2015-01-01

    There have been many scientific advances in fracture risk prediction beyond bone density. The International Society for Clinical Densitometry (ISCD) convened a Position Development Conference (PDC) on the use of dual-energy X-ray absorptiometry beyond measurement of bone mineral density for fracture risk assessment, including trabecular bone score and hip geometry measures. Previously, no guidelines for nonbone mineral density DXA measures existed. Furthermore, there have been advances in the analysis of quantitative computed tomography (QCT) including finite element analysis, QCT of the hip, DXA-equivalent hip measurements, and opportunistic screening that were not included in the previous ISCD positions. The topics and questions for consideration were developed by the ISCD Board of Directors and the Scientific Advisory Committee and were designed to address the needs of clinical practitioners. Three task forces were created and asked to conduct comprehensive literature reviews to address specific questions. The task forces included participants from many countries and a variety of interests including academic institutions and private health care delivery organizations. Representatives from industry participated as consultants to the task forces. Task force reports with proposed position statements were then presented to an international panel of experts with backgrounds in bone densitometry. The PDC was held in Chicago, Illinois, USA, contemporaneously with the Annual Meeting of the ISCD, February 26 through February 28, 2015. This Executive Summary describes the methodology of the 2015 PDC on advanced measures from DXA and QCT and summarizes the approved official positions. Six separate articles in this issue will detail the rationale, discussion, and additional research topics for each question the task forces addressed.

  6. HPV Genotypes Predict Survival Benefits From Concurrent Chemotherapy and Radiation Therapy in Advanced Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Wang, Chun-Chieh; Lai, Chyong-Huey; Huang, Yi-Ting; Chao, Angel; Chou, Hung-Hsueh; Hong, Ji-Hong

    2012-11-15

    Purpose: To study the prognostic value of human papillomavirus (HPV) genotypes in patients with advanced cervical cancer treated with radiation therapy (RT) alone or concurrent chemoradiation therapy (CCRT). Methods and Materials: Between August 1993 and May 2000, 327 patients with advanced squamous cell carcinoma of the cervix (International Federation of Gynecology and Obstetrics stage III/IVA or stage IIB with positive lymph nodes) were eligible for this study. HPV genotypes were determined using the Easychip Registered-Sign HPV genechip. Outcomes were analyzed using Kaplan-Meier survival analysis and the Cox proportional hazards model. Results: We detected 22 HPV genotypes in 323 (98.8%) patients. The leading 4 types were HPV16, 58, 18, and 33. The 5-year overall and disease-specific survival estimates for the entire cohort were 41.9% and 51.4%, respectively. CCRT improved the 5-year disease-specific survival by an absolute 9.8%, but this was not statistically significant (P=.089). There was a significant improvement in disease-specific survival in the CCRT group for HPV18-positive (60.9% vs 30.4%, P=.019) and HPV58-positive (69.3% vs 48.9%, P=.026) patients compared with the RT alone group. In contrast, the differences in survival with CCRT compared with RT alone in the HPV16-positive and HPV-33 positive subgroups were not statistically significant (P=.86 and P=.53, respectively). An improved disease-specific survival was observed for CCRT treated patients infected with both HPV16 and HPV18, but these differenced also were not statistically significant. Conclusions: The HPV genotype may be a useful predictive factor for the effect of CCRT in patients with advanced squamous cell carcinoma of the cervix. Verifying these results in prospective trials could have an impact on tailoring future treatment based on HPV genotype.

  7. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib

    PubMed Central

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  8. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib.

    PubMed

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-10-27

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤ vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  9. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients

    PubMed Central

    Duchnowska, Renata; Wysocki, Piotr J.; Korski, Konstanty; Czartoryska-Arłukowicz, Bogumiła; Niwińska, Anna; Orlikowska, Marlena; Radecka, Barbara; Studziński, Maciej; Demlova, Regina; Ziółkowska, Barbara; Merdalska, Monika; Hajac, Łukasz; Myśliwiec, Paulina; Zuziak, Dorota; Dębska-Szmich, Sylwia; Lang, Istvan; Foszczyńska-Kłoda, Małgorzata; Karczmarek-Borowska, Bożenna; Żawrocki, Anton; Kowalczyk, Anna; Biernat, Wojciech; Jassem, Jacek

    2016-01-01

    Molecular mechanisms of lapatinib resistance in breast cancer are not well understood. The aim of this study was to correlate expression of selected proteins involved in ErbB family signaling pathways with clinical efficacy of lapatinib. Study group included 270 HER2-positive advanced breast cancer patients treated with lapatinib and capecitabine. Immunohistochemical expression of phosphorylated adenosine monophosphate-activated protein (p-AMPK), mitogen-activated protein kinase (p-MAPK), phospho (p)-p70S6K, cyclin E, phosphatase and tensin homolog were analyzed in primary breast cancer samples. The best discriminative value for progression-free survival (PFS) was established for each biomarker and subjected to multivariate analysis. At least one biomarker was determined in 199 patients. Expression of p-p70S6K was independently associated with longer (HR 0.45; 95% CI: 0.25–0.81; p = 0.009), and cyclin E with shorter PFS (HR 1.83; 95% CI: 1.06–3.14; p = 0.029). Expression of p-MAPK (HR 1.61; 95% CI 1.13–2.29; p = 0.009) and cyclin E (HR 2.99; 95% CI: 1.29–6.94; p = 0.011) was correlated with shorter, and expression of estrogen receptor (HR 0.65; 95% CI 0.43–0.98; p = 0.041) with longer overall survival. Expression of p-AMPK negatively impacted response to treatment (HR 3.31; 95% CI 1.48–7.44; p = 0.004) and disease control (HR 3.07; 95% CI 1.25–7.58; p = 0.015). In conclusion: the efficacy of lapatinib seems to be associated with the activity of downstream signaling pathways – AMPK/mTOR and Ras/Raf/MAPK. Further research is warranted to assess the clinical utility of these data and to determine a potential role of combining lapatinib with MAPK pathway inhibitors. PMID:26623720

  10. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    NASA Astrophysics Data System (ADS)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  11. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  12. Arrange and average algorithm for the retrieval of aerosol microphysical parameters from HSRL-2. Comparison with in-situ measurements during DISCOVER-AQ California and Texas (2013)

    NASA Astrophysics Data System (ADS)

    Chemyakin, E.; Sawamura, P.; Mueller, D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Hair, J. W.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2015-12-01

    Although aerosols are only a fairly minor constituent of Earth's atmosphere they are able to affect its radiative energy balance significantly. Light detection and ranging (lidar) instruments have the potential to play a crucial role in atmospheric research as only these instruments provide information about aerosol properties at a high vertical resolution. We are exploring different algorithmic approaches to retrieve microphysical properties of aerosols using lidar. Almost two decades ago we started with inversion techniques based on Tikhonov's regularization that became a reference point for the improvement of retrieval capabilities of inversion algorithms. Recently we began examining the potential of the "arrange and average" scheme, which relies on a look-up table of optical and microphysical aerosol properties. The future combination of these two different inversion schemes may help us to improve the accuracy of the microphysical data products.The novel arrange and average algorithm was applied to retrieve aerosol optical and microphysical parameters using NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL-2) data. HSRL-2 is the first airborne HSRL system that is able to provide advanced datasets consisting of backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm as input information for aerosol microphysical retrievals. HSRL-2 was deployed on-board NASA LaRC's King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns over the California Central Valley and Houston. Vertical profiles of aerosol optical properties and size distributions were obtained from in-situ instruments on-board the NASA's P-3B aircraft. As HSRL-2 flew along the same flight track of the P-3B, synergistic measurements and retrievals were obtained by these two independent platforms. We will present an

  13. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  14. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  15. In-Situ Microphysics from the MPACE IOP

    DOE Data Explorer

    McFarquhar, Greg

    2008-01-15

    Best estimates of the size distributions of supercooled water droplets and ice crystals for mixed-phase clouds measured during M-PACE for spiral ascents/descents over Barrow and Oliktok Point, and for ramped ascents/descents between Barrow and Oliktok Point. Our best estimates of the bulk microphysical properties such as ice water content (IWC), liquid water content (LWC), effective radius of ice crystals defined following Fu (1996) (rei), effective radius of supercooled water droplets (rew), total ice crystal number concentration (Ni), total water droplet number concentration (Nw) and total condensed water content (CWC), are also provided. The quantities were derived from the FSSP, 1DC, 2DC, HVPS and the CVI. Note HVPS data are only available after 10 Oct 2004 and some procedures have been developed to account for the missing data.

  16. Microphysics and heterogeneous chemistry of polar stratospheric clouds.

    PubMed

    Peter, T

    1997-01-01

    Liquid and solid particles in polar stratospheric clouds are of central importance for the depletion of stratospheric ozone. Surface-catalyzed reactions on these particles, and diffusion-controlled processes in the bulk of the particles, convert halogens, which derive from compounds of mainly anthropogenic origin, from relatively inert reservoir species into forms that efficiently destroy ozone. The microphysics of these particles under cold stratospheric conditions is still uncertain in many respects, in particular concerning phase transitions such as freezing nucleation and deposition nucleation. Furthermore, there are indications that the rates of key heterogeneous reactions have not yet been established with sufficient accuracy to enable a reliable diagnosis of observed ozone losses by means of global models. The present paper reviews the current (late 1996) knowledge of the physico-chemistry of polar stratospheric clouds and evaluates the remaining uncertainties with respect to their ozone depletion potential.

  17. Microphysical fundamentals governing cirrus cloud growth: Modeling studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, Gregory C.; Starr, David

    1990-01-01

    For application to Global Climate Models, large scale numerical models of cirrus cloud formation and maintenance need to be refined to more reliably simulate the effects and feedbacks of high level clouds. A key aspect is how ice crystal growth is initiated in cirrus, which has started a cloud microphysical controversy between camps either believing that heterogeneous or homogeneous drop freezing is predominantly responsible for cold cirrus ice crystal nucleation. In view of convincing evidence for the existence of highly supercooled cloud droplets in the middle and upper troposphere, however, it is concluded that active ice nuclei are rather scarce at cirrus cloud altitudes, and so a new understanding of cirrus cloud formation is needed. This understanding is sought through an examination of cirrus cloud growth models.

  18. Entrainment and Microphysics in DYCOMS-II Stratocumulus

    NASA Astrophysics Data System (ADS)

    Gerber, H. E.; Frick, G.; Malinowski, S.; Burnet, F.; Brenguier, J.

    2005-12-01

    During the nine DYCOMS-II flights through stratocumulus (Sc) off the California Coast with the NCAR C-130 research aircraft measurements of thermodynamics and microphysics were made with unprecedented resolution by three co-located probes. The UFT (ultra-fast temperature probe; U. of Warsaw) and the PVM (LWC and effective radius; Gerber Scientific) measured incloud with a resolution of 10 cm, and the FFSSP (fast FSSP; Meteo-France) measured with a resolution of 2 m. Our measurements and their analyses have led to an improved understanding of the physical processes associated with entrainment and its affect on Sc microphysics. We describe our results including the following: Cloud-top interacts with the warm and dry free atmosphere above the Sc to create the EIL (entrainment interface layer) several tens of m thick on the average. Further cloud detrains and mixes with the EIL to generate cloud-free moisture and temperature conditions ranging between cloud-top and free-atmosphere conditions. Buoyancy sorting occurs in the EIL with some parcels approaching the buoyancy at cloud-top. At that point these parcels enter cloud in a near thermodynamically-neutral fashion as shown by comparing UFT measurements in entrainment features ("cloud holes") with unaffected adjacent cloud, and in a mixing manner that resembles inhomogeneous mixing by diluting droplet number but not reducing their size as shown by the PVM and the FFSSP. This behavior occurs despite nearly all the Sc showing strong CTEI (cloud-top entrainment instability). Thus cooling due to the evaporation of cloud water contributes a negligible amount to buoyancy production at cloud top, it simply contributes a small amount to conditioning the EIL. Further, supersaturation transients caused by mixing of saturated parcels at different temperature near cloud top are not present. We find that the holes with LWC reduced by entrainment and embedded in down-welling regions caused by radiative cooling can reach their SEL

  19. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  20. TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Kingsmill, David E.; Yuter, Sandra E.; Hobbs, Peter V.; Rangno, Arthur L.; Heymsfield, Andrew J.; Stith, Jeffrey L.; Bansemer, Aaron; Haggerty, Julie A.; Korolev, Alexei V.

    2004-01-01

    A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the TRMM program is described. These Common Microphysics Products (CMP's) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMP's are organized into an ASCII structure to allow easy access to the data for those less familiar with and without the tools to accomplish microphysical data processing. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, non-proprietary software package for microphysics data processing, initiatives that would likely broaden community access to and use of microphysics datasets.

  1. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  2. The micro-physics of neutrino transport at extreme density

    SciTech Connect

    Reddy, S.

    2004-01-01

    Production and propagation of neutrinos in hot and dense matter plays an important role in the thermal evolution of neutron stars. In this article we review the micro-physics that influences weak interaction rates in dense matter containing nucleons, leptons and or quarks. We show that these rates depend sensitively on the strong and electromagnetic correlations between baryons. We present new results, obtained using molecular dynamics, for the response of dense plasma of heavy ions. Neutrino rates are also shown to be sensitive to the phase structure of matter at extreme density. We highlight recent calculations of neutrino rates in dense color superconducting phases of quark matter. We present a brief discussion of how these differences may affect the early evolution of a neutron star. Neutrinos play an important role in stellar evolution. By virtue of their weak interactions with matter neutrinos provide a mechanism for energy loss from the dense stellar interiors. In neutron stars, neutrino emission is the dominant cooling mechanism from the their birth in a supernova explosion until several thousand years of subsequent evolution. In this talk, we present an overview of some of the nuclear/particle physics issues that play a role in understanding the rate of propagation and production of neutrinos inside neutron stars. The calculation of these rates are of current interest since several research groups are embarking on large scale numerical simulations of supernova and neutron star evolution. Even moderate changes in the nuclear microphysics associated with the weak interaction rates at high density can impact macroscopic features that are observable.

  3. A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Chen, X.; Zhao, C.

    2014-12-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  5. Biogenic influence on cloud microphysics over the global ocean

    NASA Astrophysics Data System (ADS)

    Lana, A.; Simó, R.; Vallina, S. M.; Dachs, J.

    2012-02-01

    Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol-cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays a role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global weekly estimates of these fluxes were correlated to series of cloud droplet effective radius data derived from satellite (MODIS). Similar analyses were conducted in more detail at 6 locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that negative correlation was common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed more variable, non-significant or positive correlations, indicating that, despite contributing to large shares of the marine aerosol mass, they are not major drivers of the variability of cloud microphysics. Uncertainties and synergisms are discussed, and recommendations of research needs are given.

  6. Evaluation of Mixed-Phase Microphysics Within Winter Storms Using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Nesbitt, Steven

    2014-01-01

    Snow prediction within models is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Cold-season Precipitation Experiment (GCPEx) experiment over southern Ontario, as well as a few years (12 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. The GCPex presentation will focus on verification using aircraft spirals through warm frontal snow band event on 18 February 2012. All the BMPs realistically simulated the structure of the band and the vertical distribution of snow/ice aloft, except the SBU-YLIN overpredicted slightly and Thompson (THOM) underpredicted somewhat. The Morrison (MORR) scheme produced the best slope size distribution for snow, while the Stony Brook (SBU) underpredicted and the THOM slightly overpredicted. Those schemes that have the slope intercept a function of temperature (SBU and WSM6) tended to perform better for that parameter than others, especially the fixed intercept in Goddard. Overall, the spread among BMPs was smaller than in other studies, likely because there was limited riming with the band. For the 15 cases at SBNY, which include moderate and heavy riming events, the non-spherical snow assumption (THOM and SBU-YLIN) simulated a more realistic

  7. Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation

    NASA Astrophysics Data System (ADS)

    Painemal, David; Kato, Seiji; Minnis, Patrick

    2014-10-01

    Solar radiation absorption by biomass burning aerosols has a strong warming effect over the southeast Atlantic. Interactions between the overlying smoke aerosols and low-level cloud microphysics and the subsequent albedo perturbation are, however, generally ignored in biomass burning radiative assessments. In this study, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are combined with Aqua satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer-EOS (AMSR-E), and Clouds and the Earth's Radiant Energy System (CERES) to assess the effect of variations in the boundary layer height and the separation distance between the cloud and aerosol layers on the cloud microphysics. The merged data analyzed at a daily temporal resolution suggest that overlying smoke aerosols modify cloud properties by decreasing cloud droplet size despite an increase in the cloud liquid water as boundary layer deepens, north of 5°S. These changes are controlled by the proximity of the aerosol layer to the cloud top rather than increases in the column aerosol load. The correlations are unlikely driven by meteorological factors, as three predictors of cloud variability, lower tropospheric stability, surface winds, and mixing ratio suggest that cloud effective radius, cloud top height, and liquid water path should correlate positively. Because cloud effective radius anticorrelates with cloud liquid water over the region with large microphysical changes—north of 5°S—the overall radiative consequence at the top of the atmosphere is a strong albedo susceptibility, equivalent to a 3% albedo increase due to a 10% decrease in cloud effective radius. This albedo enhancement partially offsets the aerosol solar absorption. Our analysis emphasizes the importance of accounting for the indirect effect of smoke aerosols in the cloud microphysics when estimating the radiative impact of the biomass burning at the

  8. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women

    PubMed Central

    Semba, Richard D.; Ferrucci, Luigi; Sun, Kai; Beck, Justine; Dalal, Mansi; Varadhan, Ravi; Walston, Jeremy; Guralnik, Jack M.; Fried, Linda P.

