Science.gov

Sample records for advanced microphysics prediction

  1. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  2. Advances in fog microphysics research in China

    NASA Astrophysics Data System (ADS)

    Liu, Duanyang; Li, Zihua; Yan, Wenlian; Li, Yi

    2017-02-01

    Fog microphysical research in China based on field experiments obtained many important results in recent 50 years. With the fast development of China's economy, urbanization in the last 30 years, special features of fog microphysical structure also appeared, which did not appear in other countries. This article reviews the fog microphysical research around China, and introduces the effect of urbanization on fog microphysical structure and the microphysical processes as well as macroscopic conditions of radiation fog droplet spectral broadening. Urbanization led to an increase in fog droplet number concentration but decreases in fog liquid water content (LWC) and fog droplet size, as well as a decrease in visibility in large cities. Observations show that the radiation fog could be divided into wide-spectrum one, which is all extremely dense fog with the spectral width more than 40 μm, and narrow-spectrum one, most of which is dense fog with the spectral width less than 22 μm, according to droplet spectral distribution. During developing from dense fog to extremely dense fog, the widespectrum radiation fog is characterized by explosive deepening, that is, within a very short time (about 30 min), the droplet concentration increase by about one order of magnitude, droplet spectral broadening across 20 μm, generally up to 30-40 μm, or even 50 μm. As a result, water content increased obviously, visibility decreased to less than 50 m, when dense fog became extremely dense fog.

  3. Sensitivity and dependence of mesoscale downscaled prediction results on different parameterizations of convection and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Remesan, R.; Bellerby, T.

    2012-04-01

    These days as operational real-time flood forecasting and warning systems rely more on high resolution mesoscale models employed with coupling system of hydrological models. So it is inevitable to assess prediction sensitivity or disparity in collection with selection of different cumulus and microphysical parameterization schemes, to assess the possible uncertainties associated with mesoscale downscaling. This study investigates the role of physical parameterization in mesoscale model simulations on simulation of unprecedented heavy rainfall over Yorkshire-Humberside in United Kingdom during 1-14th March, 1999. The study has used a popular mesoscale numerical weather prediction model named Advanced Research Weather Research Forecast model (version 3.3) which was developed at the National Center for Atmospheric Research (NCAR) in the USA. This study has performed a comprehensive evaluation of four cumulus parameterization schemes (CPSs) [Kian-Fritsch (KF), Betts-Miller-Janjic (BMJ) and Grell-Devenyi ensemble (GD)] and five microphysical schemes Lin et al scheme, older Thompson scheme, new Thompson scheme, WRF Single Moment - 6 class scheme, and WRF Single Moment - 5 class scheme] to identify how their inclusion influences the mesoscale model's meteorological parameter estimation capabilities and related uncertainties in prediction. The case study was carried out at the Upper River Derwent catchment in Northern Yorkshire, England using both the ERA-40 reanalysis data and the land based observation data.

  4. A comparison of cloud microphysical quantities with forecasts from cloud prediction models

    SciTech Connect

    Dunn, M.; Jensen, M.; Hogan, R.; O’Connor, E.; Huang, D.

    2010-03-15

    Numerical weather prediction models (ECMWF, NCEP) are evaluated using ARM observational data collected at the Southern Great Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical quantities, retrieved using a variety of parameterizations. Information gained from this comparison will be utilized during the FASTER project, as models are evaluated for their ability to reproduce fast physical processes detected in the observations. Here the model performance is quantified against the observations through a statistical analysis. Observations from remote sensing instruments (radar, lidar, radiometer and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content, ice effective radius and liquid effective radius. Unfortunately, discrepancies in the derived quantities arise when different retrieval schemes are applied to the observations. The uncertainty inherent in retrieving the microphysical quantities using various retrievals is estimated from the range of output microphysical values. ARM microphysical retrieval schemes (Microbase, Mace) are examined along with the CloudNet retrieval processing of data from the ARM sites for this purpose. Through the interfacing of CloudNet and “ARM” processing schemes an ARMNET product is produced and employed as accepted observations in the assessment of cloud model predictions.

  5. Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales

    NASA Astrophysics Data System (ADS)

    Pilon, Romain; Zhang, Chidong; Dudhia, Jimy

    2016-09-01

    The November event of the Madden-Julian oscillation (MJO) during the Dynamics of North Atlantic Models (DYNAMO) field campaign was simulated using the global compressible nonhydrostatic Model for Prediction Across Scales with global coarse (60 and 15 km) and regional (the Indian Ocean) cloud-permitting (3 km) meshes. The purpose of this study is to compare roles of parameterized deep and shallow cumulus and microphysics in MJO simulations. Two cumulus schemes were used: Tiedtke and Grell-Freitas. The deep and shallow components of Tiedtke scheme can be turned on and off individually. The results reveal that microphysics alone (without cumulus parameterization) is able to produce strong signals of the MJO in precipitation with 3 km mesh and weak MJO signals with 15 km mesh. A shallow scheme (Tiedtke) along with microphysics strengthens the MJO signals but makes them less well organized on large scales. A deep cumulus scheme can either improve the large-scale organization of MJO precipitation produced by microphysics and shallow convection (Tiedtke) or impair them (Grell-Freitas). The deep scheme of Tiedtke cannot reproduce the MJO well without its shallow counterpart. The main role of shallow convection in the model is to transport moisture upward to the lower to middle troposphere. By doing so, it removes dry biases in the lower to middle troposphere, a distinct feature in simulations with weak or no MJO signals, and enhances total precipitation and diabatic heating produced by microphysics and deep cumulus schemes. Changing model grid spacing from 60 to 15 km makes a little difference in the model fidelity of reproducing the MJO. All roles of shallow convection in 15 km simulations with parameterized deep convection cannot be reproduced in 3 km simulations without parameterized deep convection. Results from this study suggest that we should pay more attention to the treatment of shallow convection and its connection to other parameterized processes for improving

  6. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  7. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  8. ISDAC Microphysics

    DOE Data Explorer

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  9. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhang, Yang; Glotfelty, Tim; He, Ruoying; Bennartz, Ralf; Rausch, John; Sartelet, Karine

    2015-03-01

    Earth system models have been used for climate predictions in recent years due to their capabilities to include biogeochemical cycles, human impacts, as well as coupled and interactive representations of Earth system components (e.g., atmosphere, ocean, land, and sea ice). In this work, the Community Earth System Model (CESM) with advanced chemistry and aerosol treatments, referred to as CESM-NCSU, is applied for decadal (2001-2010) global climate predictions. A comprehensive evaluation is performed focusing on the atmospheric component—the Community Atmosphere Model version 5.1 (CAM5.1) by comparing simulation results with observations/reanalysis data and CESM ensemble simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5). The improved model can predict most meteorological and radiative variables relatively well with normalized mean biases (NMBs) of -14.1 to -9.7% and 0.7-10.8%, respectively, although temperature at 2 m (T2) is slightly underpredicted. Cloud variables such as cloud fraction (CF) and precipitating water vapor (PWV) are well predicted, with NMBs of -10.5 to 0.4%, whereas cloud condensation nuclei (CCN), cloud liquid water path (LWP), and cloud optical thickness (COT) are moderately-to-largely underpredicted, with NMBs of -82.2 to -31.2%, and cloud droplet number concentration (CDNC) is overpredictd by 26.7%. These biases indicate the limitations and uncertainties associated with cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds). Chemical concentrations over the continental U.S. (CONUS) (e.g., SO42-, Cl-, OC, and PM2.5) are reasonably well predicted with NMBs of -12.8 to -1.18%. Concentrations of SO2, SO42-, and PM10 are also reasonably well predicted over Europe with NMBs of -20.8 to -5.2%, so are predictions of SO2 concentrations over the East Asia with an NMB of -18.2%, and the tropospheric ozone residual (TOR) over the globe with an NMB of -3.5%. Most meteorological and radiative variables

  10. Unified Aerosol Microphysics for NWP

    DTIC Science & Technology

    2012-09-30

    prediction is now integrated, for example, with the COAMPS two- moment cloud microphysics scheme where it serves as a source of cloud droplet nuclei. The dust ...behavior. To evaluate the new handling of aerosol dust and its interaction with COAMPS microphysics, an operational test case has been developed...Sahara Air Layer (SAL) and Hurricane Nadine off of West Africa. Dust is seen wrapping around the north side of the storm on Sep 11 in Figure 2. We

  11. Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops

    SciTech Connect

    Huret, N.; Chaumerliac, N.; Isaka, H.; Nickerson, E.C. |

    1994-09-01

    Three microphysical formulations are closely compared to evaluate their impact upon gas scavenging and wet deposition processes. They range from a classical bulk approach to a fully spectral representation, including an intermediate semispectral parameterization. Detailed comparisons among the microphysical rates provided by these three parameterizations are performed with special emphasis on evaporation rate calculations. This comparative study is carried out in the context of a mountain wave simulation. Major differences are essentially found in the contrasted spreading of the microphysical fields on the downwind side of the mountain. A detailed chemical module including the dissolution of the species and their transfer between phases (air, cloud, and rain) is coupled with the three microphysical parameterizations in the framework of the dynamical mesoscale model. An assessment of the accuracy of each scheme is then proposed by comparing their ability to represent the drop size dependency of chemical wet processes. The impact of evaporation (partial versus total) upon the partition of species between gas and aqueous phases is also studied in detail.

  12. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated

  13. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  14. Decadal Simulation and Comprehensive Evaluation of CESM/CAM5 with Advanced Chemistry, Aerosol Microphysics, and Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    He, J.; Glotfelty, T.; Zhang, Y.

    2013-12-01

    Community Earth System Model (CESM) is a global Earth system model that was developed by National Center for Atmospheric Research (NCAR) to simulate the entire Earth system by coupling physical climate system with chemistry, biogeochemistry, biology and human systems. It can also quantify the certainties and uncertainties in Earth system feedbacks on time scales up to centuries and longer. The Community Atmosphere Model version 5.1 (CAM5.1) is the atmosphere component of CESM version 1.0.5. CESM/CAM5.1 has been applied by NCAR to simulate climate change as part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The IPCC-AR5 indicates that the uncertainties associated with cloud, aerosol, and their feedbacks, as well as uncertainties in near- and long-term projections are emerging issues to be addressed by the scientific community. CESM/CAM5.1 has been recently further developed and improved with advanced treatments for gas-phase chemistry, aerosol chemistry and dynamics, and aerosol-cloud interactions by North Carolina State University (NCSU) to reduce the uncertainties associated with those treatments in the model predictions. Our ultimate goal is to enhance CESM/CAM5's capability in representing current atmosphere and projecting future climate change. In this work, as the first step toward this goal, the NCSU's version of CESM/CAM5 with those advanced treatments is applied for 2001-2010, which will provide valuable information about the model's capability in capturing the decadal variation trend in climate and its potential in projecting future climate changes. The model simulation is conducted at a horizontal resolution of 0.9o × 1.25o and a vertical resolution of 30 layers. The simulation results based on 10-year average are evaluated comprehensively with a variety of datasets, including global surface observations of meteorological and radiative variables; satellite observations of the column mass of chemical species and

  15. Predicting Career Advancement with Structural Equation Modelling

    ERIC Educational Resources Information Center

    Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia

    2012-01-01

    Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…

  16. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  17. Uncertainty of Microphysics Schemes in CRMs

    NASA Astrophysics Data System (ADS)

    Tao, W. K.; van den Heever, S. C.; Wu, D.; Saleeby, S. M.; Lang, S. E.

    2015-12-01

    Microphysics is the framework through which to understand the links between interactive aerosol, cloud and precipitation processes. These processes play a critical role in the water and energy cycle. CRMs with advanced microphysics schemes have been used to study the interaction between aerosol, cloud and precipitation processes at high resolution. But, there are still many uncertainties associated with these microphysics schemes. This has arisen, in part, from the fact microphysical processes cannot be measured directly; instead, cloud properties, which can be measured, are and have been used to validate model results. The utilization of current and future global high-resolution models is rapidly increasing and are at what has been traditional CRM resolutions and are using microphysics schemes that were developed in traditional CRMs. A potential NASA satellite mission called the Cloud and Precipitation Processes Mission (CaPPM) is currently being planned for submission to the NASA Earth Science Decadal Survey. This mission could provide the necessary global estimates of cloud and precipitation properties with which to evaluate and improve dynamical and microphysical parameterizations and the feedbacks. In order to facilitate the development of this mission, CRM simulations have been conducted to identify microphysical processes responsible for the greatest uncertainties in CRMs. In this talk, we will present results from numerical simulations conducted using two CRMs (NU-WRF and RAMS) with different dynamics, radiation, land surface and microphysics schemes. Specifically, we will conduct sensitivity tests to examine the uncertainty of the some of the key ice processes (i.e. riming, melting, freezing and shedding) in these two-microphysics schemes. The idea is to quantify how these two different models' respond (surface rainfall and its intensity, strength of cloud drafts, LWP/IWP, convective-stratiform-anvil area distribution) to changes of these key ice

  18. Advancements in predictive plasma formation modeling

    NASA Astrophysics Data System (ADS)

    Purvis, Michael A.; Schafgans, Alexander; Brown, Daniel J. W.; Fomenkov, Igor; Rafac, Rob; Brown, Josh; Tao, Yezheng; Rokitski, Slava; Abraham, Mathew; Vargas, Mike; Rich, Spencer; Taylor, Ted; Brandt, David; Pirati, Alberto; Fisher, Aaron; Scott, Howard; Koniges, Alice; Eder, David; Wilks, Scott; Link, Anthony; Langer, Steven

    2016-03-01

    We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.

  19. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  20. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  1. Climatic implications of ice microphysics

    SciTech Connect

    Liou, K.N.

    1995-09-01

    Based on aircraft measurements of mid-latitude cirrus clouds, ice crystal size distribution and ice water content (IWC) are shown to be dependent on temperature. This dependence is also evident from the theoretical consideration of ice crystal growth. Using simple models of the diffusion and accretion growth of ice particles, the computed mean ice crystal size and IWC compare reasonably well with the measured mean values. The temperature dependence of ice crystal size and IWC has important climatic implications in that the temperature field perturbed by external radiative forcings, such as greenhouse warming, can alter the composition of ice crystal clouds. Through radiative transfer, ice microphysics can in turn affect the temperature field. Higher IWC would increase cloud solar albedo and infrared emissivity, while for a given IWC, larger crystals would reduce cloud albedo and emissivity. The competing effects produced by greenhouse temperature perturbations via ice micro-physics and radiation interactions and feedbacks are assessed by a one-dimensional radiative-convective climate model that includes an advanced radiation parameterization program. 3 figs.

  2. New, Improved Bulk-microphysical Schemes for Studying Precipitation Processes in WRF. Part 1; Comparisons with Other Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shi, J.; Chen, S. S> ; Lang, S.; Hong, S.-Y.; Thompson, G.; Peters-Lidard, C.; Hou, A.; Braun, S.; Simpson, J.

    2007-01-01

    Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)

  3. Weather Prediction Improvement Using Advanced Satellite Technology

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common

  4. Factors controlling cloud microphysics, precipitation rate, and brightness temperature of tropical convective and stratiform clouds

    NASA Astrophysics Data System (ADS)

    Hashino, T.; Casella, D.; Mugnai, A.; Sano, P.; Smith, E. A.; Tripoli, G.

    2008-12-01

    This paper discusses factors controlling cloud microphysics, precipitation rate and brightness temperature of tropical convective and stratiform clouds. Tropical convective and stratiform clouds are important in radiative forcing of climates and distribution of precipitation over the ocean. The possible effects of climate change on these clouds are still not well understood. Recent studies show that the higher CCN concentration in a convective cloud can lead to more vigorous updrafts and a higher evaporation/precipitation ratio. The stronger updraft often means stronger downdraft and gust fronts, which can trigger convection nearby. This implies that increases in CCN concentration can result in an increase in area coverage and persistence of tropical cirrus and stratiform clouds. The increased cloudiness would then be expected to lower sensible and latent heat flux from the ocean by lowering sea surface temperature, affecting the future development of convective clouds. The sea surface temperature may also change in a local area due to change of ocean circulation in climate change scenarios. Satellite remote sensing is a powerful tool to study tropical and global precipitation distribution. Many physically-based passive-microwave (MW) satellite precipitation algorithms make use of cloud radiation databases (CRDs), which typically consist of microphysical profiles from cloud resolving model (CRMs) and simulated MW brightness temperature (Tb). Thus, it is important to validate Tb simulated by a CRM against the observed Tb. Also, it is important to study how any changes in the tropical clouds due to aerosols and sea surface temperature translate into the precipitation and brightness temperature. The case study chosen is KWAJEX campaign that took place from 23 July to 14 September 1999. Authors have developed microphysical physical framework (Advanced Microphysics Prediction System) to predict ice particle properties explicitly in a CRM (University of Wisconsin

  5. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the

  6. Recent Advances in Predictive (Machine) Learning

    SciTech Connect

    Friedman, J

    2004-01-24

    Prediction involves estimating the unknown value of an attribute of a system under study given the values of other measured attributes. In prediction (machine) learning the prediction rule is derived from data consisting of previously solved cases. Most methods for predictive learning were originated many years ago at the dawn of the computer age. Recently two new techniques have emerged that have revitalized the field. These are support vector machines and boosted decision trees. This paper provides an introduction to these two new methods tracing their respective ancestral roots to standard kernel methods and ordinary decision trees.

  7. Microphysics of Pyrocumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  8. Advanced technology wind shear prediction system evaluation

    NASA Technical Reports Server (NTRS)

    Gering, Greg

    1992-01-01

    The program overviews: (1) American Airline (AA)/Turbulence Prediction Systems (TPS), which have installed forward looking infrared predictive windshear system on 3 MD-80 aircraft; (2) AA/TPS AWAS III evaluation, which is a joint effort and is installed in the noise landing gear (NLG) area and a data recorder installed in the E/E compartment.

  9. Predicting success on the Advanced Placement Biology Examination

    NASA Astrophysics Data System (ADS)

    Shepherd, Lesa Hanlin

    Four hundred sixty students in four public high schools were used as subjects to determine which of eleven academic and demographic factors studied were significant predictors of success for the Advanced Placement Biology Examination. Factors studied were attendance, class rank, gender, grade level at the time of the examination, grade point average, level of prerequisite biology course, number of Advanced Placement Examinations taken in the year prior to the Advanced Placement Biology Examination, number of Advanced Placement Examinations taken in the same year as the Advanced Placement Biology Examination, proposed major in college, race, and SAT mathematics, verbal, and combined score. Significant relationships were found to exist between the Advanced Placement Biology Examination score and attendance, class rank, gender, grade level at the time of the Advanced Placement Biology Examination, grade point average, number of Advanced Placement Examinations taken in the year prior to the Advanced Placement Biology Examination, number of Advanced Placement Examinations taken in the same year as the Advanced Placement Biology Examination, race, and SAT scores. Significant relationships were not found to exist between Advanced Placement Biology Examination score and level prerequisite biology course and Advanced Placement Biology Examination score and proposed major in college. A multiple regression showed the best combination of predictors to be attendance, SAT verbal score, and SAT mathematics score. Discriminant analysis showed the variables in this study to be good predictors of whether the student would pass the Advanced Placement Biology Examination (score a 3, 4, or 5) or fail the Advanced Placement Biology Examination (score a 1 or 2). These results demonstrated that significant predictors for the Advanced Placement Biology Examination do exist and can be used to assist in the prediction of scores, prediction of passing or failing, the identification of

  10. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmmicrophysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 h

  11. Predicting RNA structure: advances and limitations.

    PubMed

    Hofacker, Ivo L; Lorenz, Ronny

    2014-01-01

    RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

  12. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  13. Unified Aerosol Microphysics for NWP

    DTIC Science & Technology

    2013-09-30

    observations during an Algerian dust storm with the 12-hour forecast from COAMPS , valid at 12GMT March 3, 2013. Left: MSG visible image (black and white...nuclei in the COAMPS two-moment cloud microphysics scheme. The dust and cloud microphysical processes are fully interactive in that the cloud...and satellite data show that COAMPS has captured this event. The dust plume is accurately aligned with the observed dust event. COAMPS forecasts

  14. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  15. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  16. Microphysical processes observed by X band polarimetric radars during the evolution of storm systems

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2014-05-01

    Polarimetric radars are now widely used for characterizing storm systems since they offer significant information for the improvement for atmospheric models and numerical weather prediction. Their observations allow a detailed insight into macro- and micro-physical processes during the spatial and temporal evolution of storm systems. In the frame of the initiative for High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2), which focuses on improving the accuracy of climate models in relation to cloud and precipitation processes, the HD(CP)2 Observational Prototype Experiment (HOPE) was designed to provide a critical model evaluation at scales covered by Large Eddy Simulation (LES) models, which in turn will be used to better understand sub-grid variability and microphysical properties and processes parameterized by larger scale models. Three X-band polarimetric radars deployed in Bonn (BoXPol) and in the vicinity of Juelich (JuXPol and KiXPol), Germany, were operated together with other instruments during the HOPE campaign, in order to obtain a holistic view of precipitation systems covering both macro- and microscopic processes. Given the variability of polarimetric moments observed by polarimetric radars, the corresponding microphysical processes occurring during the development of storm cells thus can be inferred accordingly. This study focuses on the microscopic processes of storm systems which were observed by RHI (range-height indicator) scans of the three X band radars. The two frequently observed microphysical processes during the HOPE campaign, coalescence and differential sedimentation, will be shown, and the evolution of droplet size distributions (DSDs) will be also analyzed. The associated DSDs which are retrieved using radar measured polarimetric moments are further verified by the polarimetric forward operator where the assumptions of non-spherical hydrometeors have been embedded. The results indicate that the estimated

  17. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  18. Predictive Biomarkers to Chemoradiation in Locally Advanced Rectal Cancer

    PubMed Central

    Conde-Muíño, Raquel; Cuadros, Marta; Zambudio, Natalia; Segura-Jiménez, Inmaculada; Cano, Carlos; Palma, Pablo

    2015-01-01

    There has been a high local recurrence rate in rectal cancer. Besides improvements in surgical techniques, both neoadjuvant short-course radiotherapy and long-course chemoradiation improve oncological results. Approximately 40–60% of rectal cancer patients treated with neoadjuvant chemoradiation achieve some degree of pathologic response. However, there is no effective method of predicting which patients will respond to neoadjuvant treatment. Recent studies have evaluated the potential of genetic biomarkers to predict outcome in locally advanced rectal adenocarcinoma treated with neoadjuvant chemoradiation. The articles produced by the PubMed search were reviewed for those specifically addressing a genetic profile's ability to predict response to neoadjuvant treatment in rectal cancer. Although tissue gene microarray profiling has led to promising data in cancer, to date, none of the identified signatures or molecular markers in locally advanced rectal cancer has been successfully validated as a diagnostic or prognostic tool applicable to routine clinical practice. PMID:26504848

  19. Predictive Biomarkers to Chemoradiation in Locally Advanced Rectal Cancer.

    PubMed

    Conde-Muíño, Raquel; Cuadros, Marta; Zambudio, Natalia; Segura-Jiménez, Inmaculada; Cano, Carlos; Palma, Pablo

    2015-01-01

    There has been a high local recurrence rate in rectal cancer. Besides improvements in surgical techniques, both neoadjuvant short-course radiotherapy and long-course chemoradiation improve oncological results. Approximately 40-60% of rectal cancer patients treated with neoadjuvant chemoradiation achieve some degree of pathologic response. However, there is no effective method of predicting which patients will respond to neoadjuvant treatment. Recent studies have evaluated the potential of genetic biomarkers to predict outcome in locally advanced rectal adenocarcinoma treated with neoadjuvant chemoradiation. The articles produced by the PubMed search were reviewed for those specifically addressing a genetic profile's ability to predict response to neoadjuvant treatment in rectal cancer. Although tissue gene microarray profiling has led to promising data in cancer, to date, none of the identified signatures or molecular markers in locally advanced rectal cancer has been successfully validated as a diagnostic or prognostic tool applicable to routine clinical practice.

  20. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the

  1. Predictable elastomeric impressions in advanced fixed prosthodontics: a comprehensive review.

    PubMed

    Lee, E A

    1999-05-01

    Despite advances in dental material technology, the predictable procurement of accurate impressions for the fabrication of complex fixed prosthodontic restorations remains an elusive objective. The technical challenges and potential negative sequelae are exponentially magnified in advanced applications that involve multiple abutments and preparatory phases. A protocol for consistently achieving accurate impressions with the use of polyether impression materials and automatic instrumentation is presented and illustrated with multiple clinical examples. The technique is capable of yielding reliable results in extensive cases and requires minimal support from auxiliary personnel.

  2. Predictable elastomeric impressions in advanced fixed prosthodontics: a comprehensive review.

    PubMed

    Lee, Ernesto A

    2007-10-01

    Despite advances in dental material technology, the predictable procurement of accurate impressions for the fabrication of complex fixed prosthodontic restorations remains an elusive objective. The technical challenges and potential negative sequelae are exponentially magnified in advanced applications that involve multiple abutments and preparatory phases. A protocol for consistently achieving accurate impressions with the use of various impression materials and automatic instrumentation is presented and illustrated with multiple clinical examples. The technique is capable of yielding reliable results in extensive cases and requires minimal support from auxiliary personnel.

  3. Life Prediction of Fretting Fatigue with Advanced Surface Treatments (Preprint)

    DTIC Science & Technology

    2006-05-01

    surfaces and not the fretting pads. The chosen coatings included DLC, Ni-B, Molybdenum, and Nitride. These 4 coatings, their application to the titanium ...Article Preprint 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 4 . TITLE AND SUBTITLE LIFE PREDICTION OF FRETTING FATIGUE WITH ADVANCED SURFACE...TREATMENTS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER N/A 5d. PROJECT NUMBER M02R 5e. TASK NUMBER 30 6 . AUTHOR(S) Patrick J. Golden and Michael

  4. Evaluation of Mixed-Phase Microphysics Within Winter Storms using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Stephen

    2014-01-01

    It is hypothesized that microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixedphased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations

  5. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2016-01-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in "cloudiness" of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  6. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather A.; Yung, Yuk L.

    2015-11-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  7. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2015-12-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  8. Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2011-01-01

    The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.

  9. Optical-Microphysical Cirrus Model

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  10. Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions

    NASA Astrophysics Data System (ADS)

    Feng, Rong; Duan, Wansuo; Mu, Mu

    2017-02-01

    In this paper, we explored potential observing locations (i.e., the sensitive areas) of positive Indian Ocean dipole (IOD) events to advance beyond the winter predictability barrier (WPB) using the geophysical fluid dynamics laboratory climate model version 2p1 (GFDL CM2p1). The sensitivity analysis is conducted through perfect model predictability experiments, in which the model is assumed to be perfect and so any prediction errors are caused by initial errors. The results show that the initial errors with an east-west dipole pattern are more likely to result in a significant WPB than spatially correlated noises; the areas where the large values of the dipole pattern initial errors are located have great effects on prediction uncertainties in winter and provide useful information regarding the sensitive areas. Further, the prediction uncertainties in winter are more sensitive to the initial errors in the subsurface large value areas than to those in the surface large value areas. The results indicate that the subsurface large value areas are sensitive areas for advancing beyond the WPB of IOD predictions and if we carry out intensive observations across these areas, the prediction errors in winter may be largely reduced. This will lead to large improvements in the skill of wintertime IOD event forecasts.

  11. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2014-01-01

    It is hypothesized microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixed phased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations. The WRF realistically simulated the warm frontal snowband at relatively short lead times (1014 h). The snowband structire is sensitive to the microphysical parameterization used in WRF. The Goddard and SBUYLin most realistically predicted the band structure, but overpredicted snow content. The double moment Morrison scheme best produced the slope of the snow distribution, but it underpredicted the intercept. All schemes and the radar derived (which used dry snow ZR) underpredicted the surface precipitation amount, likely because there was more cloud water than expected. The Morrison had the most cloud water and the best precipitation prediction of all schemes.

  12. Predicting binary merger event rates for advanced LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Holz, Daniel; Belczynski, Chris; O'Shaughnessy, Richard; Bulik, Tomek; LIGO Collaboration

    2016-03-01

    We discuss estimates of the rates of mergers of binary systems composed of neutron stars and/or stellar mass black holes. We use the StarTrack population synthesis code, and make predictions for the detection rate of compact binary coalescences with the advanced LIGO/Virgo gravitational wave detectors. Because these instruments are sensitive to massive (M > 20M⊙) stellar-mass binary black holes mergers out to high redshift (z > 1), we discuss the cosmological effects which must be taken into account when calculating LIGO detection rates, including a generalization of the calculation of the ``peanut factor'' and the sensitive time-volume.

  13. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for

  14. Simulating storm electrification with bin and bulk microphysics

    NASA Astrophysics Data System (ADS)

    Mansell, E. R.

    2013-12-01

    Simulated storm electrification can be highly dependent on the parameterizations of microphysical processes, particularly those involving ice particles. Commonly-used bulk microphysics assume a functional form of the particle size distribution and predict one or more moments of the distribution, such as total mass, number concentration, and reflectivity. Bin schemes, on the other hand, allow the particle spectrum to evolve by predicting the number of particles in discrete size ranges (bins). Bin schemes are often promoted as benchmark solutions, but have much greater computational expense and can have other disadvantages. Only a few studies have compared results for bin and bulk schemes within the same model framework, which controls for differences in model numerics and other physics. Here, the bin microphysics scheme of Takahashi has been incorporated into the COMMAS model for comparison with the 2-3-moment bulk scheme. The resulting electrification, charge structure and lightning are compared, as well. Charge separation and transfer have been newly added to the bin scheme, along with some updates to the physics, such as improved ice melting. Thus the same laboratory-based charging schemes from previous work can be used with both microphysics packages. The bulk and bin schemes generally have similar microphysical features in the simulations. Differences can result in part from differences the parameterizations of partical interactions (and particle types) as much as from the simple difference in size distributions. For example both the bin and bulk schemes are sensitive to the concentration of cloud condensation nuclei, as shown in recent work from the bulk scheme. Results will be presented for idealized 2-dimensional cases and for fully 3D simulations of a small multicell thunderstorms.

  15. Advances in the assessment and prediction of interpersonal violence.

    PubMed

    Mills, Jeremy F

    2005-02-01

    This article underscores the weakness of clinical judgment as a mechanism for prediction with examples from other areas in the psychological literature. Clinical judgment has as its Achilles'heel the reliance on a person to incorporate multiple pieces of information while overcoming human judgment errors--a feat insurmountable thus far. The actuarial approach to risk assessment has overcome many of the weaknesses of clinical judgment and has been shown to be a much superior method. Nonetheless, the static/historical nature of the risk factors associated with most actuarial approaches is limiting. Advances in risk prediction will be found in part in the development of dynamic actuarial instruments that will measure both static/historical and changeable risk factors. The dynamic risk factors can be reevaluated on an ongoing basis, and it is proposed that the level of change in dynamic factors necessary to represent a significant change in overall risk will be an interactive function with static risk factors.

  16. The prediction of transonic loading on advancing helicopter rotors

    NASA Technical Reports Server (NTRS)

    Strawn, R. C.; Tung, C.

    1986-01-01

    Two different schemes are presented for including the effect of rotor wakes on the finie-difference prediction of rotor loads. The first formulation includes wake effects by means of a blade-surface inflow specification. This approach is sufficiently simple to permit coupling of a full-potential finite-difference rotor code to a comprehensive integral model for the rotor wake and blade motion. The coupling involves a transfer of appropriate loads and inflow data between the two computer codes. Results are compared with experimental data for two advancing rotor cases. The second rotor-wake modeling scheme is a split potential formulation for computing unsteady blade-vortex interactions. Discrete vortex fields are introduced into a three-dimensional, conservative, full-potential rotor code. Computer predictions are compared with two experimental blade-vortex interaction cases.

  17. The prediction of transonic loading advancing helicopter rotors

    NASA Technical Reports Server (NTRS)

    Strawn, R.; Tung, C.

    1986-01-01

    Two different schemes are presented for including the effect of rotor wakes on the finite-difference prediction of rotor loads. The first formulation includes wake effects by means of a blade-surface inflow specification. This approach is sufficiently simple to permit coupling of a full-potential finite-difference rotor code to a comprehensive integral model for the rotor wake and blade motion. The coupling involves a transfer of appropriate loads and inflow data between the two computer codes. Results are compared with experimental data for two advancing rotor cases. The second rotor wake modeling scheme in this paper is a split potential formulation for computing unsteady blade-vortex interactions. Discrete vortex fields are introduced into a three-dimensional, conservative, full-potential rotor code. Computer predictions are compared with two experimental blade-vortex interaction cases.

  18. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

    1991-01-01

    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  19. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  20. Reformulating Aerosol Thermodynamics and Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Metzger, S.

    2006-12-01

    Modeling aerosol composition and cloud microphysics is rather complex due to the required thermodynamics, even if chemical and thermodynamical equilibrium is assumed. We show, however, that for deliquescent atmospheric aerosols thermodynamics can be considerably simplified, if we reformulate chemical equilibrium to include water purely based on thermodynamic principles. In chemical and thermodynamical equilibrium, the relative humidity (RH) fixes the molality of atmospheric aerosols. Although this fact is in theory well known, it has hardly been utilized in aerosol modeling nor has been the fact that for the same reason also the aerosol activity (including activity coefficients) and water content are fixed (by RH) for a given aerosol concentration and type. The only model that successfully utilizes this fact is the computationally very efficient EQuilibrium Simplified thermodynamic gas/Aerosol partitioning Model, EQSAM (Metzger et al., 2002a), EQSAM2 (Metzger et al., 2006). In both versions the entire gas/liquid/solid aerosol equilibrium partitioning is solved analytically and hence non-iteratively a substantial advantage in aerosol composition modeling. Here we briefly present the theoretical framework of EQSAM2, which differs from EQSAM in a way that the calculation of the water activity of saturated binary or mixed inorganic/organic salt solutions of multi-component aerosols has been generalized by including the Kelvin-term, thus allowing for any solute activity above the deliquescence relative humidity, including supersaturation. With application of our new concept to a numerical whether prediction (NWP) model, we demonstrate its wide implications for the computation of various aerosol and cloud properties, as our new concept allows to consistently and efficiently link the modeling of aerosol thermodynamics and cloud microphysics through the aerosol water mass, which therefore deserves special attention in atmospheric chemistry, air pollution, NWP and climate

  1. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  2. Cloud Microphysics and Absorption Validation

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven

    2002-01-01

    Vertical distributions of particle size and habit were developed from in-situ data collected from three midlatitude cirrus field campaigns (FIRE-1, FIRE-2, and ARM IOP). These new midlatitude microphysical models were used to develop new cirrus scattering models at a number of wavelengths appropriate for use with the MODIS imager (Nasiri et al. 2002). This was the first successful collaborative effort between all the investigators on this proposal. Recent efforts have extended the midlatitude cirrus cloud analyses to tropical cirrus, using in-situ data collected during the Tropical Rainfall Measurement Mission (TRMM) Kwajalein field campaign in 1999. We note that there are critical aspects to the work: a) Improvement in computing the scattering and radiative properties of ice crystals; b) Requirement for copious amounts of cirrus in-situ data, presented in terms of both particle size and habit distributions; c) Development of cirrus microphysical and optical models for various satellite, aircraft, and ground-based instruments based on the theoretical calculations and in-situ measurements; d) Application to satellite data.

  3. The Microphysics of Antarctic Clouds - Part two Modelling.

    NASA Astrophysics Data System (ADS)

    Listowski, Constantino; Lachlan-Cope, Tom

    2016-04-01

    We compare different cloud microphysical schemes implemented in the Weather Research & Forecasting model (WRF, v3.5.1) to investigate their ability to simulate clouds over the Antarctic Peninsula. We also discuss first results obtained over the Weddell Sea. Comparisons are made to cloud in-situ measurements performed with the British Antarctic Survey's instrumented Twin Otter aircraft. We discuss the performance of the microphysical scheme currently used by the operational model Antarctic Mesoscale Prediction System (AMPS), which uses the Polar version of WRF, by contrasting its results with the ones of more sophisticated WRF schemes. We also evaluate the reliability of Ice Nuclei and Cloud Condensation Nuclei parameterizations used by the schemes, which are almost exclusively based on mid-latitudes measurements.

  4. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.

    2010-09-01

    Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the

  5. Advances in Data Assimilation and Weather Prediction Using TRMM Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Hou, Arthur Y.; Zhang, Sara; daSilvia, Arlindo; Li, Jui-Lin; Zhang, Minghua

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations requires knowledge of how atmospheric moisture, clouds, latent heating, the large-scale circulation and energy fluxes vary with changing climatic conditions. The physical process linking these climate elements is precipitation. Accurate knowledge of how precipitation varies in space and time and how it couples with other atmospheric variables is essential for understanding the global water and energy cycle. In recent years, TRMM data products have played a key role in advancing the field of data assimilation to provide better global analyses for climate research and numerical weather prediction. TRMM research has demonstrated the effectiveness of microwave-based rainfall and total precipitable water (TPW) observations in improving the quality of assimilated datasets and upgrading forecast skills. TRMM latent heating products have also stimulated experimentation with innovative techniques to use this type of information to improve global analyses. We discuss strategies of assimilating TRMM observations at NASA s Data Assimilation Office and present results on the impact assimilating TRMM data on the Goddard Earth Observing System (GEOS) analyses and forecast capabilities.

  6. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  7. Condensing Organic Aerosols in a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  8. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  9. Modeling Marine Stratocumulus with a Detailed Microphysical Scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Chunsheng; Ishizaka, Yutaka

    2004-02-01

    A one-dimensional 3rd-order turbulence closure model with size-resolved microphysics and radiative transfer has been developed for investigating aerosol and cloud interactions of the stratocumulus-topped marine boundary layer. A new method is presented for coupling between the dynamical model and the microphysical model. This scheme allows the liquid water related correlations to be directly calculated rather than parameterized. On 21 April 2001, a marine stratocumulus was observed by the Caesar aircraft over the west Pacific Rim south of Japan during the 2001 APEX/ACE-Asia field measurements. This cloud is simulated by the model we present here. The model results show that the general features of the stratocumulus-topped marine boundary layer predicted by the model are in agreement with the measurements. A new onboard cloud condensation nuclei (CCN) counter provides not only total CCN number concentration (as the traditional CCN counters do at a certain supersaturation) but also the CCN size distribution information. Using these CCN data, model responses to different CCN initial concentrations are examined. The model results are consistent with both observations and expectations. The numerical results show that the cloud microphysical properties are changed fundamentally by different initial CCN concentrations but the cloud liquid water content does not differ significantly. Different initial CCN loadings have large impacts on the evolution of cloud microstructure and radiation transfer while they have a modest effect on thermodynamics. Increased CCN concentration leads to significant decrease of cloud effective radius.

  10. The microphysical pathway to contrail formation

    NASA Astrophysics Data System (ADS)

    Kärcher, B.; Burkhardt, U.; Bier, A.; Bock, L.; Ford, I. J.

    2015-08-01

    A conceptual framework to predict microphysical and optical properties of contrail particles within a wingspan behind the source aircraft is developed. Results from two decades of contrail observations and numerical simulations are reviewed forming the basis of theoretical model development. The model utilizes cloud theory applied to the dynamics and thermodynamics of jet aircraft exhaust plumes in upper tropospheric conditions. Droplet nuclei include soot particles emitted from aircraft engines and atmospheric particles entrained into the plume. These precursor particles activate into copious homogeneously freezing water droplets as the plume relative humidity rises beyond liquid water saturation. A unimodal size spectrum of ice particles develops wherein ice particles grow to micrometer mean sizes. Contrail particle formation is analyzed over a wide range of soot emissions relating to conventional jet fuels as well as to alternative aviation fuels producing much less soot and volatile particle emissions. For current aviation fuels and propulsion technology, the number of contrail ice particles scales roughly in proportion to the number of emitted soot particles that act as water condensation nuclei despite their poor hygroscopicity. Close to the contrail formation threshold, only few plume particles can be water activated and freeze. Implications for effects of alternative fuels on contrails, an arena for future scientific exploration, are outlined.

  11. 76 FR 52954 - Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting Adverse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... HUMAN SERVICES Workshop: Advancing Research on Mixtures; New Perspectives and Approaches for Predicting... ``Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects....niehs.nih.gov/conferences/dert/mixtures/ . The deadline to register for this workshop is...

  12. Lifetime prediction modeling of airfoils for advanced power generation

    NASA Astrophysics Data System (ADS)

    Karaivanov, Ventzislav Gueorguiev

    The use of gases produced from coal as a turbine fuel offers an attractive means for efficiently generating electric power from our Nation's most abundant fossil fuel resource. The oxy-fuel and hydrogen-fired turbine concepts promise increased efficiency and low emissions on the expense of increased turbine inlet temperature (TIT) and different working fluid. Developing the turbine technology and materials is critical to the creation of these near-zero emission power generation technologies. A computational methodology, based on three-dimensional finite element analysis (FEA) and damage mechanics is presented for predicting the evolution of creep and fatigue in airfoils. We took a first look at airfoil thermal distributions in these advanced turbine systems based on CFD analysis. The damage mechanics-based creep and fatigue models were implemented as user modified routine in commercial package ANSYS. This routine was used to visualize the creep and fatigue damage evolution over airfoils for hydrogen-fired and oxy-fuel turbines concepts, and regions most susceptible to failure were indentified. Model allows for interaction between creep and fatigue damage thus damage due to fatigue and creep processes acting separately in one cycle will affect both the fatigue and creep damage rates in the next cycle. Simulation results were presented for various thermal conductivity of the top coat. Surface maps were created on the airfoil showing the development of the TGO scale and the Al depletion of the bond coat. In conjunction with model development, laboratory-scale experimental validation was executed to evaluate the influence of operational compressive stress levels on the performance of the TBC system. TBC coated single crystal coupons were exposed isothermally in air at 900, 1000, 1100oC with and without compressive load. Exposed samples were cross-sectioned and evaluated with scanning electron microscope (SEM). Performance data was collected based on image analysis

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  15. Aerosol Mass Loading, Mixing State, Size and Number in Present Day (2000) and Future (2100): Study with the Advanced Particle Microphysics (APM) module in the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Luo, G.; Yu, F.

    2014-12-01

    Aerosols affect the global energy budget by scattering and absorbing sunlight (direct effects) and by changing the microphysical properties, lifetime, and coverage of clouds (indirect effects). One of the key challenges in quantifying the aerosol direct and indirect effects is to deep our understanding about the size distribution, size-resolved composition, and mixing state of aerosols. However, detailed information on size distribution and mixing state is often not available or incomplete in current climate models. Here, we incorporated APM into CESM. APM is a multi-type, multi-component (sulfate, nitrate, ammonium, SOA, BC, OC, dust, and sea salt), size-resolved particle microphysics model. Online chemistry, up-to-date nucleation, oxidation aging of medium-volatile and semi-volatile organic gases, aerosol-cloud interaction with stratiform cloud, shallow convection cloud, and deep convection cloud are considered. The amounts of secondary species coated on primary particles, through condensation, coagulation, equilibrium uptake, and aqueous chemistry, are also tracked. Model results are compared with aerosol mass observed by IMPROVE/EMEP, vertical structure of global particle number from aircraft-based field campaigns, particle and cloud condensation nuclei number at ground-based stations, aerosol optical properties retrieved by several satellites. Model results can capture the major characteristics shown in these observations. With this model system, we find that global burdens of sulfate, nitrate, ammonium, BC, OC from 2000 to 2100, under scenario RCP 4.5 where total radiative forcing is stabilized before 2100, are decreased by 44%, 50%, 43%, 40%, 40%, respectively. Dust and sea salt increase slightly. Global burdens of secondary species coated on BCOC, dust, and sea salt are deceased by 34%, 30% and 60%, respectively. Global averaged aerosol number in the lower troposphere (from surface to 3 km) is significantly decreased, especially for particles smaller than

  16. An evaluation of fall speed characteristics in bin and bulk microphysical schemes and use of bin fall speeds to improve forecasts of warm-season rainfall

    NASA Astrophysics Data System (ADS)

    Aligo, Eric A.

    2011-12-01

    As computer power increases and model grid spacing decreases, more emphasis will be put on model microphysics to produce accurate forecasts of rainfall including that from warm-season mesoscale convective systems (MCSs). Some believe bin microphysical schemes are far superior to the commonly used bulk microphysical schemes because of their ability to more accurately depict certain processes like sedimentation. However, bin schemes are computationally inefficient and there are no plans in the near future to implement such schemes operationally. Instead, this study proposes to use a technique in Weather Research and Forecast (WRF) Advanced Research WRF (ARW) simulations that attempts to improve bulk microphysical forecasts of warm-season MCSs by harnessing the intrinsic characteristics of bin fall speed distributions that are important for the sedimentation process provided the fall speed characteristics in bin schemes differ from those in commonly used bulk schemes. Fall speed distributions of rain, snow, graupel and cloud ice were compared between a bin scheme and three bulk schemes, and were found to be different between the different schemes. The microphysical processes that contributed the largest to the microphysical budget in the bin scheme often occurred with the slower fall speeds, but the opposite was true for the bulk schemes. There was evidence of size-sorting in the bin and Thompson bulk schemes, a naturally occurring phenomenon. This feature was not simulated in the WSM6 and Lin schemes and can be attributed to those schemes being single moment and the Thompson scheme being double moment in ice and rain. Since the characteristics of the bin fall speeds were different from those in the bulk schemes, bin fall speeds were used to modify bulk scheme fall speeds using a probability matching technique that was developed to improve the prediction of warm-season MCSs. The sensitivity of different convective morphologies to the fall speed modifications was also

  17. Advanced System-Level Reliability Analysis and Prediction with Field Data Integration

    DTIC Science & Technology

    2011-09-01

    innovative life prediction methodologies that incorporate emerging probabilistic lifing techniques as well as advanced physics-of- failure...often based on simplifying assumptions and their predictions may suffer from different sources of uncertainty. For instance, one source of...system level, most modeling approaches focus on life prediction for single components and fail to account for the interdependencies that may result

  18. Predicting Performance in Technical Preclinical Dental Courses Using Advanced Simulation.

    PubMed

    Gottlieb, Riki; Baechle, Mary A; Janus, Charles; Lanning, Sharon K

    2017-01-01

    The aim of this study was to investigate whether advanced simulation parameters, such as simulation exam scores, number of student self-evaluations, time to complete the simulation, and time to complete self-evaluations, served as predictors of dental students' preclinical performance. Students from three consecutive classes (n=282) at one U.S. dental school completed advanced simulation training and exams within the first four months of their dental curriculum. The students then completed conventional preclinical instruction and exams in operative dentistry (OD) and fixed prosthodontics (FP) courses, taken during the first and second years of dental school, respectively. Two advanced simulation exam scores (ASES1 and ASES2) were tested as predictors of performance in the two preclinical courses based on final course grades. ASES1 and ASES2 were found to be predictors of OD and FP preclinical course grades. Other advanced simulation parameters were not significantly related to grades in the preclinical courses. These results highlight the value of an early psychomotor skills assessment in dentistry. Advanced simulation scores may allow early intervention in students' learning process and assist in efficient allocation of resources such as faculty coverage and tutor assignment.

  19. Advances and Computational Tools towards Predictable Design in Biological Engineering

    PubMed Central

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694

  20. Advanced GIS Exercise: Predicting Rainfall Erosivity Index Using Regression Analysis

    ERIC Educational Resources Information Center

    Post, Christopher J.; Goddard, Megan A.; Mikhailova, Elena A.; Hall, Steven T.

    2006-01-01

    Graduate students from a variety of agricultural and natural resource fields are incorporating geographic information systems (GIS) analysis into their graduate research, creating a need for teaching methodologies that help students understand advanced GIS topics for use in their own research. Graduate-level GIS exercises help students understand…

  1. Factors that Predict Who Takes Advanced Courses in Cognitive Therapy

    ERIC Educational Resources Information Center

    Pehlivanidis, Artemios

    2007-01-01

    Training in Cognitive Therapy (CT) includes theoretical and didactic components combined with clinical supervision. An introductory course in CT might satisfy training needs in psychotherapy and help in the selection of those trainees who wish to continue to an advanced training level. Predictors of success at such an introductory course have been…

  2. Perceptions and Predictions of Expertise in Advanced Musical Learners

    ERIC Educational Resources Information Center

    Papageorgi, Ioulia; Creech, Andrea; Haddon, Elizabeth; Morton, Frances; De Bezenac, Christophe; Himonides, Evangelos; Potter, John; Duffy, Celia; Whyton, Tony; Welch, Graham

    2010-01-01

    The aim of this article was to compare musicians' views on (a) the importance of musical skills and (b) the nature of expertise. Data were obtained from a specially devised web-based questionnaire completed by advanced musicians representing four musical genres (classical, popular, jazz, Scottish traditional) and varying degrees of professional…

  3. firestar--advances in the prediction of functionally important residues.

    PubMed

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.

  4. Atmospheric microphysical experiments on an orbital platform

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.

    1974-01-01

    The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.

  5. Advancements in decadal climate predictability: The role of nonoceanic drivers

    NASA Astrophysics Data System (ADS)

    Bellucci, A.; Haarsma, R.; Bellouin, N.; Booth, B.; Cagnazzo, C.; Hurk, B.; Keenlyside, N.; Koenigk, T.; Massonnet, F.; Materia, S.; Weiss, M.

    2015-06-01

    We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as "signal carriers," transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.

  6. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  7. Advances in fatigue life prediction methodology for metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    The capabilities of a plasticity-induced crack-closure model to predict small- and large-crack growth rates, and in some cases total fatigue life, for four aluminum alloys and three titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading are described. Equations to calculate a cyclic-plastic-zone corrected effective stress-intensity factor range from a cyclic J-integral and crack-closure analysis of large cracks were reviewed. The effective stress-intensity factor range against crack growth rate relations were used in the closure model to predict small- and large-crack growth under variable-amplitude and spectrum loading. Using the closure model and microstructural features, a total fatigue life prediction method is demonstrated for three aluminum alloys under various load histories.

  8. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2007-09-30

    Al Mandoos (2007), Haboob dust storms of the southern Arabian Peninsula, J. Geophys. Res., in press. Zhang, J., J. S. Reid, S. D. Miller, J. F. Turk...Analysis and Predictions System (NAAPS) and the Coupled Ocean/Atmosphere Mesoscale Prediction System ( COAMPS ®). This work included generation of Navy...Ocean/Atmosphere Mesoscale Prediction System ( COAMPS ?). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report

  9. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-13

    storm activity, and 4) surface and airborne measurements on the west coast of the U.S. indicate the presence of aerosols and dust on the predicted...observables (in situ and satellites) and model quantities such as mass. Aerosol species currently included in the analyses are dust , pollution, biomass...Prediction System ( COAMPS ®). Over the next several years it is the goal of this project to maintain these systems as the world leaders in EO prediction

  10. Improving the Subgrid-Scale Representation of Hydrometeors and Microphysical Feedback Effects Using a Multivariate PDF

    NASA Astrophysics Data System (ADS)

    Griffin, Brian M.

    The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate Probability Density Function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, each hydrometeor field was assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced in part one of this two-part project. The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormal shape, are compared to histograms of data taken from Large-Eddy Simulations (LES) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. Finally, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES. Microphysics processes have feedback effects on moisture and heat content. Not only do these processes influence mean values, but also variability and fluxes of moisture and heat content. For example, evaporation of rain below cloud base may produce cold pools. This evaporative cooling may increase the variability in temperature in the below-cloud layer. Likewise, rain production in the moistest part of cloud tends to decrease variability in cloud water. These effects are usually not included in most coarse-resolution weather and climate models, or else are crudely parameterized. In part two of this two-part project, the microphysical effects on moisture and heat content are parameterized using the PDF method. This approach is based on predictive, horizontally-averaged equations for the variances, covariances, and fluxes of moisture and heat

  11. High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes

    NASA Astrophysics Data System (ADS)

    Khain, A.; Lynn, B.; Shpund, J.

    2016-01-01

    Recent studies have pointed to the possible sensitivity of hurricanes to aerosols via aerosol effects on microphysical and thermodynamic processes in clouds. Hurricane Irene, occurring in August 2011, is an excellent case study for investigating aerosol effects on tropical cyclone (TC) structure and intensity: it moved northward along the eastern coast of the United States, and weakened much faster than was predicted by the National Hurricane Center. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. In this study, we simulate Hurricane Irene with 1-km grid spacing using Spectral Bin Microphysics (SBM) and various bulk microphysical schemes in WRF. Simulations with SBM showed that aerosols penetrating the eyewall of Irene from the Saharan Air Layer (SAL) led to an intensification of convection at Irene's eyewall and to a deepening of the hurricane. When Irene moved along the eastern coast of the United States, continental aerosols led to an intensification of convection at Irene's periphery, which interfered with the re-forming of the inner eyewall and to Irene weakening. Sensitivity tests using different "bulk" microphysics schemes indicated a large dispersion of simulated minimum pressure and maximum wind between different simulations. This showed that the simulated hurricane intensity was very sensitive to microphysical processes. Moreover, in consequence, forecast hurricane intensity was highly dependent on the choice of microphysical scheme. New bulk-parameterization schemes simulated the tropical storm intensity of Irene reasonably well. Most bulk schemes that used saturation adjustment indicate the weak sensitivity to aerosols that prevents them from precisely predicting the time evolution of TC intensity and structure.

  12. Microphysics and Southern Ocean Cloud Feedback

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.

    Global climate models (GCMs) change their cloud properties in the Southern Ocean (SO) with warming in a qualitatively consistent fashion. Cloud albedo increases in the mid-latitudes and cloud fraction decreases in the subtropics. This creates a distinctive 'dipole' structure in the SW cloud feedback. However, the shape of the dipole varies from model to model. In this thesis we discuss the microphysical mechanisms underlying the SW cloud feedback over the mid-latitude SO. We will focus on the negative lobe of the dipole. The negative SW cloud feedback in the mid-latitudes is created by transitions from ice to liquid in models. If ice transitions to liquid in mixed-phase clouds the cloud albedo increases because ice crystals are larger than liquid droplets and therefore more reflective for a constant mass of water. Decreases in precipitation efficiency further enhance this effect by decreasing sinks of cloud water. This transition is dependent on the mixed-phase cloud parameterization. Parameterizations vary wildly between models and GCMs disagree by up to 35 K on the temperature where ice and liquid are equally prevalent. This results in a wide spread in the model predictions of the increase in liquid water path (LWP, where the path is the vertically integrated mass of water) with warming that drives the negative optical depth cloud feedback. It is found that this disagreement also results in a wide array of climate mean-states as models that create liquid at lower temperatures have a higher mean-state LWP, lower ice water path (IWP), and higher condensed (ice and liquid) water path (CWP). This presents a problem in climate models. GCMs need to have a reasonable planetary albedo in their climate mean-state. We show evidence that GCMs have tuned cloud fraction to compensate for the variation in mid-latitude cloud albedo driven by the mixed-phase cloud parameterization. This tuning results in mid-latitude clouds that are both too few and too bright as well as a

  13. RNA Structure: Advances and Assessment of 3D Structure Prediction.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2017-03-30

    Biological functions of RNA molecules are dependent upon sustained specific three-dimensional (3D) structures of RNA, with or without the help of proteins. Understanding of RNA structure is frequently based on 2D structures, which describe only the Watson-Crick (WC) base pairs. Here, we hierarchically review the structural elements of RNA and how they contribute to RNA 3D structure. We focus our analysis on the non-WC base pairs and on RNA modules. Several computer programs have now been designed to predict RNA modules. We describe the RNA-Puzzles initiative, which is a community-wide, blind assessment of RNA 3D structure prediction programs to determine the capabilities and bottlenecks of current predictions. The assessment metrics used in RNA-Puzzles are briefly described. The detection of RNA 3D modules from sequence data and their automatic implementation belong to the current challenges in RNA 3D structure prediction. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Indian summer monsoon simulations with CFSv2: a microphysics perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Saha, Subodh K.; Dhakate, Ashish; Pokhrel, Samir

    2016-07-01

    The present study explores the impact of two different microphysical parameterization schemes (i.e. Zhao and Carr, Mon Wea Rev 125:1931-1953, 1997:called as ZC; Ferrier, Amer Meteor Soc 280-283, 2002: called as BF) of National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) on Indian summer monsoon (ISM). Critical relative humidity (RHcrit) plays a crucial role for the realistic cloud formation in a general circulation model (GCM). Hence, impact of RHcrit along with microphysical scheme on ISM is evaluated in the study. Model performance is evaluated in terms of simulation of rainfall, lower and upper tropospheric circulations, cloud fraction, cloud condensate and outgoing longwave radiation (OLR). Climatological mean features of rainfall are better represented by all the sensitivity experiments. Overall, ZC schemes show relatively better rainfall patterns as compared to BF schemes. BF schemes along with 95 % RHcrit (called as BF95) show excess precipitable water over Indian Ocean basin region, which seems to be unrealistic. Lower and upper tropospheric features are well simulated in all the sensitivity experiments; however, upper tropospheric wind patterns are underestimated as compared to observation. Spatial pattern and vertical profile of cloud condensate is relatively better represented by ZC schemes as compared to BF schemes. Relatively more (less) cloud condensate at upper level has lead to relatively better (low) high cloud fraction in ZC (BF) simulation. It is seen that OLR in ZC simulation have great proximity with observation. ZC (BF) simulations depict low (high) OLR which indicates stronger (weaker) convection during ISM period. It implies strong (weak) convection having stronger (weaker) updrafts in ZC (BF). Relatively more (less) cloud condensate at upper level of ZC (BF) may produce strong (weak) latent heating which may lead to relatively strong (weak) convection during ISM. The interaction among microphysics

  15. A New Optical Disdrometer for Monitoring Precipitation Microphysics

    NASA Astrophysics Data System (ADS)

    Testik, F. Y.; Rahman, M. K.

    2014-12-01

    A new optical-type disdrometer called High-speed Optical Disdrometer (HOD) was developed to observe rainfall microphysical quantities such as raindrop size distribution, shape, fall velocity, and canting. The main components of the HOD are a high-speed video camera, an LED light, and a sensor unit. The camera points to the LED light and captures the silhouettes of the backlit drops that fall in between the camera and the light. When a raindrop is detected, the sensor unit triggers the camera to record sequential raindrop images of up to 1000 frames per second. The captured raindrop images are then digitally processed using a computer software developed to determine the raindrop characteristics. The capabilities of the HOD were evaluated both in the laboratory using high-precision spherical lenses and water drops of known sizes and in the field during rainfall events. These tests showed that the overall performance and measurement accuracy of the HOD were satisfactory. The quality and sequential nature of raindrop images collected during field tests demonstrated the advanced observational capabilities of the HOD, indicating its high potential to become an indispensible instrument for monitoring precipitation microphysics.

  16. Retrieval of Fog Microphysical Parameters from NOAA AVHRR Data

    NASA Astrophysics Data System (ADS)

    Xu, Ling

    1995-01-01

    Identifying the droplet size distribution, frequency and location of land-based fog is valuable for climate studies, because of the effects on agricultural productivity projections, highway traffic safety, and urban pollution monitoring. It's especially important to the Central Valley of California, which frequently suffers lingering, heavy fog. Land-based fog plays an important role in surface radiation budgets, by blocking daytime solar heating and nocturnal long wave cooling. The droplet size distribution determines the optical depth and radiative attenuation of fog. An operational retrieval method for obtaining droplet size and optical depth has been developed for land -based fog from the multichannel NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) digital image data. The visible and near infrared images provide the reflectances of both channels, which vary with droplet microphysical characteristics. The reflectances are interpolated to radiative cloud modeling results. A new field method has been used for obtaining the measurements of land-based fog microphysical and thermodynamic parameters. A tethered balloon carries a meteorological package and a cloud droplet imaging system which transfer the images to a recording system on the ground. The results from the satellite imagery at Esparto (ESP), California are well matched with field sampling results at the same location.

  17. Broadband noise - Its prediction and likely importance for advanced propfans

    NASA Astrophysics Data System (ADS)

    Knowles, K.

    1986-07-01

    A comparison of published experimental results and analytical results on broadband noise evaluations for rotating many-bladed propellers has been conducted to assess the importance of broadband noise in the perceived noise (PN) level of propfans. It is concluded that, in cruise conditions, the tone noise dominates the broadband noise of typical propfans by 8 dB. As the speed is reduced, and the values of forward Mach number and helical tip Mach number are reduced, the tones fall more rapidly than the broadband component until, at approach conditions, the broadband noise is dominant by 8 to 16 PNdB. A survey of the state-of-the-art of broadband noise prediction suggests that the broadband noise can be predicted to within 5 dB.

  18. Early Prediction of Lupus Nephritis Using Advanced Proteomics

    DTIC Science & Technology

    2009-06-01

    nephritis from non inflammatory nephropathies with similar urinary findings. 1.2: Validation of NGAL as a biomarker for predicting SLE disease...R01-DK-069749, R01-DK-53289, P50-DK-52612, and R21-DK-070163 from the National Institute of Diabetes and Digestive and Kidney Diseases) and by the...significant, and P values less than 0.1 were reported to show trends. RESULTS Baseline patient characteristics and treatments . Table 1 summarizes the

  19. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    being systematically evaluated to identify the principal relationships between ozone loss and aerosol state. Under this project, we formulated a detailed quantitative model that predicts the multicomponent composition of sulfate aerosols under stratospheric conditions, including sulfuric, nitric, hydrochloric, hydrofluoric and hydrobromic acids. This work defined for the first time the behavior of liquid ternary-system type-1b PSCS. The model also allows the compositions and reactivities of sulfate aerosols to be calculated over the entire range of environmental conditions encountered in the stratosphere (and has been incorporated into a trajectory/microphysics model-see above). Important conclusions that derived from this work over the last few years include the following: the HNO3 content of liquid-state aerosols dominate PSCs below about 195 K; the freezing of nitric acid ice from sulfate aerosol solutions is likely to occur within a few degrees K of the water vapor frost point; the uptake and reactions of HCl in liquid aerosols is a critical component of PSC heterogeneous chemistry. In a related application of this work, the inefficiency of chlorine injection into the stratosphere during major volcanic eruptions was explained on the basis of nucleation of sulfuric acid aerosols in rising volcanic plumes leading to the formation of supercooled water droplets on these aerosols, which efficiently scavenges HCl via precipitation.

  20. A Microphysics Guide to Cirrus Clouds - Part I: Cirrus Types

    NASA Astrophysics Data System (ADS)

    Krämer, Martina; Rolf, Christian; Anna, Luebke; Armin, Afchine; Nicole, Spelten; Anja, Costa; Jessica, Meyer; Martin, Zöger; Jessica, Smith; Robert, Herman; Bernhard, Buchholz; Volker, Ebert; Darrel, Baumgardner; Stephan, Borrmann; Marcus, Klingebiel; Linnea, Avallone

    2016-04-01

    The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study provides a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution (Krämer et al., 2015, ACPD). The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets - liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In

  1. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  2. Early Prediction of Lupus Nephritis Using Advanced Proteomics

    DTIC Science & Technology

    2012-06-01

    non inflammatory nephropathies with similar urinary findings. 1.2: Validation of NGAL as a biomarker for predicting SLE disease activity and course...Devarajan’s work was supported by the NIH (grants R01-DK-069749, R01-DK-53289, P50-DK-52612, and R21-DK-070163 from the National Institute of Diabetes and... treatments . Table 1 summarizes the characteristics of the 111 pa- tients included in the study. Their mean SD age was 15.9 3.4 years, and the

  3. Toward improved durability in advanced combustors and turbines: Progress in the prediction of thermomechanical loads

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Ensign, C. Robert

    1986-01-01

    NASA is sponsoring the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to such loading, and life predictions for high temperature cyclic operation have been underway for several years and are showing promising results. Progress is reported in the development of advanced instrumentation and in the improvement of combustor aerothermal and turbine heat transfer models that will lead to more accurate prediction of thermomechanical loads.

  4. Predicting the relativistic periastron advance of a binary without curving spacetime

    NASA Astrophysics Data System (ADS)

    Friedman, Y.; Livshitz, S.; Steiner, J. M.

    2017-01-01

    Relativistic Newtonian dynamics, the simple model used previously for predicting accurately the anomalous precession of Mercury, is now applied to predict the periastron advance of a binary. The classical treatment of a binary as a two-body problem is modified to account for the influence of the gravitational potential on spacetime. Without curving spacetime, the model predicts the identical equation for the relativistic periastron advance as the post-Newtonian approximation of the general relativity formalism thereby providing further substantiation of this model.

  5. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  6. The accuracy of clinicians' predictions of survival in advanced cancer: a review.