    2008-01-01

    Objective To characterize the relationship between advanced glycation end products (AGEs) and circulating receptors for AGEs (RAGE) with cardiovascular disease mortality. Methods The relationships between serum AGEs, total RAGE (sRAGE), and endogenous secretory RAGE (esRAGE), and mortality were characterized in 559 community-dwelling women, ≥65 years, in Baltimore, Maryland. Results During 4.5 years of follow-up, 123 (22%) women died, of whom 54 died with cardiovascular disease. The measure of serum AGEs was carboxymethyl-lysine (CML), a dominant AGE. Serum CML predicted cardiovascular disease mortality (Hazards Ratio [H.R.] for highest versus lower three quartiles 1.94, 95% Confidence Interval [C.I.] 1.08-3.48, P = 0.026), after adjusting for age, race, body mass index, and renal insufficiency. Serum sRAGE (ng/mL) and esRAGE (ng/mL) predicted cardiovascular disease mortality (H.R. per 1 Standard Deviation [S.D.] 1.27, 95% C.I. 0.98-1.65, P = 0.07; H.R. 1.28, 95% C.I. 1.02-1.63, P = 0.03), after adjusting for the same covariates. Among non-diabetic women, serum CML, sRAGE, and esRAGE, respectively, predicted cardiovascular disease mortality (H.R. for highest versus lower three quartiles, 2.29, 95% C.I. 1.21-4.34, P = 0.01; H.R. per 1 S.D., 1.24, 95% C.I. 0.92-1.65, P = 0.16; H.R. per 1 S.D. 1.45, 95% C.I. 1.08-1.93, P = 0.01), after adjusting for the same covariates. Conclusions High circulating AGEs and RAGE predict cardiovascular disease mortality among older community-dwelling women. AGEs are a potential target for interventions, as serum AGEs can be lowered by change in dietary pattern and pharmacological treatment. PMID:19448391

  9. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  10. Prognostic and Predictive Value of Baseline and Posttreatment Molecular Marker Expression in Locally Advanced Rectal Cancer Treated With Neoadjuvant Chemoradiotherapy

    SciTech Connect

    Bertolini, Federica . E-mail: bertolini.federica@policlinico.mo.it; Bengala, Carmelo; Losi, Luisa; Pagano, Maria; Iachetta, Francesco; Dealis, Cristina; Jovic, Gordana; Depenni, Roberta; Zironi, Sandra; Falchi, Anna Maria; Luppi, Gabriele; Conte, Pier Franco

    2007-08-01

    Purpose: To evaluate expression of a panel of molecular markers, including p53, p21, MLH1, MSH2, MIB-1, thymidylate synthase, epidermal growth factor receptor (EGFR), and tissue vascular endothelial growth factor (VEGF), before and after treatment in patients treated with neoadjuvant chemoradiotherapy for locally advanced rectal cancer, to correlate the constitutive profile and dynamics of expression with pathologic response and outcome. Methods and Materials: Expression of biomarkers was evaluated by immunohistochemistry in tumor samples from 91 patients with clinical Stage II and III rectal cancer treated with preoperative pelvic radiotherapy (50 Gy) plus concurrent 5-fluorouracil by continuous intravenous infusion. Results: A pathologic complete remission was observed in 14 patients (15.4%). Patients with MLH1-positive tumors had a higher pathologic complete response rate (24.3% vs. 9.4%; p = 0.055). Low expression of constitutive p21, absence of EGFR expression after chemoradiotherapy, and high Dworak's tumor regression grade (TRG) were significantly associated with improved disease-free survival and overall survival. A high MIB-1 value after chemoradiotherapy was significantly associated with worse overall survival. Multivariate analysis confirmed the prognostic value of constitutive p21 expression as well as EGFR expression and MIB-1 value after chemoradiotherapy among patients not achieving TRG 3-4. Conclusions: In our study, we observed the independent prognostic value of EGFR expression after chemoradiotherapy on disease-free survival. Moreover, our study suggests that a constitutive high p21 expression and a high MIB-1 value after neoadjuvant chemoradiotherapy treatment could predict worse outcome in locally advanced rectal cancer.

  11. Primary Tumor Necrosis Predicts Distant Control in Locally Advanced Soft-Tissue Sarcomas After Preoperative Concurrent Chemoradiotherapy

    SciTech Connect

    MacDermed, Dhara M.; Miller, Luke L.; Peabody, Terrance D.; Simon, Michael A.; Luu, Hue H.; Haydon, Rex C.; Montag, Anthony G.; Undevia, Samir D.

    2010-03-15

    Purpose: Various neoadjuvant approaches have been evaluated for the treatment of locally advanced soft-tissue sarcomas. This retrospective study describes a uniquely modified version of the Eilber regimen developed at the University of Chicago. Methods and Materials: We treated 34 patients (28 Stage III and 6 Stage IV) with locally advanced soft-tissue sarcomas of an extremity between 1995 and 2008. All patients received preoperative therapy including ifosfamide (2.5 g/m2 per day for 5 days) with concurrent radiation (28 Gy in 3.5-Gy daily fractions), sandwiched between various chemotherapy regimens. Postoperatively, 47% received further adjuvant chemotherapy. Results: Most tumors (94%) were Grade 3, and all were T2b, with a median size of 10.3 cm. Wide excision was performed in 29 patients (85%), and 5 required amputation. Of the resected tumor specimens, 50% exhibited high (>=90%) treatment-induced necrosis and 11.8% had a complete pathologic response. Surgical margins were negative in all patients. The 5-year survival rate was 42.3% for all patients and 45.2% for Stage III patients. For limb-preservation patients, the 5-year local control rate was 89.0% and reoperation was required for wound complications in 17.2%. The 5-year freedom-from-distant metastasis rate was 53.4% (Stage IV patients excluded), and freedom from distant metastasis was superior if treatment-induced tumor necrosis was 90% or greater (84.6% vs. 19.9%, p = 0.02). Conclusions: This well-tolerated concurrent chemoradiotherapy approach yields excellent rates of limb preservation and local control. The resulting treatment-induced necrosis rates are predictive of subsequent metastatic risk, and this information may provide an opportunity to guide postoperative systemic therapies.

  12. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  13. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  14. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Koshak, William J.; Peterson, Harold S.; Shultz, Elise; Matthee, Retha; Shultz, Christopher J.; Petersen, Walter A.; Bain, Lamont

    2013-01-01

    To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NO(x)) in thunderstorms, such as flash rate, type (intracloud (IC) vs. cloud-to-ground (CG)) and extent.

  15. A microphysical model explains rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1-

  16. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  17. Retrieval of Aerosol Microphysical Properties from MFRSR Observations

    SciTech Connect

    Kassianov, Evgueni I; Barnard, James C; Ackerman, Thomas P

    2006-05-01

    Aerosols can have significant impact on the radiative and heat balance of the Earth-atmosphere system by absorbing and scattering solar radiation (direct aerosol effect) and altering cloud optical properties and suppressing precipitation (indirect aerosol effect). However, both the sign and magnitude of the aerosol impact has proven difficult to determine due to incomplete knowledge of aerosol properties and their strong temporal and spatial variations. Reduction of these uncertainties requires an accurate global inventory of aerosol microphysical properties, such as size distribution and the refractive index. Multi-filter Rotating Shadowband Radiometers (MFRSRs) are widely deployed over the world (e.g., the surface radiation budget network). These radiometers provide measurements of the direct and the diffuse solar irradiances at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 ). Currently, the direct irradiance observations are used to derive routinely spectral values of the aerosol optical depth only. We propose a simple retrieval technique that significantly extends the capability of the MFRSR to study atmospheric aerosols. In our retrieval, we assume the shape of aerosol size distribution (e.g., combination of three lognormal distributions) and the value of the real refractive index. The technique consists of three steps that compose an iterative scheme. The first step obtains the aerosol size distribution from the spectral measurements of the direct irradiance (for a given complex refractive index). To reduce the effect of ozone and water vapor contamination, we use wavelengths where ozone and water vapor weakly affect the direct irradiance (0.415 mu and 0.870 mu). The second step determines the effective value of the imaginary refractive index from the diffuse irradiance (for the aerosol size distribution determined during the first step). To reduce the effect of the surface albedo on the retrievals, we select a wavelength where the surface albedo

  18. Aerosol impacts in continental shallow cumuli using bin and bulk microphysical schemes

    NASA Astrophysics Data System (ADS)

    Igel, Adele L.; van den Heever, Susan C.

    2014-05-01

    Much attention has been given to the impacts of aerosol on maritime cumulus clouds, which are often in a state of near equilibrium with the environment. However, less work has been done to confirm that the results of these maritime studies hold in continental cumuli where the diurnal cycle of the boundary layer is much more pronounced and where aerosol concentrations can reach much higher levels. A second issue is that differences in cloud and rain properties that arise due to the choice of microphysical scheme can be greater than differences that arise through changes in the aerosol number concentration. The sensitivity to the choice of scheme contributes uncertainty to the aerosol results. In the current study continental cumulus clouds have been simulated at high resolution (50m horizontal spacing, 25m vertical spacing) using both the Hebrew University bin scheme and the standard bulk microphysics scheme in RAMS under clean and polluted conditions. The influence of aerosol on cloud morphology and microphysical characteristics will be presented for each microphysical scheme and the results compared to those from previous studies of maritime cumuli. Individual microphysical process rates from each scheme will also be compared to understand differences in the response to aerosol. Comparing the process rates in this way will allow for a better understanding of the causes of spread between microphysical schemes.

  19. Combined Radiometer-Radar Microphysical Profile Estimations with Emphasis on High Frequency Brightness Temperature Observations

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Wang, James R.; Heymsfield, Gerald M.; Hood, Robbie; Manning, Will; Meneghini, Robert; Weinman, James A.; Hildebrand, Peter (Technical Monitor)

    2001-01-01

    Information about the vertical microphysical cloud structure is useful in many modeling and predictive practices. Radiometers and radars are used to observe hydrometeor properties. This paper describes an iterative retrieval algorithm that combines the use of airborne active and wideband (10 to 340 GHz) passive observations to estimate the vertical content and particle size distributions of liquid and frozen hydrometeors. The physically-based retrieval algorithm relies on the high frequencies (greater than 89 GHz) to provide details on the frozen hydrometeors. Neglecting the high frequencies yielded acceptable estimates of the liquid profiles, but the ice profiles were poorly retrieved. Airborne radar and radiometer observations from the third Convection and Moisture EXperiment (CAMEX-3) were used in the retrieval algorithm as constraints. Nadir profiles were estimated for a minute each of flight time (approximately 12.5 km along track) from an anvil, convection, and quasi- stratiform rain. The complex structure of the frozen hydrometeors required the most iterations for convergence for the anvil cloud type. The wideband observations were found to more than double the estimated frozen hydrometeor content as compared to retrievals using only 90-GHz and below. The convective and quasi-stratiform quickly reached convergence (minimized difference between observations and calculations using the estimated profiles). A qualitative validation using coincident in situ CAMEX-3 observations shows that the retrieved particle size distributions are well corroborated with independent measurements.

  20. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  1. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  2. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  3. Aerosol Microphysical and Macrophysical Effects on Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Li, Z.; Wilcox, E. M.; Oreopoulos, L.; Remer, L. A.; Yu, H.; Platnick, S. E.; Posselt, D. J.; Zhang, Z.; Martins, J. V.

    2014-12-01

    We illustrate a conceptual model of hydrometeor vertical development inside a convective cloud and its utility in studying of aerosol-DCC interactions. Both case studies and ensemble means are used to investigate aerosol-DCC interactions. We identify a few scenarios where possible signal of aerosol effect on DCC may be extracted. The results show a consistent and physically sound picture of aerosols affecting DCC microphysics as well as macrophysical properties. Specifically, pollutions and smokes are shown to consistently decrease ice particle size. On the contrary, dust particles close to source regions are shown to make cloud ice particle size more maritime like. We postulate that dust may achieve this by acting as either heterogeneous ice nuclei or giant cloud condensation nuclei. This contrast between smoke or pollution and dust also exists for their effects on cloud glaciation temperature. Smoke and pollution aerosols are shown to decrease glaciation temperature while dust particles do the opposite. Possible Implications of our results for studying aerosol indirect forcing, cirrus cloud properties, troposphere-stratosphere water vapor exchange and cloud latent heating are discussed.

  4. Validity of APCS score as a risk prediction score for advanced colorectal neoplasia in Chinese asymptomatic subjects

    PubMed Central

    Li, Wenbin; Zhang, Lili; Hao, Jianyu; Wu, Yongdong; Lu, Di; Zhao, Haiying; Wang, Zhenjie; Xu, Tianming; Yang, Hong; Qian, Jiaming; Li, Jingnan

    2016-01-01

    Abstract The Asia-Pacific Colorectal Screening (APCS) score is a risk-stratification tool that helps predict the risk for advanced colorectal neoplasia (ACN) in asymptomatic Asian populations, but has not yet been assessed for its validity of use in Mainland China. The aim of the study was to assess the validity of APCS score in asymptomatic Chinese population, and to identify other risk factors associated with ACN. Asymptomatic subjects (N = 1010) who underwent colonoscopy screening between 2012 and 2014 in Beijing were enrolled. APCS scores based on questionnaires were used to stratify subjects into high, moderate, and average-risk tiers. Cochran–Armitage test for trend was used to assess the association between ACN and risk tiers. Univariate and multivariate logistic regression was performed with ACN as the outcome, adjusting for APCS score, body mass index, alcohol consumption, self-reported diabetes, and use of nonsteroidal anti-inflammatory drugs as independent variables. The average age was 53.5 (standard deviation 8.4) years. The prevalence of ACN was 4.1% overall, and in the high, moderate, and average-risk tiers, the prevalence was 8.8%, 2.83%, and 1.55%, respectively (P < 0.001). High-risk tier had 3.3 and 6.1-fold increased risk of ACN as compared with those in the moderate and average-risk tiers, respectively. In univariate analysis, high-risk tier, obesity, diabetes, and alcohol consumption were associated with ACN. In multivariate analysis, only high-risk tier was an independent predictor of ACN. The APCS score can effectively identify a subset of asymptomatic Chinese population at high risk for ACN. Further studies are required to identify other risk factors, and the acceptability of the score to the general population will need to be further examined. PMID:27741134

  5. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  6. Iron Levels in Hepatocytes and Portal Tract Cells Predict Progression and Outcome of Patients with Advanced Chronic Hepatitis C1

    PubMed Central

    Lambrecht, Richard W.; Sterling, Richard K.; Naishadham, Deepa; Stoddard, Anne M.; Rogers, Thomas; Morishima, Chihiro; Morgan, Timothy R.; Bonkovsky, Herbert L.

    2011-01-01

    Background & Aims Iron might influence severity and progression of non-hemochromatotic liver diseases. We assessed the relationships between iron, variants in HFE, and progression and outcomes using data from the HALT-C Trial. We determined whether therapy with pegylated interferon (PegIFN) affects iron variables. Methods Participants were randomly assigned to groups given long-term therapy with PegIFN (n=400) or no therapy (n=413) for 3.5 y and followed for up to 8.7 y (median 6.0 y). Associations between patient characteristics and iron variables, at baseline and over time, were made using Kaplan-Meier analyses, Cox regression models, and repeated measures analysis of covariance. Iron was detected by Prussian blue staining. Results Patients with poor outcomes (increase in Child-Turcotte-Pugh score to ≥ 7, development of ascites, encephalopathy, variceal bleeding, spontaneous bacterial peritonitis, hepatocellular carcinoma, death) had significantly higher baseline scores for stainable iron in hepatocytes and cells in portal tracts than those without outcomes. Staining for iron in portal triads correlated with lobular and total Ishak inflammatory and fibrosis scores (P<0.0001). High baseline levels of iron in triads increased the risk for poor outcome (hazard ratio=1.35, P=0.02). Iron staining decreased in hepatocytes but increased in portal stromal cells over time (P<0.0001). Serum levels of iron and total iron binding capacity decreased significantly over time (P <0.0001), as did serum ferritin (P=0.0003). Long-term therapy with PegIFN did not affect levels of iron staining. Common variants in HFE did not correlate with outcomes, including development of hepatocellular carcinoma. Conclusions Degree of stainable iron in hepatocytes and portal tract cells predicts progression and clinical and histological outcomes of patients with advanced chronic hepatitis C. Long-term therapy with low-dose PegIFN did not improve outcomes or iron variables. PMID:21335007

  7. Systemic inflammatory status at baseline predicts bevacizumab benefit in advanced non-small cell lung cancer patients

    PubMed Central

    Botta, Cirino; Barbieri, Vito; Ciliberto, Domenico; Rossi, Antonio; Rocco, Danilo; Addeo, Raffaele; Staropoli, Nicoletta; Pastina, Pierpaolo; Marvaso, Giulia; Martellucci, Ignazio; Guglielmo, Annamaria; Pirtoli, Luigi; Sperlongano, Pasquale; Gridelli, Cesare; Caraglia, Michele; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Correale, Pierpaolo

    2013-01-01

    Bevacizumab is a humanized anti-VEGF monoclonal antibody able to produce clinical benefit in advanced non-squamous non-small-cell lung cancer (NSCLC) patients when combined to chemotherapy. At present, while there is a rising attention to bevacizumab-related adverse events and costs, no clinical or biological markers have been identified and validated for baseline patient selection. Preclinical findings suggest an important role for myeloid-derived inflammatory cells, such as neutrophils and monocytes, in the development of VEGF-independent angiogenesis. We conducted a retrospective analysis to investigate the role of peripheral blood cells count and of an inflammatory index, the neutrophil-to-lymphocyte ratio (NLR), as predictors of clinical outcome in NSCLC patients treated with bevacizumab plus chemotherapy. One hundred twelve NSCLC patients treated with chemotherapy ± bevacizumab were retrospectively evaluated for the predictive value of clinical or laboratory parameters correlated with inflammatory status. Univariate analysis revealed that a high number of circulating neutrophils and monocytes as well as a high NLR were associated with shorter progression-free survival (PFS) and overall survival (OS) in bevacizumab-treated patients only. We have thus developed a model based on the absence or the presence of at least one of the above-mentioned inflammatory parameters. We found that the absence of all variables strongly correlated with longer PFS and OS (9.0 vs. 7.0 mo, HR: 0.39, p = 0.002; and 20.0 vs. 12.0 mo, HR: 0.29, p < 0.001 respectively) only in NSCLC patients treated with bevacizumab plus chemotherapy. Our results suggest that a baseline systemic inflammatory status is marker of resistance to bevacizumab treatment in NSCLC patients. PMID:23760488

  8. Comparison of the PLTEMP code flow instability predictions with measurements made with electrically heated channels for the advanced test reactor.

    SciTech Connect

    Feldman, E.

    2011-06-09

    When the University of Missouri Research Reactor (MURR) was designed in the 1960s the potential for fuel element burnout by a phenomenon referred to at that time as 'autocatalytic vapor binding' was of serious concern. This type of burnout was observed to occur at power levels considerably lower than those that were known to cause critical heat flux. The conversion of the MURR from HEU fuel to LEU fuel will probably require significant design changes, such as changes in coolant channel thicknesses, that could affect the thermal-hydraulic behavior of the reactor core. Therefore, the redesign of the MURR to accommodate an LEU core must address the same issues of fuel element burnout that were of concern in the 1960s. The Advanced Test Reactor (ATR) was designed at about the same time as the MURR and had similar concerns with regard to fuel element burnout. These concerns were addressed in the ATR by two groups of thermal-hydraulic tests that employed electrically heated simulated fuel channels. The Croft (1964), Reference 1, tests were performed at ANL. The Waters (1966), Reference 2, tests were performed at Hanford Laboratories in Richland Washington. Since fuel element surface temperatures rise rapidly as burnout conditions are approached, channel surface temperatures were carefully monitored in these experiments. For self-protection, the experimental facilities were designed to cut off the electric power when rapidly increasing surface temperatures were detected. In both the ATR reactor and in the tests with electrically heated channels, the heated length of the fuel plate was 48 inches, which is about twice that of the MURR. Whittle and Forgan (1967) independently conducted tests with electrically heated rectangular channels that were similar to the tests by Croft and by Walters. In the Whittle and Forgan tests the heated length of the channel varied among the tests and was between 16 and 24 inches. Both Waters and Whittle and Forgan show that the cause of the

  9. Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Nogherotto, Rita; Tompkins, Adrian Mark; Giuliani, Graziano; Coppola, Erika; Giorgi, Filippo

    2016-07-01

    We implement and evaluate a new parameterization scheme for stratiform cloud microphysics and precipitation within regional climate model RegCM4. This new parameterization is based on a multiple-phase one-moment cloud microphysics scheme built upon the implicit numerical framework recently developed and implemented in the ECMWF operational forecasting model. The parameterization solves five prognostic equations for water vapour, cloud liquid water, rain, cloud ice, and snow mixing ratios. Compared to the pre-existing scheme, it allows a proper treatment of mixed-phase clouds and a more physically realistic representation of cloud microphysics and precipitation. Various fields from a 10-year long integration of RegCM4 run in tropical band mode with the new scheme are compared with their counterparts using the previous cloud scheme and are evaluated against satellite observations. In addition, an assessment using the Cloud Feedback Model Intercomparison Project (CFMIP) Observational Simulator Package (COSP) for a 1-year sub-period provides additional information for evaluating the cloud optical properties against satellite data. The new microphysics parameterization yields an improved simulation of cloud fields, and in particular it removes the overestimation of upper level cloud characteristics of the previous scheme, increasing the agreement with observations and leading to an amelioration of a long-standing problem in the RegCM system. The vertical cloud profile produced by the new scheme leads to a considerably improvement of the representation of the longwave and shortwave components of the cloud radiative forcing.

  10. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  11. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  12. Comparison of LES model produced and in-situ measured stratocumulus cloud microphysics

    NASA Astrophysics Data System (ADS)

    Choi, K.; Yeom, J. M.; Yum, S. S.

    2015-12-01

    Large Eddy Simulation (LES) models are known to be a valuable tool that can be used to study microphysical, dynamical and radiative properties and their complex interactions in stratocumulus clouds since they can generate stratocumulus clouds realistically. These model generated properties were often compared with observations usually focusing on macroscopic features such as cloud depth and LWP. In this study we try to examine how good LES models are in re-producing cloud microphysical characteristics of stratocumulus clouds. After all if microphysics is not right, macroscopic, dynamic and radiative characteristics represented by the model cannot be fully trusted. The observation data are obtained from the G-1 aircraft measurements of marine stratocumulus clouds over the southeast Pacific near the coast of Chile during the Variability of the American Monsoon Systems Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). Two LES models are used to simulate these clouds: one is CIMMS (Cooperative Institute for Mesoscale Meteorological Studies) LES and the other is WRF (Weather Research and Forecasting Model) LES. Both models are run in 3-D setting and employ bin microphysics to be appropriate for detailed cloud microphysics calculation. Comparison between observation and LES models could reveal intrinsic problems of the LES models in representing entrainment and mixing processes. The difference between the two LES models may reveal the intrinsic differences between the two models in representing large eddies and microphysical processes. Some preliminary results indicate that the CIMMS LES model tends to produce cloud microphysical relationships that are expected to occur when homogeneous mixing is dominant. More detail will be presented at the conference.

  13. Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum

    NASA Astrophysics Data System (ADS)

    Ferland, Gary J.

    2014-01-01

    Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.

  14. Linking Complex Problem Solving and General Mental Ability to Career Advancement: Does a Transversal Skill Reveal Incremental Predictive Validity?

    ERIC Educational Resources Information Center

    Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel

    2015-01-01

    Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…

  15. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  16. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena

    2010-01-01

    AIRS (Atmospheric Infra-Red Sounder), was launched, in conjunction with AMSU-A (Advanced Microwave Sounding Unit-A) on the NASA polar orbiting research satellite EOS (Earth Observing System) Aqua satellite in May 2002 as a next generation atmospheric sounding system. Atmospheric sounders provide information primarily about the vertical distribution of atmospheric temperature and water vapor distribution. This is achieved by measuring outgoing radiation in discrete channels (spectral intervals) which are sensitive primarily to variations of these geophysical parameters. The primary objectives of AIRS/AMSU were to utilize such information in order to improve the skill of numerical weather prediction as well as to measure climate variability and trends. AIRS is a multi-detector array grating spectrometer with 2378 channels covering the spectral range 650/cm (15 microns) to 2660/cm (3.6 microns) with a resolving power (i/a i) of roughly 1200 where a i is the spectral channel bandpass. Atmospheric temperature profile can be determined from channel observations taken within the 15 micron (the long-wave CO2 absorption band) and within the 4.2 micron (the short-wave CO2 absorption band). Radiances in these (and all other) spectral intervals in the infrared are also sensitive to the presence of clouds in the instrument?s field of view (FOV), which are present about 95% of the time. AIRS was designed so as to allow for the ability to produce accurate Quality Controlled atmospheric soundings under most cloud conditions. This was achieved by having 1) extremely low channel noise values in the shortwave portion of the spectrum and 2) a very flat spatial response function within a channel?s FOV. IASI, the high spectral resolution IR interferometer flying on the European METOP satellite, does not contain either of these important characteristics. The AIRS instrument was also designed to be extremely stabile with regard to its spectral radiometric characteristics, which is

  17. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  18. The Influence of Dust-radiation-microphysics Processes on Tropical Cyclone Development

    NASA Astrophysics Data System (ADS)

    Chen, S.; Cheng, C.; Chen, J.; Lin, Y.; Lee, H.; Tsai, I.

    2011-12-01

    Saharan dust can modify the Saharan Air Layer (SAL) and its environment by changing the energy budget through direct and indirect radiative forcing. Scattering and absorption of radiation by suspended dust directly modifies the energy budget in the atmosphere and at the surface. Smaller dust particles can remain suspended in the air for prolonged periods and propagate over the Atlantic Ocean along with SAL. These fine particles can reach an altitude of 8-9 km, where they nucleate ice crystals and transform cloud microphysical properties, indirectly changing the energy budget. Thus, the dust within the air mass is likely to affect the evolution of hurricane properties, life cycles, and the corresponding cloud systems through the dust-cloud-radiation interactions. A tracer model based on the Weather Research and Forecasting model (named WRFT) was developed to study the influence of dust-radiation-microphysics effects on hurricane activities. The dust-radiation effects and a two-moment microphysics scheme with dust particles acting as ice nuclei were implemented into WRFT. In this work, two easterly waves, which were precursors of Tropical Storm Debby and Hurricane Ernesto, during 18-25 August 2006 were studied. Four high-resolution numerical experiments were conducted with the combinations of activating/deactivating dust-radiation and/or dust-microphysics processes. Results from these four experiments are compared to investigate the influence of dust-radiation-microphysics processes on these two storm developments.

  19. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  20. Low podoplanin expression in pretreatment biopsy material predicts poor prognosis in advanced-stage squamous cell carcinoma of the uterine cervix treated by primary radiation.

    PubMed

    Dumoff, Kimberly L; Chu, Christina S; Harris, Eleanor E; Holtz, David; Xu, Xiaowei; Zhang, Paul J; Acs, Geza

    2006-05-01

    Lymphatic invasion and nodal metastasis are predictors of poor outcome in cervix carcinoma. We have recently found that low podoplanin immunoreactivity in cervix carcinoma correlated with the presence of lymphatic invasion and nodal metastasis. In the current study, we examined whether podoplanin expression in pretreatment cervical biopsies can predict the presence lymphatic invasion, nodal metastasis, and outcome in advanced-stage tumors treated by nonsurgical means. Podoplanin expression was analyzed by immunohistochemistry in 48 cervical biopsies and corresponding hysterectomy specimens of early-stage invasive squamous cell carcinoma and in 74 pretreatment biopsies from advanced-stage tumors treated with primary radiation. We found a highly significant correlation between podoplanin expression obtained in biopsy and corresponding hysterectomy materials (r = 0.8962, P < 0.0001). Low podoplanin expression showed a significant correlation with lymphatic invasion (P < 0.0001) and nodal metastasis (P = 0.0058). Low podoplanin expression in pretreatment biopsy material showed a significant correlation with poor disease-free (P = 0.0009) and overall (P = 0.0002) survival in advanced-stage tumors. Our results suggest that in advanced-stage cervix carcinomas treated by radiation, when traditional prognostic indicators are not available and treatment decisions are based on biopsy material and clinical staging parameters, examination of podoplanin expression in pretreatment biopsy material may be a useful marker to predict lymphatic metastasis and patient outcome. Prospective studies involving larger numbers of patients are needed to further evaluate the clinical utility of examination of podoplanin expression in patients with cervix carcinoma.

  1. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  2. Comparison of cloud microphysical parameters derived from surface and satellite measurements during FIRE phase 2

    NASA Technical Reports Server (NTRS)

    Young, David F.; Minnis, Patrick; Snider, Jack; Uttal, Taneil; Intrieri, Janet M.; Matrosov, Sergey

    1993-01-01

    Cloud microphysical properties are an important component in climate model parameterizations of water transport, cloud radiative exchange, and latent heat processes. Estimation of effective cloud particle size, liquid or ice water content, and optical depth from satellite-based instrumentation is needed to develop a climatology of cloud microphysical properties and to better understand and model cloud processes in atmospheric circulation. These parameters are estimated from two different surface data sets taken at Coffeyville, Kansas, during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (November 13 - December 7, 1991). Satellite data can also provide information about optical depth and effective particle size. This paper explores the combination of the FIRE-2 surface and satellite data to determine each of the cloud microphysical properties.

  3. Microphysical Properties of Warm Clouds During The Aircraft Take-Off and Landing Over Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Nicolae Vajaiac, Sorin; Boscornea, Andreea

    2016-06-01

    This paper is focused on airborne measurements of microphysical parameters into warm clouds when the aircraft penetrates the cloud, both during take-off and landing. The experiment was conducted during the aircraft flight between Bucharest and Craiova, in the southern part of Romania. The duration of the experimental flight was 2 hours and 35 minutes in October 7th, 2014, but the present study is dealing solely with the analysis of cloud microphysical properties at the beginning of the experiment (during the aircraft take-off) and at the end, when it got finalized by the aircraft landing procedure. The processing and interpretation of the measurements showed the differences between microphysical parameters, emphasizing that the type of cloud over Bucharest changed, as it was expected. In addition, the results showed that it is important to take into account both the synoptic context and the cloud perturbation due to the velocity of the aircraft, in such cases.

  4. Precipitation and microphysical studies with a low cost high resolution X-band radar: an innovative project prospective

    NASA Astrophysics Data System (ADS)

    van Baelen, J.; Pointin, Y.; Wobrock, W.; Flossmann, A.; Peters, G.; Tridon, F.; Planche, C.

    2009-03-01

    This paper describes an innovative project which has just been launched at the "Laboratoire de Météorologie Physique" (LaMP) in Clermont-Ferrand in collaboration with the "Meteorologische Institut" in Hamburg, where a low cost X-band high resolution precipitation radar is combined with supporting measurements and a bin microphysical cloud resolving model in order to develop adapted Z-R relationships for accurate rain rate estimates over a local area such as a small catchment basin, an urban complex or even an agriculture domain. In particular, the use of K-band micro rain radars which can retrieve vertical profiles of drop size distribution and the associated reflectivity will be used to perform direct comparisons with X-band radar volume samples while a network of rain-gauges provides ground truth to which our rain estimates will be compared. Thus, the experimental suite of instrumentation should provide a detailed characterization of the various rain regimes and their associated Z-R relationship. Furthermore, we will make use of the hilly environment of the radar to test the use of novel attenuation methods in order to estimate rainfall rates. A second important aspect of this work is to use the detailed cloud modeling available at LaMP. Simulations of precipitating clouds in highly resolved 3-D dynamics model allow predicting the spectra of rain drops and precipitating ice particles. Radar reflectivity determined from these model studies will be compared with the observations in order to better understand which raindrop size spectrum shape factor should be applied to the radar algorithms as a function of the type of precipitating cloud. Likewise, these comparisons between the modeled and the observed reflectivity will also give us the opportunity to further improve our model microphysics and the parameterizations for meso-scale models.