    PubMed

    Cheon, Stephanie; Agarwal, Arnav; Popovic, Marko; Milakovic, Milica; Lam, Michael; Fu, Wayne; DiGiovanni, Julia; Lam, Henry; Lechner, Breanne; Pulenzas, Natalie; Chow, Ronald; Chow, Edward

    2016-01-01

    The process of formulating an accurate survival prediction is often difficult but important, as it influences the decisions of clinicians, patients, and their families. The current article aims to review the accuracy of clinicians' predictions of survival (CPS) in advanced cancer patients. A literature search of Cochrane CENTRAL, EMBASE, and MEDLINE was conducted to identify studies that reported clinicians' prediction of survival in advanced cancer patients. Studies were included if the subjects consisted of advanced cancer patients and the data reported on the ability of clinicians to predict survival, with both estimated and observed survival data present. Studies reporting on the ability of biological and molecular markers to predict survival were excluded. Fifteen studies that met the inclusion and exclusion criteria were identified. Clinicians in five studies underestimated patients' survival (estimated to observed survival ratio between 0.5 and 0.92). In contrast, 12 studies reported clinicians' overestimation of survival (ratio between 1.06 and 6). CPS in advanced cancer patients is often inaccurate and overestimated. Given these findings, clinicians should be aware of their tendency to be overoptimistic. Further investigation of predictive patient and clinician characteristics is warranted to improve clinicians' ability to predict survival.

  7. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  8. Recent advances using rodent models for predicting human allergenicity

    SciTech Connect

    Knippels, Leon M.J. . E-mail: Knippels@voeding.tno.nl; Penninks, Andre H.

    2005-09-01

    The potential allergenicity of newly introduced proteins in genetically engineered foods has become an important safety evaluation issue. However, to evaluate the potential allergenicity and the potency of new proteins in our food, there are still no widely accepted and reliable test systems. The best-known allergy assessment proposal for foods derived from genetically engineered plants was the careful stepwise process presented in the so-called ILSI/IFBC decision tree. A revision of this decision tree strategy was proposed by a FAO/WHO expert consultation. As prediction of the sensitizing potential of the novel introduced protein based on animal testing was considered to be very important, animal models were introduced as one of the new test items, despite the fact that non of the currently studied models has been widely accepted and validated yet. In this paper, recent results are summarized of promising models developed in rat and mouse.

  9. Investigation of advanced UQ for CRUD prediction with VIPRE.

    SciTech Connect

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinement for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and

  10. Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes.

    PubMed

    Malloy, Timothy; Zaunbrecher, Virginia; Beryt, Elizabeth; Judson, Richard; Tice, Raymond; Allard, Patrick; Blake, Ann; Cote, Ila; Godwin, Hilary; Heine, Lauren; Kerzic, Patrick; Kostal, Jakub; Marchant, Gary; McPartland, Jennifer; Moran, Kelly; Nel, Andre; Oguseitan, Oladele; Rossi, Mark; Thayer, Kristina; Tickner, Joel; Whittaker, Margaret; Zarker, Ken

    2017-03-01

    Alternatives analysis (AA) is a method used in regulation and product design to identify, assess, and evaluate the safety and viability of potential substitutes for hazardous chemicals. It requires toxicological data for the existing chemical and potential alternatives. Predictive toxicology uses in silico and in vitro approaches, computational models, and other tools to expedite toxicological data generation in more cost-effective manner than traditional approaches. This article briefly reviews the challenges associated with using predictive toxicology in regulatory AA, then presents four recommendations for its advancement. It recommends using case studies to advance the integration of predictive toxicology into AA; adopting a stepwise process to employing predicative toxicology in AA beginning with prioritization of chemicals of concern; leveraging existing resources to advance the integration of predictive toxicology into the practice of AA, and supporting trans-disciplinary efforts. The further incorporation of predictive toxicology into AA would advance the ability of companies and regulators to select alternatives to harmful ingredients, and potentially increase the use of predictive toxicology in regulation more broadly. This article is protected by copyright. All rights reserved.

  11. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  12. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2005-09-30

    from the massive dust storm that occurred at the start of Operation Iraqi Freedom in late March 2003, may have been sampled during ADAM. COAMPS ...Along coastal and even some deep ocean regions, dust , pollution and smoke are often present and can dominate Electro-Optical (EO) effects over... COAMPS ®1) and the NRL Aerosol Analysis and Prediction System (NAAPS) require precise source and sink functions, as well as parameterizations for particle

  13. Regime Dependant Microphysical Variability in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Dolan, B.; Rutledge, S. A.; Lang, T. J.

    2010-12-01

    Of utmost importance for global precipitation estimates from satellites such as TRMM and the upcoming Global Precipitation Measurement (GPM) is to understand processes that lead to variability in precipitation on sub-seasonal, seasonal, and climatological scales. Many studies have linked differences in rainfall characteristics such as mean diameter (D0) to sub-seasonal regime variability forced by large scale wind shifts, topography, and continental and maritime convection, across various regions of the globe. Several analyses have tied differences between regimes to differing microphysical processes that drive changes in the drop-size distributions occurring in convective rainfall. For example, decreased ice mass aloft and smaller mean diameters are indicative of warm rain processes, while vigorous ice formation leads to large, melting ice to create large drops. If the microphysical variability in different regimes is characterized and understood, the results could be used to improve satellite precipitation algorithms. The polarimetric, Doppler C-band radar, CPOL, located near Darwin, Australia provides a unique platform to study differences in microphysics between land and ocean, as well as variability between monsoon and break periods. The focus of this study is to examine the microphysical processes occurring in four distinct regimes around Darwin (monsoon-land, monsoon-ocean, break-land, break-ocean), using polarimetric data from CPOL. Analyses such as contoured frequency by altitude (CFADs) diagrams, cumulative distribution functions, and mean profiles of precipitation water mass, precipitation ice mass, reflectivity, differential reflectivity and specific differential phase will aide in understanding the physics of precipitation in these regimes. The formation of precipitation ice aloft, warm rain processes, and the contributions of warm rain and cold cloud processes including melting of ice into large drops, will be linked to differences in D0, rain

  14. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  15. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery.

    PubMed

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-08-16

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI.

  16. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too

  17. Evaluation of Model Microphysics within Precipitation Bands of Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Steven

    2013-01-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is approx 0.25 m/s too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were approx 0.25 m/s too slow, while the

  18. Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Colle, B.; Molthan, A.; Yu, R.; Stark, D.; Yuter, S. E.; Nesbitt, S. W.

    2013-12-01

    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Cold-season Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is ~0.25 m s-1 too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were ~0.25 m s-1 too slow, while the SBU

  19. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Wang, Jun; Allen Huang, H.-L.; Goldberg, Mitchell D.

    2013-03-01

    In recent years, graphics processing units (GPUs) have emerged as a low-cost, low-power and a very high performance alternative to conventional central processing units (CPUs). The latest GPUs offer a speedup of two-to-three orders of magnitude over CPU for various science and engineering applications. The Weather Research and Forecasting (WRF) model is the latest-generation numerical weather prediction model. It has been designed to serve both operational forecasting and atmospheric research needs. It proves useful for a broad spectrum of applications for domain scales ranging from meters to hundreds of kilometers. WRF computes an approximate solution to the differential equations which govern the air motion of the whole atmosphere. Kessler microphysics module in WRF is a simple warm cloud scheme that includes water vapor, cloud water and rain. Microphysics processes which are modeled are rain production, fall and evaporation. The accretion and auto-conversion of cloud water processes are also included along with the production of cloud water from condensation. In this paper, we develop an efficient WRF Kessler microphysics scheme which runs on Graphics Processing Units (GPUs) using the NVIDIA Compute Unified Device Architecture (CUDA). The GPU-based implementation of Kessler microphysics scheme achieves a significant speedup of 70× over its CPU based single-threaded counterpart. When a 4 GPU system is used, we achieve an overall speedup of 132× as compared to the single thread CPU version.

  20. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  1. Application of infinite model predictive control methodology to other advanced controllers.

    PubMed

    Abu-Ayyad, M; Dubay, R; Hernandez, J M

    2009-01-01

    This paper presents an application of most recent developed predictive control algorithm an infinite model predictive control (IMPC) to other advanced control schemes. The IMPC strategy was derived for systems with different degrees of nonlinearity on the process gain and time constant. Also, it was shown that IMPC structure uses nonlinear open-loop modeling which is conducted while closed-loop control is executed every sampling instant. The main objective of this work is to demonstrate that the methodology of IMPC can be applied to other advanced control strategies making the methodology generic. The IMPC strategy was implemented on several advanced controllers such as PI controller using Smith-Predictor, Dahlin controller, simplified predictive control (SPC), dynamic matrix control (DMC), and shifted dynamic matrix (m-DMC). Experimental work using these approaches combined with IMPC was conducted on both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems and compared with the original forms of these advanced controllers. Computer simulations were performed on nonlinear plants demonstrating that the IMPC strategy can be readily implemented on other advanced control schemes providing improved control performance. Practical work included real-time control applications on a DC motor, plastic injection molding machine and a MIMO three zone thermal system.

  2. Numerical Analysis Using WRF-SBM for the Cloud Microphysical Structures in the C3VP Field Campaign: Impacts of Supercooled Droplets and Resultant Riming on Snow Microphysics

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali

    2012-01-01

    Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.

  3. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  4. Data Mining and Predictive Modeling in Institutional Advancement: How Ten Schools Found Success. Technical Report

    ERIC Educational Resources Information Center

    Luperchio, Dan

    2009-01-01

    This technical report, produced in partnership by the Council for Advancement and Support of Education (CASE) and SPSS Inc., explores the promise of data mining alumni records at educational institutions. Working with individual alumni records from The Johns Hopkins Zanvyl Krieger School of Arts and Sciences, a predictive regression model is…

  5. Optical, microphysical and compositional properties of volcanic ash samples

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Tabacniks, M.; Artaxo, P.; Schumann, U.

    2012-12-01

    Volcanoes are one of the most important sources of aerosols in the atmosphere and the chemical and physical properties of these particles are of fundamental importance for better understanding of Earth's climate and weather patterns. One of the main parameters missing in current aerosol models is the complex refractive index of aerosol particles from the UV to the short wave infrared (SWIR) wavelengths. The main objective of this research was to perform a detailed characterization of important optical, microphysical and compositional properties of aerosol particles of the volcanic sample from Eyjafjallajökull (Iceland). Ash from this volcano was collected in the vicinity of the eruption in Iceland. The sample was brought to our laboratory and it was initially sieved to retain particles smaller than 45 um, de-agglomerated, re-suspended and carried out by a flow of air through the use of a Fluidized Bed Aerosol Generator (FBAG). This experimental setup allows us to separate particles into PM10, PM2.5, or PM1.0. Particles were collected on Nuclepore filters and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, mass concentration, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index (from 300 to 2500nm) was derived empirically from the measurements of the mass absorption coefficient, size distribution and density of the material. In this work we are going to show the inter comparison of the microphysical properties between Eyjafjallajökull Icelandic volcano and other volcanoes. Volcanic ash from Eyjafjallajökull shows strong absorption and consequently high imaginary refractive index for UV and visible wavelengths. Also, microphysical optical properties and compositional differences were observed between coarse and

  6. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  7. Analysis of Cirrus Cloud Microphysical Data

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Grainger, Cedric A.

    1999-01-01

    The First International Satellite Cloud Climatology Regional Experiment (FIRE) program has the goal of improving our capabilities to understand, model and detect the properties of climatically-important clouds. This is being undertaken through a three-pronged effort of modeling, long-term observations and short-term intensive field studies. Through examination of satellite and other data it is apparent that stratus and cirrus cloud types have the greatest impact on climate due to their radiative effects and ubiquitous nature. As a result, the FIRE program has developed two paths of investigation, each having its own subset of research objectives and measurement programs. The work conducted under this grant was directed toward furthering our understanding of cirrus cloud systems. While it is known that cirrus are climatically important, the magnitude and even sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to their physical depth and location in the atmosphere and their microphysical composition. However, significant uncertainties still exist in how cirrus clouds form and how they are maintained, what their physical properties are and how they can be parameterized in numerical models. Better remote sensing techniques for monitoring cirrus cloud systems and improved modeling of radiative transfer through ice particles are also needed. A critical element in resolving these issues is a better understanding of cirrus cloud microphysical properties and how they vary. The focus of the research to be conducted under this grant was th data collected in situ by the University of North Dakota Citation aircraft. The goals of this research were to add to the body of knowledge of cirrus cloud microphysics, particularly at the small end of the size spectrum; and analyze the spatial variation of cirrus clouds.

  8. Intermediate-term prediction in advance of the Loma Prieta earthquake

    SciTech Connect

    Keilis-Borok, V.I.; Kossobokov, V.; Rotvain, I. ); Knopoff, L. )

    1990-08-01

    The Loma Prieta earthquake of October 17, 1989 was predicted by the use of two pattern recognition algorithms, CN and M8. The prediction with algorithm CN was that an earthquake with magnitude greater than or equal to 6.4 was expected to occur in a roughly four year interval staring in midsummer 1986 in a polygonal spatial window of approximate average dimensions 600 {times} 450 km, encompassing Northern California and Northern Nevada. The prediction with algorithm M8 was that an earthquake with magnitude greater than or equal to 7.0 was expected to occur within 5 to 7 years after 1985, in a spatial window of approximate average dimensions 800 {times} 560 km. The predictions were communicated in advance of the earthquake. In previous, mainly retrospective applications of these algorithms, successful predictions occurred in about 80% of the cases.

  9. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of

  10. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  11. Formability Prediction of Advanced High Strength Steel with a New Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Lim, Sungjun; Huh, Jeehyang; Huh, Hoon

    2011-08-01

    A ductile fracture criterion is newly proposed to accurately predict forming limit diagrams (FLD) of sheet metals. The new ductile fracture criterion is based on the effect of the non-dimensional stress triaxiality, the stress concentration factor and the effective plastic strain on the nucleation, growth and coalescence of voids. The new ductile fracture criterion has been applied to estimate the formability of four kind advanced high strength steels (AHSS): DP780, DP980, TRIP590, and TWIP980. FLDs predicted are compared with experimental results and those predicted by other ductile fracture criteria. The comparison demonstrates that FLDs predicted by the new ductile fracture criterion are in better agreement with experimental FLDs than those predicted by other ductile fracture criteria. The better agreement of FLDs predicted by the new ductile fracture criterion is because conventional ductile fracture criteria were proposed for fracture prediction in bulk metal forming while the new one is proposed to predict the onset of fracture in sheet metal forming processes.

  12. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  13. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kontos, K. B.; Janardan, B. A.; Gliebe, P. R.

    1996-01-01

    Recent experience using ANOPP to predict turbofan engine flyover noise suggests that it over-predicts overall EPNL by a significant amount. An improvement in this prediction method is desired for system optimization and assessment studies of advanced UHB engines. An assessment of the ANOPP fan inlet, fan exhaust, jet, combustor, and turbine noise prediction methods is made using static engine component noise data from the CF6-8OC2, E(3), and QCSEE turbofan engines. It is shown that the ANOPP prediction results are generally higher than the measured GE data, and that the inlet noise prediction method (Heidmann method) is the most significant source of this overprediction. Fan noise spectral comparisons show that improvements to the fan tone, broadband, and combination tone noise models are required to yield results that more closely simulate the GE data. Suggested changes that yield improved fan noise predictions but preserve the Heidmann model structure are identified and described. These changes are based on the sets of engine data mentioned, as well as some CFM56 engine data that was used to expand the combination tone noise database. It should be noted that the recommended changes are based on an analysis of engines that are limited to single stage fans with design tip relative Mach numbers greater than one.

  14. Microphysical Modelling of Polar Stratospheric Clouds During the 1999-2000 Winter

    NASA Technical Reports Server (NTRS)

    Drdla, Katja; Schoeberl, Mark; Rosenfield, Joan; Gore, Warren J. (Technical Monitor)

    2000-01-01

    The evolution of the 1999-2000 Arctic winter has been examined using a microphysical/photochemical model run along diabatic trajectories. A large number of trajectories have been generated, filling the vortex throughout the region of polar stratospheric cloud (PSC) formation, and extending from November until the vortex breakup, in order to provide representative sampling of the evolution of PSCs and their effect on stratospheric chemistry. The 1999-2000 winter was particularly cold, allowing extensive PSC formation. Many trajectories have ten-day periods continuously below the Type I PSC threshold; significant periods of Type II PSCs are also indicated. The model has been used to test the extent and severity of denitrification and dehydration predicted using a range of different microphysical schemes. Scenarios in which freezing only occurs below the ice frost point (causing explicit coupling of denitrification and dehydration) have been tested, as well as scenarios with partial freezing at warmer temperatures (in which denitrification can occur independently of dehydration). The sensitivity to parameters such as aerosol freezing rates and heterogeneous freezing have been explored. Several scenarios cause sufficient denitrification to affect chlorine partitioning, and in turn, model-predicted ozone depletion, demonstrating that an improved understanding of the microphysics responsible for denitrification is necessary for understanding ozone loss rates.

  15. Advanced Numerical Prediction and Modeling of Tropical Cyclones Using WRF-NMM modeling system

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, S. G.; Rogers, R. F.; Marks, F. D.; Atlas, R.

    2007-12-01

    Dramatic improvement in tropical cyclone track forecasts have occurred through advancements in high quality observations, high speed computers and improvements in dynamical models. Similar advancements now need to be made for tropical cyclone intensity, structure and rainfall prediction. The Weather Research Forecasting Model (WRF) is a general purpose, multi-institutional mesoscale modeling system. A version of the WRF model called the HWRF/WRF-NMM modeling system, developed at the National Center for Environmental Protection (NCEP) was recently adopted for hurricane forecasting (Gopalakrishnan et al, 2006) by the National Hurricane Center (NHC). At the Hurricane Research Division (HRD/AOML/OAR) we are developing and further advancing a research version of this modeling system. This work is done in collaboration with the Developmental Test bed Center (DTC), Boulder, CO, Global Systems division (GSD/ESRL/OAR), Boulder, CO, The Air Resources Laboratory (ARL/OAR), Washington, D.C., the U.S. university community, the Indian Institute of Technology, IIT.Delhi, India, and the India Meteorological Department, New Delhi, India Our modeling effort includes advancing the WRF system for Ensemble Hurricane Forecasting, advancing our understanding of Ensemble-vs- High Resolution Forecasting of Hurricanes, advancing WRF/WRF-NMM with better analysis techniques (e.g. Four Dimensional Data Assimilation) for improving forecasts and above all, advancing our understanding of hurricane processes using a high resolution numerical modeling approach. Examples of some of these applications will be shown here. Reference: NCEP's Two-way-Interactive-Moving-Nest NMM-WRF modeling system for Hurricane Forecasting, S.G. Gopalakrishnan, N. Surgi, R. Tuleya, and Z. Janjic 27th Conference on Hurricanes and Tropical Meteorology, 24- 28 April 2006, Monterey, California.

  16. Exploring dark matter microphysics with galaxy surveys

    SciTech Connect

    Escudero, Miguel; Mena, Olga; Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline E-mail: omena@ific.uv.es E-mail: ryan.wilkinson@durham.ac.uk

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  17. MOD06 Optical and Microphysical Retrievals

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Arnold, G. T.; Dinsick, J.; Gatebe, C. K.; Gray, M. A.; Hubanks, P. A.; Moody, E. G.; Wind, B.; Wind, G.

    2003-01-01

    Major efforts over the past six months included: (1) submission of MOD06 Optical and Microphysical Retrieval recompetition proposal, (2) delivery of a MODIS Atmosphere Level-3 update, (3) delivery of the MODIS Atmosphere s new combined Level-2 product, (4) development of an above-cloud precipitable water research algorithm and a multi-layer cloud detection algorithm, (5) continued development of a Fortran 90 version of the retrieval code for use with MAS as well as operational MODIS processing, (6) preliminary analysis of CRYSTAL-FACE field experiment in July 2002, (7) continued analysis of data obtained during the SAFARI 2000 dry season campaign in southern Africa, and the Arctic FIRE-ACE experiment.

  18. Cloud microphysical relationships in California marine stratus

    SciTech Connect

    Hudson, J.G.; Svensson, G.

    1995-12-01

    Cloud microphysical measurements off the southern California coast are presented and compared with in situ airborne measurements of cloud condensation nuclei (CCN) spectra. Large-scale variations in cloud droplet concentrations were due to CCN variations, some medium-scale variations may be a result of the conversion of droplets to drops by coalescence, while small-scale variations were due to different proportions of the CCN spectra being activated because of variations in updraft velocity at cloud base. This latter internal mixing process produces an inverse relationship between droplet concentration and mean size and an increase in droplet spectral width with mean droplet size. Drizzle drop concentrations are strongly associated with lower droplet concentrations, larger droplets, and greater droplet spectral width. 29 refs., 9 figs., 3 tabs.

  19. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  20. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  1. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes

  2. Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)

    NASA Astrophysics Data System (ADS)

    Griffin, Brian M.; Larson, Vincent E.

    2016-11-01

    Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simple warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.

  3. Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)

    DOE PAGES

    Griffin, Brian M.; Larson, Vincent E.

    2016-11-25

    Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less

  4. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant

  5. Comparison of two imaging programs in predicting the soft tissue changes with mandibular advancement surgery.

    PubMed

    Ravindranath, Sneha; Krishnaswamy, Nathamuni Rengarajan; Sundaram, Venkateswaran

    2011-01-01

    Establishing common objectives and expectations concerning the outcome of proposed surgical orthodontic therapy is a crucial part of the treatment planning process, which has been greatly simplified by imaging software. The purpose of this study was to investigate the reliability of two surgical imaging programs--Dolphin Imaging 10 and Vistadent OC--in simulating the actual outcome of mandibular advancement surgery by using a visual analog scale (VAS) judged by a panel of orthodontists, oral surgeons, and laypersons. The predictions were also analyzed with soft tissue cephalometric evaluation. The results of the study showed that in predicting the surgical outcome evaluated by the VAS, both programs received a mean rating of fair. One was marginally superior for the overall assessment among all three panelist groups. Region-wise, rating indicated the lower lip region to be the least accurate, and the submental region received the highest scores. The soft tissue cephalometric parameters showed minimal differences except for the lower lip parameters. Thus, Dolphin Imaging 10 and Vistadent OC are reliable in predicting mandibular advancement surgical outcomes with inaccuracies chiefly in the lower lip region.

  6. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  7. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    SciTech Connect

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  8. Effects of Wildfire Pollution on the Microphysical and Electrical Properties of Pyrocumulus

    NASA Astrophysics Data System (ADS)

    Duff, R.; Grant, L. D.; van den Heever, S. C.

    2014-12-01

    Pyrocumulus clouds form over wildfires when hot, smoke-filled air rises, cools and condenses. These clouds have higher cloud condensation nuclei (CCN) concentrations, which affect their microphysical and electrical properties. It is important to better understand pyrocumulus cloud microphysical characteristics and lightning formation, which have implications for the prediction of wildfire growth as well as the radiative and chemical characteristics of the upper troposphere. A recent observational study documented an electrified pyrocumulus over the May 2012 Hewlett Gulch fire located to the west of Fort Collins, Colorado. This cloud produced approximately 20 intracloud lightning flashes, and its electrical activity differed from surrounding convection that was not directly impacted by the fire and associated smoke. The goal of this research is to investigate aerosol-induced cloud-scale microphysical differences between clean clouds and polluted pyrocumulus to better characterize the mechanisms that cause pyrocumulus electrification. In order to address this goal, idealized cloud-resolving model simulations were performed using the Regional Atmospheric Modeling System (RAMS). The model environment was initialized with an average of the 12Z 16 May and 00Z 17 May 2012 observed Denver soundings to represent the conditions when the Hewlett Gulch pyrocumulus occurred. Five simulations were performed using surface aerosol concentrations from 100 to 5000 #/mg. The results demonstrate that in moderately polluted pyrocumulus, rain processes are suppressed while graupel production increases. Extremely polluted pyrocumulus, however, experience a complete shut-down of graupel production, which favors the production of large amounts of liquid water and smaller ice species such as ice crystals and snowflakes. The processes responsible for these microphysical changes, as well as inferred pyrocumulus electrification mechanisms, will be compared with those discussed in previous

  9. Plasma mRNA as liquid biopsy predicts chemo-sensitivity in advanced gastric cancer patients.

    PubMed

    Shen, Jie; Kong, Weiwei; Wu, Yuanna; Ren, Haozhen; Wei, Jia; Yang, Yang; Yang, Yan; Yu, Lixia; Guan, Wenxian; Liu, Baorui

    2017-01-01

    Predictive biomarkers based individualized chemotherapy can improve efficacy. However, for those advanced patients, it may be impossible to obtain the tissues from operation. Tissues from biopsy may not be always enough for gene detection. Thus, biomarker from blood could be a non-invasive and useful tool to provide real-time information in the procedure of treatment. To further understand the role of plasma mRNA in chemo-efficiency prediction, several mRNA expression levels were assessed in plasma and paired tumor tissues from 133 locally advanced gastric cancer patients (stage III), and mRNA levels were correlated with chemosensitivity to docetaxel, pemetrexed, platinum, and irinotecan. mRNA expression level in 64 advanced gastric cancer patients (stage IV) was also examined (55 in test group, and 9 in control), and chemotherapy in the test group were given according to the plasma gene detection. As a result, in the 133 patients with locally advanced gastric cancer (Stage III), correlations were observed between the mRNA expression of plasma/tumor BRCA1 levels and docetaxel sensitivity (P<0.001), plasma/tumor TS and pemetrexed sensitivity (P<0.001), plasma/tumor BRCA1 and platinum sensitivity (plasma, P=0.016; tumor, P<0.001), and plasma/tumor TOPO1 and irinotecan sensitivity (plasma, P=0.015; tumor, P=0.011). Among another 64 patients with advanced cancer (Stage IV), the median OS of test group was 15.5m (95% CI=10.1 to 20.9m), the PFS was 9.1m (95% CI=8.0 to 10.2m), which were significant longer than the control (P=0.047 for OS, P=0.038 for PFS). The mortality risk was higher in the control than patients treated according to the plasma gene detection (HR in the control=2.34, 95% CI=0.93 to 5.88, P=0.071). Plasma mRNA as liquid biopsy could be ideal recourse for examination to predict chemo-sensitivity in gastric cancer.

  10. Plasma mRNA as liquid biopsy predicts chemo-sensitivity in advanced gastric cancer patients

    PubMed Central

    Shen, Jie; Kong, Weiwei; Wu, Yuanna; Ren, Haozhen; Wei, Jia; Yang, Yang; Yang, Yan; Yu, Lixia; Guan, Wenxian; Liu, Baorui

    2017-01-01

    Predictive biomarkers based individualized chemotherapy can improve efficacy. However, for those advanced patients, it may be impossible to obtain the tissues from operation. Tissues from biopsy may not be always enough for gene detection. Thus, biomarker from blood could be a non-invasive and useful tool to provide real-time information in the procedure of treatment. To further understand the role of plasma mRNA in chemo-efficiency prediction, several mRNA expression levels were assessed in plasma and paired tumor tissues from 133 locally advanced gastric cancer patients (stage III), and mRNA levels were correlated with chemosensitivity to docetaxel, pemetrexed, platinum, and irinotecan. mRNA expression level in 64 advanced gastric cancer patients (stage IV) was also examined (55 in test group, and 9 in control), and chemotherapy in the test group were given according to the plasma gene detection. As a result, in the 133 patients with locally advanced gastric cancer (Stage III), correlations were observed between the mRNA expression of plasma/tumor BRCA1 levels and docetaxel sensitivity (P<0.001), plasma/tumor TS and pemetrexed sensitivity (P<0.001), plasma/tumor BRCA1 and platinum sensitivity (plasma, P=0.016; tumor, P<0.001), and plasma/tumor TOPO1 and irinotecan sensitivity (plasma, P=0.015; tumor, P=0.011). Among another 64 patients with advanced cancer (Stage IV), the median OS of test group was 15.5m (95% CI=10.1 to 20.9m), the PFS was 9.1m (95% CI=8.0 to 10.2m), which were significant longer than the control (P=0.047 for OS, P=0.038 for PFS). The mortality risk was higher in the control than patients treated according to the plasma gene detection (HR in the control=2.34, 95% CI=0.93 to 5.88, P=0.071). Plasma mRNA as liquid biopsy could be ideal recourse for examination to predict chemo-sensitivity in gastric cancer.

  11. Development of a constitutive model for creep and life prediction of advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1992-12-31

    A constitutive model capable of describing deformation and predicting rupture life was developed for high temperature ceramic materials under general thermal-mechanical loading conditions. The model was developed based on the deformation and fracture behavior observed from a systematic experimental study on an advanced silicon nitride (Si{sub 3}N{sub 4}) ceramic material. Validity of the model was evaluated with reference to creep and creep rupture data obtained under constant and stepwise-varied loading conditions, including the effects of annealing on creep and creep rupture behavior.

  12. Cloud Microphysical Characteristics over East Asia

    NASA Astrophysics Data System (ADS)

    Yin, J.; Wang, D.; Zhai, G.

    2012-04-01

    A survey of the existing literature on in-situ measurements of cloud-precipitation microphysical properties was undertaken. Then, a database was established to contain microphysical properties for raindrop, cloud droplet, fog, ice nuclei (IN), snow crystal, as well as the relationship between radar reflectivity (Z) and rainfall rate (R). The time span of the in-situ probe measurements ranges from 1960 to 2008 over East Asia and from 1940 to 2008 in the other regions (which is defined as those include the Americas, Europe, and Australia). From the datasets, dividing the data coverage into East Asia and the other regions, several parameters are presented, including mean concentration of hydrometeor particles, liquid water content (LWC), as well as functional fit parameters of particles size distributions. The main properties of hydrometeor particles were presented, and the functional fitted parameters of particle size distributions over East Asia have been compared with those over the other regions. Note that the all measurements taken in other regions do not mean that all cloud systems in the other regions are similar. Our main method of the present study is to put all measurement results taken in different regions over the world together. If the cloud systems over East Asia have their own characteristics, it will be grouped together. Thus, the difference between East Asia and other regions is readily discernible. The results show that there are differences, sometimes even large differences, between East Asia and the other regions in terms of these cloud-precipitation microphysical characteristics. More specific conclusions are as follows: (1) Both exponential- and gamma-size distributions are used to fit RSD of rains originating from stratiform clouds. Average intercept N0 of exponential-size distribution over East Asia is one order of magnitude smaller than that over the other regions, and average slope λ is slight smaller. As for gamma-size distributions, the

  13. Microphysical Interpretation of Cirrus Measurements With Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Lin, Ruei-Fong; Reichardt, Susanne; McGee, Thomas J.; Starr, David OC.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 N in January 1997 reveal a strong correlation between the particle optical properties, specifically depolarization ratio delta and extinct ion-to-backscatter ratio S, for ambient cloud temperatures above approximately -45 C (delta less than approximately 40%), and an anti-correlation for colder temperatures (delta greater than approximately 40%). Over the length of the measurements (4-7.5 hours) the particle properties vary systematically: Initially, delta approximately equal to 60% and S approximately equal to 10sr are observed. Then, with decreasing delta, S first increases to approximately 27 sr(delta approximately equal to 40%) before decreasing to values around 10 sr again (delta approximately equal to 20%). The particle optical properties distinctly depend on the ambient temperature. For the microphysical analysis of the lidar observations. ray-tracing computations of particle scattering properties and a size-distribution resolving cirrus model with explicit microphysics have been used. The theoretical studies show that the optical properties and their temporal evolution can be interpreted in terms of size, shape, and growth of the cirrus particles: Near the cloud top in the early stage of the cirrus development, light scattering by small hexagonal columns with aspect ratios close to one is dominant. Over time the cloud base height extends to lower altitudes with warmer temperatures, the ice particles grow and get morphologically diverse (the scattering contributions of hexagonal columns and plates are roughly the same for large S and depolarization values of approximately 40%). In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like or complex ice particles. Mid-latitude cirrus data measured with the same instrument at 53.4 N between 1994 and 1996 follow closely the correlation between delta and S found in the warmer regions of the Arctic

  14. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke

    Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and

  15. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  16. A prospective study of the efficacy of magnetic resonance spectroscopy imaging for predicting locally advanced prostate cancer

    PubMed Central

    Razi, Ali; Parizi, Mehdi Kardoust; Kazemeini, Seid Mohammad; Abedi, Akbar

    2015-01-01

    Objective: To evaluate the efficacy of magnetic resonance spectroscopy imaging (MRSI) for predicting locally advanced prostate cancer (PC). Materials and methods: Between April 2009 and July 2012, 80 consecutive patients with clinically localized PC had undergone endorectal MRSI before radical retropubic prostatectomy. Clinicopathological parameters, including age, preoperative prostate-specific antigen (PSA), Gleason score (GS) at biopsy, perinural invasion at biopsy, prostate weight at surgery, GS of surgical specimen, and pathological staging were recorded. The MRSI findings were compared with the histopathological findings of the radical prostatectomy. The diagnostic accuracy measures consisting of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of MRSI, and other variables in the diagnosis of locally advanced PC (Pathology Stages pT3a, pT3b, or pT4) were evaluated. Results: Sensitivity, specificity, PPV, and NPV of MRSI in detecting locally advanced PC is 42.4%, 93.6%, 82.3%, and 69.8%, respectively [area under the receiver operating characteristic (ROC) curve=0.658, p value <0.0001]. MRSI, cancer-positive core percentage at biopsy, and GS at biopsy are more accurate factors among all the predictive variables in predicting locally advanced PC. Conclusion: MRSI may be considered as a complementary diagnostic modality with high specificity and moderate sensitivity in predicting locally advanced PC. Combination of this modality with other predictive factors helps the surgeon and patient to select an appropriate treatment strategy. PMID:26328204

  17. Cloud Microphysics by Thermal Wave Methods

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Bowdle, D. A.; Reischel, M.