  5. Arctic stratospheric dehydration - Unprecedented observations and microphysical modeling study

    NASA Astrophysics Data System (ADS)

    Engel, Ines; Luo, Beiping P.; Khaykin, Sergey; Wienhold, Frank G.; Vömel, Holger; Kivi, Rigel; Pitts, Michael C.; Poole, Lamont R.; Santee, Michelle L.; Grooß, Jens-Uwe; Peter, Thomas

    2013-04-01

    Polar stratospheric clouds (PSCs) may form in the lower stratosphere above the winter poles at sufficiently low temperatures. Ice PSCs require the coldest conditions, with temperatures some degrees below the frost point to nucleate ice particles. When the particles grow to sizes large enough to sediment, they may result in dehydration, i.e. irreversible redistribution of water vapor, as it frequently occurs above the Antarctic. Conversely, there are no observations above the Arctic that would have provided clear evidence for vertical redistribution of water vapor. Here we report on unequivocal in situ observations in January 2010 above Sodankylä, Finland, which mesh with vortex-wide satellite measurements. Within the LABPIAT-II field campaign, a series of balloon-borne aerosol backscatter and water vapor measurements has been performed. The balloon payload comprised the backscatter sonde COBALD in combination with the cryogenic frost point hygrometer CFH and the fluorescent Lyman-Alpha stratospheric hygrometer FLASH-B. Together with satellite measurements from the Aura microwave limb sounder MLS and the cloud-aerosol lidar CALIOP, a unique and coherent picture of de- and rehydration in the Arctic vortex will be presented within this paper. An extensive coverage of synoptic scale ice PSCs has been observed by CALIOP and COBALD by mid-January due to exceptionally low temperatures in the Arctic vortex. This observation goes along with a simultaneously measured strong reduction in water vapor by 1.6 ppmv relative to background conditions. Subsequent sedimentation and sublimation of ice particles led to a vertical redistribution of water inside the vortex, which was tracked remotely and could be quantified again by in situ measurements some five days later. By means of a microphysical column model, we are able to connect the individual balloon soundings by trajectories and simulate the formation, evolution and sedimentation of the ice particles. Simulated water vapor

  6. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  7. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical

  8. A Cloud-Resolving Modeling Intercomparison Study on Properties of Cloud Microphysics, Convection, and Precipitation for a Squall Line Cas

    NASA Astrophysics Data System (ADS)

    Fan, J.; Han, B.; Morrison, H.; Varble, A.; Mansell, E.; Milbrandt, J.; Wang, Y.; Lin, Y.; Dong, X.; Giangrande, S. E.; Jensen, M. P.; Collis, S. M.; North, K.; Kollias, P.

    2015-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult (1) to further our understanding of deep convection and (2) to define "benchmarks" and recommendations for their use in parameterization developments. Past model intercomparison studies used different models with different complexities of dynamic-microphysics interactions, making it hard to isolate the causes of differences between simulations. In this intercomparison study, we employed a much more constrained approach - with the same model and same experiment setups for simulations with different cloud microphysics schemes (one-moment, two-moment, and bin models). Both the piggybacking and interactive approaches are employed to explore the major microphysical processes that control the model differences and the significance of their feedback to dynamics through latent heating/cooling and cold pool characteristics. Real-case simulations are conducted for the squall line case 20 May 2011 from the MC3E field campaign. Results from the piggybacking approach show substantially different responses of the microphysics schemes to the same dynamical fields. Although the interactive microphysics-dynamics simulations buffer some differences compared with those from the piggyback runs, large differences still exist and are mainly contributed by ice microphysical processes parameterizations. The presentation will include in-depth analyses of the major microphysical processes for the squall line case, the significance of the feedback of the processes to dynamics, and how those results differ in different cloud microphysics schemes.

  9. Parameterizations of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann

    2005-01-01

    Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).

  10. Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne

    2007-01-01

    Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.

  11. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    SciTech Connect

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  12. Simulation of Mixed-Phase Convective Clouds: A Comparison of Spectral and Parameterized Microphysics

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Khain, A.; Pokrovsky, A.

    2002-12-01

    The simulation of clouds and precipitation is one of the most complex problems in atmospheric modeling. The microphysics of clouds has to deal with a large variety of hydrometeor types and a multitude of complicated physical processes like nukleation, condensation, freezing, melting, collection and breakup of particles. Due to the lack of reliable in-situ observations many of the processes are still not well understood. Nevertheless a cloud resolving model (CRM) has to include these processes in some way. All CRMs can be separated into two groups, according to the microphysical representation used. Cloud models of the first kind utilize the so-called bulk parameterization of cloud microphysics. This concept has been introduced by Kessler (1969) and has been improved and extended in the field of mesoscale modeling. The state-of-the-art bulk schemes include several particle types like cloud droplets, raindrops, ice crystals, snow and graupel which are represented by mass contents and for some of them also by the number concentrations. Within a bulk microphysical model all relevant processes have to be parameterized in terms of these model variables. CRMs of the second kind are based on the spectral formulation of cloud microphysics. For each particle type taken into account the size distribution function is represented by a number of discrete size bins with its corresponding budget equation. To achieve satisfactory numerical results at least 30 bins are necessary for each particle type. This approach has the clear advantage of being a more general representation of the relevant physical processes and the different physical properties of particles of different sizes. A spectral model is able to include detailed descriptions of collisional and condensational growth and activation/nucleation of particles. But this approach suffers from the large computational effort necessary, especially in threedimensional models. We present a comparison between a cloud model with

  13. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    SciTech Connect

    Kuboi, Nobuyuki Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  14. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  15. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  16. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  17. The discriminatory capability of existing scores to predict advanced colorectal neoplasia: a prospective colonoscopy study of 5,899 screening participants

    PubMed Central

    Wong, Martin C. S.; Ching, Jessica Y. L.; Ng, Simpson; Lam, Thomas Y. T.; Luk, Arthur K. C.; Wong, Sunny H.; Ng, Siew C.; Ng, Simon S. M.; Wu, Justin C. Y.; Chan, Francis K. L.; Sung, Joseph J. Y.

    2016-01-01

    We evaluated the performance of seven existing risk scoring systems in predicting advanced colorectal neoplasia in an asymptomatic Chinese cohort. We prospectively recruited 5,899 Chinese subjects aged 50–70 years in a colonoscopy screening programme(2008–2014). Scoring systems under evaluation included two scoring tools from the US; one each from Spain, Germany, and Poland; the Korean Colorectal Screening(KCS) scores; and the modified Asia Pacific Colorectal Screening(APCS) scores. The c-statistics, sensitivity, specificity, positive predictive values(PPVs), and negative predictive values(NPVs) of these systems were evaluated. The resources required were estimated based on the Number Needed to Screen(NNS) and the Number Needed to Refer for colonoscopy(NNR). Advanced neoplasia was detected in 364 (6.2%) subjects. The German system referred the least proportion of subjects (11.2%) for colonoscopy, whilst the KCS scoring system referred the highest (27.4%). The c-statistics of all systems ranged from 0.56–0.65, with sensitivities ranging from 0.04–0.44 and specificities from 0.74–0.99. The modified APCS scoring system had the highest c-statistics (0.65, 95% C.I. 0.58–0.72). The NNS (12–19) and NNR (5-10) were similar among the scoring systems. The existing scoring systems have variable capability to predict advanced neoplasia among asymptomatic Chinese subjects, and further external validation should be performed. PMID:26838178

  18. Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation?

    NASA Astrophysics Data System (ADS)

    Sato, Yousuke; Nishizawa, Seiya; Yashiro, Hisashi; Miyamoto, Yoshiaki; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2015-12-01

    This study investigated the impact of several cloud microphysical schemes on the trade wind cumulus in the large eddy simulation model. To highlight the differences due to the cloud microphysical component, we developed a fully compressible large eddy simulation model, which excluded the implicit scheme and approximations as much as possible. The three microphysical schemes, the one-moment bulk, two-moment bulk, and spectral bin schemes were used for sensitivity experiments in which the other components were fixed. Our new large eddy simulation model using a spectral bin scheme successfully reproduced trade wind cumuli, and reliable model performance was confirmed. Results of the sensitivity experiments indicated that precipitation simulated by the one-moment bulk scheme started earlier, and its total amount was larger than that of the other models. By contrast, precipitation simulated by the two-moment scheme started late, and its total amount was small. These results support those of a previous study. The analyses revealed that the expression of two processes, (1) the generation of cloud particles and (2) the conversion from small droplets to raindrops, were crucial to the results. The fast conversion from cloud to rain and the large amount of newly generated cloud particles at the cloud base led to evaporative cooling and subsequent stabilization in the sub-cloud layer. The latent heat released at higher layers by the condensation of cloud particles resulted in the development of the boundary layer top height.

  19. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  20. Intercomparison of four cloud microphysics schemes in the Weather Research and Forecasting (WRF) model for the simulation of summer monsoon precipitation in the Langtang Valley, Himalayas

    NASA Astrophysics Data System (ADS)

    Orr, Andrew; Couttet, Margaux; Collier, Emily; Immerzeel, Walter

    2016-04-01

    Better understanding of regional-scale precipitation patterns in the Himalayan region, and how these are affecting snow and ice, is critically required to increase our knowledge of the impacts of climate change on glaciers and snowpacks. This study examines how 4 different cloud microphysical schemes (Thompson, Morrison, WRF Single-Moment 5-class (WSM5; which is the WRF default scheme), and WRF Double-Moment 6-class (WDM6)) simulated precipitation in the Langtang Valley, Himalayas during the summer monsoon in the Weather Research and Forecasting (WRF) model. The precipitation is simulated for a ten-day period during July 2012 at high spatial-resolution (1.1 km) so as to simulate the local conditions in great detail. The model results are validated through a comparison with precipitation and radiation measurements made at two observation sites located on the main Langtang Valley floor and the mountain slopes. Analysis of water vapour and hydrometeors from each of the 4 schemes are also investigated to elucidate the main microphysics processes. The results show that the choice of microphysics scheme has a strong influence on precipitation in the Langtang Valley, with the simulated precipitation exhibiting large inter-model differences and significantly different day-to-day variability compared to measurements. The inter-model differences in simulated radiation were less marked, although under cloudy conditions all schemes demonstrated a significant positive bias in incoming radiation. However, overall the Morrison scheme showed the best agreement in terms of both precipitation and radiation over the ten-day period, while the poorest performing scheme is WDM6. Analysis of microphysics outputs suggested that 'cold-rain processes' is a key precipitation formation mechanism. The good performance of the Morrison scheme is consistent with its double-moment prediction of every ice-phase hydrometeor, which is ideally suited to represent this mechanism. By contrast, WDM6 is

  1. Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 Model for a Winter Storm

    NASA Technical Reports Server (NTRS)

    Han, Mei; Braun, Scott A.; Olson, William S.; Persson, P. Ola G.; Bao, Jian-Wen

    2009-01-01

    . This study employs this method to evaluate the accuracy of the simulated radiative properties by the MM5 model with different microphysical schemes. It is found that the representations of particle density, size, and mass in the different schemes in the MM5 model determine the model s performance when predicting a winter storm over the eastern Pacific Ocean. Schemes lacking moderate density particles (i.e. graupel), with snow flakes that are too large, or with excessive mass of snow or graupel lead to degraded prediction of the radiative properties as observed by the TRMM satellite. This study demonstrates the uniqueness of the combination of both an active microwave sensor (PR) and passive microwave sensor (TMI) onboard TRMM on assessing the accuracy of numerical weather forecasting. It improves our understanding of the physical and radiative properties of different types of precipitation particles and provides suggestions for better representation of cloud and precipitation processes in numerical models. It would, ultimately, contribute to answering questions like "Why did it not rain when the forecast says it would?"

  2. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  3. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    The V/STOL Aircraft Propulsive Effects (VAPE) computerized prediction method is evaluated. The program analyzes viscous effects, various jet, inlet, and Short TakeOff and Landing (STOL) models, and examines the aerodynamic configurations of V/STOL aircraft.

  4. New utility of an old marker: serum low-density lipoprotein predicts histopathological response of neoadjuvant chemotherapy in locally advanced gastric cancer

    PubMed Central

    Zhou, Ji-Chun; Guo, Ju-Feng; Teng, Rong-Yue; Wang, Qin-Chuan; Wang, Ji; Wei, Qun; Li, Zi-Duo; Shen, Jian-Guo; Wang, Lin-Bo

    2016-01-01

    Background Although the correlation between metabolic abnormality and gastric cancer has been extensively investigated, the question of whether metabolic parameters might influence the efficacy of chemotherapy in locally advanced gastric cancer is still unanswered. In our present study, we investigated the relationship between serum fasting glucose, lipid levels, and histopathological response of neoadjuvant chemotherapy (NAC) in locally advanced gastric cancers. Patients and methods A total of 128 patients were identified from a prospectively maintained database of patients with locally advanced gastric cancer who received NAC between July 2004 and December 2012. Histopathological response after NAC was analyzed according to Becker’s tumor-regression grade. Univariate analyses and multivariable regression analyses were performed to determine the correlation between tumor size, differentiation, fasting glucose, lipid levels, and tumor histopathological response after NAC. Results Univariate analysis revealed that low-density lipoprotein level and total cholesterol, as well as tumor size and differentiation, correlated significantly with histopathological response. Low-density lipoprotein levels and tumor size were found to be independent predictors for histopathological response, according to multivariable regression analyses. Conclusion In this observational, hypothesis-generating study, serum low-density lipoprotein measurement was found to be useful in predicting chemosensitivity to locally advanced gastric cancer patients undergoing NAC. Incorporation of serum low-density lipoprotein levels into individualized treatment protocols could be considered in clinical practice. PMID:27574445

  5. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer

    SciTech Connect

    Semple, Scott Harry, Vanessa N. MRCOG.; Parkin, David E.; Gilbert, Fiona J.

    2009-10-01

    Purpose: To investigate the combination of pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging (MRI) as an early response indicator in women receiving chemoradiation for advanced cervical cancer. Methods and Materials: Twenty women with locally advanced cervical cancer were included in a prospective cohort study. Dynamic contrast-enhanced MRI was carried out before chemoradiation, after 2 weeks of therapy, and at the conclusion of therapy using a 1.5-T MRI scanner. Radiologic assessment of uptake parameters was obtained from resultant intensity curves. Pharmacokinetic analysis using a multicompartment model was also performed. General linear modeling was used to combine radiologic and pharmacokinetic parameters and correlated with eventual response as determined by change in MRI tumor size and conventional clinical response. A subgroup of 11 women underwent repeat pretherapy MRI to test pharmacokinetic reproducibility. Results: Pretherapy radiologic parameters and pharmacokinetic K{sup trans} correlated with response (p < 0.01). General linear modeling demonstrated that a combination of radiologic and pharmacokinetic assessments before therapy was able to predict more than 88% of variance of response. Reproducibility of pharmacokinetic modeling was confirmed. Conclusions: A combination of radiologic assessment with pharmacokinetic modeling applied to dynamic MRI before the start of chemoradiation improves the predictive power of either by more than 20%. The potential improvements in therapy response prediction using this type of combined analysis of dynamic contrast-enhanced MRI may aid in the development of more individualized, effective therapy regimens for this patient group.

  6. Development of a numerical scheme to predict geomagnetic storms after intense solar events and geomagnetic activity 27 days in advance. Final report, 6 Aug 86-16 Nov 90

    SciTech Connect

    Akasofu, S.I.; Lee, L.H.

    1991-02-01

    The modern geomagnetic storm prediction scheme should be based on a numerical simulation method, rather than on a statistical result. Furthermore, the scheme should be able to predict the geomagnetic storm indices, such as the Dst and AE indices, as a function of time. By recognizing that geomagnetic storms are powered by the solar wind-magnetosphere generator and that its power is given in terms of the solar wind speed, the interplanetary magnetic field (IMF) magnitude and polar angle, the authors have made a major advance in predicting both flare-induced storms and recurrent storms. Furthermore, it is demonstrated that the prediction scheme can be calibrated using the interplanetary scintillation (IPS) observation, when the solar disturbance advances about half-way to the earth. It is shown, however, that we are still far from a reliable prediction scheme. The prediction of the IMF polar angle requires future advance in understanding characteristics of magnetic clouds.

  7. Optical and microphysical properties of atmospheric aerosols in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban

  8. Microphysical Properties of Aerosols Encountered During the 2012 TCAP Campaign Using the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Liu, X.; Cairns, B.

    2015-12-01

    The Two-Column Aerosol Project (TCAP) campaign was conducted during the summer of 2012, off the East coast of the United States by Cape Cod. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft over a period of several weeks and over a distance of several hundred kilometers. A new algorithm based on optimal estimation that can retrieve aerosol microphysical properties using highly accurate radiative transfer and Mie calculations is presented. First, results for synthetic simulated data are discussed. The algorithm is then applied to real data collected during TCAP to retrieve the aerosol microphysical state vector and corresponding uncertainty for the aerosols that were encountered. Simultaneous measurements were also made by the NASA Langley airborne High Spectral Resolution Lidar (HSRL2), which provided extinction and backscatter profiles. The RSP-retrieved microphysical properties are compared to the extinction and backscatter products, and to the HSRL2-retrieved microphysical products.