    1985-01-01

    This experiments series is the first application of a low-gravity experimental technique to the study of cloud microphysics. The low-gravity environment is provided by the parabolic maneuver of NASA's KC-135 aircraft. The primary objective is to compare experimental observations of cloud droplet growth and evaporation in a convection free environment with a numerical model of the process. Beyond that, the work also involves the development and testing of low-gravity research techniques. In particular, passive methods of thermal control have been devised and used effectively. The study to date has shown that the method is particularly suitable for looking at interactions between adjoining portions of the cloud drop field and interactions of the drop field with a solid interface. After final analysis of the data, it is expected the results will shed light on the development of cloud droplet size spectra in natural clouds as well as the performance of certain types of cloud physics instrumentation, particularly continuous flow diffusion chambers and loud condensation nuclei counters.

  18. Simulations of precipitation using the Community Earth System Model (CESM): Sensitivity to microphysics time step

    NASA Astrophysics Data System (ADS)

    Murthi, A.; Menon, S.; Sednev, I.

    2011-12-01

    An inherent difficulty in the ability of global climate models to accurately simulate precipitation lies in the use of a large time step, Δt (usually 30 minutes), to solve the governing equations. Since microphysical processes are characterized by small time scales compared to Δt, finite difference approximations used to advance microphysics equations suffer from numerical instability and large time truncation errors. With this in mind, the sensitivity of precipitation simulated by the atmospheric component of CESM, namely the Community Atmosphere Model (CAM 5.1), to the microphysics time step (τ) is investigated. Model integrations are carried out for a period of five years with a spin up time of about six months for a horizontal resolution of 2.5 × 1.9 degrees and 30 levels in the vertical, with Δt = 1800 s. The control simulation with τ = 900 s is compared with one using τ = 300 s for accumulated precipitation and radi- ation budgets at the surface and top of the atmosphere (TOA), while keeping Δt fixed. Our choice of τ = 300 s is motivated by previous work on warm rain processes wherein it was shown that a value of τ around 300 s was necessary, but not sufficient, to ensure positive definiteness and numerical stability of the explicit time integration scheme used to integrate the microphysical equations. However, since the entire suite of microphysical processes are represented in our case, we suspect that this might impose additional restrictions on τ. The τ = 300 s case produces differences in large-scale accumulated rainfall from the τ = 900 s case by as large as 200 mm, over certain regions of the globe. The spatial patterns of total accumulated precipitation using τ = 300 s are in closer agreement with satellite observed precipitation, when compared to the τ = 900 s case. Differences are also seen in the radiation budget with the τ = 300 (900) s cases producing surpluses that range between 1-3 W/m2 at both the TOA and surface in the global

  19. Predictive Factors of Tumor Response After Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer

    SciTech Connect

    Moureau-Zabotto, Laurence; Farnault, Bertrand; de Chaisemartin, Cecile; Esterni, Benjamin; Lelong, Bernard; Viret, Frederic; Giovannini, Marc; Monges, Genevieve; Delpero, Jean-Robert; Bories, Erwan; Turrini, Olivier; Viens, Patrice; Salem, Naji

    2011-06-01

    Purpose: Neoadjuvant chemoradiation followed by surgery is the standard of care for locally advanced rectal cancer. The aim of this study was to correlate tumor response to survival and to identify predictive factors for tumor response after chemoradiation. Methods and Materials: From 1998 to 2008, 168 patients with histologically proven locally advanced adenocarcinoma treated by preoperative chemoradiation before total mesorectal excision were retrospectively studied. They received a radiation dose of 45 Gy with a concomitant 5-fluorouracil (5-FU)-based chemotherapy. Analysis of tumor response was based on lowering of the T stage between pretreatment endorectal ultrasound and pathologic specimens. Overall and progression-free survival rates were correlated with tumor response. Tumor response was analyzed with predictive factors. Results: The median follow-up was 34 months. Five-year disease-free survival and overall survival rates were, of 44.4% and 74.5% in the whole population, 83.4% and 83.4%, respectively, in patients with pathological complete response, 38.6% and 71.9%, respectively, in patients with tumor downstaging, and 29.1and 58.9% respectively, in patients with absence of response. A pretreatment carcinoembryonic antigen (CEA) level of <5 ng/ml was significantly independently associated with pathologic complete tumor response (p = 0.019). Pretreatment small tumor size (p = 0.04), pretreatment CEA level of <5 ng/ml (p = 0.008), and chemotherapy with capecitabine (vs. 5-FU) (p = 0.04) were significantly associated with tumor downstaging. Conclusions: Downstaging and complete response after CRT improved progression-free survival and overall survival of locally advanced rectal adenocarcinoma. In multivariate analysis, a pretreatment CEA level of <5 ng/ml was associated with complete tumor response. Thus, small tumor size, a pretreatment CEA level of < 5ng/ml, and use of capecitabine were associated with tumor downstaging.

  20. Advance Prediction of the March 11, 2011 Great East Japan Earthquake: A Missed Opportunity for Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Keilis-Borok, V. I.; Kossobokov, V. G.; Soloviev, A.

    2012-12-01

    There was a missed opportunity for implementing important disaster preparedness measures following an earthquake prediction that was announced as an alarm in mid-2001. This intermediate-term middle-range prediction was the initiation of a chain of alarms that successfully detected the time, region, and magnitude range for the magnitude 9.0 March 11, 2011 Great East Japan Earthquake. The prediction chains were made using an algorithm called M8 and is the latest of many predictions tested worldwide for more than 25 years, the results of which show at least a 70% success rate. The earthquake detection could have been utilized to implement measures and improve earthquake preparedness in advance; unfortunately this was not done, in part due to the predictions' limited distribution and the lack of applying existing methods for using intermediate-term predictions to make decisions for taking action. The resulting earthquake and induced tsunami caused tremendous devastation to north-east Japan. Methods that were known in advance of the predication and further advanced during the prediction timeframe are presented in a scenario describing some possibilities on how the 2001 prediction may have been utilized to reduce significant damage, including damage to the Fukushima nuclear power plant, and to show prudent cost-effective actions can be taken if the prediction certainty is known, but not necessarily high. The purpose of this presentation is to show how the prediction information can be strategically used to enhance disaster preparedness and reduce future impacts from the world's largest earthquakes.

  1. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  2. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  3. Comparison of the Berg Balance Scale and Fullerton Advanced Balance Scale to predict falls in community-dwelling adults

    PubMed Central

    Jeon, Yong-Jin; Kim, Gyoung-Mo

    2017-01-01

    [Purpose] The purpose of this study was to investigate and compare the predictive properties of Berg Balance Scale and Fullerton Advanced Balance Scales, in a group of independently-functioning community dwelling older adults. [Subjects and Methods] Ninety-seven community-dwelling older adults (male=39, female=58) who were capable of walking independently on assessment were included in this study. A binary logistic regression analysis of the Berg Balance Scale and Fullerton Advanced Balance Scale scores was used to investigate a predictive model for fall risk. A receiver operating characteristic analysis was conducted for each, to determine the cut-off for optimal levels of sensitivity and specificity. [Results] The overall prediction success rate was 89.7%; the total Berg Balance Scale and Fullerton Advanced Balance Scale scores were significant in predicting fall risk. Receiver operating characteristic analysis determined that a cut-off score of 40 out of 56 on the Berg Balance Scale produced the highest sensitivity (0.82) and specificity (0.67), and a cut-off score of 22 out of 40 on the Fullerton Advanced Balance Scale produced the highest sensitivity (0.85) and specificity (0.65) in predicting faller status. [Conclusion] The Berg Balance Scale and Fullerton Advanced Balance Scales can predict fall risk, when used for independently-functioning community-dwelling older adults. PMID:28265146

  4. Comparison of the Berg Balance Scale and Fullerton Advanced Balance Scale to predict falls in community-dwelling adults.

    PubMed

    Jeon, Yong-Jin; Kim, Gyoung-Mo

    2017-02-01

    [Purpose] The purpose of this study was to investigate and compare the predictive properties of Berg Balance Scale and Fullerton Advanced Balance Scales, in a group of independently-functioning community dwelling older adults. [Subjects and Methods] Ninety-seven community-dwelling older adults (male=39, female=58) who were capable of walking independently on assessment were included in this study. A binary logistic regression analysis of the Berg Balance Scale and Fullerton Advanced Balance Scale scores was used to investigate a predictive model for fall risk. A receiver operating characteristic analysis was conducted for each, to determine the cut-off for optimal levels of sensitivity and specificity. [Results] The overall prediction success rate was 89.7%; the total Berg Balance Scale and Fullerton Advanced Balance Scale scores were significant in predicting fall risk. Receiver operating characteristic analysis determined that a cut-off score of 40 out of 56 on the Berg Balance Scale produced the highest sensitivity (0.82) and specificity (0.67), and a cut-off score of 22 out of 40 on the Fullerton Advanced Balance Scale produced the highest sensitivity (0.85) and specificity (0.65) in predicting faller status. [Conclusion] The Berg Balance Scale and Fullerton Advanced Balance Scales can predict fall risk, when used for independently-functioning community-dwelling older adults.

  5. The prediction of the building precision in the Laser Engineered Net Shaping process using advanced networks

    NASA Astrophysics Data System (ADS)

    Lu, Z. L.; Li, D. C.; Lu, B. H.; Zhang, A. F.; Zhu, G. X.; Pi, G.

    2010-05-01

    Laser Engineered Net Shaping (LENS) is an advanced manufacturing technology, but it is difficult to control the depositing height (DH) of the prototype because there are many technology parameters influencing the forming process. The effect of main parameters (laser power, scanning speed and powder feeding rate) on the DH of single track is firstly analyzed, and then it shows that there is the complex nonlinear intrinsic relationship between them. In order to predict the DH, the back propagation (BP) based network improved with Adaptive learning rate and Momentum coefficient (AM) algorithm, and the least square support vector machine (LS-SVM) network are both adopted. The mapping relationship between above parameters and the DH is constructed according to training samples collected by LENS experiments, and then their generalization ability, function-approximating ability and real-time are contrastively investigated. The results show that although the predicted result by the BP-AM approximates the experimental result, above performance index of the LS-SVM are better than those of the BP-AM. Finally, high-definition thin-walled parts of AISI316L are successfully fabricated. Hence, the LS-SVM network is more suitable for the prediction of the DH.

  6. In silico ADMET prediction: recent advances, current challenges and future trends.

    PubMed

    Cheng, Feixiong; Li, Weihua; Liu, Guixia; Tang, Yun

    2013-01-01

    There are numerous small molecular compounds around us to affect our health, such as drugs, pesticides, food additives, industrial chemicals, and environmental pollutants. Over decades, properties related to absorption, distribution, metabolism, excretion, and toxicity (ADMET) have become one of the most important issues to assess the effects or risks of these compounds on human body. Recent high-rate drug withdrawals increase the pressure on regulators and pharmaceutical industry to improve preclinical safety testing. Since in vivo and in vitro evaluations are costly and laborious, in silico techniques have been widely used to estimate these properties. In this review, we would briefly describe the recent advances of in silico ADMET prediction, with emphasis on substructure pattern recognition method that we developed recently. Challenges and limitations in the area of in silico ADMET prediction were further discussed, such as application domain of models, models validation techniques, and global versus local models. At last, several new promising research directions were provided, such as computational systems toxicology (toxicogenomics), data-integration and meta-decision making systems, which could be used for systemic in silico ADMET prediction in drug discovery and hazard risk assessment.

  7. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  8. Prediction and preliminary standardization of fire debris constituents with the advanced distillation curve method.

    PubMed

    Bruno, Thomas J; Lovestead, Tara M; Huber, Marcia L

    2011-01-01

    The recent National Academy of Sciences report on forensic sciences states that the study of fire patterns and debris in arson fires is in need of additional work and eventual standardization. We discuss a recently introduced method that can provide predicted evaporation patterns for ignitable liquids as a function of temperature. The method is a complex fluid analysis protocol, the advanced distillation curve approach, featuring a composition explicit data channel for each distillate fraction (for qualitative, quantitative, and trace analysis), low uncertainty temperature measurements that are thermodynamic state points that can be modeled with an equation of state, consistency with a century of historical data, and an assessment of the energy content of each distillate fraction. We discuss the application of the method to kerosenes and gasolines and outline how expansion of the scope of fluids to other ignitable liquids can benefit the criminalist in the analysis of fire debris for arson.

  9. Edge Fracture Prediction ofTraditional and Advanced Trimming Processes for AA6111-T4 Sheets

    SciTech Connect

    Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Golovashchenko, Segey F.

    2014-02-15

    This work examines the traditional and advanced trimming of AA6111-T4 aluminum sheets with finite element simulations. The Rice-Tracy damage model is used for the simulation with damage parameters estimated from experimental observation of grain aspect ratio near the fracture surface of trimmed parts. Fine meshes at the shearing zone, adaptive meshing, and adaptive contact techniques are used to accurately capture the contact interactions between the sharp corner of the trimming tools and the blank to be trimmed. To the knowledge of the authors, these are the first trimming simulations that can predict the effects of shearing clearance on burr heights with quantitative accuracy for AA6111-T4 aluminum sheets. In addition, the models have also accurately reproduced the crack initiation site as well as burr and sliver formation mechanisms observed experimentally.

  10. The impact of hydrometeors on the microphysical parameterization in the WRF modelling system over southern peninsular India

    NASA Astrophysics Data System (ADS)

    Ragi, A. R.; Sharan, Maithili; Haddad, Z. S.

    2016-05-01

    This study examines the influence of Purdue-Lin microphysical parameterization scheme (Lin et al.,1983) on quantitative precipitation for pre-monsoon/monsoon conditions over southern peninsular India in the Weather Research and Forecasting (WRF) model. An ideal microphysical scheme has to describe the formation, growth of cloud droplets and ice crystals and fall out as precipitation. Microphysics schemes can be broadly categorized into two types: bin and bulk particle size distribution (Morrison, 2010). Bulk schemes predict one or more bulk quantities and assume some functional form for the particle size distribution. For better parameterization, proper interpretation of these hydrometeors (Cloud Droplets, Raindrops, Ice Crystals and Aggregates, Rimed Ice Particles, Graupel, Hail) and non-hydrometeors (Aerosols vs. Condensation Nuclei vs. Cloud Condensation Nuclei vs. Ice Nuclei) is very important. The Purdue-Lin scheme is a commonly used microphysics scheme in WRF model utilizing the "bulk" particle size distribution, meaning that a particle size distribution is assumed. The intercept parameter (N0) is, in fact, turns out to be independent of the density. However, in situ observations suggest (Haddad et al., 1996, 1997) that the mass weighted mean diameter is correlated with water content per unit volume (q), leading to the fact that N0 depends on it. Here, in order to analyze the correlation of droplet size distribution with the convection, we have carried out simulations by implementing a consistent methodology to enforce a correlation between N0 and q in the Purdue-Lin microphysics scheme in WRF model. The effect of particles in Indian Summer Monsoon has been examined using frequency distribution of rainfall at surface, daily rainfall over the domain and convective available potential energy and convective inhibition. The simulations are conducted by analyzing the maximum rainfall days in the pre-monsoon/monsoon seasons using Tropical Rainfall Measuring Mission

  11. Microphysical development of a pulsating cumulus tower - A case study

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Sax, R. I.

    1981-01-01

    In-cloud microphysical data collected within a 22-minute period during seven consecutive passes at the -13 C sampling level of a deep (base +22 C) convective cloud provide observational evidence for a secondary ice production mechanism at work in the Florida environment. The observed microphysical characteristics of the convective tower, particularly the spatial distribution and habit of the ice phase relative to the updraft, are consistent with a rime-splintering hypothesis for secondary ice production. It is shown that the cloud's updraft structure is critically important in governing the timing of the ice production by controlling the flux of graupel particles through the critical temperature zone (-3 C to -8 C). The importance of the cloud's pulsation growth dynamics on the microphysics is emphasized, particularly as it relates to rapidly glaciating cumuli.

  12. Predicting Inner Heliospheric Solar Wind Conditions in Advance of Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Cohen, O.; Salem, C. S.; Halekas, J. S.; Larson, D. E.; Maruca, B. A.

    2012-12-01

    In advance of the upcoming inner heliospheric missions (Solar Orbiter and Solar Probe Plus) it is vital to have an accurate prediction of the range of solar wind conditions that occur between 9.5Rs and 0.7AU. These conditions will place constraints on instrument design and the operational modes that are used. In this paper, we discuss and compare different methods of predicting the solar wind bulk plasma parameters. One method uses observed 1AU conditions observed with the Wind spacecraft combined with scaling laws derived from Helios observations. We extend this simple model by using a more realistic solar wind velocity profile in addition to the Wind and Helios observations. Another method uses 3D MHD simulations from which solar wind conditions along a spacecraft trajectory can be extracted. We discuss some implications of these models in the design of the Solar Wind Electrons Alphas and Protons investigation, a suite of solar wind instruments being designed to fly on Solar Probe Plus.

  13. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  14. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  15. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  16. A fast aerosol microphysical model for the UTLS

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Grainger, R.; Rogers, H.

    2003-04-01

    A fast aerosol microphysical model for the UTLS (FAMMUS) has been developed to study aerosol behaviour in UTLS region. This model simulates homogeneous heteromolecular nucleation, condensational growth, coagulation and sedimentation of binary sulphuric acid-water particles together to predict the composition and size-distribution of stratospheric aerosols. This model has already been successfully applied to estimate the changes in background stratospheric aerosol surface area due to aircraft sulphur emission (Tripathi et al., 2002). The principal advantage with this model is that it is non-iterative (Jacobson, 1999), i.e. computing time is minimised by finding semi-implicit solutions to aerosol processes. Condensation and coagulation are solved using operator-split method. Hence the effect of coagulation is determined in a single iteration and the solution is volume conserving for any time-step. The semi-implicit solution for coagulation agrees well with the Smoluchowski's solution for a constant coagulation kernel. Similarly, starting from the fundamental growth equation, solution for condensational growth is derived which does not require iteration. The solution conserves mass exactly, and is unconditionally stable. In the model homogeneous nucleation and condensation is coupled in such a manner that it allows for a realistic competition between the two processes for the limited amount of vapour. With geometrically related size bin (44 bins for sulphuric acid-water particles in the range from 0.3 nm to 5mm) and a 600s time-step the model takes about half an hour to complete a 7 year simulation of stratospheric background aerosols on a work station. FAMMUS has been used to simulate background stratospheric aerosols and volcanically disturbed aerosol and model results are compared favourably with results from earlier model studies and observed data.

  17. The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  18. Cloud-radiative and microphysical impacts from precipitating hydrometeors in South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Wanchen

    A sensitivity test was performed to examine the radiative and microphysical feed- back of large hydrometeors (LHR) to both large-scale environment (LSE) and convec- tive systems in South Asian Summer Monsoon by Weather Research and Forecasting Advanced Research Model (WRF-ARW) equipped with Single-moment 6-class Mi- crophysics Scheme (WSM6) and new Goddard radiative transfer model. The cloud processes are fully represented and featured by WSM6. The results show ignoring LHR-radiative feedback can result in an average of SW gain around 20˜30 W/m2 at surface and LW loss around 5˜20 W/m2 at TOA over BoB, which are slightly larger than 3 ˜5 W/m2 estimated by Waliser at. el. (2011) for both surface SW gain and TOA LW loss. The absent of LHR-radiative effects only have slight difference in magnitude of monthly mean state compared to control run, while the exclusion of LHR can have a north shift of convective area which results in a huge bias in the monthly mean state. The results indicate the bias from exclusion of LHR is mainly from instantaneous fallout of LHR instead of neglect of LHR-radiative feedback. This study reveals the importance of LHR in microphysical parameterization. The MD cir- culation and convective structure could be changed substantially due to the absent of LHR. The cloud water and ice in convective systems as well as precipitation are greatly increased due to the absent of LHR, while the downdraft area is largely re- duced because of the incomplete microphysical processes. Overall, the overestimated the intensity, frequency and lifetime of MDs have substantial and profound influences on LSE and monthly mean state, which serves as an upper bound of the bias due to instantaneous fallout of LHR in GCM.

  19. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate

  20. Evidence of Mineral Dust Altering Cloud Microphysics and Precipitation

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Li, Rui; Lin, Bing; Joseph, Everette; Wang, Shuyu; Hu, Yongxiang; Morris, Vernon; Chang, F.

    2008-01-01

    Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. It is clearly evident that for a given convection strength,small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation process of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation.

  1. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    NASA Astrophysics Data System (ADS)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  2. Research Area 3 - Mathematical Sciences: Multiscale Modeling of the Mechanics of Advanced Energetic Materials Relevant to Detonation Prediction

    DTIC Science & Technology

    2015-08-24

    new energetic materials with enhanced energy release rates and reduced sensitivity to unintentional detonation . The following results have been...Mechanics of Advanced Energetic Materials Relevant to Detonation Prediction The views, opinions and/or findings contained in this report are those of the...modeling, molecular simulations, detonation prediction REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S

  3. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area

  4. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  5. The Influence of the Electric Field on Thunderstorm Microphysical Development Simulated with an Explicit Microphysics Model

    NASA Astrophysics Data System (ADS)

    Phillips, V. T.; Andronache, C.; Sherwood, S.

    2005-05-01

    Electric fields influence the microphysics of aerosol-cloud interactions. Hence, nucleation of ice is sensitive to the charge on nuclei. Furthermore, there is an increase in the collision efficiency when charged aerosol particles collide with droplets ('electroscavenging'), and rates of contact ice nucleation are enhanced by the charge on aerosol particles (Tinsley et al. 2000, Tripathi and Harrison, 2002). In addition, electric fields (EF) affect the collisional growth rate of hydrometeors and their fall velocity. The aim here is to assess how the collection efficiency for the coagulation of hydrometeors may be modified by a typical EF in a thunderstorm. Particular focus is given to effects on the generation of anvil ice particles. This is done by imposing a realistic EF in the control simulation with an Explicit Microphysics Model (EMM) of the storm, observed on 18th July 2002 near Florida during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), as described by Phillips et al. (2005). An additional aim is to analyze how updraft speed (w) and environmental CCN concentration may affect the charge separation process. The warm rain process is intensified and there is a 30-40% reduction in the anvil ice concentration when an evolving height-dependent EF, typical of continental electrified thunderstorms, is prescribed and applied to the collection efficiencies for coagulation processes in the model. The electric dependence of the collision efficiency for drop-drop collisions is the cause. There is a 150% increase in the broad peak of average mixing ratio of rain near the freezing level (see Figure 1). This boosts the mixing ratio of precipitation-sized ice in the lower half of the mixed phase region, changing the number of charging collisions and depleting the supercooled cloudwater. Primarily because of the high sensitivity of the Hallett-Mossop (H-M) process of ice particle multiplication with respect to

  6. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.

    2001-01-01

    The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.

  7. A Priori Attitudes Predict Amniocentesis Uptake in Women of Advanced Maternal Age: A Pilot Study.

    PubMed

    Grinshpun-Cohen, Julia; Miron-Shatz, Talya; Rhee-Morris, Laila; Briscoe, Barbara; Pras, Elon; Towner, Dena

    2015-01-01

    Amniocentesis is an invasive procedure performed during pregnancy to determine, among other things, whether the fetus has Down syndrome. It is often preceded by screening, which gives a probabilistic risk assessment. Thus, ample information is conveyed to women with the goal to inform their decisions. This study examined the factors that predict amniocentesis uptake among pregnant women of advanced maternal age (older than 35 years old at the time of childbirth). Participants filled out a questionnaire regarding risk estimates, demographics, and attitudes on screening and pregnancy termination before their first genetic counseling appointment and were followed up to 24 weeks of gestation. Findings show that women's decisions are not always informed by screening results or having a medical indication. Psychological factors measured at the beginning of pregnancy: amniocentesis risk tolerance, pregnancy termination tolerance, and age risk perception affected amniocentesis uptake. Although most women thought that screening for Down syndrome risk would inform their decision, they later stated other reasons for screening, such as preparing for the possibility of a child with special needs. Findings suggest that women's decisions regarding amniocentesis are driven not only by medical factors, but also by a priori attitudes. The authors believe that these should be addressed in the dialogue on women's informed use of prenatal tests.

  8. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  9. Predicting compliance for mandible advancement splint therapy in 96 obstructive sleep apnea patients.

    PubMed

    Ingman, Tuula; Arte, Sirpa; Bachour, Adel; Bäck, Leif; Mäkitie, Antti

    2013-12-01

    The treatment of choice in obstructive sleep apnea (OSA) is continuous positive airway pressure (CPAP). Mandible advancement splint (MAS) offers an option for patients with mild or moderate OSA, who refuse or are unable to tolerate CPAP. The aim of the study was to find predictive factors in OSA for MAS therapy. The study group comprised 96 consecutive OSA patients who were sent for MAS therapy during 2008. Data were collected on the patients' general and dental condition, diagnosis, and treatment for OSA. Panoramic and cephalometric radiographs were analysed. The treatment compliance rate and problems with the use of the MAS were recorded. This rate was 57% and the significant affecting factors were protrusion of the mandible with MAS during the adaptation to the appliance as well as shorter maxillary and mandible lengths. The compliance of the MAS therapy was best in patients with short maxilla and mandible, which should be taken into consideration when planning MAS therapy for OSA patients. Finally, a sleep study should be part of the follow-up in this patient population.

  10. Soft tissue profile changes following mandibular advancement surgery: predictability and long-term outcome.

    PubMed

    Mobarak, K A; Espeland, L; Krogstad, O; Lyberg, T

    2001-04-01

    The objectives of this cephalometric study were to assess long-term changes in the soft tissue profile following mandibular advancement surgery and to investigate the relationship between soft tissue and hard tissue movements. The sample consisted of 61 patients treated consecutively for mandibular retrognathism with orthodontic therapy combined with bilateral sagittal split osteotomy and rigid fixation. Lateral cephalograms were taken on 6 occasions: immediately before surgery, immediately after surgery, 2 and 6 months after surgery, and 1 and 3 years after surgery. Postsurgical changes in the upper and the lower lips and the mentolabial fold were more pronounced among low-angle cases compared with high-angle cases. In accordance with other studies, the soft tissue chin and the mentolabial fold were generally found to follow their underlying skeletal structures in a 1:1 ratio. Because of the strong influence skeletal relapse has on soft tissue profile changes, alternative ratios of soft tissue-to-hard tissue movement that accounted for mean relapse were also generated. It is suggested that if a more realistic long-term prediction of the postsurgical soft tissue profile is desirable, then ratios incorporating mean relapse should be used rather than estimates based on a 1:1 relationship.

  11. Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies.

    PubMed

    Ullah, R; Turner, P J; Khambay, B S

    2015-02-01

    Prediction of postoperative facial appearance after orthognathic surgery can be used for communication, managing patients' expectations,avoiding postoperative dissatisfaction and exploring different treatment options. We have assessed the accuracy of 3dMD Vultus in predicting the final 3-dimensional soft tissue facial morphology after Le Fort I advancement osteotomy. We retrospectively studied 13 patients who were treated with a Le Fort I advancement osteotomy alone. We used routine cone-beam computed tomographic (CT) images taken immediately before and a minimum of 6 months after operation, and 3dMD Vultus to virtually reposition the preoperative maxilla and mandible in their post operative positions to generate a prediction of what the soft tissue would look like. Segmented anatomical areas of the predicted mesh were then compared with the actual soft tissue. The means of the absolute distance between the 90th percentile of the mesh points for each region were calculated, and a one-sample Student's t test was used to calculate if the difference differed significantly from 3 mm.The differences in the mean absolute distances between the actual soft tissue and the prediction were significantly below 3 mm for all segmented anatomical areas (p < 0.001), and ranged from 0.65 mm (chin) to 1.17 mm (upper lip). 3dMD Vultus produces clinically satisfactory 3-dimensional facial soft tissue predictions after Le Fort I advancement osteotomy. The mass-spring model for prediction seems to be able to predict the position of the lip and chin, but its ability to predict nasal and paranasal areas could be improved.

  12. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  13. A risk score for the prediction of advanced age-related macular degeneration: Development and validation in 2 prospective cohorts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We aimed to develop an eye specific model which used readily available information to predict risk for advanced age-related macular degeneration (AMD). We used the Age-Related Eye Disease Study (AREDS) as our training dataset, which consisted of the 4,507 participants (contributing 1,185 affected v...

  14. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  15. Validation of Microphysical Schemes in a CRM Using TRMM Satellite

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Matsui, T.; Liu, C.; Masunaga, H.

    2007-12-01

    The microphysical scheme in the Goddard Cumulus Ensemble (GCE) model has been the most heavily developed component in the past decade. The cloud-resolving model now has microphysical schemes ranging from the original Lin type bulk scheme, to improved bulk schemes, to a two-moment scheme, to a detailed bin spectral scheme. Even with the most sophisticated bin scheme, many uncertainties still exist, especially in ice phase microphysics. In this study, we take advantages of the long-term TRMM observations, especially the cloud profiles observed by the precipitation radar (PR), to validate microphysical schemes in the simulations of Mesoscale Convective Systems (MCSs). Two contrasting cases, a midlatitude summertime continental MCS with leading convection and trailing stratiform region, and an oceanic MCS in tropical western Pacific are studied. The simulated cloud structures and particle sizes are fed into a forward radiative transfer model to simulate the TRMM satellite sensors, i.e., the PR, the TRMM microwave imager (TMI) and the visible and infrared scanner (VIRS). MCS cases that match the structure and strength of the simulated systems over the 10-year period are used to construct statistics of different sensors. These statistics are then compared with the synthetic satellite data obtained from the forward radiative transfer calculations. It is found that the GCE model simulates the contrasts between the continental and oceanic case reasonably well, with less ice scattering in the oceanic case comparing with the continental case. However, the simulated ice scattering signals for both PR and TMI are generally stronger than the observations, especially for the bulk scheme and at the upper levels in the stratiform region. This indicates larger, denser snow/graupel particles at these levels. Adjusting microphysical schemes in the GCE model according the observations, especially the 3D cloud structure observed by TRMM PR, result in a much better agreement.

  16. Vertical profile of fog microphysics : a case study

    NASA Astrophysics Data System (ADS)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  17. Assimilation of Dual-Polarimetric Radar Observations with WRF 3DVAR and its Impact on Ice Microphysics

    NASA Astrophysics Data System (ADS)

    Li, X.; Mecikalski, J. R.; Fehnel, T.; Posselt, D. J.

    2013-12-01

    Studies have shown that radar data assimilation can help with short-term prediction of convective weather by providing more accurate initial condition. However, it remains a big challenge to accurately describe the moist convective processes, especially the ice microphysics of convection, which is crucial for the modeling of quantitative precipitation forecast (QPF). Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, information on the type, shape, size, and orientation of cloud and precipitation microphysical particles are obtained, more accurate measurement of liquid and solid cloud and precipitation particles can be provided. The assimilation of dual-pol radar data is however, challenging work as few guidelines have been provided on dual-pol radar data assimilation research. It is our goal to examine how to use dual-pol radar data to improve forecast initialization for microphysical properties. This presentation will demonstrate our recent work on developing the forward operators for ice processes with assimilating dual-pol radar data for real case storms. In this study, high-resolution Weather Research and Forecasting (WRF) model and its 3-Dimensional Variational (3DVAR) data assimilation system are used for real convective storms. Our recent research explores the use of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms and snowfall events, with a significant focus on improving representation of ice hydrometeors. Our previous research indicated that the use of ZDR can bring additional benefit into the hydrometeor fields than the use of ZH only. Furthermore, the combination of KDP and ZDR data provide the best initialization for precipitation particles with warm-rain radar data assimilation. Our ongoing work includes the development of

  18. Interleukin-22 predicts severity and death in advanced liver cirrhosis: a prospective cohort study

    PubMed Central

    2012-01-01

    Background Interleukin-22 (IL-22), recently identified as a crucial parameter of pathology in experimental liver damage, may determine survival in clinical end-stage liver disease. Systematic analysis of serum IL-22 in relation to morbidity and mortality of patients with advanced liver cirrhosis has not been performed so far. Methods This is a prospective cohort study including 120 liver cirrhosis patients and 40 healthy donors to analyze systemic levels of IL-22 in relation to survival and hepatic complications. Results A total of 71% of patients displayed liver cirrhosis-related complications at study inclusion. A total of 23% of the patients died during a mean follow-up of 196 ± 165 days. Systemic IL-22 was detectable in 74% of patients but only in 10% of healthy donors (P < 0.001). Elevated levels of IL-22 were associated with ascites (P = 0.006), hepatorenal syndrome (P < 0.0001), and spontaneous bacterial peritonitis (P = 0.001). Patients with elevated IL-22 (>18 pg/ml, n = 57) showed significantly reduced survival compared to patients with regular (≤18 pg/ml) levels of IL-22 (321 days versus 526 days, P = 0.003). Other factors associated with reduced overall survival were high CRP (≥2.9 mg/dl, P = 0.005, hazard ratio (HR) 0.314, confidence interval (CI) (0.141 to 0.702)), elevated serum creatinine (P = 0.05, HR 0.453, CI (0.203 to 1.012)), presence of liver-related complications (P = 0.028, HR 0.258, CI (0.077 to 0.862)), model of end stage liver disease (MELD) score ≥20 (P = 0.017, HR 0.364, CI (0.159 to 0.835)) and age (P = 0.011, HR 0.955, CI (0.922 to 0.989)). Adjusted multivariate Cox proportional-hazards analysis identified elevated systemic IL-22 levels as independent predictors of reduced survival (P = 0.007, HR 0.218, CI (0.072 to 0.662)). Conclusions In patients with liver cirrhosis, elevated systemic IL-22 levels are predictive for reduced survival independently from age, liver-related complications, CRP, creatinine and the MELD score. Thus

  19. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    USGS Publications Warehouse

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  20. Improving Representation of Convective Transport for Scale-Aware Parameterization – Part I: Convection and Cloud Properties Simulated with Spectral Bin and Bulk Microphysics

    SciTech Connect

    Fan, Jiwen; Liu, Yi-Chin; Xu, Kuan-Man; North, Kirk; Collis, Scott M.; Dong, Xiquan; Zhang, Guang J.; Chen, Qian; Ghan, Steven J.

    2015-04-27

    The ultimate goal of this study is to improve representation of convective transport by cumulus parameterization for meso-scale and climate models. As Part I of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in mid-latitude continent and tropical regions using the Weather Research and Forecasting (WRF) model with spectral-bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation, vertical velocity of convective cores, and the vertically decreasing trend of radar reflectivity than MOR and MY2, and therefore will be used for analysis of scale-dependence of eddy transport in Part II. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates radar reflectivity in convective cores (SBM predicts smaller radar reflectivity but does not remove the large overestimation); and (3) the model performs better for mid-latitude convective systems than tropical system. The modeled mass fluxes of the mid latitude systems are not sensitive to microphysics schemes, but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.

  1. Cloud Susceptibilities to Ice Nuclei: Microphysical Effects and Dynamical Feedbacks

    NASA Astrophysics Data System (ADS)

    Paukert, Marco; Hoose, Corinna

    2015-04-01

    The impact of aerosols on cloud properties is currently not well established. This is largely attributed to the interdependencies of aerosols and cloud microphysical processes, among which primary ice formation contributes to considerable uncertainties. Although it is known that in a large range of thermodynamic conditions aerosol particles are required to initiate ice formation, identifying and characterizing the effect of specific ice nuclei is among current scientific efforts. Here we attempt to quantify the change of cloud properties with varying aerosol background concentrations. We adapt the concept of susceptibilities for mixed-phase and ice clouds, defining the susceptibility as the derivation of a macrophysical quantity with respect to ice nucleating aerosol concentrations. A focus of our study is the use of different model approaches in order to identify the distinct contributions of both cloud microphysics and cloud-dynamical feedbacks to the overall susceptibility. The classical method is the direct comparison of two independent model runs, where the whole range of microphysical and cloud-dynamical feedbacks contributes to different cloud properties in a perturbed simulation. Our alternative method relies on a single simulation which incorporates multiple executions of the microphysical scheme within the same time step, each "perturbed microphysics" scheme with varying aerosol concentrations and an additional set of cloud particle tracers. Since in the latter case the model dynamics are held constant and only microphysical feedbacks contribute to the properties of perturbed clouds, we can distinguish between the pure microphysical effect and the dynamical enhancement or suppression. For a persistent Arctic mixed-phase stratocumulus cloud layer which is expected to be particularly sensitive to feedback cycles, we show an enhancement of the cloud susceptibility to ice nucleating particles by dynamics of around 50%, but a decay of the enhancement with time

  2. Advancing the predictive capability for pedestal structure through experiment and modeling

    NASA Astrophysics Data System (ADS)

    Hughes, Jerry

    2012-10-01

    Prospects for predictive capability of the edge pedestal in magnetic fusion devices have been dramatically enhanced due to recent research, which was conducted jointly by the US experimental and theory communities. Studies on the C-Mod, DIII-D and NSTX devices have revealed common features, including an upper limit on pedestal pressure in ELMy H-mode determined by instability to peeling-ballooning modes (PBMs), and pedestal width which scales approximately as βpol^1/2. The width dependence is consistent with a pedestal regulated by kinetic ballooning modes (KBMs). Signatures of KBMs have been actively sought both in experimental fluctuation measurements and in gyrokinetic simulations of the pedestal, with encouraging results. Studies of the temporal evolution of the pedestal during the ELM cycle reveal a tendency for the pressure gradient to saturate in advance of the ELM, with a steady growth in the pedestal width occurring prior to the ELM crash, which further supports a model for KBMs and PBMs working together to set the pedestal structure. Such a model, EPED, reproduces the pedestal height and width to better than 20% accuracy on existing devices over a range of more than 20 in pedestal pressure. Additional transport processes are assessed for their impact on pedestal structure, in particular the relative variation of the temperature and density pedestals due, for example, to differences in edge neutral sources. Such differences are observed in dimensionlessly matched discharges on C-Mod and DIII-D, despite their having similar calculated MHD stability and similar edge fluctuations. In certain high performance discharges, such as EDA H-mode, QH-mode and I-mode, pedestal relaxation is accomplished by continuous edge fluctuations, avoiding peeling-ballooning instabilities and associated ELMs. Progress in understanding these regimes will be reported.

  3. Re-formulation and Validation of Cloud Microphysics Schemes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Georgakakos, K. P.

    2007-12-01

    The research focuses on improving quantitative precipitation forecasts by removing significant uncertainties in current cloud microphysics schemes embedded in models such as WRF and MM5 and cloud-resolving models such as GCE. Reformulation of several production terms in these microphysics schemes was found necessary. When estimating four graupel production terms involved in the accretion between rain, snow and graupel, current microphysics schemes assumes that all raindrops and snow particles are falling at their appropriate mass-weighted mean terminal velocities and thus analytic solutions are able to be found for these production terms. Initial analysis and tests showed that these approximate analytic solutions give significant and systematic overestimates of these terms, and, thus, become one of major error sources of the graupel overproduction and associated extreme radar reflectivity in simulations. These results are corroborated by several reports. For example, the analytic solution overestimates the graupel production by collisions between raindrops and snow by up to 230%. The structure of "pure" snow (not rimed) and "pure graupel" (completely rimed) in current microphysics schemes excludes intermediate forms between "pure" snow and "pure" graupel and thus becomes a significant reason of graupel overproduction in hydrometeor simulations. In addition, the generation of the same density graupel by both the freezing of supercooled water and the riming of snow may cause underestimation of graupel production by freezing. A parameterization scheme of the riming degree of snow is proposed and then a dynamic fallspeed-diameter relationship and density- diameter relationship of rimed snow is assigned to graupel based on the diagnosed riming degree. To test if these new treatments can improve quantitative precipitation forecast, the Hurricane Katrina and a severe winter snowfall event in the Sierra Nevada Range are selected as case studies. A series of control

  4. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2016-01-01

    We present microphysical observations of cumulus clouds measured over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon due to new cell formation and stratiform regions forming downwind of the convective cells. Ice concentrations up to 350 L-1, well in excess of the expected ice nuclei (IN) concentrations, were measured in the mature stratiform regions, suggesting that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, drizzle concentrations increased from ˜ 0.5 to ˜ 20 L-1 in around 20 min. Ice concentrations developed up to a few per litre, which is around the level expected of primary IN. The ice images were most consistent with freezing drizzle, rather than smaller cloud drops or interstitial IN forming the first ice. As new cells emerged in and around the cloud, ice concentrations up to 2 orders of magnitude higher than the predicted IN concentrations developed, and the cloud glaciated over a period of 12-15 min. Almost all of the first ice particles to be observed were frozen drops, while vapour-grown ice crystals were dominant in the latter stages. Our observations are consistent with the production of large numbers of small secondary ice crystals/fragments, by a mechanism such as Hallett-Mossop or droplets shattering upon freezing. Some of the small ice froze drizzle drops on contact, while others grew more slowly by vapour deposition. Graupel and columns were seen in cloud penetrations up to the -12 °C level, though many ice particles were mixed habit due to riming and growth by vapour deposition at multiple temperatures

  5. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Peterson, Harold S.; Schultz, Elise V.; Matthee, Retha; Schultz, Christopher J.; Petersen, Walter A,; Bain, Lamont

    2012-01-01

    Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).

  6. Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes

    NASA Astrophysics Data System (ADS)

    Efstathiou, G. A.; Zoumakis, N. M.; Melas, D.; Lolis, C. J.; Kassomenos, P.

    2013-10-01

    In this study, the sensitivity of the Weather Research and Forecasting (WRF) model rainfall predictions to the choice of two commonly used boundary layer schemes, is examined through the simulation of an exceptionally heavy rainfall event over Chalkidiki peninsula in northern Greece. This major precipitation event, associated with a case of cyclogenesis over the Aegean Sea, occurred on 8 October 2006 affecting northern and central Greece and causing severe flooding and damage in Chalkidiki peninsula. Simulations with the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) boundary layer parameterizations using three bulk microphysical schemes, showed that MYJ runs had significantly lower predicted rain rates, 24 h accumulations and rain volume regardless of the microphysical scheme used. YSU runs produce more localized areas of intense precipitation especially when they are used in conjunction with the Purdue Lin and WRF Single Moment-6 class microphysics. The general verification results from the comparison of model predictions with available raingauge data over the complex topography of Chalkidiki indicate that configurations using YSU scheme provide better statistical scores for heavy precipitation with ETA microphysics better simulating high precipitation rates and Purdue Lin the 24 h accumulations. It was shown that as a local closure scheme, MYJ produced insufficient vertical mixing confining moisture to lower levels, greatly decreasing condensates and corresponding latent heating that resulted in surface precipitation reduction, compared to YSU runs. Sensitivity tests revealed that condensational heating from the microphysical processes shows a pronounced contribution to the synoptic scale environment by increasing the intensity of larger-scale baroclinicity. Therefore, diabatic heating seems to be one of the most important factors affecting cyclogenesis and controlling the differences in the simulations between the local and non-local BL scheme in this

  7. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    PubMed

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  8. Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems: Ice Microphysics in Midlevel Inflow

    SciTech Connect

    Barnes, Hannah C.; Houze, Robert A.

    2016-07-25

    To equitably compare the spatial pattern of ice microphysical processes produced by three microphysical parameterizations with each other, observations, and theory, simulations of tropical oceanic mesoscale convective systems (MCSs) in the Weather Research and Forecasting (WRF) model were forced to develop the same mesoscale circulations as observations by assimilating radial velocity data from a Doppler radar. The same general layering of microphysical processes was found in observations and simulations with deposition anywhere above the 0°C level, aggregation at and above the 0°C level, melting at and below the 0°C level, and riming near the 0°C level. Thus, this study is consistent with the layered ice microphysical pattern portrayed in previous conceptual models and indicated by dual-polarization radar data. Spatial variability of riming in the simulations suggests that riming in the midlevel inflow is related to convective-scale vertical velocity perturbations. Finally, this study sheds light on limitations of current generally available bulk microphysical parameterizations. In each parameterization, the layers in which aggregation and riming took place were generally too thick and the frequency of riming was generally too high compared to the observations and theory. Additionally, none of the parameterizations produced similar details in every microphysical spatial pattern. Discrepancies in the patterns of microphysical processes between parameterizations likely factor into creating substantial differences in model reflectivity patterns. It is concluded that improved parameterizations of ice-phase microphysics will be essential to obtain reliable, consistent model simulations of tropical oceanic MCSs.

  9. Microphysics of Cosmic Plasmas: Background, Motivation and Objectives

    NASA Astrophysics Data System (ADS)

    Balogh, André; Bykov, Andrei; Cargill, Peter; Dendy, Richard; Dudok de Wit, Thierry; Raymond, John

    With the maturing of space plasma research in the solar system, a more general approach to plasma physics in general, applied to cosmic plasmas, has become appropriate. There are both similarities and important differences in describing the phenomenology of space plasmas on scales from the Earth's magnetosphere to galactic and inter-galactic scales. However, there are important aspects in common, related to the microphysics of plasma processes. This introduction to a coordinated collection of papers that address the several aspects of the microphysics of cosmic plasmas that have unifying themes sets out the scope and ambition of the broad sweep of topics covered in the volume, together with an enumeration of the detailed objectives of the coverage.

  10. Microphysics of Cosmic Plasmas: Background, Motivation and Objectives

    NASA Astrophysics Data System (ADS)

    Balogh, André; Bykov, Andrei; Cargill, Peter; Dendy, Richard; Dudok de Wit, Thierry; Raymond, John

    2013-10-01

    With the maturing of space plasma research in the solar system, a more general approach to plasma physics in general, applied to cosmic plasmas, has become appropriate. There are both similarities and important differences in describing the phenomenology of space plasmas on scales from the Earth's magnetosphere to galactic and inter-galactic scales. However, there are important aspects in common, related to the microphysics of plasma processes. This introduction to a coordinated collection of papers that address the several aspects of the microphysics of cosmic plasmas that have unifying themes sets out the scope and ambition of the broad sweep of topics covered in the volume, together with an enumeration of the detailed objectives of the coverage.

  11. The predictive value of MRI in detecting thyroid gland invasion in patients with advanced laryngeal or hypopharyngeal carcinoma.

    PubMed

    Lin, Peiliang; Huang, Xiaoming; Zheng, Chushan; Cai, Qian; Guan, Zhong; Liang, Faya; Zheng, Yiqing

    2017-01-01

    The aim of this study was to evaluate the predictive value of magnetic resonance imaging (MRI) in detecting thyroid gland invasion (TGI) in patients with advanced laryngeal or hypopharyngeal carcinoma. In a retrospective chart review, 41 patients with advanced laryngeal or hypopharyngeal carcinoma underwent MRI scan before total laryngectomy and ipsilateral or bilateral thyroidectomy during the past 5 years. The MRI findings were compared with the postoperative pathological results. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Among the 41 patients, 3 had thyroid gland invasion in postoperative pathological results. MRI correctly predicted the absence of TGI in 37 of 38 patients and TGI in all 3 patients. The sensitivity, specificity, PPV, and NPV of MRI were 100.0, 97.4, 75.0, and 100 %, respectively, with the diagnostic accuracy of 97.6 %. In consideration of the high negative predictive value of MRI, it may help surgeons selectively preserve thyroid gland in total laryngectomy and reduce the incidence of hypothyroidism and hypoparathyroidism postoperatively.

  12. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  13. Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation

    NASA Technical Reports Server (NTRS)

    Brentner, K. S.

    1986-01-01

    A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.

  14. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  15. Overview of microphysical and state parameter measurements from FIRE 2

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1993-01-01

    In this article we present data collected by the NCAR King Air and Sabreliner aircraft in the FIRE 2 cirrus project over southeastern Kansas and northeastern Oklahoma in Nov. and Dec. of 1991. We present state parameter and microphysical measurements in summary form for the dates which have been selected by the FIRE Science Team for intensive analysis, 25 and 26 Nov. and 5 and 6 Dec. We will also evaluate the performance of 'key' aircraft instrumentation.

  16. Predicting Violence Among Forensic-Correctional Populations: The Past 2 Decades of Advancements and Future Endeavors

    ERIC Educational Resources Information Center

    Loza, Wagdy; Dhaliwal, Gurmeet K.

    2005-01-01

    Research on violence prediction during the past 2 decades has evolved appreciably in terms of depicting determinants of violence and developing psychometrically sound actuarial measures to predict the probability of future violent behavior. This article provides a brief synopsis of information on predicting violence gained in the past 2 decades,…

  17. The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.

  18. Are Climate Models Sensitive to the Microphysics of Clouds?

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2001-12-01

    Parameterization transplant experiments with general circulation models (GCMs) demonstrate that details of cloud-radiation interactions can have large potential effects on the simulated climate. However, in order to determine which aspects of sub-grid physics are important and which parameterizations are most realistic, detailed comparisons with observations are essential. One useful diagnostic tool for making such comparisons is the single-column model (SCM), which consists of one isolated column of an atmospheric GCM. When an SCM is forced with observed horizontal advection terms, the parameterizations within the SCM produce time-dependent vertical profiles of fields which can be compared directly with measurements. In the case of cloud microphysical schemes, these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the top of the atmosphere. Comparisons with data from the Atmospheric Radiation Measurement (ARM) Program show conclusively that prognostic cloud algorithms with detailed microphysics are far more realistic than simpler diagnostic approaches. These results also demonstrate the critical need for more and better in situ observations of cloud microphysical variables.

  19. Impacts of PSC Microphysics on Modelled Ozone Loss

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Winter-long simulations of the 1999-2000 winter using a coupled microphysical/chemical model have been carried out to explore how PSC microphysics affects ozone loss. Although many models assures that water ice formation leads to denitrification, these simulations show that observed characteristics of the 1999-2000 winter can not be reproduced by such a denitrification mechanism. Instead, denitrification observations are best reproduced by a small number of particles freezing at temperatures near the nitric acid trihydration condensation point. Implications of such a mechanism for assessments of future ozone loss will be discussed. The simulations have also revealed that ozone loss during the 1999-2000 winter was sensitive to chlorine reactivation that occurred during February. Uncertainties in PSC microphysics and heterogeneous reaction rates both influence the modelled chlorine reactivation. For the 1999-2000 winter, these uncertainties have a larger effect on model ozone loss than denitrification. The role of denitrification would have increased if the Arctic vortex had persisted for a longer period.

  20. Characterizing the Hypermutated Subtype of Advanced Prostate Cancer as a Predictive Biomarker for Precision Medicine

    DTIC Science & Technology

    2015-10-01

    hypermutated advanced prostate cancers. Using a targeted deep sequencing assay that includes intronic and flanking regions we discovered DNA mismatch...subtype of advanced prostate cancer, most likely mutations in DNA mismatch repair genes. To test this hypothesis we performed targeted deep ...have adapted the mSINGS method to both the BROCA and UW-OncoPlex genomic deep sequencing platforms to accurately detect both phenotypic MSI and

  1. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    NASA Astrophysics Data System (ADS)

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  2. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    PubMed Central

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-01-01

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs. PMID:26541650

  3. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

    PubMed

    Booth, N; Robinson, A P L; Hakel, P; Clarke, R J; Dance, R J; Doria, D; Gizzi, L A; Gregori, G; Koester, P; Labate, L; Levato, T; Li, B; Makita, M; Mancini, R C; Pasley, J; Rajeev, P P; Riley, D; Wagenaars, E; Waugh, J N; Woolsey, N C

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  4. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    SciTech Connect

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  5. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE PAGES

    Booth, N.; Robinson, A. P. L.; Hakel, P.; ...

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  6. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  7. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007

  8. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Schultz, E. V.; Matthee, R.; Schultz, C. J.; Petersen, W. A.; Bain, L.

    2012-12-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multi-cell) and 6 July 2007

  9. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins

    NASA Astrophysics Data System (ADS)

    Sikder, Safat; Hossain, Faisal

    2016-09-01

    Some of the world's largest and flood-prone river basins experience a seasonal flood regime driven by the monsoon weather system. Highly populated river basins with extensive rain-fed agricultural productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and Mekong are examples of monsoon-driven river basins. It is therefore appropriate to investigate how precipitation forecasts from numerical models can advance flood forecasting in these basins. In this study, the Weather Research and Forecasting model was used to evaluate downscaling of coarse-resolution global precipitation forecasts from a numerical weather prediction model. Sensitivity studies were conducted using the TOPSIS analysis to identify the likely best set of microphysics and cumulus parameterization schemes, and spatial resolution from a total set of 15 combinations. This identified best set can pinpoint specific parameterizations needing further development to advance flood forecasting in monsoon-dominated regimes. It was found that the Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in the Ganges-Brahmaputra-Meghna basins. Finer spatial resolution (3 km) without cumulus parameterization schemes did not yield significant improvements. The short-listed set of the likely best microphysics-cumulus parameterization configurations was found to also hold true for the Indus basin. The lesson learned from this study is that a common set of model parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least in South Asian river basins.

  10. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

    NASA Astrophysics Data System (ADS)

    Cirisan, A.; Spichtinger, P.; Luo, B. P.; Weisenstein, D. K.; Wernli, H.; Lohmann, U.; Peter, T.

    2013-05-01

    In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2-10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed "troposphericity". Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. The geoengineering is predicted to cause changes in ice number density by up to 50%, depending on troposphericity and cooling rate. We estimate the resulting cloud radiative effects from a radiation transfer model. Complex interplay between the few large stratospheric and many small tropospheric H2SO4-H2O droplets gives rise to partly counteracting radiative effects: local increases in cloud radiative forcing up to +2 W/m2for low troposphericities and slow cooling rates, and decreases up to -7.5 W/m2for high troposphericities and fast cooling rates. The resulting mean impact on the northern midlatitudes by changes in cirrus is predicted to be low, namely <1% of the intended radiative forcing by the stratospheric aerosols. This suggests that stratospheric sulphate geoengineering is unlikely to have large microphysical effects on the mean cirrus radiative forcing. However, this study disregards feedbacks, such as temperature and humidity changes in the upper troposphere, which must be examined separately.

  11. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models

  12. Advanced Methods for Determining Prediction Uncertainty in Model-Based Prognostics with Application to Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Sankararaman, Shankar

    2013-01-01

    Prognostics is centered on predicting the time of and time until adverse events in components, subsystems, and systems. It typically involves both a state estimation phase, in which the current health state of a system is identified, and a prediction phase, in which the state is projected forward in time. Since prognostics is mainly a prediction problem, prognostic approaches cannot avoid uncertainty, which arises due to several sources. Prognostics algorithms must both characterize this uncertainty and incorporate it into the predictions so that informed decisions can be made about the system. In this paper, we describe three methods to solve these problems, including Monte Carlo-, unscented transform-, and first-order reliability-based methods. Using a planetary rover as a case study, we demonstrate and compare the different methods in simulation for battery end-of-discharge prediction.

  13. A Mechanistic Understanding of North American Monsoon and Microphysical Properties of Ice Particles

    NASA Astrophysics Data System (ADS)

    Erfani, Ehsan

    A mechanistic understanding of the North American Monsoon (NAM) is suggested by incorporating local- and synoptic-scale processes. The local-scale mechanism describes the effect sea surface temperature (SST) in Gulf of California (GC) and how it contributes to the low-level moisture during the 2004 NAM. Before NAM onset, the strong low-level temperature inversion exists over the GC, but this inversion weakens with increasing GC SST and generally disappears once SSTs exceed 29.5°C, allowing the moist air, trapped in the MBL, to mix with free tropospheric air. This leads to a deep, moist layer that can be transported toward the NAM regions to produce thunderstorms. The synoptic scale mechanism is based on climatologies from 1983 to 2010 and explains that the warmest SSTs moving up the coast contributes to NAM convection and atmospheric heating, and consequently advancing the position of the anticyclone and the region of descent northward. In order to improve microphysical properties of ice clouds, this study develops self-consistent second order polynomial mass- and projected area-dimension (m-D and A-D) expressions that are valid over a much larger size range, compared to traditional power laws. Such expressions can easily be reduced to power laws for the size range of interest, in order to use in cloud and climate models. This was done by combining field measurements of individual ice particle m and D with airborne optical probe measurements of D, A and estimates of m. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies. These expressions also appear representative for heavily rimed dendrites occurring over the Sierra Nevada Mountains. By using the m-D field measurements of rimed and unrimed particles, and by developing theoretical methods, an approach was suggested for calculating rimed m and A, which has the benefit of accounting

  14. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  15. Novel Pretreatment Scoring Incorporating C-reactive Protein to Predict Overall Survival in Advanced Hepatocellular Carcinoma with Sorafenib Treatment

    PubMed Central

    Nakanishi, Hiroyuki; Kurosaki, Masayuki; Tsuchiya, Kaoru; Yasui, Yutaka; Higuchi, Mayu; Yoshida, Tsubasa; Komiyama, Yasuyuki; Takaura, Kenta; Hayashi, Tsuguru; Kuwabara, Konomi; Nakakuki, Natsuko; Takada, Hitomi; Ueda, Masako; Tamaki, Nobuharu; Suzuki, Shoko; Itakura, Jun; Takahashi, Yuka; Izumi, Namiki

    2016-01-01

    Objectives This study aimed to build a prediction score of prognosis for patients with advanced hepatocellular carcinoma (HCC) after sorafenib treatment. Methods A total of 165 patients with advanced HCC who were treated with sorafenib were analyzed. Readily available baseline factors were used to establish a scoring system for the prediction of survival. Results The median survival time (MST) was 14.2 months. The independent prognostic factors were C-reactive protein (CRP) <1.0 mg/dL [hazard ratio (HR) =0.51], albumin >3.5 g/dL (HR =0.55), alpha-fetoprotein <200 ng/mL (HR =0.45), and a lack of major vascular invasion (HR =0.39). Each of these factors had a score of 1, and after classifying the patients into five groups, the total scores ranged from 0 to 4. Higher scores were linked to significantly longer survival (p<0.0001). Twenty-nine patients (17.6%) with a score of 4 had a MST as long as 36.5 months, whereas MST was as short as 2.4 and 3.7 months for seven (4.2%) and 22 (13.3%) patients with scores of 0 and 1, respectively. Conclusions A novel prognostic scoring system, which includes the CRP level, has the ability to stratify the prognosis of patients with advanced stage HCC after treatment with sorafenib. PMID:27781198

  16. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  17. Predicting SAT Performance from Advanced Course Content and Timing of Matriculation

    ERIC Educational Resources Information Center

    Patterson, Jonathan Sparks

    2012-01-01

    As record numbers of students are applying to selective colleges and universities, students are attempting to set themselves apart from their peers by taking rigorous advanced courses in high school. The race for improving a student's academic record has resulted in more and more students taking these courses earlier and earlier in their high…

  18. The global atmospheric electric circuit and its effects on cloud microphysics

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    2008-06-01

    variations. The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols-cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred Jz and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects.

  19. Latent cooling and microphysics effects in deep convection

    NASA Astrophysics Data System (ADS)

    Fernández-González, S.; Wang, P. K.; Gascón, E.; Valero, F.; Sánchez, J. L.

    2016-11-01

    Water phase changes within a storm are responsible for the enhancement of convection and therefore the elongation of its lifespan. Specifically, latent cooling absorbed during evaporation, melting and sublimation is considered the main cause of the intensification of downdrafts. In order to know more accurately the consequences of latent cooling caused by each of these processes (together with microphysical effects that they induce), four simulations were developed with the Wisconsin Dynamical and Microphysical Model (WISCDYMM): one with all the microphysical processes; other without sublimation; melting was suppressed in the third simulation; and evaporation was disabled in the fourth. The results show that sublimation cooling is not essential to maintain the vertical currents of the storm. This is demonstrated by the fact that in the simulation without sublimation, maximum updrafts are in the same range as in the control simulation, and the storm lifespan is similar or even longer. However, melting was of vital importance. The storm in the simulation without melting dissipated prematurely, demonstrating that melting is indispensable to the enhancement of downdrafts below the freezing level and for avoiding the collapse of low level updrafts. Perhaps the most important finding is the crucial influence of evaporative cooling above the freezing level that maintains and enhances mid-level downdrafts in the storm. It is believed that this latent cooling comes from the evaporation of supercooled liquid water connected with the Bergeron-Findeisen process. Therefore, besides its influence at low levels (which was already well known), this evaporative cooling is essential to strengthen mid-level downdrafts and ultimately achieve a quasi-steady state.

  20. Impact of volcanic ash plume aerosol on cloud microphysics

    NASA Astrophysics Data System (ADS)

    Martucci, G.; Ovadnevaite, J.; Ceburnis, D.; Berresheim, H.; Varghese, S.; Martin, D.; Flanagan, R.; O'Dowd, C. D.

    2012-03-01

    This study focuses on the dispersion of the Eyjafjallajökull volcanic ash plume over the west of Ireland, at the Mace Head Supersite, and its influence on cloud formation and microphysics during one significant event spanning May 16th and May 17th, 2010. Ground-based remote sensing of cloud microphysics was performed using a K a-band Doppler cloud RADAR, a LIDAR-ceilometer and a multi-channel microwave-radiometer combined with the synergistic analysis scheme SYRSOC ( Synergistic Remote Sensing Of Cloud). For this case study of volcanic aerosol interaction with clouds, cloud droplet number concentration (CDNC), liquid water content (LWC), and droplet effective radius ( reff) and the relative dispersion were retrieved. A unique cloud type formed over Mace Head characterized by layer-averaged maximum, mean and standard deviation values of the CDNC, reff and LWC: Nmax = 948 cm -3, N¯=297cm, σ=250cm, reff max = 35.5 μm, r¯=4.8μm, σ=4.4μm, LWC=0.23gm, LWC¯=0.055gm, σ=0.054gm, respectively. The high CDNC, for marine clean air, were associated with large accumulation mode diameter (395 nm) and a hygroscopic growth factor consistent with sulphuric acid aerosol, despite being almost exclusively internally mixed in submicron sizes. Additionally, the Condensation Nuclei (CN, d > 10 nm) to Cloud Condensation Nuclei (CCN) ratio, CCN:CN ˜1 at the moderately low supersaturation of 0.25%. This case study illustrates the influence of volcanic aerosols on cloud formation and microphysics and shows that volcanic aerosol can be an efficient CCN.

  1. Separating dynamical and microphysical impacts of aerosols on deep convection applying piggybacking methodology

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.

    2016-04-01

    Formation and growth of cloud and precipitation particles ("cloud microphysics") affect cloud dynamics and such macroscopic cloud field properties as the mean surface rainfall, cloud cover, and liquid/ice water paths. Traditional approaches to investigate the impacts involve parallel simulations with different microphysical schemes or with different scheme parameters (such as the assumed droplet/ice concentration for single-moment bulk schemes or the assumed CCN/IN concentration for double-moment schemes). Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between cloud microphysics and cloud dynamics. In a nutshell, changing the cloud microphysics leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is cumbersome. A novel modeling methodology, referred to as the microphysical piggybacking, was recently developed to separate purely microphysical effects from the impact on the dynamics. The main idea is to use two sets of thermodynamic variables driven by two microphysical schemes or by the same scheme with different scheme parameters. One set is coupled to the dynamics and drives the simulation, and the other set piggybacks the simulated flow, that is, it responds to the simulated flow but does not affect it. By switching the sets (i.e., the set driving the simulation becomes the piggybacking one, and vice versa), the impact on the cloud dynamics can be isolated from purely microphysical effects. Application of this methodology to the daytime deep convection development over land based on the observations during the Large-scale Biosphere-Atmosphere (LBA) field project in Amazonia will be discussed applying single-moment and double-moment bulk microphysics schemes. We show that the new methodology documents a small indirect aerosol impact on convective dynamics, and a strong microphysical effect. These results question the postulated strong

  2. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  3. On the microphysical state of the surface of Triton

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz

    1991-01-01

    The microphysical processes involved in the pressureless sintering of particulate materials and the physical conditions likely to prevail on Triton are examined in order to investigate the processes leading to the frost metamorphism on Triton. It is argued that the presence of a well-annealed transparent nitrogen layer offers a natural explanation for most of what is seen on the surface of Triton; results of observations suggest that such a layer can form on Triton at 37 K on a seasonal time scale (about 100 earth years), provided the initial grain diameter is less than 1 micron. Grains up to 10 microns are allowed if grain growth does not hinder densification.