  9. Evaluation of Retrieval Algorithms for Ice Microphysics Using CALIPSO/CloudSat and Earthcare

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Hagihara, Yuichiro; Ishimoto, Hiroshi; Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2016-06-01

    We developed lidar-radar algorithms that can be applied to Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and CloudSat data to retrieve ice microphysics. The algorithms were the extended version of previously reported algorithm [1] and can treat both of nadir pointing of CALIPSO lidar period and 3°-off-nadir pointing one. We used the scattering data bank produced by the physical optics methods [2] and created lidar look-up tables of quasi-horizontally oriented ice plates (Q2D-plate) for nadir- and off-nadir lidar pointing periods. Then LUTs were implemented in the ice retrieval algorithms. We performed several sensitivity studies to evaluate uncertainties in the retrieved ice microphysics due to ice particle orientation and shape. It was found that the implementation of orientation of horizontally oriented ice plate model in the algorithm drastically improved the retrieval results in both for nadir- and off-nadir lidar pointing periods. Differences in the retrieved microphysics between only randomly oriented ice model (3D-ice) and mixture of 3D-ice and Q2Dplate model were large especially in off-nadir period, e.g., 100% in effective radius and one order in ice water content, respectively. And differences in the retrieved ice microphysics among different mixture models were smaller than about 50% for effective radius in nadir period.

  10. The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.

  11. Evaluation of A Convective Cloud Microphysics Scheme in CAM5 under the CAPT Framework

    NASA Astrophysics Data System (ADS)

    Xie, S.; Ma, H. Y.; Klein, S. A.; Song, X.; Zhang, G. J.

    2014-12-01

    The goal of this study is to improve the representation of microphysical processes of convection and its interactions with stratiform clouds and aerosols in the GCMs. We use the U.S. DOE Cloud-Associated Parameterizations Testbed (CAPT), which can efficiently run climate models in short-range weather hindcasts, to test the impacts of the convective cloud microphysics scheme on intraseasonal variability (MJO) in the tropics. Two-moment convective cloud microphysics scheme developed by Song and Zhang (2011) and Song et al. (2012) is tested in NSF/DOE CAM5. Compared to the default model, CAM5 with the convective cloud microphysics scheme produces less precipitation in most tropical oceans but more precipitation over tropical lands. More OLR is seen over the ITCZ regions except over the Maritime Continent (MC). The intraseasonal variability in precipitation is better simulated over the MC (and other continents) in the selected hindcast period (Oct 10-Nov 25, 2009). Stratiform precipitation is enhanced over the MC, consistent with changes in the heating, cloud, and relative humidity profiles. More in-depth analysis is currently being conducted. (This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.)

  12. Demonstrating Advancements in 3D Analysis and Prediction Tools for Space Weather Forecasting utilizing the Enlil Model

    NASA Astrophysics Data System (ADS)

    Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.

    2012-12-01

    Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Analysis and prediction tools for post processing and visualizing simulation results greatly enhance the utility of these models in aiding space weather forecasters to predict the terrestrial consequences of these events. The Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer (KT) group is making significant progress on an integrated post-processing and analysis and prediction tool based on the ParaView open source visualization application for space weather prediction. These tools will provide space weather forecasters with the ability to use 3D situational awareness of the solar wind, CME, and eventually the geospace environments. Current work focuses on bringing new 3D analysis and prediction tools for the Enlil heliospheric model to space weather forecasters. In this effort we present a ParaView-based model interface that will provide forecasters with an interactive system for analyzing complete 3D datasets from modern space weather models.

  13. Estimating Large-Scale Convection from a No-Microphysics WRF Simulation over the SGP

    NASA Astrophysics Data System (ADS)

    Segele, Z. T.; Leslie, L. M.; Lamb, P.

    2010-12-01

    This study evaluates the ability of the Weather Research and Forecasting (WRF) model to reproduce the observed cloud and convection characteristics in the vicinity of the Southern Great Plains (SGP) Central Facility (CF). Eight microphysics simulations were conducted for the warm-season heavy precipitation case of May 27-31, 2001. Cloud observations at the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) were used for validation. For spatial model performance verification, we used the National Weather Service’s (NWS’s) Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity data. The results of 3-km-resolution WRF simulations show that although all microphysics experiments reproduced precipitable water vapor in good agreement with the observations, they perform poorly in simulating the intensity and timing of convection. This is evidenced by near zero correlations between EOF1 time coefficients of WSR-88D and simulated reflectivity for all microphysics scheme simulations (Fig. 1). To improve this model weakness, a simulation without any microphysics was conducted. Large-scale convection then was estimated from the 900-400-hPa layer-average of the product of grid-scale ascending velocity and deficit grid-scale water vapor mass. The maximum radar reflectivity was estimated using the WSR-88D radar-precipitation rate empirical formula. Results show that the dynamically estimated reflectivity for the no-microphysics simulation reproduced reasonably well the observed large-scale convection over the SGP. The correlation between EOF1 time series of simulated and WSR-88D reflectivity is increased to +0.54. Fig.1. Characteristics of observed and simulated radar reflectivity over the SGP for May 27-31, 2001. Top panels give EOF1 spatial patterns (nondimensional, arbitrary scale between columns) for (a) WSR-88D composite reflectivity and (b) simulated radar reflectivity estimated from WRF simulation with no microphysics. Lower panel

  14. New, Improved Goddard Bulk-Microphysical Schemes for Studying Precipitation Processes in WRF

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    An improved bulk microphysical parameterization is implemented into the Weather Research and Forecasting ()VRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with a cloud ice-snow-hail configuration agreed better with observations in terms of rainfall intensity and a narrow convective line than did simulations with a cloud ice-snow-graupel or cloud ice-snow (i.e., 2ICE) configuration. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 in For an Atlantic hurricane case, the Goddard microphysical schemes had no significant impact on the track forecast but did affect the intensity slightly. The improved Goddard schemes are also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in the southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE scheme with the hail option and the Thompson scheme agree better with observations in terms of rainfall intensity, expect that the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model

  15. Probing the impact of different aerosol sources on cloud microphysics and precipitation through in-situ measurements of chemical mixing state

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Heymsfield, A.; Roberts, G. C.; DeMott, P. J.; Sullivan, R. C.; Rosenfeld, D.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosol particles play a crucial role in affecting cloud processes by serving as cloud nuclei. However, our understanding of which particles actually form cloud and ice nuclei limits our ability to treat aerosols properly in climate models. In recent years, it has become possible to measure the chemical composition of individual cloud nuclei within the clouds using on-line mass spectrometry. In-situ high time resolution chemistry can now be compared with cloud physics measurements to directly probe the impact of aerosol chemistry on cloud microphysics. This presentation will describe results from two recent field campaigns, CalWater in northern California and ICE-T in the western Caribbean region. Ground-based and aircraft measurements will be presented of aerosol mixing state, cloud microphysics, and meteorology. Results from single particle mass spectrometry will show the sources of the cloud seeds, including dust, biomass burning, sea spray, and biological particles. Details will be provided on how we are now able to probe the sources and cycling of atmospheric aerosols by measuring individual aerosols, cloud nuclei, and precipitation chemistry. The important role of dust, both Asian and African, and bioparticles in forming ice nuclei will be discussed. Finally, a summary will be provided discussing how these new in-situ measurements are being used to advance our understanding of complex atmospheric processes, and improve our understanding of aerosol impacts on climate.

  16. LIMA (v1.0): a two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei

    NASA Astrophysics Data System (ADS)

    Vié, B.; Pinty, J.-P.; Berthet, S.; Leriche, M.

    2015-09-01

    The paper describes the 2-moment microphysical scheme LIMA (Liquid Ice Multiple Aerosols), which relies on the prognostic evolution of a three-dimensional (3-D) aerosol population, and the careful description of the nucleating properties that enable cloud droplets and pristine ice crystals to form. LIMA uses the aerosol nucleating properties to form cloud droplets and pristine ice crystals. Several modes of Cloud Condensation Nuclei (CCN) and Ice Freezing Nuclei (IFN) are considered individually. A special class of partially soluble IFN is also introduced. These "aged" IFN act first as CCN and then as IFN by immersion nucleation at low temperatures. All the CCN modes are in competition with each other, as expressed by the single equation of maximum supersaturation. The IFN are insoluble aerosols that nucleate ice in several ways (condensation, deposition and immersion freezing) assuming the singular hypothesis. The scheme also includes the homogeneous freezing of cloud droplets, the Hallett-Mossop ice multiplication process and the freezing of haze at very low temperature. LIMA assumes that water vapour is in thermodynamic equilibrium with the population of cloud droplets (adjustment to saturation in warm clouds). In ice clouds, the prediction of the number concentration of the pristine ice crystals is used to compute explicit deposition and sublimation rates (leading to free under/supersaturation over ice). The formation of hydrometeors is standard. The autoconversion, accretion and self-collection processes shape the raindrop spectra. The initiation of the large crystals and aggregates category is the result of the depositional growth of large crystals beyond a critical size. Aggregation and riming are computed explicitly. Heavily rimed crystals (graupel) can experience a dry or wet growth mode. An advanced version of the scheme includes a separate hail category of particles forming and growing exclusively in the wet growth mode. The sedimentation of all particle

  17. LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei

    NASA Astrophysics Data System (ADS)

    Vié, B.; Pinty, J.-P.; Berthet, S.; Leriche, M.

    2016-02-01

    The paper describes the LIMA (Liquid Ice Multiple Aerosols) quasi two-moment microphysical scheme, which relies on the prognostic evolution of an aerosol population, and the careful description of the nucleating properties that enable cloud droplets and pristine ice crystals to form from aerosols. Several modes of cloud condensation nuclei (CCN) and ice freezing nuclei (IFN) are considered individually. A special class of partially soluble IFN is also introduced. These "aged" IFN act first as CCN and then as IFN by immersion nucleation at low temperatures. All the CCN modes are in competition with each other, as expressed by the single equation of maximum supersaturation. The IFN are insoluble aerosols that nucleate ice in several ways (condensation, deposition and immersion freezing) assuming the singular hypothesis. The scheme also includes the homogeneous freezing of cloud droplets, the Hallett-Mossop ice multiplication process and the freezing of haze at very low temperatures. LIMA assumes that water vapour is in thermodynamic equilibrium with the population of cloud droplets (adjustment to saturation in warm clouds). In ice clouds, the prediction of the number concentration of the pristine ice crystals is used to compute explicit deposition and sublimation rates (leading to free under/supersaturation over ice). The autoconversion, accretion and self-collection processes shape the raindrop spectra. The initiation of the large crystals and aggregates category is the result of the depositional growth of large crystals beyond a critical size. Aggregation and riming are computed explicitly. Heavily rimed crystals (graupel) can experience a dry or wet growth mode. An advanced version of the scheme includes a separate hail category of particles forming and growing exclusively in the wet growth mode. The sedimentation of all particle types is included. The LIMA scheme is inserted into the Meso-NH cloud-resolving mesoscale model. The flexibility of LIMA is illustrated

  18. A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2015-01-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple scattering is well known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field of view) as well as the cloud macrophysical (e.g. cloud-base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud-droplet number density in the cloud-base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up tables produced using extensive lidar Monte Carlo (MC) multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation (LES) model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number

  19. A Depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, David; Klein Baltink, Henk; Henzing, Bas; de Roode, Stephen; Siebesma, Pier

    2015-04-01

    The fact that polarisation lidars measure a~depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. cloud base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a~quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a~retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a~fixed distance above cloud-base). This simplification, in turn, allows us to employ a~fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a~range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2--3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a~comparison between ground-based aerosol number concentration

  20. A depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2014-09-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud

  1. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  2. Studies of Radiation and Microphysics in Cirrus and Marine Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two tasks were completed during this period. In the first, we examined the polarization of millimeter-wavelength radar beams scattered by ice crystals. Because of their non-spherical shape and size, ice crystals depolarize the incident polarized radar beam. In principle, this depolarization can be used to identify ice from liquid water, as well as provide some information on size. However, the amount of de-polarization is small, producing only a weak signal at the receiver. Our task was to determine the magnitude of such a signal and decide if our radar would be capable of measuring it under typical cirrus conditions. The theoretical study was carried out by Henrietta Lemke, a visiting graduate student from Germany. She had prior experience using a discrete dipole code to compute scattering depolarization. Dr. Kultegin Aydin of the Penn State Electrical Engineering Department, who is also expert in this area, consulted with us on this project at no cost to the project. Our conclusion was that the depolarization signal is too weak to be usefully measured by our system. Therefore we proceeded no further in this study. The second task involved the study of the effect of stratus microphysics on surface cloud forcing. Manajit Sengupta, a graduate student, and the project PI jointly carried out this task. The study used data culled from over a year of continuous radar and radiometer observations at the Atmospheric Radiation Measurement (ARM) site in Oklahoma. The study compared solar radiation calculations made using constant microphysics with calculations made using a retrieved mean particle size. The results showed that on average the constant microphysics produced the correct forcing when compared with the observed forcing. We conclude, therefore, that there is little impetus on radiation grounds alone to include explicit microphysics in climate models. The question of pollutant particle emission impacts on microphysics remains to be resolved. A manuscript is in

  3. MAD-VenLA: a microphysical modal representation of clouds for the IPSL Venus GCM

    NASA Astrophysics Data System (ADS)

    Guilbon, Sabrina; Määttänen, Anni; Burgalat, Jérémie; Montmessin, Franck; Stolzenbach, Aurélien; Bekki, Slimane

    2016-10-01

    Venus is enshrouded by 20km-thick clouds, which are composed of sulfuric acid-water solution droplets. Clouds play a crucial role on the climate of the planet. Our goal is to study the formation and evolution of Venusian clouds with microphysical models. The goal of this work is to develop the first full 3D microphysical model of Venus coupled with the IPSL Venus GCM and the photochemical model included (Lebonnois et al. 2010, Stolzenbach et al. 2016).Two particle size distribution representations are generally used in cloud modeling: sectional and modal. The term 'sectional' means that the continuous particle size distribution is divided into a discrete set of size intervals called bins. In the modal approach, the particle size distribution is approximated by a continuous parametric function, typically a log-normal, and prognostic variables are distribution or distribution-integrated parameters (Seigneur et al. 1986, Burgalat et al. 2014). These two representations need to be compared to choose the optimal trade-off between precision and computational efficiency. At high radius resolution, sectional models are computationally too demanding to be integrated in GCMs. That is why, in other GCMs, such as the IPSL Titan GCM, the modal scheme is used (Burgalat et al. 2014).The Venus Liquid Aerosol cloud model (VenLA) and the Modal Dynamics of Venusian Liquid Aerosol cloud model (MAD-VenLA) are respectively the sectional and the modal model discussed here and used for defining the microphysical cloud module to be integrated in the IPSL Venus GCM. We will compare the two models with the key microphysical processes in 0D setting: homogeneous and heterogeneous nucleation, condensation/evaporation and coagulation. Then, MAD-VenLA will be coupled with the IPSL VGCM. The first results of the complete VGCM with microphysics coupled with chemistry will be presented.

  4. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    NASA Astrophysics Data System (ADS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  5. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Li, J. L. F.; Mohr, K. I.

    2015-12-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products, CloudSat/CALIPSO cloud fractions, and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow/graupel as functions of temperature and mixing ratio. Despite the cloud microphysics improvements, systematic errors associated with sub-grid processes and cyclic lateral boundaries in the embedded CRMs remain and will require future improvement.

  6. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    NASA Technical Reports Server (NTRS)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-01-01

    This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.

  7. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  8. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  9. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew Wells

    Multiple sensors flying in the A-train constellation of satellites were used to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Aerosol plumes generated by ships sometimes influence cloud microphysical properties (effective radius) and, to a largely undetermined extent, cloud macrophysical properties (liquid water path, coverage, depth, precipitation, and longevity). Aerosol indirect effects were brought into focus, using observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the 94-GHZ radar onboard CloudSat. To assess local cloud scale responses to aerosol, the locations of over one thousand ship tracks coinciding with the radar were meticulously logged by hand from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. MODIS imagery was used to distinguish ship tracks that were embedded in closed, open, and unclassifiable mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences in the sign and magnitude of these properties were observed between cloud regimes. The results demonstrate that the spatial extent of rainfall (rain cover fraction) and intensity decrease in the clouds contaminated by the ship plume compared to the ambient pristine clouds. Although reductions of precipitation were common amongst the clouds with detectable rainfall (72% of cases), a substantial fraction of ship tracks (28% of cases) exhibited the opposite response. The sign and strength of the response was tied to the type of stratocumulus (e.g., closed vs open cells), depth of the boundary layer, and humidity in the free-troposphere. When closed cellular clouds were identified, liquid water path, drizzle rate, and rain cover fraction (an average

  10. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold Air Outbreaks One Month in Advance

    NASA Astrophysics Data System (ADS)

    Cai, Ming

    2016-04-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1‑2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30‑day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.

  11. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  12. An algorithm for retrieving fine and coarse aerosol microphysical properties from AERONET-type photopolarimetric measurements

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Zeng, J.; Spurr, R. J. D.; Liu, X.; Dubovik, O.; Li, Z.; Li, L.; Holben, B. N.; Mishchenko, M. I.