  4. The Influence of Microphysical Assumptions on Simulated Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Bettenhausen, M. H.

    2012-12-01

    There have been many studies that look at the microphysical properties of snow, as these assumptions about the properties are key components to bulk microphysical parameterizations. Temperature and supersaturation affect crystal growth, and the resulting crystals collide to form larger aggregates. Ice crystal habit, latent heat conditions, and the presence of supercooled liquid all affect aggregation and riming, resulting in a wide range of irregular morphologies of varying density and fall velocity. If melting does occur, hydrometeor properties will also influence the melting process. And, the presence of melting hydrometeors directly influences the size distribution of raindrops. As the characteristics of clouds vary from system to system, understanding how microphysical assumptions influence the interpretation of passive microwave brightness temperatures is an important step in developing methods for observing precipitation. Particle properties such as shape, number density, mass density, composition, and alignment all impact the intensity and polarization state of radiation. In this work, we look at the impact of various microphysical assumptions of snow on simulated microwave brightness temperatures. We include various parameterizations of mass density. Careful attention will be made in constructing particle size distributions, using profiles of liquid and ice water content. We include non-spherical geometries using directional statistics to consider distributions of canting angles, from horizontally-aligned to completely random to quantify polarization effects. In order to accommodate the wide range of various assumptions, we limit our particle models to rotationally symmetric geometries to facilitate the use of T-Matrix code. Densities in these cases are accounted for using a dielectric mixing formula. While higher fidelity scattering calculations using realistic particle models would better represent remotely sensed measurements, such calculations are

  5. Advances and Challenges In Uncertainty Quantification with Application to Climate Prediction, ICF design and Science Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Klein, R.; Woodward, C. S.; Johannesson, G.; Domyancic, D.; Covey, C. C.; Lucas, D. D.

    2012-12-01

    Uncertainty Quantification (UQ) is a critical field within 21st century simulation science that resides at the very center of the web of emerging predictive capabilities. The science of UQ holds the promise of giving much greater meaning to the results of complex large-scale simulations, allowing for quantifying and bounding uncertainties. This powerful capability will yield new insights into scientific predictions (e.g. Climate) of great impact on both national and international arenas, allow informed decisions on the design of critical experiments (e.g. ICF capsule design, MFE, NE) in many scientific fields, and assign confidence bounds to scientifically predictable outcomes (e.g. nuclear weapons design). In this talk I will discuss a major new strategic initiative (SI) we have developed at Lawrence Livermore National Laboratory to advance the science of Uncertainty Quantification at LLNL focusing in particular on (a) the research and development of new algorithms and methodologies of UQ as applied to multi-physics multi-scale codes, (b) incorporation of these advancements into a global UQ Pipeline (i.e. a computational superstructure) that will simplify user access to sophisticated tools for UQ studies as well as act as a self-guided, self-adapting UQ engine for UQ studies on extreme computing platforms and (c) use laboratory applications as a test bed for new algorithms and methodologies. The initial SI focus has been on applications for the quantification of uncertainty associated with Climate prediction, but the validated UQ methodologies we have developed are now being fed back into Science Based Stockpile Stewardship (SSS) and ICF UQ efforts. To make advancements in several of these UQ grand challenges, I will focus in talk on the following three research areas in our Strategic Initiative: Error Estimation in multi-physics and multi-scale codes ; Tackling the "Curse of High Dimensionality"; and development of an advanced UQ Computational Pipeline to enable

  6. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  7. Application of Advanced Methods to Predict Grid to Rod Fretting in PWRs

    SciTech Connect

    Karoutas, Zeses; Roger, Lu Y.; Yan, J.; Krammen, M.A.; Sham, Sam

    2012-01-01

    Advanced modeling and simulation methods are being developed as part of the US Department of Energy sponsored Nuclear Energy Modeling and Simulation Hub called CASL (Consortium for Advanced Simulation of LWRs). The key participants of the CASL team include Oak Ridge National Laboratory (lead), Idaho National Laboratory, Sandia National Laboratories, Los Alamos National Laboratory, Massachusetts Institute of Technology, North Carolina State University, University of Michigan, Electric Power Research Institute, Tennessee Valley Authority and Westinghouse Electric Corporation. One of the key objectives of the CASL program is to develop multi-physics methods and tools which evaluate neutronic, thermal-hydraulic, structural mechanics and nuclear fuel rod performance in rod bundles to support power uprates, increased burnup/cycle length and life extension for US nuclear plants.

  8. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    PubMed

    Phan, Andy; Mailey, Katherine; Sakai, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-02-17

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased towards small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with more than 6 nucleotides that occur frequently in viral RNA. This paper presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Protonated cytosine and uracil base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with more than 6 nucleotides are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2x2 have been measured (Mathews 2004). These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites.

  9. Advanced validation of CFD-FDTD combined method using highly applicable solver for reentry blackout prediction

    NASA Astrophysics Data System (ADS)

    Takahashi, Yusuke

    2016-01-01

    An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication.

  10. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  11. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    SciTech Connect

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  12. OSMOSE an experimental program for improving neutronic predictions of advanced nuclear fuels.

    SciTech Connect

    Klann, R. T.; Aliberti, G.; Zhong, Z.; Graczyk, D.; Loussi, A.; Nuclear Engineering Division; Commissariat a l Energie Atomique

    2007-10-18

    This report describes the technical results of tasks and activities conducted in FY07 to support the DOE-CEA collaboration on the OSMOSE program. The activities are divided into five high-level tasks: reactor modeling and pre-experiment analysis, sample fabrication and analysis, reactor experiments, data treatment and analysis, and assessment for relevance to high priority advanced reactor programs (such as GNEP and Gen-IV).

  13. [Clinical application value of prognostic nutritional index for predicting survival in patients with advanced non-small cell lung cancer].

    PubMed

    Xu, W J; Kang, Y M; Zhou, L; Chen, F F; Song, Y H; Zhang, C Q

    2017-02-23

    Objective: To explore the clinical application value of prognostic nutritional index(PNI) for predicting overall survival(OS) in patients with advanced non-small cell lung cancer (NSCLC). Methods: 123 patients with histologically confirmed non-small cell lung cancer were enrolled in this study, and their clinical and laboratory data were reviewed. The PNI was calculated as 10×serum albumin value+ 5×total lymphocyte countin peripheral blood.Univariate and multivariate analyses were used to identify the potential prognostic factors for advanced NSCLC. Results: PNI of the 123 NSCLC patients was 46.24±6.56. PNI was significantly associated with age, weight loss and pleural effusion (P<0.05). However, it showed no relationship with sex, smoking, hemoptysis, chest pain, dyspnea, histological type, clinical stage, and administration of chemotherapy (P>0.05). The median OS of the 123 patients was 19.5 months. The median OS in the higher PNI group (PNI≥46.24) and lower PNI group(PNI<46.24) were 25.2 months and 16.4 months, respectively.The 1-year survival rates were 80.6% and 63.9%, and 2-year survival rates were 54.8% and 19.6%, respectively (P<0.01). Univariate analysis showed that PNI, age, dyspnea, and weight loss were related to the OS of the advanced NSCLC patients (P<0.05). Multivariate analysis identified PNI as an independent prognostic factor for OS of advanced NSCLC (P<0.001). Conclusion: PNI can be easily calculated, and may be used as a relatively new prognostic indicator for advanced NSCLC in clinical practice.

  14. Experimental Studies on the 3D Macro- and Microphysics of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2015-12-01

    Magnetic reconnection has been extensively studied in 2D geometries for many decades and considerable progress has been made in understating 2D reconnection physics, yet in real plasmas reconnection is fundamentally 3D in nature. Only recently has it become possible to study 3D reconnection using simulations, however some initial results have suggested that the inclusion of 3D effects does not strongly affect the basic properties of reconnection (e.g. reconnection rate or particle acceleration). Yet on the other hand, previous experiments, without direct 3D measurements, have implied that 3D effects could be important even in a quasi-2D system. Here we experimentally study both the (1) macro- and (2) microphysics of 3D reconnection in order to directly test the importance of 3D effects in a quasi-2D experiment. Using fully simultaneous 3D measurements, it is shown that during highly driven reconnection the macroscopic structure of the current sheet can become strongly 3D despite an essentially 2D upstream region. The correlation length along the current sheet is measured to be far shorter than suggested by kinetic simulations. Results from new experiments with stronger reconnection drive and diagnostics designed to estimate the 3D reconnection rate will be discussed. With regards to (2), the 3D microphysics, new diagnostics capable of measuring fluctuations at frequencies up to the electron cyclotron frequency (~ 300 MHz) have been developed and have identified the presence of very high frequency waves (~ 100 MHz) during asymmetric reconnection, localized to the low-density side. The detailed properties of these waves, including the measured power spectra and dispersion relation, will be discussed and compared with both previous satellite observations of high-frequency waves as well as with theoretical predictions on the generation of whistler waves during reconnection.

  15. The microphysical properties of ice fog measured in urban environments of Interior Alaska

    NASA Astrophysics Data System (ADS)

    Schmitt, Carl G.; Stuefer, Martin; Heymsfield, Andrew J.; Kim, Chang Ki

    2013-10-01

    microphysical properties of ice fog were measured at two sites during a small field campaign in January and February of 2012 in Interior Alaska. The National Center for Atmospheric Research Video Ice Particle Sampler probe and Formvar (polyvinyl formal)-coated microscope slides were used to sample airborne ice particles at two polluted sites in the Fairbanks region. Both sites were significantly influenced by anthropogenic emission and additional water vapor from nearby open water power plant cooling ponds. Measurements show that ice fog particles were generally droxtal shaped (faceted, quasi-spherical) for sub-10 µm particles, while plate-shaped crystals were the most frequently observed particles between 10 and 50 µm. A visibility cutoff of 3 km was used to separate ice fog events from other observations which were significantly influenced by larger (50-150 µm) diamond dust particles. The purpose of this study is to more realistically characterize ice fog microphysical properties in order to facilitate better model predictions of the onset of ice fog in polluted environments. Parameterizations for mass and projected area are developed and used to estimate particle terminal velocity. Dimensional characteristics are based on particle geometry and indicated that ice fog particles have significantly lower densities than water droplets as well as reduced cross-sectional areas, the net result being that terminal velocities are estimated to be less than half the value of those calculated for water droplets. Particle size distributions are characterized using gamma functions and have a shape factor (μ) of between -0.5 and -1.0 for polluted ice fog conditions.

  16. An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice Clouds

    SciTech Connect

    Comstock, Jennifer M.; d'Entremont, Robert; DeSlover, Daniel; Mace, Gerald G.; Matrosov, S. Y.; McFarlane, Sally A.; Minnis, Patrick; Mitchell, David; Sassen, Kenneth; Shupe, Matthew D.; Turner, David D.; Wang, Zhien

    2007-02-01

    The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth’s radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth’s future climate. A number of passive and active remote sensing retrievals exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade; however, there is room for improvement. Members of the Atmospheric Radiation Measurement program (ARM) Cloud Properties Working Group are involved in an intercomparison of optical depth (tau), ice water path, and characteristic particle size in ice clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement. Currently, there is significant scatter in the algorithms for difficult clouds with very small optical depths (tau<0.3) and thick ice clouds (tau>1). The good news is that for thin cirrus (0.3

  17. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  18. Microphysics of KCl and ZnS Clouds on GJ 1214 b

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn

    2016-10-01

    Clouds are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds are likely composed of exotic condensates such as salts, sulfides, silicates, and metals. Treatment of these clouds in current exoplanet atmosphere models do not consider the microphysical processes that govern their formation, evolution, and distribution, such as nucleation and condensation/evaporation, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work, we apply a 1D microphysical cloud model to GJ 1214 b and investigate the properties of potassium chloride (KCl) and zinc sulfide (ZnS) clouds as a function of atmospheric metallicity, the intensity of vertical mixing, and the mode of nucleation. Our cloud model has been widely applied to planets in our own Solar System, and as such our work bridges a gap between planetary science and exoplanets. Using model background atmospheres calculated by the SCARLET code, we find that (1) the cloud distribution is not significantly affected by metallicity unless [Fe/H] > 2, (2) higher intensities of vertical mixing leads to more extended cloud decks, more cloud particles at all altitudes, and smaller mean particle radii, (3) the high surface energy of solid ZnS prevents the homogeneous nucleation of pure ZnS cloud particles, such that KCl clouds dominate; solid ZnS can only manifest by nucleating onto pre-existing surfaces (heterogeneous nucleation), such as KCl cloud particles, resulting in mixed clouds, and (4) formation of KCl clouds results in a KCl vapor abundance above the cloud deck ~5 orders of magnitude less than that calculated from equilibrium chemistry. We also examine the transmission spectra that would result from these different cases. Extension of this model to other planets and condensates will shed light on the observed continuum in the "cloudiness

  19. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  20. Strengthening sociometric prediction: scientific advances in the assessment of children's peer relations.

    PubMed

    DeRosier, Melissa E; Thomas, James M

    2003-01-01

    This study assessed the strength of sociometric classification in the prediction of concurrent sociobehavioral adjustment. Differential adjustment for subgroups of unclassified children were also examined. Participants were 881 fifth graders (ages 9 to 12). Classification strength (CS) and unclassified subgroups were determined through newly developed algorithms. CS added significantly to the prediction of all areas of adjustment. For example, highly rejected children were at extreme risk for victimization whereas highly controversial children were most likely to be bullies and relationally aggressive. Unclassified subgroups were found to exhibit adjustment problems mirroring those of their extreme status group counterparts. Findings support that increasing the sensitivity of sociometric measurement results in both greater predictive strength and enhanced understanding of underlying social processes.

  1. Predicted and measured boundary layer refraction for advanced turboprop propeller noise

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Krejsa, Eugene A.

    1990-01-01

    Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.

  2. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  3. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    PubMed Central

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance. PMID:26346869

  4. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    SciTech Connect

    Poulin, Patrick; Ekins, Sean; Theil, Frank-Peter

    2011-01-15

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. This correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.

  5. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances.

    PubMed

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance.

  6. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    NASA Technical Reports Server (NTRS)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  7. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  8. LiverTox: Advanced QSAR and Toxicogeomic Software for Hepatotoxicity Prediction

    SciTech Connect

    Lu, P-Y.; Yuracko, K.

    2011-02-25

    YAHSGS LLC and Oak Ridge National Laboratory (ORNL) established a CRADA in an attempt to develop a predictive system using a pre-existing ORNL computational neural network and wavelets format. This was in the interest of addressing national needs for toxicity prediction system to help overcome the significant drain of resources (money and time) being directed toward developing chemical agents for commerce. The research project has been supported through an STTR mechanism and funded by the National Institute of Environmental Health Sciences beginning Phase I in 2004 (CRADA No. ORNL-04-0688) and extending Phase II through 2007 (ORNL NFE-06-00020). To attempt the research objectives and aims outlined under this CRADA, state-of-the-art computational neural network and wavelet methods were used in an effort to design a predictive toxicity system that used two independent areas on which to base the system’s predictions. These two areas were quantitative structure-activity relationships and gene-expression data obtained from microarrays. A third area, using the new Massively Parallel Signature Sequencing (MPSS) technology to assess gene expression, also was attempted but had to be dropped because the company holding the rights to this promising MPSS technology went out of business. A research-scale predictive toxicity database system called Multi-Intelligent System for Toxicogenomic Applications (MISTA) was developed and its feasibility for use as a predictor of toxicological activity was tested. The fundamental focus of the CRADA was an attempt and effort to operate the MISTA database using the ORNL neural network. This effort indicated the potential that such a fully developed system might be used to assist in predicting such biological endpoints as hepatotoxcity and neurotoxicity. The MISTA/LiverTox approach if eventually fully developed might also be useful for automatic processing of microarray data to predict modes of action. A technical paper describing the

  9. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1993-06-01

    This paper summarizes recent experimental results on creep and creep rupture behavior of a commercial grade of Si{sub 3}N{sub 4} ceramic in the temperature range of 1150 to 1300C obtained at ORNL; and introduces a tentative multiaxial deformation and life prediction model for ceramic materials under general thermomechanical loadings. Issues related to the possible standardization of the data analysis methodology and possible future research needs for high temperature structural ceramics in the area of development of data base and life prediction methodology are also discussed.

  10. Neoadjuvant treatment for advanced esophageal cancer: response assessment before surgery and how to predict response to chemoradiation before starting treatment

    PubMed Central

    Hölscher, Arnulf H.; Schmidt, Matthias; Warnecke-Eberz, Ute

    2015-01-01

    Patients with advanced esophageal cancer (T3-4, N) have a poor prognosis. Chemoradiation or chemotherapy before esophagectomy with adequate lymphadenectomy is the standard treatment for patients with resectable advanced esophageal carcinoma. However, only patients with major histopathologic response (regression to less than 10% of the primary tumor) after preoperative treatment will have a prognostic benefit of preoperative chemoradiation. Using current therapy regimens about 40% to 50% of the patients show major histopathological response. The remaining cohort does not benefit from this neoadjuvant approach but might benefit from earlier surgical resection. Therefore, it is an aim to develop tools for response prediction before starting the treatment and for early response assessment identifying responders. The current review discusses the different imaging techniques and the most recent studies about molecular markers for early response prediction. The results show that [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) has a good sensitivity but the specificity is not robust enough for routine clinical use. Newer positron emission tomography detector technology, the combination of FDG-PET with computed tomography, additional evaluation criteria and standardization of evaluation may improve the predictive value. There exist a great number of retrospective studies using molecular markers for prediction of response. Until now the clinical use is missing. But the results of first prospective studies are promising. A future perspective may be the combination of imaging technics and special molecular markers for individualized therapy. Another aspect is the response assessment after finishing neoadjuvant treatment protocol. The different clinical methods are discussed. The results show that until now no non-invasive method is valid enough to assess complete histopathological response. PMID:26157318

  11. Advances in Toxico-Cheminformatics: Supporting a New Paradigm for Predictive Toxicology

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-throughput screening (HTS) data. The D...

  12. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  13. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  14. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  15. The microphysical properties of small ice particles measured during MACPEX

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; Schnaiter, M.; Heymsfield, A.; Bansemer, A.; Hirst, E.

    2012-12-01

    During the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) field campaign, the Small Ice Detector version 3 (SID-3) and the NCAR Video Ice Particle Sampler (VIPS) probes were operated onboard the NASA WB-57 aircraft to measure the microphysical properties of small ice particles in midlatitude cirrus clouds. The VIPS was optimized to measure the particle size distribution and projected area properties of ice particles between 20 and 200 microns and measurements agreed well with other microphysical probes. SID-3 measures the forward light scattering pattern from ice particles in the 1 to 100 micron size range. Forward scattering patterns can be used to characterize ice particle shape as well as surface roughness. Scattering patterns appear to be 'speckled' when particles have surface roughness and/or are polycrystalline. Scattering patterns can be used to identify quasi-spherical ice particles as well as particles which are sublimating. Sublimating crystals, spherical ice particles, and particles with surface roughness were all observed by SID-3 during MACPEX. Observed particle properties will be correlated to concurrent atmospheric observations. Measurements from the controlled environment of the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber will be related to atmospheric particle measurements.

  16. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  17. In-Situ Microphysics from the RACORO IOP

    DOE Data Explorer

    McFarquhar, Greg

    2013-11-08

    These files were generated by Greg McFarquhar and Robert Jackson at the University of Illinois. Please contact mcfarq@atmos.uiuc.edu or rjackso2@atmos.uiuc.edu for more information or for assistance in interpreting the content of these files. We highly recommend that anyone wishing to use these files do so in a collaborative endeavor and we welcome queries and opportunities for collaboration. There are caveats associated with the use of the data which are difficult to thoroughly document and not all products for all time periods have been thoroughly examined. This is a value added data set of the best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during RACORO. These files contain best estimates of liquid size distributions N(D) in terms of droplet diameter D, liquid water content LWC, extinction of liquid drops beta, effective radius of cloud drops (re), total number concentration of droplets NT, and radar reflectivity factor Z at 1 second resolution.

  18. Functional imaging using computational fluid dynamics to predict treatment success of mandibular advancement devices in sleep-disordered breathing.

    PubMed

    De Backer, J W; Vanderveken, O M; Vos, W G; Devolder, A; Verhulst, S L; Verbraecken, J A; Parizel, P M; Braem, M J; Van de Heyning, P H; De Backer, W A

    2007-01-01

    Mandibular advancement devices (MADs) have emerged as a popular alternative for the treatment of sleep-disordered breathing. These devices bring the mandibula forward in order to increase upper airway (UA) volume and prevent total UA collapse during sleep. However, the precise mechanism of action appears to be quite complex and is not yet completely understood; this might explain interindividual variation in treatment success. We examined whether an UA model, that combines imaging techniques and computational fluid dynamics (CFD), allows for a prediction of the treatment outcome with MADs. Ten patients that were treated with a custom-made mandibular advancement device (MAD), underwent split-night polysomnography. The morning after the sleep study, a low radiation dose CT scan was scheduled with and without the MAD. The CT examinations allowed for a comparison between the change in UA volume and the anatomical characteristics through the conversion to three-dimensional computer models. Furthermore, the change in UA resistance could be calculated through flow simulations with CFD. Boundary conditions for the model such as mass flow rate and pressure distributions were obtained during the split-night polysomnography. Therefore, the flow modeling was based on a patient specific geometry and patient specific boundary conditions. The results indicated that a decrease in UA resistance and an increase in UA volume correlate with both a clinical and an objective improvement. The results of this pilot study suggest that the outcome of MAD treatment can be predicted using the described UA model.

  19. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  20. MGMT expression levels predict disease stabilisation, progression-free and overall survival in patients with advanced melanomas treated with DTIC.

    PubMed

    Busch, Christian; Geisler, Jürgen; Lillehaug, Johan R; Lønning, Per Eystein

    2010-07-01

    Metastatic melanoma responds poorly to systemic treatment. We report the results of a prospective single institution study evaluating O(6)-methylguanine-DNA methyltransferase (MGMT) status as a potential predictive and/or prognostic marker among patients treated with dacarbazine (DTIC) 800-1000 mg/m(2) monotherapy administered as a 3-weekly schedule for advanced malignant melanomas. The study was approved by the Regional Ethical Committee. Surgical biopsies from metastatic or loco-regional deposits obtained prior to DTIC treatment were snap-frozen immediately upon removal and stored in liquid nitrogen up to processing. Median time from enrolment to end of follow-up was 67 months. MGMT expression levels evaluated by qRT-PCR correlated significantly to DTIC benefit (CR/PR/SD; p=0.005), time to progression (TTP) (p=0.005) and overall survival (OS) (p=0.003). MGMT expression also correlated to Breslow thickness in the primary tumour (p=0.014). While MGMT promoter hypermethylation correlated to MGMT expression, MGMT promoter hypermethylation did not correlate to treatment benefit, TTP or OS, suggesting that other factors may be critical in determining MGMT expression levels in melanomas. In a Cox proportional regression analysis, serum lactate dehydrogenase (LDH, p<0.001), MGMT expression (p=0.022) and p16(INK4a) expression (p=0.037) independently predicted OS, while TTP correlated to DTIC benefit after 6 weeks only (p=0.001). Our data reveal MGMT expression levels to be associated with disease stabilisation and prognosis in patients receiving DTIC monotherapy for advanced melanoma. The role of MGMT expression as a predictor to DTIC sensitivity versus a general prognostic factor in advanced melanomas warrants further evaluation.

  1. Advances in CFD Prediction of Shock Wave Turbulent Boundary Layer Interactions

    DTIC Science & Technology

    2006-01-01

    on the Baldwin and Lomax [151] algebraic turbulence model. Fig. 58 from Panaras [150] includes all the critical elements of the swept shock/turbulent...pitot pressure, yaw angle and surface pressure are predictable with reasonable accuracy using algebraic or two-equation turbulence models, however the...calculations they tested algebraic turbulence models and the k−² model, integrated to the wall or employing the wall-function technique. They have found

  2. Advanced Control Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2014-07-31

    SIMULINK model for prediction and feedback control of a phase ramp. Mirror represented by integrator with sample time tsim. The model shown has a...and simulating the closed-loop system in SIMULINK . Approved for public release; distribution unlimited 3 4.0 RESULTS AND DISCUSSION 4.1...although this measurement probably is not necessary. 4.2 Simulation Model There are three differences between the current SIMULINK model and the

  3. Advanced Durability Analysis. Volume 2. Analytical Predictions, Test Results and Analytical Correlations

    DTIC Science & Technology

    1989-02-27

    used for the back-extrapolation. Recommendations for durability analysis are as follows: (1) define the equivalent initial flaw size distribution ...WAFXHR4 Data Set) for Cumulative Distribution of Service Time to Reach Crack Size x1 -0.59" Based on DCGA- DCGA. xiv List of Figures (Continued) Fiaur. ag ...be used to make predictions for the probability bf crack exceedance at any service time, 7’ , and the cumulative distribution of service time to

  4. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.

  5. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  6. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer.

    PubMed

    Pompas-Veganzones, N; Sandonis, V; Perez-Lanzac, Alberto; Beltran, M; Beardo, P; Juárez, A; Vazquez, F; Cozar, J M; Alvarez-Ossorio, J L; Sanchez-Carbayo, Marta

    2016-10-01

    Myopodin is a cytoskeleton protein that shuttles to the nucleus depending on the cellular differentiation and stress. It has shown tumor suppressor functions. Myopodin methylation status was useful for staging bladder and colon tumors and predicting clinical outcome. To our knowledge, myopodin has not been tested in kidney cancer to date. The purpose of this study was to evaluate whether myopodin methylation status could be clinically useful in renal cancer (1) as a prognostic biomarker and 2) as a predictive factor of response to antiangiogenic therapy in patients with metastatic disease. Methylation-specific polymerase chain reactions (MS-PCR) were used to evaluate myopodin methylation in 88 kidney tumors. These belonged to patients with localized disease and no evidence of disease during follow-up (n = 25) (group 1), and 63 patients under antiangiogenic therapy (sunitinib, sorafenib, pazopanib, and temsirolimus), from which group 2 had non-metastatic disease at diagnosis (n = 32), and group 3 showed metastatic disease at diagnosis (n = 31). Univariate and multivariate Cox analyses were utilized to assess outcome and response to antiangiogenic agents taking progression, disease-specific survival, and overall survival as clinical endpoints. Myopodin was methylated in 50 out of the 88 kidney tumors (56.8 %). Among the 88 cases analyzed, 10 of them recurred (11.4 %), 51 progressed (57.9 %), and 40 died of disease (45.4 %). Myopodin methylation status correlated to MSKCC Risk score (p = 0.050) and the presence of distant metastasis (p = 0.039). Taking all patients, an unmethylated myopodin identified patients with shorter progression-free survival, disease-specific survival, and overall survival. Using also in univariate and multivariate models, an unmethylated myopodin predicted response to antiangiogenic therapy (groups 2 and 3) using progression-free survival, disease-specific, and overall survival as clinical endpoints. Myopodin was revealed

  7. Predicting early brain metastases based on clinicopathological factors and gene expression analysis in advanced HER2-positive breast cancer patients.

    PubMed

    Duchnowska, Renata; Jassem, Jacek; Goswami, Chirayu Pankaj; Dundar, Murat; Gökmen-Polar, Yesim; Li, Lang; Woditschka, Stephan; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Czartoryska-Arłukowicz, Bogumiła; Radecka, Barbara; Tomasevic, Zorica; Stępniak, Piotr; Wojdan, Konrad; Sledge, George W; Steeg, Patricia S; Badve, Sunil

    2015-03-01

    The overexpression or amplification of the human epidermal growth factor receptor 2 gene (HER2/neu) is associated with high risk of brain metastasis (BM). The identification of patients at highest immediate risk of BM could optimize screening and facilitate interventional trials. We performed gene expression analysis using complementary deoxyribonucleic acid-mediated annealing, selection, extension and ligation and real-time quantitative reverse transcription PCR (qRT-PCR) in primary tumor samples from two independent cohorts of advanced HER2 positive breast cancer patients. Additionally, we analyzed predictive relevance of clinicopathological factors in this series. Study group included discovery Cohort A (84 patients) and validation Cohort B (75 patients). The only independent variables associated with the development of early BM in both cohorts were the visceral location of first distant relapse [Cohort A: hazard ratio (HR) 7.4, 95 % CI 2.4-22.3; p < 0.001; Cohort B: HR 6.1, 95 % CI 1.5-25.6; p = 0.01] and the lack of trastuzumab administration in the metastatic setting (Cohort A: HR 5.0, 95 % CI 1.4-10.0; p = 0.009; Cohort B: HR 10.0, 95 % CI 2.0-100.0; p = 0.008). A profile including 13 genes was associated with early (≤36 months) symptomatic BM in the discovery cohort. This was refined by qRT-PCR to a 3-gene classifier (RAD51, HDGF, TPR) highly predictive of early BM (HR 5.3, 95 % CI 1.6-16.7; p = 0.005; multivariate analysis). However, predictive value of the classifier was not confirmed in the independent validation Cohort B. The presence of visceral metastases and the lack of trastuzumab administration in the metastatic setting apparently increase the likelihood of early BM in advanced HER2-positive breast cancer.

  8. Tumor size and lymph node status determined by imaging are reliable factors for predicting advanced cervical cancer prognosis.

    PubMed

    Kyung, Min Sun; Kim, Hong Bae; Seoung, Jung Yeob; Choi, In Young; Joo, Young Soo; Lee, Me Yeon; Kang, Jung Bae; Park, Young Han

    2015-05-01

    The aim of the present study was to investigate the prognostic role of a number of clinical factors in advanced cervical cancer patients. Patients (n=157) with stage IIA-IIB cervical cancer treated at four Hallym Medical Centers in South Korea (Hallym University Sacred Heart Hospital; Kangnam Sacred Heart Hospital; Chuncheon Sacred Heart Hospital; and Kangdong Sacred Heart Hospital) between 2006 and 2010 were retrospectively enrolled. Univariate analysis identified significant predictive values in the following eight factors: i) Cancer stage (P<0.0001); ii) tumor size (≤4 vs. 4-6 cm, P=0.0147; and ≤4 vs. >6 cm, P<0.0001); iii) serum squamous cell carcinoma antigen level (≤2 vs. >15 ng/ml; P=0.0291); iv) lower third vaginal involvement (P<0.0001); v) hydronephrosis (P=0.0003); vi) bladder/rectum involvement (P=0.0015); vii) pelvic (P=0.0017) or para-aortic (P=0.0019) lymph node (LN) metastasis detected by imaging vs. no metastasis; and viii) pelvic LN metastasis identified by pathological analysis (P=0.0289). Furthermore, multivariate analysis determined that tumor size (≤4 vs. 4-6 cm, P=0.0371; and ≤4 vs. >6 cm, P=0.0024) and pelvic LN metastasis determined by imaging vs. no metastasis (P=0.0499) were independent predictive variables. Therefore, tumor size and pelvic LN metastasis measured by imaging were independent predictive factors for the prognosis of advanced cervical cancer. These factors may provide more clinically significant prognostic information compared with the currently used International Federation of Gynecology and Obstetrics staging system.