    2014-12-01

    A new retrieval algorithm has been developed to retrieve both fine and coarse modal aerosol properties from multi-spectral and multi-angular solar polarimetric radiation fields such as those measured by the AErosol RObotic NETwork (AERONET) but with additional channels of polarization observations (hereafter AEROENT-type measurements). Most AERONET sites lack the capability to measure light polarization, though a few measure polarization only at 870 nm. From both theory and real cases, we show that adding multi-spectral polarization data can allow a mode-resolved inversion of aerosol microphysical parameters. In brief, the retrieval algorithm incorporates AERONET-type measurements in conjunction with advanced vector radiative transfer model specifically designed for studying the inversion problems in aerosol remote sensing. It retrieves aerosol parameters associated to a bi-lognormal particle size distribution (PSD) including aerosol volume concentrations, effective radius and variance, and complex indices of aerosol refraction. Our algorithm differs from the current AERONET inversion algorithm in two major aspects. First, it retrieves effective radius and variance and total volume by assuming a bi-modal lognormal PSD, while AERONET one retrieves aerosol volumes of 22 size bins. Second, our algorithm retrieves spectral refractive indices for both fine and coarse modes. Mode-resolved refractive indices can improve the estimate of single scattering albedo (SSA) for each mode, which also benefits the evaluation for satellite products and chemistry transport models. While bi-lognormal PSD can well represent aerosol size spectrum in most cases, future research efforts will include implementation for tri-modal aerosol mixtures in situations of cloud-formation or volcanic aerosols. Applying the algorithm to a suite of real cases over Beijing_RADI site, we found that our retrievals are overall consistent with AERONET inversion products, but can offer mode

  13. Nestin predicts a favorable prognosis in early ampullary adenocarcinoma and functions as a promoter of metastasis in advanced cancer.

    PubMed

    Shan, Yan-Shen; Chen, Yi-Ling; Lai, Ming-Derg; Hsu, Hui-Ping

    2015-01-01

    Nestin exhibits stemness characteristics and is overexpressed in several types of cancers. Downstream signaling of nestin [cyclin-dependent kinase 5 (CDK5) and Ras-related C3 botulinum toxin substrate 1 (Rac1)] functions in cancer to modulate cellular behaviors. We studied the function of nestin in ampullary adenocarcinoma. Immunohistochemistry (IHC), reverse transcription-polymerase chain reaction, and cDNA microarray of nestin in ampullary adenocarcinoma was compared with normal duodenum. CDK5 and Rac1 were assessed by western blotting. We hypothesized that nestin/CDK5/Rac1 signaling behaves different in early and advanced cancer. We found that the presence of nestin mRNA was increased in the early stages of cancer (T2N0 or T3N0) and advanced cancer with lymph node metastasis (T4N1). A total of 102 patients were enrolled in the IHC staining. Weak nestin expression was correlated with favorable characteristics of cancer, decreased incidence of local recurrence and lower risk of recurrence within 12 months after surgery. Patients with weak nestin expression had the most favorable recurrence‑free survival rates. Patients with mild to strong nestin expression exhibited an advanced behavior of cancer and increased possibility of cancer recurrence. The reciprocal expression of nestin and RAC1 were explored using a cDNA microarray analysis in the early stages of ampullary adenocarcinoma. Increased level of CDK5 with simultaneously decreased expression of Rac1 was detected by western blotting of ampullary adenocarcinoma in patients without cancer recurrence. The activation of multiple oncogenic pathways, combined with the stemness characteristics of nestin, formed a complex network in advanced ampullary adenocarcinoma. Our study demonstrated that nestin performs a dual role in ampullary adenocarcinoma. Appropriate amount of nestin enhances CDK5 function to suppress Rac1 and excessive nestin/CDK5 participates in multiple oncogenic pathways to promote cancer invasiveness

  14. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  15. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  16. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as

  17. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  18. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials.

    PubMed

    Winkler, David A

    2016-05-15

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods.

  19. Numerical Modeling for Springback Predictions by Considering the Variations of Elastic Modulus in Stamping Advanced High-Strength Steels (AHSS)

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Kimchi, Menachem

    2011-08-01

    This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.

  20. Predictive lymphatic mapping: a method for mapping lymphatic channels in patients with advanced unilateral lymphedema using indocyanine green lymphography.

    PubMed

    Mihara, Makoto; Seki, Yukio; Hara, Hisako; Iida, Takuya; Oka, Aiko; Kikuchi, Kazuki; Narushima, Mitsunaga; Haragi, Makiko; Furniss, Dominic; Hin-Lun, Lawrence; Mitsui, Kito; Murai, Noriyuki; Koshima, Isao

    2014-01-01

    In severe lymphedema, indocyanine green lymphography cannot be used to map lymphatic channels before lymphaticovenular anastomosis (LVA) because linear lymphatics cannot be detected in a severely affected leg. Here, we describe a new method, which we refer to as predictive lymphatic mapping, to predict the location of lymphatics for anastomosis in unilateral lymphedema, thereby improving surgical accuracy and efficiency. The approach consists of marking anatomical landmarks and joining selected landmarks with fixed lines. The distance from these fixed lines to lymphatic channels mapped by indocyanine green lymphography in the unaffected leg is then measured, scaled up based on the difference in circumference between the legs, and transposed to the affected leg. To date, we have used this method in 5 cases of unilateral or asymmetric lymphedema of the lower extremities. In no cases have we failed to find a lymphatic channel suitable for LVA within a 2-cm incision. These results suggest that predictive lymphatic mapping is a useful additional tool for surgeons performing LVA under local anesthesia, which will help to improve the accuracy of incisions and the efficiency of surgery.

  1. Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report

    SciTech Connect

    X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

    2007-09-30

    Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

  2. Prediction of geomagnetic reversals using low-dimensional dynamical models and advanced data assimilation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Fournier, A.; Morzfeld, M.; Hulot, G.

    2013-12-01

    For a suitable choice of parameters, the system of three ordinary differential equations (ODE) presented by Gissinger [1] was shown to exhibit chaotic reversals whose statistics compared well with those from the paleomagnetic record. In order to further assess the geophysical relevance of this low-dimensional model, we resort to data assimilation methods to calibrate it using reconstructions of the fluctuation of the virtual axial dipole moment spanning the past 2 millions years. Moreover, we test to which extent a properly calibrated model could possibly be used to predict a reversal of the geomagnetic field. We calibrate the ODE model to the geomagnetic field over the past 2 Ma using the SINT data set of Valet et al. [2]. To this end, we consider four data assimilation algorithms: the ensemble Kalman filter (EnKF), a variational method and two Monte Carlo (MC) schemes, prior importance sampling and implicit sampling. We observe that EnKF performs poorly and that prior importance sampling is inefficient. We obtain the most accurate reconstructions of the geomagnetic data using implicit sampling with five data points per assimilation sweep (of duration 5 kyr). The variational scheme performs equally well, but it does not provide us with quantitative information about the uncertainty of the estimates, which makes this method difficult to use for robust prediction under uncertainty. A calibration of the model using the PADM2M data set of Ziegler et al. [3] confirms these findings. We study the predictive capability of the ODE model using statistics computed from synthetic data experiments. For each experiment, we produce 2 Myr of synthetic data (with error levels similar to the ones found in real data), then calibrate the model to this record and then check if this calibrated model can correctly and reliably predict a reversal within the next 10 kyr (say). By performing 100 such experiments, we can assess how reliably our calibrated model can predict a (non

  3. Optimal tumor shrinkage predicts long-term outcome in advanced nonsmall cell lung cancer (NSCLC) treated with target therapy

    PubMed Central

    He, Xiaobo; Zhang, Yang; Ma, Yuxiang; Zhou, Ting; Zhang, Jianwei; Hong, Shaodong; Sheng, Jin; Zhang, Zhonghan; Yang, Yunpeng; Huang, Yan; Zhang, Li; Zhao, Hongyun

    2016-01-01

    Abstract Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are used as standard therapies for advanced nonsmall cell lung cancer (NSCLC) patients with EGFR mutation positive. Because these targeted therapies could cause tumor necrosis and shrinkage, the purpose of the study is to search for a value of optimal tumor shrinkage as an appropriate indicator of outcome for advanced NSCLC. A total of 88 NSCLC enrollees of 3 clinical trials (IRESSA registration clinical trial, TRUST study and ZD6474 study), who received Gefitinib (250 mg, QD), Erlotinib (150 mg, QD), and ZD6474 (100 mg, QD), respectively, during December 2003 and October 2007, were retrospectively analyzed. The response evaluation criteria in solid tumors (RECIST) were used to identify responders, who had complete response (CR) or partial responses (PR) and nonresponders who had stable disease (SD) or progressive disease (PD). Receiver operating characteristics (ROC) analysis was used to find the optimal tumor shrinkage as an indicator for tumor therapeutic outcome. Univariate and multivariate Cox regression analyses were performed to compare the progression-free survival (PFS) and overall survival (OS) between responders and nonresponders stratified based on radiologic criteria. Among the 88 NSCLC patients, 26 were responders and 62 were nonresponders based on RECIST 1.0. ROC indicated that 8.32% tumor diameter shrinkage in the sum of the longest tumor diameter (SLD) was the cutoff point of tumor shrinkage outcomes, resulting in 46 responders (≤8.32%) and 42 nonresponders (≥8.32%). Univariate and multivariate Cox regression analyses indicated that (1) the responders (≤8.32%) and nonresponders (≥ −8.32%) were significantly different in median PFS (13.40 vs 1.17 months, P < 0.001) and OS (19.80 vs 7.90 months, P < 0.001) and (2) –8.32% in SLD could be used as the optimal threshold for PFS (hazard ratio [HR], 8.11, 95% CI, 3.75 to 17.51, P < 0.001) and OS

  4. Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part 2; Cloud Microphysics and Storm Dynamics Interactions

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2009-01-01

    Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

  5. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  6. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  7. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  8. Elevated Neutrophil-to-Lymphocyte Ratio Predicts Intermediate-Term Outcomes in Patients Who Have Advanced Chronic Kidney Disease with Peripheral Artery Disease Receiving Percutaneous Transluminal Angioplasty

    PubMed Central

    Chen, I-Chih; Yu, Chao-Chin; Wu, Yi-Hsuan; Chao, Ting-Hsing

    2016-01-01

    Background Inflammation plays an important role in the pathogenesis of cardiovascular disease in patients with advanced chronic kidney disease (CKD). Neutrophil-to-lymphocyte ratio (NLR), an inflammatory biomarker, has not been evaluated in patients who have advanced CKD with peripheral artery disease (PAD) undergoing percutaneous transluminal angioplasty (PTA), especially in Taiwan. Methods We retrospectively evaluated 148 advanced CKD (creatinine clearance rate ≤ 30 mL/min/1.73 m2) identified from a prospective registry in our hospital (303 PTA cases in total). Kaplan-Meier analysis with log-rank test was used to study event-free survival, and all univariables (p value < 0.1) were put into multivariate Cox regression analysis. Results During the mean follow-up time of 8.6 ± 7.8 months, 35.1% of the cases achieved primary composite endpoint (all-cause mortality or major amputation), 25.5% underwent death from any cause, and 14.9% underwent major or minor amputation. Rutherford grade 6, either NLR or NLR ≥ 3.76, and a history of hypertension had a positively prognostic impact on the occurrence of primary composite endpoint, whereas higher albumin level (≥ 3.0 mg/dL) and technical success had a significantly protective effect. History of hypertension, either NLR or NLR ≥ 3.76, and age were associated with all-cause mortality. In addition, Rutherford 6, higher albumin level (≥ 3.0 mg/dL), technical success, NLR, and age could predict the occurrence of major amputation. Conclusions NLR, but not C-reactive protein or platelet-lymphocyte ratio, is an important prognostic predictor of all major clinical outcomes in patients with advanced CKD and PAD receiving PTA. Further studies are warranted to establish a better strategy and healthcare program in this clinical setting. PMID:27713601

  9. One-Way Coupling of an Advanced CFD Multi-Physics Model to FEA for Predicting Stress-Strain in the Solidifying Shell during Continuous Casting of Steel

    NASA Astrophysics Data System (ADS)

    Svensson, Johan; Ramírez López, Pavel E.; Jalali, Pooria N.; Cervantes, Michel

    2015-06-01

    One of the main targets for Continuous Casting (CC) modelling is the actual prediction of defects during transient events. However, the majority of CC models are based on a statistical approach towards flow and powder performance, which is unable to capture the subtleties of small variations in casting conditions during real industrial operation or the combined effects of such changes leading eventually to defects. An advanced Computational Fluid Dynamics (CFD) model; which accounts for transient changes on lubrication during casting due to turbulent flow dynamics and mould oscillation has been presented on MCWASP XIV (Austria) to address these issues. The model has been successfully applied to the industrial environment to tackle typical problems such as lack of lubrication or unstable flows. However, a direct application to cracking had proven elusive. The present paper describes how results from this advanced CFD-CC model have been successfully coupled to structural Finite Element Analysis (FEA) for prediction of stress-strains as a function of irregular lubrication conditions in the mould. The main challenge for coupling was the extraction of the solidified shell from CFD calculations (carried out with a hybrid structured mesh) and creating a geometry by using iso-surfaces, re-meshing and mapping loads (e.g. temperature, pressure and external body forces), which served as input to mechanical stress-strain calculations. Preliminary results for CC of slabs show that the temperature distribution within the shell causes shrinkage and thermal deformation; which are in turn, the main source of stress. Results also show reasonable stress levels of 10-20 MPa in regions, where the shell is thin and exposed to large temperature gradients. Finally, predictions are in good agreement with prior works where stresses indicate compression at the slab surface, while tension is observed at the interior; generating a characteristic stress-strain state during solidification in CC.

  10. Rapid and early α-fetoprotein and des-γ-carboxy prothrombin responses to initial arterial infusion chemotherapy predict treatment outcomes of advanced hepatocellular carcinoma

    PubMed Central

    OYAMA, KENJI; KODA, MASAHIKO; SUGIHARA, TAKAAKI; KISHINA, MANABU; MIYOSHI, KENICHI; OKAMOTO, TOSHIAKI; HODOTSUKA, MASANORI; FUJISE, YUKI; MATONO, TOMOMITSU; TOKUNAGA, SHIHO; OKAMOTO, KINYA; HOSHO, KEIKO; OKANO, JUNICHI; MURAWAKI, YOSHIKAZU

    2015-01-01

    The aim of the present study was to predict the effects of transarterial infusion (TAI) chemotherapy based on early changes in α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) in patients with advanced hepatocellular carcinoma (HCC). Seventy-four patients who underwent TAI with cisplatin, 5-fluorouracil, mitomycin C and epirubicin for advanced HCC were enrolled. Antitumor responses were evaluated 6 months after TAI. Rapid and early responses were defined as the ratio of AFP or DCP after 1 week and 1 month compared to baseline. A total of 5, 10, 17 and 42 patients had complete response (CR), partial response (PR), stable disease (SD) or progressive disease (PD), respectively. Early AFP response was significantly lower in the CR+PR compared to the SD+PD groups (P<0.01). The early DCP response was significantly lower in the CR+PR compared to the SD+PD. The sensitivity and specificity of rapid and early AFP responses in the CR+PR were 0.78 and 0.72, and 0.80 and 0.73, respectively, and those of rapid and early DCP responses were 0.67 and 0.65, and 0.77 and 0.71, respectively. The combination of AFP and DCP responses had higher specificity compared to AFP or DCP alone responses. Patients were divided into responder and non-responder groups to evaluate the prediction of survival outcome. Early responders of AFP, DCP and AFP+DCP, who were divided based on the cut-off values of CR+PR survived significantly longer than the non-responders (P<0.05). In conclusion, rapid or early responses of AFP and/or DCP levels 1 and 4 weeks after TAI chemotherapy helped to predict the treatment effects. PMID:26137283

  11. The eTOX data-sharing project to advance in silico drug-induced toxicity prediction.

    PubMed

    Cases, Montserrat; Briggs, Katharine; Steger-Hartmann, Thomas; Pognan, François; Marc, Philippe; Kleinöder, Thomas; Schwab, Christof H; Pastor, Manuel; Wichard, Jörg; Sanz, Ferran

    2014-01-01

    The high-quality in vivo preclinical safety data produced by the pharmaceutical industry during drug development, which follows numerous strict guidelines, are mostly not available in the public domain. These safety data are sometimes published as a condensed summary for the few compounds that reach the market, but the majority of studies are never made public and are often difficult to access in an automated way, even sometimes within the owning company itself. It is evident from many academic and industrial examples, that useful data mining and model development requires large and representative data sets and careful curation of the collected data. In 2010, under the auspices of the Innovative Medicines Initiative, the eTOX project started with the objective of extracting and sharing preclinical study data from paper or pdf archives of toxicology departments of the 13 participating pharmaceutical companies and using such data for establishing a detailed, well-curated database, which could then serve as source for read-across approaches (early assessment of the potential toxicity of a drug candidate by comparison of similar structure and/or effects) and training of predictive models. The paper describes the efforts undertaken to allow effective data sharing intellectual property (IP) protection and set up of adequate controlled vocabularies) and to establish the database (currently with over 4000 studies contributed by the pharma companies corresponding to more than 1400 compounds). In addition, the status of predictive models building and some specific features of the eTOX predictive system (eTOXsys) are presented as decision support knowledge-based tools for drug development process at an early stage. PMID:25405742

  12. The eTOX Data-Sharing Project to Advance in Silico Drug-Induced Toxicity Prediction

    PubMed Central

    Cases, Montserrat; Briggs, Katharine; Steger-Hartmann, Thomas; Pognan, François; Marc, Philippe; Kleinöder, Thomas; Schwab, Christof H.; Pastor, Manuel; Wichard, Jörg; Sanz, Ferran

    2014-01-01

    The high-quality in vivo preclinical safety data produced by the pharmaceutical industry during drug development, which follows numerous strict guidelines, are mostly not available in the public domain. These safety data are sometimes published as a condensed summary for the few compounds that reach the market, but the majority of studies are never made public and are often difficult to access in an automated way, even sometimes within the owning company itself. It is evident from many academic and industrial examples, that useful data mining and model development requires large and representative data sets and careful curation of the collected data. In 2010, under the auspices of the Innovative Medicines Initiative, the eTOX project started with the objective of extracting and sharing preclinical study data from paper or pdf archives of toxicology departments of the 13 participating pharmaceutical companies and using such data for establishing a detailed, well-curated database, which could then serve as source for read-across approaches (early assessment of the potential toxicity of a drug candidate by comparison of similar structure and/or effects) and training of predictive models. The paper describes the efforts undertaken to allow effective data sharing intellectual property (IP) protection and set up of adequate controlled vocabularies) and to establish the database (currently with over 4000 studies contributed by the pharma companies corresponding to more than 1400 compounds). In addition, the status of predictive models building and some specific features of the eTOX predictive system (eTOXsys) are presented as decision support knowledge-based tools for drug development process at an early stage. PMID:25405742

  13. Advancing hydrometeorological prediction capabilities through standards-based cyberinfrastructure development: The community WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; Parodi, Antonio; Hooper, Rick; Jha, Shantenu; Zaslavsky, Ilya

    2013-04-01

    The need for improved assessments and predictions of many key environmental variables is driving a multitude of model development efforts in the geosciences. The proliferation of weather and climate impacts research is driving a host of new environmental prediction model development efforts as society seeks to understand how climate does and will impact key societal activities and resources and, in turn, how human activities influence climate and the environment. This surge in model development has highlighted the role of model coupling as a fundamental activity itself and, at times, a significant bottleneck in weather and climate impacts research. This talk explores some of the recent activities and progress that has been made in assessing the attributes of various approaches to the coupling of physics-based process models for hydrometeorology. One example modeling system that is emerging from these efforts is the community 'WRF-Hydro' modeling system which is based on the modeling architecture of the Weather Research and Forecasting (WRF). An overview of the structural components of WRF-Hydro will be presented as will results from several recent applications which include the prediction of flash flooding events in the Rocky Mountain Front Range region of the U.S. and along the Ligurian coastline in the northern Mediterranean. Efficient integration of the coupled modeling system with distributed infrastructure for collecting and sharing hydrometeorological observations is one of core themes of the work. Specifically, we aim to demonstrate how data management infrastructures used in the US and Europe, in particular data sharing technologies developed within the CUAHSI Hydrologic Information System and UNIDATA, can interoperate based on international standards for data discovery and exchange, such as standards developed by the Open Geospatial Consortium and adopted by GEOSS. The data system we envision will help manage WRF-Hydro prediction model data flows, enabling

  14. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.

  15. Advanced Models for Prediction of High Altitude Aero-Thermal Loads of a Space Re-entry Vehicle

    NASA Astrophysics Data System (ADS)

    Votta, R.; Schettino, A.; Bonfiglioli, A.

    2011-05-01

    The analysis of the rarefaction effects in predicting the main aero-thermal loads of a Space re-entry vehicle is presented. It is well known that the Navier-Stokes equations fail in rarefied regimes and other approaches must be used. In the present paper different configurations have been simulated by using the Direct Simulation Monte Carlo method. Moreover, slip flow boundary conditions have been implemented in a Navier-Stokes code in order to extend the validity of the continuum approach to the transitional flow regime. Finally, bridging formulas for high altitude aerodynamics of winged bodies have been used. Firstly, two simple geometries have been analysed, specifically designed to study the phenomenon of shock wave boundary layer interaction: a hollow cylinder flare, for which some experiments are available; and a blunt-nosed flat plate/flap model designed and tested at the Italian Aerospace Research Centre. The other configurations taken into account are, respectively, an experimental winged re-entry vehicle and a capsule, for which global aerodynamic coefficients and local wall heating have been determined with different approaches. The Navier-Stokes code with slip flow boundary conditions has shown good predicting capabilities compared with experiments in the hollow cylinder flare case; however, for the winged vehicle and capsule cases, the CFD results are not fully satisfactory and the Monte Carlo method remains the most reliable approach, together with the bridging formula, that provides good results for the aerodynamic coefficients.

  16. Impact of uncertainties in parameterized cloud-microphysical processes on the simulated development of an idealized 2-D squall line

    NASA Astrophysics Data System (ADS)

    Michelson, Sara; Bao, Jian-Wen; Grell, Evelyn

    2016-04-01

    In this study, numerical model simulations of an idealized 2-D squall line are investigated using microphysics budget analysis. Four commonly-used microphysics schemes of various complexity are used in the simulations. Diagnoses of the source and sink terms of the hydrometeor budget equations reveal that the differences related to the assumptions of hydrometeor size-distributions between the schemes lead to the differences in the simulations due to the net effect of various microphysical processes on the interaction between latent heating/evaporative cooling and flow dynamics as the squall line develops. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.

  17. Advanced Regional and Decadal Predictions of Coastal Inundation for the U.S. Atlantic and Gulf Coasts (Invited)

    NASA Astrophysics Data System (ADS)

    Horton, B.; Corbett, D. R.; Donnelly, J. P.; Kemp, A.; Lin, N.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.

    2013-12-01

    Future inundation of the U.S. Atlantic and Gulf coasts will depend upon sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. Through ongoing, collaborative research we are employing new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea level rise along the U.S. Atlantic and Gulf coasts increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic variability. Key uncertainties include the role of continental ice sheets, mountain glaciers, and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. We produced new, high-resolution proxy sea-level reconstructions to provide crucial additional constraints to such semi-empirical models. Our dataset spans the alternation between the 'Medieval Climate Anomaly' and 'Little Ice Age'. Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from four study areas (Connecticut, New Jersey, North Carolina and Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, future storm surges will be superimposed on background sea

  18. Advances in the use of vegetation structure metrics to predict biodiversity patterns and associated habitat use (Invited)

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.

    2010-12-01

    Ecologists have long sought to explain patterns of biodiversity based on latitude, area, environmental heterogeneity, evolutionary rates, and other factors. Canopy structural complexity influences the abundance and distribution of species by creating a greater variety of microclimates and microhabitats, which in turn produce more diverse food and cover for a broader range of species and greater numbers of individuals. Prior to the availability of satellite data, field-based studies at local spatial scales revealed the strong role of vegetation structure in driving biodiversity. Capabilities now exist to derive canopy structure information in great detail using a range of remote sensing observations. I will review some recent advances in this rapidly evolving field, focusing primarily but not exclusively on the use of laser remote sensing (light detection and ranging). These data sets are useful for deriving aspects of canopy structure that are related to habitat heterogeneity, vertical complexity and the associated patterns of habitat suitability and utilization by organisms. I will explore how different habitat attributes are related to aspects of biodiversity, i.e. species richness and abundance. I will focus primarily on birds, because they are the best studied organisms, but will also discuss other organisms, as well as the influence of scale and the relevance of this research to species range modeling and broader conservation efforts.

  19. Blood neutrophil-lymphocyte ratio predicts survival in locally advanced cancer stomach treated with neoadjuvant chemotherapy FOLFOX 4.

    PubMed

    el Aziz, Lamiss Mohamed Abd

    2014-12-01

    Accurate predictors of survival for patients with advanced gastric cancer treated with neoadjuvant chemotherapy are currently lacking. In this study, we aimed to evaluate the prognostic significance of the neutrophil-lymphocyte ratio (NLR) in patients with stage III-IV gastric cancer who received neoadjuvant chemotherapy FOLFOX 4 as neoadjuvant chemotherapy. We enrolled 70 patients with stage III-IV cancer stomach in this study. Patients received FOLFOX 4 as neoadjuvant chemotherapy. Blood sample was collected before chemotherapy. The NLR was divided into two groups: high (>3) and low (≤ 3). Univariate analysis on progression-free survival (PFS) and overall survival (OS) was performed using the Kaplan-Meier and log-rank tests, and multivariate analysis was conducted using the Cox proportional hazards regression model. The toxicity was evaluated according to National Cancer Institute Common Toxicity Criteria. The univariate analysis showed that PFS and OS were both worse for patients with high NLR than for those with low NLR before chemotherapy (median PFS 28 and 44 months, respectively, P = 0.001; median OS 30 and 48 months, P = 0.001). Multivariate analysis showed that NLRs before chemotherapy were independent prognostic factors of OS but not for progression-free survival. NLR may serve as a potential biomarker for survival prognosis in patients with stage III-IV gastric cancer receiving neoadjuvant chemotherapy. The FOLFOX 4 demonstrated an acceptable toxicity.

  20. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with dissimilar materials. [hypersonic heating simulation

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    Additional information was added to a growing data base from which estimates of finite element model complexities can be made with respect to thermal stress analysis. The manner in which temperatures were smeared to the finite element grid points was examined from the point of view of the impact on thermal stress calculations. The general comparison of calculated and measured thermal stresses is guite good and there is little doubt that the finite element approach provided by NASTRAN results in correct thermal stress calculations. Discrepancies did exist between measured and calculated values in the skin and the skin/frame junctures. The problems with predicting skin thermal stress were attributed to inadequate temperature inputs to the structural model rather than modeling insufficiencies. The discrepancies occurring at the skin/frame juncture were most likely due to insufficient modeling elements rather than temperature problems.

  1. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2010-01-01

    AIRS is a precision state of the art High Spectral Resolution Multi-detector IR grating array spectrometer that was launched into a polar orbit on EOS Aqua in 2002. AIRS measures most of the infra-red spectrum with very low noise from 650/cm to 2660/cm with a resolving power of 2400 at a spatial resolution of 13 km. The objectives of AIRS were to perform accurate determination of atmospheric temperature and moisture profiles in up to 90% partial cloud cover conditions for the purpose of improving numerical weather prediction and understanding climate processes. AIRS data has also been used to determine accurate trace gas profiles. A brief overview of the retrieval methodology used to analyze AIRS observations under partial cloud cover will be presented and sample results will be shown from the weather and climate perspectives.

  2. The GEO Water Strategy: Advances in Monitoring, Modeling, and Predicting Groundwater Variations at Regional to Local Scales

    NASA Astrophysics Data System (ADS)

    Miller, N. L.; Heinrich, L.; Kukuri, N.; Plag, H.; Famiglietti, J. S.; Rodell, M.

    2012-12-01

    Groundwater remains one of the most important freshwater resources, especially during droughts and as global warming increases. For informed decisions on managing these resources sustainably, it is important to have sound assessments of the current state of groundwater resources as well as future predictions. This requires reliable groundwater quantity and quality data. However global access to this data is limited. As part of the GEOSS Water Strategy, the International Groundwater Assessment Centre (IGRAC) is therefore implementing the Global Groundwater Monitoring Network (GGMN). The GGMN facilitates periodic assessments of changes in groundwater quantity and quality by aggregating data and information from existing groundwater monitoring networks and regional hydrogeological knowledge (Fig. 1). The GGMN is a participatory process that relies upon contributions from regional and national networks of groundwater experts. Such observation data, along with local well data, surface displacements observed by and GPS data and InSAR, and local in situ gravity data, are necessary for evaluation and simulation of groundwater, leading to improved understanding and prediction of groundwater variations. In conjunction with these observations, regional scale groundwater variations are derived as a residual from land surface-groundwater models through extraction of the total mass of water using geo-rectified Gravity Recovery and Climate Experiment (GRACE) data. Such model-based studies have quantified overdraft and regions at risk of groundwater depletion in parts of Asia, US, and Africa (Fig. 2).We provide an overview of these systems, planned missions, and new model-based approaches toward local-scale methods for assimilation of well data for several regions.igure 1. Example of GGMN (Example of Botswana with fictitious data, with local precipitation map) igure 2. GRACE-derived groundwater storage in northwestern India for 2002 - 2008, relative to the mean. Deviations from

  3. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.

    PubMed

    Schmidt, Jörg; Wandinger, Ulla; Malinka, Aleksey

    2013-04-10

    Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect.

  4. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  5. Microphysical structure of simulated marine stratocumulus: Effects of physical and numerical approximations

    SciTech Connect

    Stevens, B.; Cotton, W.R.; Feingold, G.

    1996-04-01

    Over the past decade or so the evolution and equilibria of persistent decks of stratocumulus climatologically clinging to the edge of summertime subtropical highs have been an issue of increased scientific inquiry. The particular interest in the microphysical structure of these clouds stems from a variety of hypotheses which suggest that anthropogenic influences or biogenic feedbacks may alter the structure of these clouds in a climatically significant manner. Most of these hypotheses are quite tentative, based as they are on simple formulations of boundary layer structures and interactions between drops and aerosols. This work is concerned with an assessment of the microphysical structure of marine stratocumulus as simulated by an LES-EM model.

  6. The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties

    SciTech Connect

    Dunn, M; Johnson, K; Jensen, M

    2011-05-31

    This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

  7. Optical and microphysical properties of a cold cirrus cloud - Evidence for regions of small ice particles

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Spinhirne, J. D.; Hart, W. D.

    1989-01-01

    An airborne lidar and a scanning radiometer aboard an ER-2 aircraft were used to observe a cold cirrus cloud, and a Forward Scattering Spectrometer Probe (FSSP) was used to obtain simultaneous in situ microphysical observations at two altitudes within the cloud. Lidar depolarization ratio data show that the clouds were composed predominantly of ice crystals. At an altitude where the temperature was -62.7 C, the lidar and radiometer analysis gave a visible extinction to infrared absorption ratio (alpha) of 2.3, while the cloud microphysics data provided an alpha value of 3.77. The discrepancy is attributed to undersizing of particles by the FSSP. Direct and remote measurements showed better agreement for a lower layer where the temperature was -47.3 C.

  8. Investigation of Microphysical Parameters within Winter and Summer Type Precipitation Events over Mountainous [Complex] Terrain

    SciTech Connect

    Stalker, James R.; Bossert, James E.

    1997-12-31

    In this study we investigate complex terrain effects on precipitation with RAMS for both in winter and summer cases from a microphysical perspective. We consider a two dimensional east-west topographic cross section in New Mexico representative of the Jemez mountains on the west and the Sangre de Cristo mountains on the east. Located between these two ranges is the Rio Grande Valley. In these two dimensional experiments, variations in DSDs are considered to simulate total precipitation that closely duplicate observed precipitation.

  9. Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Goswami, B.; Kulkarni, J.

    2009-12-01

    In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) during different intensive observation periods (IOP) over the targeted regions spreading all across India. Basic meteorological and cloud microphysical parameters obtained from the model simulations are validated against the observed data set collected during CAIPEEX program. For this study, we have considered three IOP phases (i.e. May 23-27, June 11-15, July 3-7) carried out over northern, central and western India respectively. This study emphasizes the thrust to understand the mechanism of evolution, intensification and distribution of simulated precipitation forecast upto day four (i.e. 96 hour forecast). Efforts have also been made to carryout few important microphysics sensitivity experiments within the explicit schemes to investigate their respective impact on the formation and distribution of vital cloud parameters (e.g. cloud liquid water, frozen hydrometeors) and model rainfall forecast over the IOP regions. The characteristic features of liquid and frozen hydrometers in the pre-monsoon and monsoon regimes are examined from model forecast as well as from CAIPEEX observation data set for different IOPs. The model is integrated in a triply nested fashion with an innermost nest explicitly resolved at a horizontal resolution of 4km.In this presentation preliminary results from aforementioned research initiatives will be introduced.