  9. Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  10. Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  11. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  12. CEP55 overexpression predicts poor prognosis in patients with locally advanced esophageal squamous cell carcinoma

    PubMed Central

    Jiang, Wenpeng; Wang, Zhou; Jia, Yang

    2017-01-01

    Development of esophageal squamous cell carcinoma (ESCC) involves alterations in multiple genes with corresponding proteins. Recent studies have demonstrated that centrosomal protein 55 (CEP55) shares certain features with oncogenes, and CEP55 overexpression is associated with the development and progression of malignant tumors. The present study aimed to analyze, for the first time, whether CEP55 expression is related to clinicopothalogic features in the esophageal squamous cell carcinoma (ESCC), as well as patient survival. A total of 110 patients with mid-thoracic ESCC who suffered from Ivor-Lewis were enrolled. The CEP55 expression profile of these patients in tumour tissues and corresponding healthy esophageal mucosa (CHEM) was detected by immunohistochemistry and semi-quantitative reverse transcription-polymerase chain reaction analyses. Correlations between CEP55 expression and clinicopathological factors were analyzed using χ2 test. The log-rank test was employed to calculate survival rate. A Cox regression multivariate analysis was performed to determine independent prognostic factors. The results demonstrated that CEP55 expression in ESCC was significantly higher than that of CHEM (P<0.001). Overexpression of CEP55 was significantly associated with differentiation degree (P=0.022), T stage (P=0.019), lymph node metastasis (P=0.033), clinicopathological staging (P=0.002) and tumor recurrence (P=0.021) in locally advanced ESCC patients. In addition, CEP55 overexpression was significantly associated with reduced overall survival of patients after surgery (P=0.012). The 5-year survival rate of patients without CEP55 overexpression was significantly higher than that of patients with CEP55 overexpression (P=0.012). Therefore, these findings suggest that CEP55 overexpression correlates with poor prognosis in locally advanced ESCC patients. PMID:28123547

  13. An advanced system model for the prediction of the clinical task performance of radiographic systems

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Keelan, Brian W.; Sugiro, Francisca

    2007-03-01

    A flexible software tool was developed that combines predictive models for detector noise and blur with image simulation and an improved human observer model to predict the clinical task performance of existing and future radiographic systems. The model starts with high-fidelity images from a database and mathematical models of common disease features, which may be added to the images at desired contrast levels. These images are processed through the entire imaging chain including capture, the detector, image processing, and hardcopy or softcopy display. The simulated images and the viewing conditions are passed to a human observer model, which calculates the detectability index d' of the signal (disease or target feature). The visual model incorporates a channelized Hotelling observer with a luminance-dependent contrast sensitivity function and two types of internal visual system noise (intrinsic and image background-induced). It was optimized based on three independent human observer studies of target detection, and is able to predict d' over a wide range of viewing conditions, background complexities, and target spatial frequency content. A more intuitive metric of system performance, Task-Specific Detective Efficiency (TSDE), is defined to indicate how much detector improvements would translate to better radiologist performance. The TSDE is calculated as the squared ratio of d' for a system with the actual detector and a hypothetical system containing an ideal detector. A low TSDE, e.g., 5% for the detection of 0.1 mm microcalcifications in typical mammography systems, indicates that improvements in the detector characteristics are likely to translate to better detection performance. The TSDE of lung nodule detection is as high as 75% even with the detective quantum efficiency (DQE) of the detector not exceeding 24%. Applications of the model to system optimizations for flat-panel detectors, in mammography and dual energy digital radiography, are discussed.

  14. Advanced Train and Traffic Control Based on Prediction of Train Movement

    NASA Astrophysics Data System (ADS)

    Hiraguri, Shigeto; Hirao, Yuji; Watanabe, Ikuo; Tomii, Norio; Hase, Shinichi

    Trains are often forced to decelerate or stop between stations on commuter lines due to the delay of the preceding train. If a train stops between stations, both the travel time and the interval between trains will increase. This situation has an adverse effect on energy consumption. To solve this problem, we propose a new train control method based on the prediction of train movement and data communications between railway sub-systems. Computer simulations are carried out to verify the effect of the proposed method. As a result, it has been proved that the new method reduces the train stopping time between stations and the electric energy consumption at substations.

  15. Advancing Ensemble Streamflow Prediction with Stochastic Meteorological Forcings for Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Caraway, N.; Wood, A. W.; Rajagopalan, B.; Zagona, E. A.; Daugherty, L.

    2012-12-01

    River Forecast Centers of National Weather Service (NWS) produce seasonal streamflow forecasts via a method called Ensemble Streamflow Prediction (ESP). NWS ESP forces the temperature index Snow17 and Sacramento Soil Moisture Accounting model (SAC-SMA) models with historical weather sequences for the forecasting period, starting from models' current watershed initial conditions, to produce ensemble streamflow forecasts. There are two major drawbacks of this method: (i) the ensembles are limited to the length of historical, limiting ensemble variability and (ii) incorporating seasonal climate forecasts (e.g., El Nino Southern Oscillation) relies on adjustment or weighting of ESP streamflow sequences. These drawbacks motivate the research presented here, which has two components: (i) a multi-site stochastic weather generator and (ii) generation of ensemble weather forecast inputs to the NWS model to produce ensemble streamflow forecasts. We enhanced the K-nearest neighbor bootstrap based stochastic generator include: (i) clustering the forecast locations into climatologically homogeneous regions to better capture the spatial heterogeneity and, (ii) conditioning the weather forecasts on a probabilistic seasonal climate forecast. This multi-site stochastic weather generator runs in R and the NWS models run within the new Community Hydrologic Prediction System, a forecasting sequence we label WG-ESP. The WG-ESP framework was applied to generate ensemble forecasts of spring season (April-July) streamflow in the San Juan River Basin, one of the major tributaries of the Colorado River, for the period 1981-2010. The hydrologic model requires daily weather sequences at 66 locations in the basin. The enhanced daily weather generator sequences captured the distributional properties and spatial dependence of the climatological ESP, and also generated weather sequences consistent with conditioning on seasonal climate forecasts. Spring season ensemble forecast lead times from

  16. Prediction of Dynamic Stall Characteristics Using Advanced Non-Linear Panel Methods.

    DTIC Science & Technology

    1984-04-04

    three- dimensional method , incorporating the techniques that are being examined in the two-dimensional pilot code. r.• - t... . .. -..-. .°.- S °"°"° I...RD-Ai48 453 PREDICTION OF DYNAMIC STRLL CHARACTERISTICS USING 1/1 RDVRNCED NON-LINERR PAN..(U) ANALYTICAL METHODS INC REDMOND WA B MRSKEW ET AL. 84...1 2.0 micROCOPY RESOLUTION TEST CHART hAyl0#dM. @UAU M STAUIOAPOI A VOSR-TR 84.0 97 5 Analytical methods Report 8406 FINAL REPORT Tw. ’ PREDICITON OF

  17. Usefulness of human epididymis protein 4 in predicting cytoreductive surgical outcomes for advanced ovarian tubal and peritoneal carcinoma

    PubMed Central

    Tang, Zhijian; Chang, Xiaohong; Ye, Xue; Li, Yi; Cheng, Hongyan

    2015-01-01

    Objective Human epididymis protein 4 (HE4) is a promising biomarker of epithelial ovarian cancer (EOC). But its role in assessing the primary optimal debulking (OD) of EOC remains unknown. The purpose of this study is to elucidate the ability of preoperative HE4 in predicting the primary cytoreductive outcomes in advanced EOC, tubal or peritoneal carcinoma. Methods We reviewed the records of 90 patients with advanced ovarian, tubal or peritoneal carcinoma who underwent primary cytoreduction at the Department of Obstetrics and Gynecology of Peking University People’s Hospital between November 2005 and October 2010. Preoperative serum HE4 and CA125 levels were detected with EIA kit. A receiver operating characteristic (ROC) curve was used to determine the most useful HE4 cut-off value. Logistic regression analysis was performed to identify significant preoperative clinical characteristics to predict optimal primary cytoreduction. Results OD was achieved in 47.7% (43/48) of patients. The median preoperative HE4 level for patients with OD vs. suboptimal debulking was 423 and 820 pmol/L, respectively (P<0.001). The areas under the ROC curve for HE4 and CA125 were 0.716 and 0.599, respectively (P=0.080). The most useful HE4 cut-off value was 473 pmol/L. Suboptimal cytoreduction was obtained in 66.7% (38/57) of cases with HE4 ≥473 pmol/L compared with only 27.3% (9/33) of cases with HE4 <473 pmol/L. At this threshold, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for diagnosing suboptimal debulking were 81%, 56%, 67%, and 73%, respectively. Logistic regression analysis showed that the patients with HE4 ≥473 pmol/L were less likely to achieve OD (odds ratio =5.044, P=0.002). Conclusions Preoperative serum HE4 may be helpful to predict whether optimal cytoreductive surgery could be obtained or whether extended cytoreduction would be needed by an interdisciplinary team. PMID:26157328

  18. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer.

    PubMed

    Caramés, Cristina; Cristobal, Ion; Moreno, Víctor; Marín, Juan P; González-Alonso, Paula; Torrejón, Blanca; Minguez, Pablo; Leon, Ana; Martín, José I; Hernández, Roberto; Pedregal, Manuel; Martín, María J; Cortés, Delia; García-Olmo, Damian; Fernández, María J; Rojo, Federico; García-Foncillas, Jesús

    2016-06-03

    Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients.

  19. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer

    PubMed Central

    Caramés, Cristina; Cristobal, Ion; Moreno, Víctor; Marín, Juan P.; González-Alonso, Paula; Torrejón, Blanca; Minguez, Pablo; Leon, Ana; Martín, José I.; Hernández, Roberto; Pedregal, Manuel; Martín, María J.; Cortés, Delia; García-Olmo, Damian; Fernández, María J.; Rojo, Federico; García-Foncillas, Jesús

    2016-01-01

    Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision has emerged as the standard treatment for locally advanced rectal cancer (LARC) patients. However, many cases do not respond to neoadjuvant CRT, suffering unnecessary toxicities and surgery delays. Thus, identification of predictive biomarkers for neoadjuvant CRT is a current clinical need. In the present study, microRNA-31 expression was measured in formalin-fixed paraffin-embedded (FFPE) biopsies from 78 patients diagnosed with LARC who were treated with neoadjuvant CRT. Then, the obtained results were correlated with clinical and pathological characteristics and outcome. High microRNA-31 (miR-31) levels were found overexpressed in 34.2% of cases. Its overexpression significantly predicted poor pathological response (p = 0.018) and worse overall survival (OS) (p = 0.008). The odds ratio for no pathological response among patients with miR-31 overexpression was 0.18 (Confidence Interval = 0.06 to 0.57; p = 0.003). Multivariate analysis corroborated the clinical impact of miR-31 in determining pathological response to neoadjuvant CRT as well as OS. Altogether, miR-31 quantification emerges as a novel valuable clinical tool to predict both pathological response and outcome in LARC patients. PMID:27271609

  20. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.

    PubMed

    Datla, Naresh V; Konh, Bardia; Honarvar, Mohammad; Podder, Tarun K; Dicker, Adam P; Yu, Yan; Hutapea, Parsaoran

    2014-03-01

    Active needles are recently being developed to improve steerability and placement accuracy for various medical applications. These active needles can bend during insertion by actuators attached to their bodies. The bending of active needles enables them to be steered away from the critical organs on the way to target and accurately reach target locations previously unachievable with conventional rigid needles. These active needles combined with an asymmetric bevel-tip can further improve their steerability. To optimize the design and to develop accurate path planning and control algorithms, there is a need to develop a tissue-needle interaction model. This work presents an energy-based model that predicts needle deflection of active bevel-tipped needles when inserted into the tissue. This current model was based on an existing energy-based model for bevel-tipped needles, to which work of actuation was included in calculating the system energy. The developed model was validated with needle insertion experiments with a phantom material. The model predicts needle deflection reasonably for higher diameter needles (11.6% error), whereas largest error was observed for the smallest needle diameter (24.7% error).

  1. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0

  2. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    NASA Astrophysics Data System (ADS)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  3. Air pollution radiative and microphysical impacts on rainfall

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.

    2008-12-01

    Aerosols affect rainfall in various ways: The microphysical effects slow the conversion of cloud drop to hydrometeors. In shallow clouds it means suppression of precipitation. In deep clouds with warm base the delay of precipitation to heights where freezing can occur this leads to invigoration of the clouds due to the added latent heat release of freezing. When the aerosol load becomes heavy the radiative effects of suppressing surface heating can decrease the convection. In addition, delaying the onset of precipitation to great heights leads to greater evaporation of smaller precipitation efficiency due to more evaporation of cloud water and hydrometeors. An example of the impacts of heavy air pollution is available for China. Time series of rainfall, thunderstorms, temperatures, winds and aerosols for the period of 1953-2005 have been analyzed at the Xian valley and the nearby Mount Hua in central China, for assessing the impact of the increasing air pollution thunderstorms on convective precipitation. Adding aerosols to pristine air initially increases convective rainfall. However, aerosol amounts have been shown to be sufficiently high so that added aerosols suppress convection and precipitation, by both radiative and microphysical effects, even at the starting of the analysis period at the 1950's. It was found that the aerosols negative radiative forcing stabilized the lowest troposphere by about 1°C. The stabilization resulted in less vertical exchanges of air, which caused reduction in the lowland surface winds and increase in the mountain top wind speeds. The decreased instability caused a decrease in the frequency of the thunderstorm normalized by rainfall amount in the lowland due to the thick aerosol layer above, but not at the mountaintop, above which the aerosol layer was much thinner. The indicated decreasing trend of mountain precipitation was associated with a similar size decreasing trend in thunderstorm frequency. This decrease was contributed

  4. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal System

    SciTech Connect

    Gutierrez, Marte

    2016-12-31

    The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  5. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  6. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using omic technologies

    PubMed Central

    Carey, Colleen; Purohit, Sharad; She, Jin-Xiong

    2010-01-01

    Importance of the field Biomarkers are essential for the identification of high risk children as well as monitoring of prevention outcomes for type 1 diabetes (T1D). Areas covered in this review This review discusses progress, opportunities and challenges in biomarker discovery and validation using high throughput genomic, transcriptomic and proteomic technologies. The authors also suggest potential solutions to deal with the current challenges. What the reader will gain Readers will gain an overview of the current status on T1D biomarkers, an integrated review of three omic technologies, their applications and limitations for biomarker discovery and validation, and a critical discussion of the major issues encountered in biomarker development. Take home message Better biomarkers are still urgently needed for T1D prediction and prevention. The high throughput omic technologies offer great opportunities but also face significant challenges that have to be solved before their potential for biomarker development is fully realized. PMID:20885991

  7. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  8. Predictive biomarkers for response to therapy in advanced colorectal/rectal adenocarcinoma.

    PubMed

    Kapur, Payal

    2012-01-01

    Over the past couple of decades, with discovery of novel targeted therapies, and expansion of our understanding of the molecular biology of rectal cancer, there has been an emergence of a wide variety of therapeutic options designed to facilitate a personalized approach for the treatment of this malignancy. A plethora of new prognostic and predictive single genes and proteins are being discovered that may reflect susceptibility and/or resistance to therapy. Pathologic complete response rates occur in 10-16% of patients and have been shown to correlate with both disease-free and overall survival. However, the response to neoadjuvant therapy remains variable and unpredictable. In this review, some of these novel markers are discussed for their potential use as pharmacogenetic predictors for specific therapy, drug toxicity, and disease outcome.

  9. Aerosol microphysics modules in the framework of the ECHAM5 climate model - intercomparison under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Hommel, R.; Kazil, J.; Niemeier, U.; Partanen, A.-I.; Feichter, J.; Timmreck, C.

    2009-03-01

    In this manuscript, we present an intercomparison of three different aerosol microphysics modules that are implemented in the climate model ECHAM5. The comparison was done between the modal aerosol microphysics module M7, which is currently the default aerosol microphysical core in ECHAM5, and two sectional aerosol microphysics modules SALSA, and SAM2. A detailed aerosol microphycical model MAIA was used as a reference model to evaluate the results of the aerosol microphysics modules with respect to sulphate aerosol. The ability of the modules to describe the development of the aerosol size distribution was tested in a zero dimensional framework. We evaluated the strengths and weaknesses of different approaches under different types of stratospheric conditions. Also, we present an improved method for the time integration in M7 and study how the setup of the modal approach affects the evolution of the aerosol size distribution. Intercomparison simulations were carried out with varying SO2 concentrations from background conditions to extreme values arising from stratospheric injections of large volcanic eruptions. Under background conditions, all microphysics modules were in good agreement describing the shape of the size distribution but the scatter between the model results increased with increasing SO2 concentrations. In particular for the volcanic case the module setups have to be redefined to be applied in global model simulations capturing respective sulphate particle formation events. Summarized, this intercomparison serves as a review on the different aerosol microphysics modules which are currently available for the climate model ECHAM5.

  10. TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms.

    NASA Astrophysics Data System (ADS)

    Kingsmill, David E.; Yuter, Sandra E.; Heymsfield, Andrew J.; Hobbs, Peter V.; Korolev, Alexei V.; L, Stith Jeffrey; Bansemer, Aaron; Haggerty, Julie A.; Rangno, Arthur L.

    2004-11-01

    A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the Tropical Rainfall Measuring Mission (TRMM) program is described. These “common microphysics products” (CMPs) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived by using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMPs are organized into an American Standard Code for Information Interchange (ASCII) structure to allow easy access to the data for those less familiar with microphysical data processing and without the tools to accomplish it. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, nonproprietary software package for microphysics data processing—initiatives that would likely broaden community access to, and use of, microphysics datasets.


  11. TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Kingsmill, David E.; Yuter, Sandra E.; Hobbs, Peter V.; Rangno, Arthur L.; Heymsfield, Andrew J.; Stith, Jeffrey L.; Bansemer, Aaron; Haggerty, Julie A.; Korolev, Alexei V.

    2004-01-01

    A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the TRMM program is described. These Common Microphysics Products (CMP's) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMP's are organized into an ASCII structure to allow easy access to the data for those less familiar with and without the tools to accomplish microphysical data processing. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, non-proprietary software package for microphysics data processing, initiatives that would likely broaden community access to and use of microphysics datasets.

  12. On the microphysical state of the Martian seasonal caps

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz

    1993-01-01

    An analysis of the microphysical processes involved in pressureless sintering leads to the view that CO2 in the Martian seasonal polar caps can metamorphose into an annealed polycrystalline layer, if freshly condensed grains are smaller than 10 microns. Such large-area/low-porosity CO2 deposits may be associated with the mm-to-cm-scaled path lengths entailed by the explanation of several weak absorption features in the 1.5- and 2.3-micron spectral regions. Such an annealed layer would become transparent enough during the later stages of spring sublimation to establish a basis for the dichotomy between the north and south caps' albedos in the underlying substrate.

  13. In-Situ Microphysics from the MPACE IOP

    DOE Data Explorer

    McFarquhar, Greg

    2008-01-15

    Best estimates of the size distributions of supercooled water droplets and ice crystals for mixed-phase clouds measured during M-PACE for spiral ascents/descents over Barrow and Oliktok Point, and for ramped ascents/descents between Barrow and Oliktok Point. Our best estimates of the bulk microphysical properties such as ice water content (IWC), liquid water content (LWC), effective radius of ice crystals defined following Fu (1996) (rei), effective radius of supercooled water droplets (rew), total ice crystal number concentration (Ni), total water droplet number concentration (Nw) and total condensed water content (CWC), are also provided. The quantities were derived from the FSSP, 1DC, 2DC, HVPS and the CVI. Note HVPS data are only available after 10 Oct 2004 and some procedures have been developed to account for the missing data.

  14. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  15. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    PubMed

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-07

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  16. Pre-adjuvant chemotherapy leukocyte count may predict the outcome for advanced gastric cancer after radical resection.

    PubMed

    Pei, Dong; Zhu, Fang; Chen, Xiaofeng; Qian, Jing; He, Shaohua; Qian, Yingying; Shen, Hua; Liu, Yiqian; Xu, Jiali; Shu, Yongqian

    2014-03-01

    Gastric cancer (GC) has a high morbidity worldwide each year especially in China and advanced GC is well known with poor prognosis, for which surgical resection combine adjuvant chemotherapy is the optimal choice for therapy. Leukocyte is an important index during the treatment for its influence on drugs' dosage and tolerance. Therefore, peripheral blood leukocyte and its subsets during adjuvant chemotherapy may have great clinical value for predicting prognostic. In this retrospective study, we showed the distribution of white blood cell and its subsets in the baseline period before adjuvant chemotherapy in 399 patients who underwent radical resection for advanced GC from January 1, 2008 to August 31, 2012. We investigated the relationship between leukocyte count and overall survival (OS) as well as disease-free survival (DFS). In these patients, females were more likely to have less white blood cells after operation (P=0.016). Patients with pre-chemotherapy leukocyte count less than 4×10(9)/L got worse DFS (P=0.028) and OS (P=0.016). In multivariate analysis, tumor size ≥ 6cm (P=0.033), TNM stage IV (P=0.024), vascular or nerval invasion (P=0.005) and leukocyte count less than 4.0×10(9)/L (P=0.019) was associated with poor DFS. TNM stage IV (P=0.008), vascular or nerval invasion (P=0.001) and lower leukocyte count (P=0.045) were independent risk factors for poor OS. Taken together, our findings suggest that pre-adjuvant chemotherapy peripheral blood leukocyte count correlates with clinical outcome of patients with advanced GC after radical resection.

  17. HPV Genotypes Predict Survival Benefits From Concurrent Chemotherapy and Radiation Therapy in Advanced Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Wang, Chun-Chieh; Lai, Chyong-Huey; Huang, Yi-Ting; Chao, Angel; Chou, Hung-Hsueh; Hong, Ji-Hong

    2012-11-15

    Purpose: To study the prognostic value of human papillomavirus (HPV) genotypes in patients with advanced cervical cancer treated with radiation therapy (RT) alone or concurrent chemoradiation therapy (CCRT). Methods and Materials: Between August 1993 and May 2000, 327 patients with advanced squamous cell carcinoma of the cervix (International Federation of Gynecology and Obstetrics stage III/IVA or stage IIB with positive lymph nodes) were eligible for this study. HPV genotypes were determined using the Easychip Registered-Sign HPV genechip. Outcomes were analyzed using Kaplan-Meier survival analysis and the Cox proportional hazards model. Results: We detected 22 HPV genotypes in 323 (98.8%) patients. The leading 4 types were HPV16, 58, 18, and 33. The 5-year overall and disease-specific survival estimates for the entire cohort were 41.9% and 51.4%, respectively. CCRT improved the 5-year disease-specific survival by an absolute 9.8%, but this was not statistically significant (P=.089). There was a significant improvement in disease-specific survival in the CCRT group for HPV18-positive (60.9% vs 30.4%, P=.019) and HPV58-positive (69.3% vs 48.9%, P=.026) patients compared with the RT alone group. In contrast, the differences in survival with CCRT compared with RT alone in the HPV16-positive and HPV-33 positive subgroups were not statistically significant (P=.86 and P=.53, respectively). An improved disease-specific survival was observed for CCRT treated patients infected with both HPV16 and HPV18, but these differenced also were not statistically significant. Conclusions: The HPV genotype may be a useful predictive factor for the effect of CCRT in patients with advanced squamous cell carcinoma of the cervix. Verifying these results in prospective trials could have an impact on tailoring future treatment based on HPV genotype.

  18. Advanced Procedures for Long-Term Creep Data Prediction for 2.25 Chromium Steels

    NASA Astrophysics Data System (ADS)

    Whittaker, Mark T.; Wilshire, Brian

    2013-01-01

    A critical review of recent creep studies concluded that traditional approaches such as steady-state behavior, power law equations, and the view that diffusional creep mechanisms are dominant at low stresses should be seriously reconsidered. Specifically, creep strain rate against time curves show that a decaying primary rate leads into an accelerating tertiary stage, giving a minimum rather than a secondary period. Conventional steady-state mechanisms should therefore be abandoned in favor of an understanding of the processes governing strain accumulation and the damage phenomena causing tertiary creep and fracture. Similarly, creep always takes place by dislocation processes, with no change to diffusional creep mechanisms with decreasing stress, negating the concept of deformation mechanism maps. Alternative descriptions are then provided by normalizing the applied stress through the ultimate tensile stress and yield stress at the creep temperature. In this way, the resulting Wilshire equations allow accurate prediction of 100,00 hours of creep data using only property values from tests lasting 5000 hours for a series of 2.25 chromium steels, namely grades 22, 23, and 24.

  19. Predictive transport simulations of real-time profile control in JET advanced tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Tala, T.; Laborde, L.; Mazon, D.; Moreau, D.; Corrigan, G.; Crisanti, F.; Garbet, X.; Heading, D.; Joffrin, E.; Litaudon, X.; Parail, V.; Salmi, A.; EFDA-JET workprogramme, contributors to the

    2005-09-01

    Predictive, time-dependent transport simulations with a semi-empirical plasma model have been used in closed-loop simulations to control the q-profile and the strength and location of the internal transport barrier (ITB). Five transport equations (Te, Ti, q, ne, vΦ) are solved, and the power levels of lower hybrid current drive, NBI and ICRH are calculated in a feedback loop determined by the feedback controller matrix. The real-time control (RTC) technique and algorithms used in the transport simulations are identical to those implemented and used in JET experiments (Laborde L. et al 2005 Plasma Phys. Control. Fusion 47 155 and Moreau D. et al 2003 Nucl. Fusion 43 870). The closed-loop simulations with RTC demonstrate that varieties of q-profiles and pressure profiles in the ITB can be achieved and controlled simultaneously. The simulations also showed that with the same RTC technique as used in JET experiments, it is possible to sustain the q-profiles and pressure profiles close to their set-point profiles for longer than the current diffusion time. In addition, the importance of being able to handle the multiple time scales to control the location and strength of the ITB is pointed out. Several future improvements and perspectives of the RTC scheme are presented.

  20. Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation

    NASA Astrophysics Data System (ADS)

    Painemal, David; Kato, Seiji; Minnis, Patrick

    2014-10-01

    Solar radiation absorption by biomass burning aerosols has a strong warming effect over the southeast Atlantic. Interactions between the overlying smoke aerosols and low-level cloud microphysics and the subsequent albedo perturbation are, however, generally ignored in biomass burning radiative assessments. In this study, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are combined with Aqua satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer-EOS (AMSR-E), and Clouds and the Earth's Radiant Energy System (CERES) to assess the effect of variations in the boundary layer height and the separation distance between the cloud and aerosol layers on the cloud microphysics. The merged data analyzed at a daily temporal resolution suggest that overlying smoke aerosols modify cloud properties by decreasing cloud droplet size despite an increase in the cloud liquid water as boundary layer deepens, north of 5°S. These changes are controlled by the proximity of the aerosol layer to the cloud top rather than increases in the column aerosol load. The correlations are unlikely driven by meteorological factors, as three predictors of cloud variability, lower tropospheric stability, surface winds, and mixing ratio suggest that cloud effective radius, cloud top height, and liquid water path should correlate positively. Because cloud effective radius anticorrelates with cloud liquid water over the region with large microphysical changes—north of 5°S—the overall radiative consequence at the top of the atmosphere is a strong albedo susceptibility, equivalent to a 3% albedo increase due to a 10% decrease in cloud effective radius. This albedo enhancement partially offsets the aerosol solar absorption. Our analysis emphasizes the importance of accounting for the indirect effect of smoke aerosols in the cloud microphysics when estimating the radiative impact of the biomass burning at the

  1. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients

    PubMed Central

    Duchnowska, Renata; Wysocki, Piotr J.; Korski, Konstanty; Czartoryska-Arłukowicz, Bogumiła; Niwińska, Anna; Orlikowska, Marlena; Radecka, Barbara; Studziński, Maciej; Demlova, Regina; Ziółkowska, Barbara; Merdalska, Monika; Hajac, Łukasz; Myśliwiec, Paulina; Zuziak, Dorota; Dębska-Szmich, Sylwia; Lang, Istvan; Foszczyńska-Kłoda, Małgorzata; Karczmarek-Borowska, Bożenna; Żawrocki, Anton; Kowalczyk, Anna; Biernat, Wojciech; Jassem, Jacek

    2016-01-01

    Molecular mechanisms of lapatinib resistance in breast cancer are not well understood. The aim of this study was to correlate expression of selected proteins involved in ErbB family signaling pathways with clinical efficacy of lapatinib. Study group included 270 HER2-positive advanced breast cancer patients treated with lapatinib and capecitabine. Immunohistochemical expression of phosphorylated adenosine monophosphate-activated protein (p-AMPK), mitogen-activated protein kinase (p-MAPK), phospho (p)-p70S6K, cyclin E, phosphatase and tensin homolog were analyzed in primary breast cancer samples. The best discriminative value for progression-free survival (PFS) was established for each biomarker and subjected to multivariate analysis. At least one biomarker was determined in 199 patients. Expression of p-p70S6K was independently associated with longer (HR 0.45; 95% CI: 0.25–0.81; p = 0.009), and cyclin E with shorter PFS (HR 1.83; 95% CI: 1.06–3.14; p = 0.029). Expression of p-MAPK (HR 1.61; 95% CI 1.13–2.29; p = 0.009) and cyclin E (HR 2.99; 95% CI: 1.29–6.94; p = 0.011) was correlated with shorter, and expression of estrogen receptor (HR 0.65; 95% CI 0.43–0.98; p = 0.041) with longer overall survival. Expression of p-AMPK negatively impacted response to treatment (HR 3.31; 95% CI 1.48–7.44; p = 0.004) and disease control (HR 3.07; 95% CI 1.25–7.58; p = 0.015). In conclusion: the efficacy of lapatinib seems to be associated with the activity of downstream signaling pathways – AMPK/mTOR and Ras/Raf/MAPK. Further research is warranted to assess the clinical utility of these data and to determine a potential role of combining lapatinib with MAPK pathway inhibitors. PMID:26623720

  2. Evaluation of Mixed-Phase Microphysics Within Winter Storms Using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Nesbitt, Steven

    2014-01-01

    Snow prediction within models is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Cold-season Precipitation Experiment (GCPEx) experiment over southern Ontario, as well as a few years (12 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. The GCPex presentation will focus on verification using aircraft spirals through warm frontal snow band event on 18 February 2012. All the BMPs realistically simulated the structure of the band and the vertical distribution of snow/ice aloft, except the SBU-YLIN overpredicted slightly and Thompson (THOM) underpredicted somewhat. The Morrison (MORR) scheme produced the best slope size distribution for snow, while the Stony Brook (SBU) underpredicted and the THOM slightly overpredicted. Those schemes that have the slope intercept a function of temperature (SBU and WSM6) tended to perform better for that parameter than others, especially the fixed intercept in Goddard. Overall, the spread among BMPs was smaller than in other studies, likely because there was limited riming with the band. For the 15 cases at SBNY, which include moderate and heavy riming events, the non-spherical snow assumption (THOM and SBU-YLIN) simulated a more realistic

  3. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  4. Predictive value of advanced glycation end products for the development of post-infarction heart failure: a preliminary report

    PubMed Central

    2012-01-01

    Background Since post-infarction heart failure (HF) determines a great morbidity and mortality, and given the physiopathology implications of advanced glycation end products (AGE) in the genesis of myocardial dysfunction, it was intended to analyze the prognostic value of these molecules in order to predict post-infarction HF development. Methods A prospective clinical study in patients after first acute coronary syndrome was conducted. The follow-up period was consisted in 1 year. In 194 patients consecutively admitted in the coronary unit for myocardial infarct fluorescent AGE levels were measured. The association between glycaemic parameters and the development of post-infarction HF were analyzed in those patients. Finally, we identified the variables with independent predictor value by performing a multivariate analysis of Hazard ratio for Cox regression. Results Eleven out of 194 patients (5.6%) developed HF during follow-up (median: 1.0 years [0.8 - 1.5 years]). Even though basal glucose, fructosamine and glycated haemoglobin were significant predictive factors in the univariate analysis, after being adjusted by confounding variables and AGE they lost their statistical signification. Only AGE (Hazard Ratio 1.016, IC 95%: 1.006-1.026; p<0,001), together with NT-proBNP and the infarct extension were predictors for post-infarction HF development, where AGE levels over the median value 5-fold increased the risk of HF development during follow-up. Conclusions AGE are an independent marker of post-infarction HF development risk. PMID:22909322

  5. Neoadjuvant chemotherapy in women with large and locally advanced breast cancer: chemoresistance and prediction of response to drug therapy.