  10. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect

    Kollias, P.; Luke, E.; Szyrmer, W.; Rémillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  11. Study of the microphysical properties in stratus clouds on the Romanian Black Sea coast

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Sorin Vajaiac, Nicolae

    2016-04-01

    Stratocumulus clouds play a critical role in the Earth's climate system due to their spatial and temporal large extent. For this reason, this study aims to highlight the significant differences of microphysical properties of maritime and continental stratus clouds and By using the ATMOSLAB research aircraft were examined aerosol and microphysical properties, as well as the thermodynamics of the marine boundary layer in and around the Black Sea (between Mangalia, N: 43 48' 34,6'', E: 28̊ 35' 25,12'' and Navodari City N: 44̊ 19' 02'', E: 28̊ 36' 55,24''). More than 10 h measurements obtained by a Cloud Aerosol and Precipitation Spectrometer and the HAWKEYE included aerosol, CCN, cloud droplet and drizzle drop concentrations, air temperatures, liquid water content, real time cloud droplet and ice crystals images and marine aerosol measurements above the sea surface. The over 15 flight legs in clouds (minimum altitude 250 m and maximum altitude 4000 m) and the 4 flight legs performed directly above the sea surface (altitude 120 m) from the three flight 30 October 2015 and 23 November 2015 conducted to results that provide evidence of indirect aerosol effects associated with natural variability in the cloud and aerosol characteristics. For a complete understanding of the large-scale context processes maintaining and dissipating the continental and marine stratocumulus clouds information from a Sun Photometer (Eforie, N: 44̊ 04' 30'', E: 28̊ 37' 55'', altitude 40 m) and satellite data were used. The interpretation performed on the in situ (into cloud and below cloud) measured data have shown, as it was expected, differences between microphysical parameters for maritime and continental clouds and their dependence on aerosol concentrations. These presented results of in situ measurements of clouds above the Romanian Black Sea Coast are the first reported, so that more data is needed for an enhanced understanding of the maritime/continental microphysical contrasts in

  12. Microphysical characterization of winter cloud systems during a research flight campaign

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Sánchez, José Luis; Valero, Francisco; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2015-04-01

    The lack of accuracy in the knowledge of cloud microphysics leads to aviation risks, which have caused numerous crashes, mainly owing to aircraft icing (e.g., an EMB-120 crashed in Detroit, Michigan in 1997, and an ATR-72 crashed near Roselawn, Indiana in 1994). Further, this lack is a source of uncertainty in numerical weather forecasting models, since commonly used parameterizations often overestimate ice water content and underestimate supercooled liquid water. This makes the collection of data on cloud microphysical characteristics very useful toward improving the forecasting of icing conditions. Ten research flights were conducted during the winters of 2011/12 and 2012/13. Their goal was to determine dominant microphysical conditions of winter cloud systems traversing the Guadarrama Mountains in the central Iberian Peninsula. The aircraft was a C-212-200, equipped with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) under the left wing. Data of temperature and Liquid Water Content (LWC), registered by the CAPS probe, were used in the study. Furthermore, we thoroughly analyzed images taken by a Cloud Imaging Probe Grayscale (CIP-GS), capable of measuring hydrometeors between 25 and 1,550 µm in size, and representing them in a 2D image. The various types of hydrometeors observed during these flights are described, along with microphysical processes inferred from the CIP-GS images. ACKNOWLEDGEMENTS S. Fernández-González acknowledges grant support from the FPU program (AP 2010-2093). This study was also supported by grants from GRANIMETRO (CGL2010-15930) and MICROMETEO (IPT-310000-2010-22). The authors thank INTA for the research flights.

  13. In Situ Measurements of Microphysical and Radiative Properties of Cirrus and Anvil Clouds

    NASA Astrophysics Data System (ADS)

    Lawson, P.; Baker, B.; Pilson, B.

    2003-12-01

    In situ microphysical and radiative properties of mid-latitude cirrus, anvil and tropical anvil clouds, based on research flights conducted with the SPEC Learjet, the NASA WB-57 and DC-8, and the University of North Dakota Citation research aircraft, are presented. The measurements were collected in Colorado, Utah, Oklahoma, Florida and Kwajalein. All of the research aircraft were equipped with a standard complement of microphysical sensors and optical probes, plus a cloud particle imager (CPI), which produces high-definition (2.3 micron pixel) digital images of ice particles. The CPI data provide improved measurements of particle shape and size, facilitating better calculations of radiative properties of cirrus and anvil clouds. Based on the measurements, average mid-latitude cirrus, and mid-latitude and tropical cirrus microphysical properties of particle size distribution, crystal habit, ice water content, extinction coefficient, effective radius and optical depth are derived. The data show a distinct difference between particle characteristics in mid-latitude cirrus and anvil clouds. In cirrus, the predominate crystal type (weighted by area or mass) is the bullet rosette, a polycrystalline structure typical of crystal formation at temperatures colder than -30 C. Conversely, although anvils occur at temperatures similar to cirrus, bullet rosettes are very rare in anvils. Instead crystal types in anvils are typical of those formed at temperatures warmer than - 30 C. There is also a notable difference in microphysical and radiative characteristics between mid-latitude, Florida, and tropical (Kwajalein) anvils. Tropical anvils are comprised mainly of single crystals, mostly irregular blocky-shapes. In mid-latitude and Florida anvils, there are more aggregates and often chains of small particles that may be formed as a result of the higher electric fields in continental clouds. The impact of crystal type on calculations of radiative transfer are also considered.

  14. Detailed microphysics modelling of cirrus clouds observed during the european flight campaign INCA.

    NASA Astrophysics Data System (ADS)

    Monier, M.; Wobrock, W. W.; Flossmann, A. I.

    2004-05-01

    Cirrus clouds play an important role in the Earth energy balance. To quantify their impact, we need the information on their microstructure and more precisely on the number and the size of the ice crystal. With the increase of air traffic, more and more aerosol particles and water vapour are released at the altitude where cirrus clouds are formed. So we should understand the formation mechanisms of these clouds, to foresee if a cirrus cloud formed in a polluted air mass will have different microphysics properties and therefore a different impact on the climate system compared to a natural cirrus cloud. In order to study this aspect, the European project INCA measured the microphysics properties of cirrus clouds together with the physical and chemicals properties of aerosol particles in clean air (at Punta Arenas, Chile) and polluted air (at Prestwick, Scotland). The goal of this thesis was to develop a detailed microphysics model for cirrus clouds for the interpretation and the generalisation of the INCA observations. This model considers the moist aerosol particles through the ExMix model (Externally MIXed, Wobrock 1986), so that the chemical composition of these solution droplets can be followed. The ice crystals formation is described through homogeneous or heterogeneous nucleation, the crystals, then, grow by deposition or riming processes. With this model, we studied the interactions between all these microphysics processes and simulated ice crystal concentrations and dimensional distributions of the INCA observations. We were able to provide explanations for the observed differences between natural and polluted cirrus clouds. We reproduced the role of aerosol particles in the initiation of ice phase by considering the nucleation as heterogeneous.

  15. Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions

    NASA Astrophysics Data System (ADS)

    Gallagher, M. W.; Connolly, P. J.; Crawford, I.; Heymsfield, A.; Bower, K. N.; Choularton, T. W.; Allen, G.; Flynn, M. J.; Vaughan, G.; Hacker, J.

    2012-07-01

    Aircraft measurements of the microphysics of a tropical convective anvil (at temperatures ~-60 °C) forming above the Hector storm, over the Tiwi Islands, Northern Australia, have been conducted with a view to determining ice crystal aggregation efficiencies from in situ measurements. The observed microphysics have been compared to an explicit bin-microphysical model of the anvil region, which includes crystal growth by vapour diffusion and aggregation and the process of differential sedimentation. It has been found in flights made using straight and level runs perpendicular to the storm that the number of ice crystals initially decreased with distance from the storm as aggregation took place resulting in larger crystals, followed by their loss from the cloud layer due to sedimentation. The net result was that the mass (i.e. Ice Water Content) in the anvil Ci cloud decreased, but also that the average particle size (weighted by number) remained relatively constant along the length of the anvil outflow. Comparisons with the explicit microphysics model showed that the changes in the shapes of the ice crystal spectra as a function of distance from the storm could be explained by the model if the aggregation efficiency was set to values of Eagg~0.5 and higher. This result is supported by recent literature on aggregation efficiencies for complex ice particles and suggests that either the mechanism of particle interlocking is important to the aggregation process, or that other effects are occuring, such as enhancement of ice-aggregation by high electric fields that arise as a consequence of charge separation within the storm. It is noteworthy that this value of the ice crystal aggregation efficiency is much larger than values used in cloud resolving models at these temperatures, which typically use E~0.0016. These results are important to understanding how cold clouds evolve in time and for the treatment of the evolution of tropical Ci in numerical models.

  16. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.

    2010-03-01

    The Aerosol Optical Depth (AOD) and Angstrom Coefficient (AC) predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two) over polluted continental (or high sulfate), dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation). For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  17. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.

    2009-09-01

    The Aerosol Optical Depth (AOD) and Angstrom Coefficient (AC) predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two) over polluted continental (or high sulfate), dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation). For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening in high latitude make it difficult to evaluate the model AOD at high latitudes with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a problem also seen in other global aerosol models but more severely in this work. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC and EC concentrations in the model are found to be underpredicted severely during the dry season, suggesting the low AOD in the model is due to underpredictions in OM and EC mass. These, in turn, result from unrealistically short wet deposition lifetimes during the dry season in the GCM.

  18. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process

    PubMed Central

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  19. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients.

    PubMed

    Meerwaldt, Robbert; Hartog, Jasper W L; Graaff, Reindert; Huisman, Roel J; Links, Thera P; den Hollander, Nynke C; Thorpe, Susan R; Baynes, John W; Navis, Gerjan; Gans, Rijk O B; Smit, Andries J

    2005-12-01

    Tissue advanced glycation end products (AGE) are a measure of cumulative metabolic stress and trigger cytokines driven inflammatory reactions. AGE are thought to contribute to the chronic complications of diabetes and ESRD. Tissue autofluorescence is related to the accumulation of AGE. Therefore, skin autofluorescence (AF) may provide prognostic information on mortality in hemodialysis (HD) patients. Skin AF was measured noninvasively with an AF reader at baseline in 109 HD patients. Overall and cardiovascular mortality was monitored prospectively during a period of 3 yr. The AF reader was validated against AGE contents in skin biopsies from 29 dialysis patients. Forty-two of the 109 (38.5%) HD patients died. Cox regression analysis showed that AF was an independent predictor of overall and cardiovascular mortality (for overall mortality odds ratio [OR] 3.9), as were pre-existing cardiovascular disease (CVD; OR 3.1), C-reactive protein (OR 1.1), and serum albumin (OR 0.3). Multivariate analysis revealed that 65% of the variance in AF could be attributed to the independent effects of age, dialysis and renal failure duration, presence of diabetes, triglycerides levels, and C-reactive protein. AF was also independently linked to the presence of CVD at baseline (OR 8.8; P < 0.001). AF correlated with collagen-linked fluorescence (r = 0.71, P < 0.001), pentosidine (r = 0.75, P < 0.001), and carboxy(m)ethyllysine (both r = 0.45, P < 0.01). Skin AF is a strong and independent predictor of mortality in ESRD. This supports a role for AGE as a contributor to mortality and CVD and warrants interventions specifically aimed at AGE accumulation.

  20. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    PubMed

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.

  1. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients.

    PubMed

    Meerwaldt, Robbert; Hartog, Jasper W L; Graaff, Reindert; Huisman, Roel J; Links, Thera P; den Hollander, Nynke C; Thorpe, Susan R; Baynes, John W; Navis, Gerjan; Gans, Rijk O B; Smit, Andries J

    2005-12-01

    Tissue advanced glycation end products (AGE) are a measure of cumulative metabolic stress and trigger cytokines driven inflammatory reactions. AGE are thought to contribute to the chronic complications of diabetes and ESRD. Tissue autofluorescence is related to the accumulation of AGE. Therefore, skin autofluorescence (AF) may provide prognostic information on mortality in hemodialysis (HD) patients. Skin AF was measured noninvasively with an AF reader at baseline in 109 HD patients. Overall and cardiovascular mortality was monitored prospectively during a period of 3 yr. The AF reader was validated against AGE contents in skin biopsies from 29 dialysis patients. Forty-two of the 109 (38.5%) HD patients died. Cox regression analysis showed that AF was an independent predictor of overall and cardiovascular mortality (for overall mortality odds ratio [OR] 3.9), as were pre-existing cardiovascular disease (CVD; OR 3.1), C-reactive protein (OR 1.1), and serum albumin (OR 0.3). Multivariate analysis revealed that 65% of the variance in AF could be attributed to the independent effects of age, dialysis and renal failure duration, presence of diabetes, triglycerides levels, and C-reactive protein. AF was also independently linked to the presence of CVD at baseline (OR 8.8; P < 0.001). AF correlated with collagen-linked fluorescence (r = 0.71, P < 0.001), pentosidine (r = 0.75, P < 0.001), and carboxy(m)ethyllysine (both r = 0.45, P < 0.01). Skin AF is a strong and independent predictor of mortality in ESRD. This supports a role for AGE as a contributor to mortality and CVD and warrants interventions specifically aimed at AGE accumulation. PMID:16280473

  2. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    PubMed

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  3. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  4. Retrieval of optical and microphysical properties of aerosols from a hybrid multiwavelength lidar dataset

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia

    Over the past decade the development of inversion techniques for the retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) from multiwavelength lidar systems brought a new perspective in the study of the vertical distribution of aerosols. In this study retrievals of such parameters were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study to our knowledge in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for eleven cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.

  5. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  6. Contrail microphysical properties and radiative forcing over the Northern Hemisphere derived using MODIS infrared observations

    NASA Astrophysics Data System (ADS)

    Bedka, S. T.; Minnis, P.; Duda, D. P.; Spangenberg, D.; Chee, T.; Khlopenkov, K. V.

    2015-12-01

    One of the primary ways that air traffic affects the Earth's radiation budget is through the formation of contrails. In order to quantify the radiative impact of contrails, one must assess their macro and microphysical properties (e.g. contrail temperature, optical depth and effective particle size) as well as the characteristics of the environment in which they occur (e.g. background radiation field and cloud properties). In-situ measurements of contrail microphysical properties are limited, and hence the retrieval of such properties from remotely sensed satellite data is useful. This paper details the ongoing progress being made to retrieve contrail properties and calculate the contrail radiative forcing from 2 years of MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra data. Contrail microphysical properties from the seasonal months (January, April, July, October) of 2006 and 2012 are derived using an infrared-only heritage algorithm developed at NASA Langley for the Clouds and the Earth's Radiant Energy System (CERES) program. Results are subset by day/night, although the same retrieval algorithm will be used for all granules. Contrail properties and background cloud properties are then used as input into the Fu-Liou radiative transfer model to compute the overall contrail radiative forcing.

  7. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  8. An investigation of the effect of sulfate on cloud microphysics using a chemistry/transport model

    SciTech Connect

    Wei, H.D.; Green, R.; Schwartz, S.E.; Benkovitz, C.M.

    2001-01-14

    Here the authors have used the output of a chemistry/transport model to identify a situation in which sulfate aerosol from industrial sources may be expected to exert a strong influence on cloud microphysical and radiative properties in an oceanic area that is well displaced from source regions. Pertinent cloud microphysical properties (optical depth and cloud drop radius) are inferred from radiance data obtained from satellite remote sensing. Comparison of these quantities in situations where the model indicates the presence or absence of industrial sulfate has allowed identification of the expected signature of one aerosol indirect effect--an increase in droplet number concentration and concomitant decrease in droplet radii, on a synoptic scale. Although the information obtained on changes in cloud optical depth is too meager to draw conclusions regarding radiative forcing, there is no doubt that the cloud microphysical properties are influenced by the incursion of continental sulfate aerosol in a way that is consistent with that expected by the Twomey indirect forcing mechanism.

  9. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  10. Microphysical properties of low-level clouds and fogs in a mountain area of South Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Yim; Lee, Chulkyu; Jung, Hyun-Sook; Nam, Jae-Chul

    2013-05-01

    Measurements of microphysical properties in low-level clouds and fogs were carried out at Daegwallyeong in the northeastern mountainous region of South Korea. The microphysical characteristics are presented through analyzing the number concentration, mean diameter, liquid water contents and size distribution of cloud particles sampled with the groundbased Forward Scattering Spectrometer Probe (FSSP). The aim of this study is to analyze the influence of the proposed cloud condensation nuclei (CCN) type on the size and the number of cloud droplets. Observational cases are classified 5 sectors according to backward air mass trajectories from the NOAA/ARL HYSPLIT model. Clean maritime cloud is characterized by sector 1 trajectories and clean continental cloud is by sector 2. Contaminated maritime cloud is by sector 3 and contaminated continental cloud is by sector 4. Sector 5 trajectories are undefined air masses. On average, the droplet number concentrations in marine clouds were lower than for continental clouds, while the mean diameters and liquid water contents for marine clouds were larger than for continental clouds. Our observed values of microphysical properties are similar to the reported values from previous studies.

  11. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  12. Analysis of the microphysical structu