    PubMed

    Chuthapisith, S; Eremin, J M; El-Sheemy, M; Eremin, O

    2006-08-01

    Patients with large and locally advanced breast cancer (LLABC) present with a therapeutic challenge and undergo multimodality treatment. Many such patients receive neoadjuvant chemotherapy (NAC) prior to surgery. However, a number of these patients do not respond well to NAC and only a percentage (usually less than 30%) obtains a complete or optimal response. A range of mechanisms are believed to be involved in this chemoresistance, including ATP binding cassette (ABC) transporter overexpression, dysregulation of apoptosis and possibly increased numbers of cancer stem cells. The chemoresistant processes may be due to more than one mechanism. The ability to predict a response to NAC would be beneficial, targeting expensive and toxic drug treatment to those likely to respond and providing a therapeutic strategy for further post-operative chemotherapy. Currently, many biomarkers have been studied with a view to establishing a predictor of response. However, no single biomarker appears to be effective. Genomics is a novel biotechnological process which is being used to predict response to drug therapy; this work is currently at an early stage of development

  6. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  7. Evaluation of WRF microphysics and cumulus parameterization schemes in simulating a heavy rainfall event over Yangtze River delta

    NASA Astrophysics Data System (ADS)

    Kan, Yu; Liu, Chaoshun; Liu, Yanan; Zhou, Cong

    2015-09-01

    The Weather Research and Forecast Model (WRF) version 3.5 has been used in this study to simulate a heavy rainfall event during the Meiyu season that occurred between 1 and 2 July 2014 over the Yangtze River valley (YRV) in China. The WRF model is driven by the National Centers for Environmental Predictions (NCEP) Final (FNL) global tropospheric analysis data, and eight WRF nested experiments using four different microphysics (MP) schemes and two cumulus parameterizations (CP) are conducted to evaluate the effects of these microphysics and cumulus schemes on heavy rainfall predictions over YRV region. The four MPs selected in this study are Lin et al., WRF Single-Moment 3-class scheme (WSM3), WRF Single-Moment 5-class scheme (WSM5) and WRF Single-Moment 6-class scheme (WSM6), and the two CPs are Kain-Fristch (KF) and Betts-Miller-Janjic (BMJ) schemes. Sensitivity studies showed that all MPs coupling with KF and BMJ CP schemes can well capture the major rain belt from the northeast to southwest with three rainfall centers, but largely overestimate the rainfall near the border between Anhui and Hubei provinces along with the Yellow Sea shore, which produce an opposite trend compared to the observations. Large discrepancies are also presented in WRF simulations of heavy rainfall centers regarding their locations and magnitudes. All MPs coupling with KF CP scheme produced the rainfall areas shifting towards east compared to the observations, while all MPs with BMJ CP scheme tend to better predict the rainfall patterns with slightly more fake precipitation centers. Among all the experiments, the BMJ cumulus scheme has superiority in simulating the Meiyu rainfall over the KF scheme, and the WSM5-BMJ combination shows the best predictive skills.

  8. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  9. Fitting Microphysical Observations to a Numerical Model Through AN Optimal Control Theory Technique

    NASA Astrophysics Data System (ADS)

    Verlinde, Johannes

    Rapid advances in the quality and quantity of atmospheric observations have placed a demand for the development of techniques to assimilate these data sources into numerical forecasting models. Four-dimensional variational assimilation is a promising technique that has been applied to atmospheric and oceanic dynamical models, and also to the retrieval of three-dimensional wind fields from single Doppler radar observations. This study investigates the feasibility of using four-dimensional variational assimilation for a complex discontinuous numerical model. Three test models were developed, a positive definite advection scheme, a one -dimensional liquid physics kinematic microphysical model with a positive definite advection scheme, and a two-dimensional liquid physics kinematic microphysical model. These models were used in identical twin experiments, with observations taken intermittently. Small random errors were introduced into the observations. The retrieval runs were initialized with a large perturbation of the observation run initial conditions. All the models were able to retrieve the original initial conditions to a satisfactory degree when observations of all the model prognostic variables were used. Greater overdetermination of the degrees of freedom (the initial condition being retrieved) resulted in greater improvement of the errors in the observations of the initial conditions, but at a rapid increase in computational cost. Experiments where only some of the prognostic variables were observed also improved the initial conditions, but at a greater cost. To substantially improve the first guess of the field not observed, some spot observations are needed. The proper scaling of the variables was found to be important for the rate of convergence. This study suggests that scaling factors related to the error variance of the observations give good convergence rates. To show how this technique can be used when observations are general functions of the

  10. Anvil Glaciation in a Deep Cumulus Updraught over Florida Simulated with the Explicit Microphysics Model. I: Impact of Various Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal; Rissman, Tracey A.; Seinfeld, John H.; Vanreken, Tim; Varutbangkul, Varuntida; Wilson, James C.

    2005-01-01

    Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.

  11. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  12. Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics

    NASA Astrophysics Data System (ADS)

    Senf, Fabian; Deneke, Hartwig

    2017-01-01

    Synthetic brightness temperatures of five infrared Meteosat SEVIRI channels are investigated for their sensitivities on cirrus radiative properties. The operational SynSat scheme of the regional German weather prediction model COSMO-DE is contrasted to a revised scheme with a special emphasis on consistency between the model-internal ice-microphysics and infrared radiation in convective situations. In particular, the formulation of generalized effective diameters of ice, snow and graupel as well as subgrid-scale cloud cover has been improved. Based on the applied modifications, we first show that changed assumptions on the cirrus radiative properties can lead to 10 K warmer brightness temperatures. Second, we demonstrate that prescribed relative changes of 20% in cloud cover and particle size induce maximum changes of around 4 to 5 K. The maximum sensitivity appears for semi-transparent cirrus having brightness temperatures around 240 and 260 K and total frozen water path around 30 gm- 2 for viewing geometries over Central Europe. We further consider the known COSMO-DE cold bias to discuss the problem of inconsistencies in model-internal and external formulations of cloud microphysical and radiative properties. We demonstrate that between 35% and 70% of the cold bias can be attributed to the radiative representation of cirrus clouds. We additionally discuss the use of window-channel brightness temperature differences for evaluation of model microphysics and hypothesize that the amount of COSMO-DE ice is overestimated in convective situations.

  13. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Koshak, William J.; Peterson, Harold S.; Shultz, Elise; Matthee, Retha; Shultz, Christopher J.; Petersen, Walter A.; Bain, Lamont

    2013-01-01

    To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NO(x)) in thunderstorms, such as flash rate, type (intracloud (IC) vs. cloud-to-ground (CG)) and extent.

  14. Aerosol microphysics modules in the framework of the ECHAM5 climate model - intercomparison under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Hommel, R.; Kazil, J.; Niemeier, U.; Partanen, A.-I.; Feichter, J.; Timmreck, C.

    2009-07-01

    In this manuscript, we present an intercomparison of three different aerosol microphysics modules that are implemented in the climate model ECHAM5. The comparison was done between the modal aerosol microphysics module M7, which is currently the default aerosol microphysical core in ECHAM5, and two sectional aerosol microphysics modules SALSA, and SAM2. The detailed aerosol microphysical model MAIA was used as a reference to evaluate the results of the aerosol microphysics modules with respect to sulphate aerosol. The ability of the modules to describe the development of the aerosol size distribution was tested in a zero dimensional framework. We evaluated the strengths and weaknesses of different approaches under different types of stratospheric conditions. Also, we present an improved method for the time integration in M7 and study how the setup of the modal aerosol modules affects the evolution of the aerosol size distribution. Intercomparison simulations were carried out with varying SO2 concentrations from background conditions to extreme values arising from stratospheric injections by large volcanic eruptions. Under background conditions, all microphysics modules were in good agreement describing the shape of the aerosol size distribution, but the scatter between the model results increased with increasing SO2 concentrations. In particular in the volcanic case the setups of the aerosol modules have to be adapted in order to dependably capture the evolution of the aerosol size distribution, and to perform in global model simulations. In summary, this intercomparison serves as a review of the different aerosol microphysics modules which are currently available for the climate model ECHAM5.

  15. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  16. A microphysical model explains rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1-

  17. Evaluation of plasma microRNA levels to predict insensitivity of patients with advanced lung adenocarcinomas to pemetrexed and platinum.

    PubMed

    Zhu, Jinghua; Qi, Yuhua; Wu, Jianzhong; Shi, Meiqi; Feng, Jifeng; Chen, Longbang

    2016-12-01

    Pemetrexed combined with platinum is a first-line therapy used to treat patients with advanced non-small cell lung cancer (NSCLC) that exhibit negative or unknown epidermal growth factor receptor (EGFR) mutational status or anaplastic lymphoma kinase (ALK) rearrangements. Lung adenocarcinoma (LAC) is the primary type of NSCLC. In order to prevent overtreatment, it is necessary to identify patients with LAC who may not benefit from certain chemotherapies. Patients recruited in the present study (n=129) were diagnosed with advanced LAC and received first-line pemetrexed and platinum-based chemotherapy. A microRNA (miR) microarray was used to screen the plasma miR expression profiles in a screening set of eight patients prior to and following treatment. Specifically, plasma miR-25, miR-21, miR-27b, miR-326, miR-483-5p and miR-920 were selected for reverse transcription-quantitative polymerase chain reaction analysis in a training set (n=44) prior to treatment. The screening and training set patients were all non-smokers with no prior history of serious or chronic disease. The ∆∆Cq values of these miRs were compared between the group that showed benefit from pemetrexed and platinum treatment and the group that did not. Consequently, the ∆∆Cq values of miR-25, miR-21, miR-27b and miR-326 were further determined in a validation set (n=77). The results of the present study demonstrate that plasma expression levels of miR-25, miR-21, miR-27b and miR-326, in the training and validation sets prior to treatment, were significantly different between the benefit and non-benefit groups (P≤0.001). The expression of miR-25, miR-21, miR-27b and miR-326 was upregulated in the non-benefit group and this elevation was positively correlated with decreased progression-free survival (PFS; P≤0.001). In addition, the predictive power of each miR was evaluated through receiver operating characteristic curves, in which miR-25 exhibited the highest degree of accuracy (area under

  18. Outcome prediction of advanced mantle cell lymphoma by international prognostic index versus different mantle cell lymphoma indexes: one institution study.

    PubMed

    Todorovic, Milena; Balint, Bela; Andjelic, Bosko; Stanisavljevic, Dejana; Kurtovic, Nada Kraguljac; Radisavljevic, Ziv; Mihaljevic, Biljana

    2012-09-01

    The aim of this study was to evaluate the prognostic significance of international prognostic index (IPI), mantle cell lymphoma IPI (MIPI), simplified MIPI (sMIPI), and MIPI biological (MIPIb), as well as their correlation with immunophenotype, clinical characteristics, and overall survival (OS), in a selected group of 54 patients with advanced-stage mantle cell lymphoma (MCL), treated uniformly with CHOP. Seventeen patients had IV clinical stage (CS), while other 37 had leukemic phase at presentation. Diffuse type of marrow infiltration was verified in 68.5% and nodular in remainder patients. Extranodal localization (25.9%) included bowel (20.4%), pleural effusion, sinus, and palpebral infiltration. All of analyzed patients expressed typical MCL immunophenotypic profile: CD19(+)CD20(+)CD22(+)CD5(+)Cyclin-D1(+)FMC7(+)CD79b(+)smIg(+)CD38(+/-)CD23(-)CD10(-). Median OS of the whole group was 23 months, without significant differences between IV CS and leukemic phase patients. Thirty-two patients (59.3%) responded to initial treatment, 9 (16.7%) with complete and 23 (42.6%) with partial remission. Negative prognostic influence on OS had high IPI (P < 0.01), high sMIPI (P < 0.001), MIPI (P < 0.01), MIPIb (P < 0.01), extranodal localization (P < 0.01), and diffuse marrow infiltration (P < 0.01). Testing between randomly selected groups showed that patients with lower proportion of CD5(+) cells (<80%) correlated with cytological blastoid variant and had shorter survival comparing with the group with higher proportion of CD5(+) cells (>80%) (P < 0.01). Using univariate Cox regression, we proved that IPI, sMIPI, MIPI, and MIPIb had an independent predictive importance (P < 0.01) for OS in uniformly treated advanced MCL patients, although sMIPI prognostic significance was the highest (P < 0.001).

  19. Primary Tumor Necrosis Predicts Distant Control in Locally Advanced Soft-Tissue Sarcomas After Preoperative Concurrent Chemoradiotherapy

    SciTech Connect

    MacDermed, Dhara M.; Miller, Luke L.; Peabody, Terrance D.; Simon, Michael A.; Luu, Hue H.; Haydon, Rex C.; Montag, Anthony G.; Undevia, Samir D.

    2010-03-15

    Purpose: Various neoadjuvant approaches have been evaluated for the treatment of locally advanced soft-tissue sarcomas. This retrospective study describes a uniquely modified version of the Eilber regimen developed at the University of Chicago. Methods and Materials: We treated 34 patients (28 Stage III and 6 Stage IV) with locally advanced soft-tissue sarcomas of an extremity between 1995 and 2008. All patients received preoperative therapy including ifosfamide (2.5 g/m2 per day for 5 days) with concurrent radiation (28 Gy in 3.5-Gy daily fractions), sandwiched between various chemotherapy regimens. Postoperatively, 47% received further adjuvant chemotherapy. Results: Most tumors (94%) were Grade 3, and all were T2b, with a median size of 10.3 cm. Wide excision was performed in 29 patients (85%), and 5 required amputation. Of the resected tumor specimens, 50% exhibited high (>=90%) treatment-induced necrosis and 11.8% had a complete pathologic response. Surgical margins were negative in all patients. The 5-year survival rate was 42.3% for all patients and 45.2% for Stage III patients. For limb-preservation patients, the 5-year local control rate was 89.0% and reoperation was required for wound complications in 17.2%. The 5-year freedom-from-distant metastasis rate was 53.4% (Stage IV patients excluded), and freedom from distant metastasis was superior if treatment-induced tumor necrosis was 90% or greater (84.6% vs. 19.9%, p = 0.02). Conclusions: This well-tolerated concurrent chemoradiotherapy approach yields excellent rates of limb preservation and local control. The resulting treatment-induced necrosis rates are predictive of subsequent metastatic risk, and this information may provide an opportunity to guide postoperative systemic therapies.

  20. Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds

    NASA Astrophysics Data System (ADS)

    Gu, Yu

    2000-12-01

    A two-dimensional cirrus cloud model has been developed to investigate the interaction and feedback of radiation, ice microphysics, and turbulence-scale turbulence, and their influence on the evolution of cirrus clouds. The new features of the model include a detailed ice microphysical module for the prediction of ice crystal size distributions, a radiation scheme which interacts with the ice crystal size distribution via ice water content (IWC) and a mean effective ice crystal size, the effects of radiation on the diffusional growth of ice crystals, and a second-order closure for turbulence. Simulation results show that initial cloud formation occurs through ice nucleation associated with dynamic and thermodynamic forcings. Radiative processes enhance both the growth of ice crystals at the cloud top by radiative cooling and the sublimation of ice crystals in the lower region by radiative heating. In addition, the radiation effect on individual ice crystals through diffusional growth is shown to be significant. Turbulence begins to play a substantial role in cloud evolution during the maintenance and dissipation period of the cirrus cloud life cycle. The inclusion of turbulence tends to generate more intermediate-to-large ice crystals, especially in the middle and lower parts of the cloud. A three-dimensional (3D) radiative transfer model has also been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach for application to inhomogeneous media employing Cartesian coordinates. The extinction coefficient, single-scattering albedo, and asymmetry factor are parameterized in terms of the ice water content and mean effective ice crystal size. We employ the correlated k- distribution method for incorporation of gaseous absorption in multiple scattering atmospheres. Delta- function adjustment is used to account for the strong forward diffraction nature of the phase

  1. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

    NASA Astrophysics Data System (ADS)

    Reed Espinosa, W.; Remer, Lorraine A.; Dubovik, Oleg; Ziemba, Luke; Beyersdorf, Andreas; Orozco, Daniel; Schuster, Gregory; Lapyonok, Tatyana; Fuertes, David; Vanderlei Martins, J.

    2017-03-01

    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177°. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs.

  2. The effect of cloud microphysics on climate sensitivity. Progress report, July 15, 1990--July 14, 1992

    SciTech Connect

    Stamnes, K.

    1992-12-31

    Clouds play an important role in the climate system through radiative energy redistribution. The cloud radiative properties change if the cloud droplet size spectrum changes. This research shows that the climate is very sensitive to cloud water path and equivalent radius. To explore this issue, an accurate parameterization of cloud radiative properties for the purpose of climate modeling has been developed. A one-dimensional radiative convective model with a comprehensive radiative transfer scheme using the new parameterization of cloud radiative properties has also been developed to investigate the climate sensitivity to changes in cloud microphysics. By looking at clouds with different size distributions, we find that for clouds with the same cloud water amount and equivalent radius, the cloud radiative properties are essentially the same. Thus cloud radiative properties depend primarily on equivalent radius and are independent of the details of the size distribution. Our parameterization allows these two parameters to change independently. A sensitivity study has been performed, to consider cloud droplet size. First, we looked at cloud radiative forcing. The results show that the cloud radiative forcing is indeed very sensitive to the changes in cloud equivalent radius. Secondly, we have looked at the response of equilibrium temperature to changes in cloud equivalent radius. This sensitivity study suggests that in climate models, an interactive cloud parameterization is needed, in which cloud water amount and equivalent radius are predicted independently.

  3. Aerosol microphysical processes and properties in Canadian boreal forest fire plumes measured during BORTAS

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko; Allen, James; Coe, Hugh; Taylor, Jonathan; Duck, Thomas; Pierce, Jeffrey

    2013-04-01

    Biomass burning emissions contribute significantly to aerosol concentrations and clound condensation nuclei in many regions of the atmosphere. Plume-aerosol characteristics vary according to age, fuel type, and region. These differences are poorly represented in regional and global aerosol models, and they contribute to large uncertainties in predicted size distributions in biomass-burning-dominated regions. The Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) measurement campaign was designed to invesigate boreal biomass burning emissions over Atlantic Canada during July-August of 2011. Aged (2-3 days) biomass burning aerosols originating from western Ontario were measured by an SMPS and AMS on board the British Atmospheric Research Aircraft. We identify the presence of plumes using CO concentrations and acetonitrile enhancement ratios. In-plume aerosol size distributions were collected for six aged plume profiles. The size distributions show an accumulation-mode median diameter of ~240 nm. However, there are persistant nucleation and Aitken modes present in the profiles, even 2-3 days from the source. Without continuous nucleation and condensation (likely SOA production), these small modes would be lost by coagulation in less than 1 day. We use an aerosol microphysics plume model to estimate the mean nucleation and condensation rates necessary to maintain the small aerosols, and calculate how these processes enhance the total number of particles and cloud condensation nuclei in the aged plume.

  4. An observation of sea-spray microphysics by airborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.

    2014-05-01

    This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.

  5. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  6. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  7. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer.

    PubMed

    Sève, Pascal; Mackey, John R; Isaac, Sylvie; Trédan, Olivier; Souquet, Pierre Jean; Pérol, Maurice; Cass, Carol; Dumontet, Charles

    2005-09-01

    Resistance to gemcitabine is likely to be multifactorial and could involve a number of mechanisms involved in drug penetration, metabolism and targeting. In vitro studies of resistant human cell lines have confirmed that human equilibrative nucleoside transporter 1 (hENT1)-deficient cells display resistance to gemcitabine. Overexpression of certain nucleotidases, such as cN-II, has also been frequently shown in gemcitabine-resistant models. In this study, we applied immunohistochemical methods to assess the protein abundance of cN-II, hENT1, human concentrative nucleoside transporter 3 (hCNT3) and deoxycitidine kinase (dCK) in malignant cells in from 43 patients with treatment-naïve locally advanced or metastatic non-small cell lung cancer (NSCLC). All patients subsequently received gemcitabine-based chemotherapy. Response to chemotherapy, progression-free survival (PFS), and overall survival (OS) were correlated with abundance of these proteins. Among the 43 samples, only 7 (16%) expressed detectable hENT1, with a low percentage of positive cells, 18 expressed hCNT3 (42%), 36 (86%) expressed cN-II and 28 (66%) expressed dCK. In univariate analysis, only cN-II expression levels were correlated with overall survival. None of the parameters were correlated with freedom from progression survival nor with response. Patients with low levels of expression of cN-II (less than 40% positively stained cells) had worse overall survival than patients with higher levels of cN-II expression (6 months and 11 months, respectively). In a multivariate analysis taking into account age, sex, weight loss, stage and immunohistochemical results, cN-II was the only predictive factor associated with overall survival. This study suggests that cN-II nucleotidase expression levels identify subgroups of NSCLC patients with different outcomes under gemcitabine-based therapy. Larger prospective studies are warranted to confirm the predictive value of cN-II in these patients.

  8. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC), and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. Methods The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT) followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers. Results More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients. Conclusions Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications. PMID:22400902

  9. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  10. Constraints on PSC Particle Microphysics Derived From Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Li; Mishchenko, Michael I.

    2001-01-01

    Based on extensive T-matrix computations of light scattering by polydispersions of randomly oriented, rotationally symmetric nonspherical particles, we analyze existing lidar observations of polar stratospheric clouds (PSCs) and derive several constraints on PSC particle microphysical properties. We show that sharp-edged nonspherical particles (finite circular cylinders) exhibit less variability of lidar backscattering characteristics with particle size and aspect ratio than particles with smooth surfaces (spheroids). For PSC particles significantly smaller than the wavelength, the backscatter color index Alpha and the depolarization color index Beta are essentially shape-independent. Observations for type Ia PSCs can be reproduced by spheroids with aspect ratios larger than 1.2, oblate cylinders with diameter-to-length ratios greater than 1.6, and prolate cylinders with length-to-diameter ratios greater than 1.4. The effective equal-volume-sphere radius for type la PSCs is about 0.8 microns or larger. Type Ib PSCs are likely to be composed of spheres or nearly spherical particles with effective radii smaller than 0.8 microns. Observations for type II PSCs are consistent with large ice crystals (effective radius greater than 1 micron modeled as cylinders or prolate spheroids.

  11. Observed Differences in Spectral Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven E.; Zhang, Zhibo; Maddox, Brent; Ackeman, Steven A.

    2010-01-01

    The microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and physical processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud effective particle size are available using the heritage 3.7 an band from AVHRR as well as the 1.6 and 2.1 m shortwave IR bands. The MODIS cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using each of these spectral bands. It has been found that significant differences can occur between the three size retrievals, mainly for liquid water marine boundary layer clouds and especially in broken (low cloud fraction) regimes. In particular, for such regimes, effective radii derived from the MODIS 2.1 lim band can be substantially larger than retrievals from the Heritage 3.7 lam band. In this paper, we present global and regional results of the differences, including correlations, view angle dependencies, and algorithm sensitivities for the existing MODIS Collection 5 product.

  12. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  13. Simulations of Aerosol Microphysics in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Smith; Randles; daSilva

    2010-01-01

    Aerosol-cloud-chemistry interactions have potentially large but uncertain impacts on Earth's climate. One path to addressing these uncertainties is to construct models that incorporate various components of the Earth system and to test these models against data. To that end, we have previously incorporated the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module online in the NASA Goddard Earth Observing System model (GEOS-5). GEOS-5 provides a platform for Earth system modeling, incorporating atmospheric and ocean general circulation models, a land surface model, a data assimilation system, and treatments of atmospheric chemistry and hydrologic cycle. Including GOCART online in this framework has provided a path for interactive aerosol-climate studies; however, GOCART only tracks the mass of aerosols as external mixtures and does not include the detailed treatments of aerosol size distribution and composition (internal mixtures) needed for aerosol-cloud-chemistry-climate studies. To address that need we have incorporated the Community Aerosol and Radiation Model for Atmospheres (CARMA) online in GEOS-5. CARMA is a sectional aerosol-cloud microphysical model, capable of treating both aerosol size and composition explicitly be resolving the aerosol distribution into a variable number of size and composition groupings. Here we present first simulations of dust, sea salt, and smoke aerosols in GEOS-5 as treated by CARMA. These simulations are compared to available aerosol satellite, ground, and aircraft data and as well compared to the simulated distributions in our current GOCART based system.

  14. Microphysics in the Gamma-Ray Burst Central Engine

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka

    2017-03-01

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ-law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus and outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.

  15. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  16. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval

    SciTech Connect

    Tian, Jingjing; Dong, Xiquan; Xi, Baike; Wang, Jingyu; Homeyer, Cameron R.; McFarquhar, Greg M.; Fan, Jiwen

    2016-09-23

    This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results from six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and

  17. XRCC2 as a predictive biomarker for radioresistance in locally advanced rectal cancer patients undergoing preoperative radiotherapy

    PubMed Central

    Qin, Chang-Jiang; Song, Xin-Ming; Chen, Zhi-Hui; Ren, Xue-Qun; Xu, Kai-Wu; Jing, Hong; He, Yu-Long

    2015-01-01

    XRCC2 has been shown to increase the radioresistance of some cancers. Here, XRCC2 expression was investigated as a predictor of preoperative radiotherapy (PRT) treatment response in locally advanced rectal cancer (LARC). XRCC2 was found to be overexpressed in rectal cancer tissues resected from patients who underwent surgery without PRT. In addition, overall survival for LARC patients was improved in XRCC2-negative patients compared with XRCC2-positive patients after treatment with PRT (P < 0.001). XRCC2 expression was also associated with an increase in LARC radioresistance. Conversely, XRCC2-deficient cancer cells were more sensitive to irradiation in vitro, and a higher proportion of these cells underwent cell death induced by G2/M phase arrest and apoptosis. When XRCC2 was knocked down, the repair of DNA double-strand breaks caused by irradiation was impaired. Therefore, XRCC2 may increases LARC radioresistance by repairing DNA double-strand breaks and preventing cancer cell apoptosis. Moreover, the present data suggest that XRCC2 is a useful predictive biomarker of PRT treatment response in LARC patients. Thus, inhibition of XRCC2 expression or activity represents a potential therapeutic strategy for improving PRT response in LARC patients. PMID:26320178

  18. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    SciTech Connect

    Gao, Wenhua; Sui, Chung-Hsiung; Fan, Jiwen; Hu, Zhiqun; Zhong, Lingzhi

    2016-11-27

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolution of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.

  19. Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2015-03-01

    The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.

  20. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  1. Comparison of LES model produced and in-situ measured stratocumulus cloud microphysics

    NASA Astrophysics Data System (ADS)

    Choi, K.; Yeom, J. M.; Yum, S. S.

    2015-12-01

    Large Eddy Simulation (LES) models are known to be a valuable tool that can be used to study microphysical, dynamical and radiative properties and their complex interactions in stratocumulus clouds since they can generate stratocumulus clouds realistically. These model generated properties were often compared with observations usually focusing on macroscopic features such as cloud depth and LWP. In this study we try to examine how good LES models are in re-producing cloud microphysical characteristics of stratocumulus clouds. After all if microphysics is not right, macroscopic, dynamic and radiative characteristics represented by the model cannot be fully trusted. The observation data are obtained from the G-1 aircraft measurements of marine stratocumulus clouds over the southeast Pacific near the coast of Chile during the Variability of the American Monsoon Systems Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). Two LES models are used to simulate these clouds: one is CIMMS (Cooperative Institute for Mesoscale Meteorological Studies) LES and the other is WRF (Weather Research and Forecasting Model) LES. Both models are run in 3-D setting and employ bin microphysics to be appropriate for detailed cloud microphysics calculation. Comparison between observation and LES models could reveal intrinsic problems of the LES models in representing entrainment and mixing processes. The difference between the two LES models may reveal the intrinsic differences between the two models in representing large eddies and microphysical processes. Some preliminary results indicate that the CIMMS LES model tends to produce cloud microphysical relationships that are expected to occur when homogeneous mixing is dominant. More detail will be presented at the conference.

  2. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  3. In Situ Microphysical and Scattering Properties of Falling Snow in GPM-GCPEx

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.; Poellot, M.; Chandrasekar, C. V.; Hudak, D. R.

    2013-12-01

    The Global Precipitation Measurement Cold-season Precipitation Experiment (GPM-GCPEx) field campaign was conducted near Egbert, Ontario, Canada in January-February 2012 to study the physical characteristics and microwave radiative properties of the column of hydrometeors in cold season precipitation events. Extensive in situ aircraft profiling was conducted with the University of North Dakota (UND) Citation aircraft within the volume of several remote sensing instruments within a wide variety of precipitation events, from snow to freezing drizzle. Several of the primary goals of GCPEx include improving our understanding of the microphysical characteristics of falling snow and how those characteristics relate to the multi-wavelength radiative characteristics In this study, particle size distribution parameters, effective particle densities, and habit distributions are determined using in-situ cloud measurements obtained on the UND citation using the High Volume Precipitation Spectrometer, the Cloud Particle Imager, and the Cloud Imaging Probe. These quantities are matched compared to multi-frequency radar measurements from the Environment Canada King City C-Band and NASA D3R Ku-Ka Band dual polarization radars. These analysis composites provide the basis for direct evaluation of particle size distributions and observed multi-wavelength and multi-polarization radar observations, including radar reflectivity, differential reflectivity, and dual wavelength ratio) in falling snow at weather radar and GPM radar frequencies. Theoretical predictions from Mie, Rayleigh-Gans, and more complex snowflake aggregate scattering model predictions using observed particle size distributions are compared with observed radar scattering characteristics along the Citation flight track.

  4. Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum

    NASA Astrophysics Data System (ADS)

    Ferland, Gary J.

    2014-01-01

    Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.

  5. Microphysics and chemistry of sulphate aerosols at warm stratospheric temperatures

    NASA Astrophysics Data System (ADS)

    Drdla, K.; Pueschel, R. F.; Strawa, A. W.; Cohen, R. C.; Hanisco, T. F.

    1999-11-01

    Observations of high NOx/NOy ratios (overall 40% larger than modelled values) during the Polar Ozone Loss in the Arctic Region in Summer campaign have led us to re-examine the heterogeneous chemistry of stratospheric aerosol particles during the polar summer period, using the Integrated MicroPhysics and Aerosol Chemistry on Trajectories model. The warm summer temperatures (up to 235 K) imply very concentrated sulphuric acid solutions (80 wt %). On the one hand, these solutions are more likely to freeze, into sulphuric acid monohydrate (SAM), reducing the efficiency of the N2O5 hydrolysis reaction. Including this freezing process increases NOx/NOy ratios but does not improve model/measurement agreement: in polar spring, SAM formation causes the NOx/NOy ratio to be overpredicted whereas freezing has a much smaller effect on nitrogen chemistry during the continuous solar exposure of polar summer. On the other hand, if sulphate aerosols remain liquid, the high acidity may promote acid-catalysed reactions. The most important reaction is CH2O + HNO3, which effectively increases NOx/NOy ratios across a wide range of conditions, improving agreement with measurements. Furthermore, the production of HONO can either enhance gas-phase OH concentrations or promote secondary liquid reactions, including HONO + HNO3 and HONO + HCl. Primary uncertainties include the uptake coefficient of CH2O relevant to reaction with HNO3, the amount of HONO available for secondary reaction, and the relative rates of HONO reaction with HNO3 and HCl. The fate of the formic acid product, whose presence in the stratosphere may be an indicator for the CH2O reaction, and the impact on the stratospheric hydrogen budget are also discussed.

  6. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  7. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  8. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  9. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  10. PREDICTING CIRRHOSIS AND CLINICAL OUTCOMES IN PATIENTS WITH ADVANCED CHRONIC HEPATITIS C WITH A PANEL OF GENETIC MARKERS (CRS7)

    PubMed Central

    Curto, Teresa M.; Lagier, Robert J.; Lok, Anna S.; Everhart, James E.; Rowland, Charles M.; Sninsky, John J.

    2011-01-01

    Objectives Genetic factors may play a role in fibrosis progression in patients with chronic hepatitis C (CHC). A cirrhosis risk score (CRS7) with 7 SNPs was previously shown to correlate with cirrhosis in patients with CHC. This study aimed to assess the validity of CRS7 as a marker of fibrosis progression and cirrhosis and as a predictor of clinical outcomes in patients with CHC. Methods A total of 938 patients (677 Caucasians, 165 African Americans, and 96 Hispanic/Other) in the HALT-C Trial were studied. CRS7 was categorized a priori as high risk (n=440), medium risk (n=310) or low risk (n=188). Patients were assessed for four possible outcomes: fibrosis progression, cirrhosis, clinical outcomes (decompensation or hepatocellular carcinoma [HCC]), or HCC alone. Results 29% (142/493) developed an increase in fibrosis score by ≥ 2 points on follow-up biopsies, 58% had cirrhosis on one or more biopsies, 35% developed at least one clinical outcome, and 13% developed HCC. CRS7 (trend test) was associated with risk for fibrosis progression (p=0.04) with adjusted hazard ratio (HR) of 1.27 (95%CI: 1.01–1.58) and with cirrhosis (p=0.05) with adjusted odds ratio (OR) of 1.19 (1.00–1.41). Rates of HCC and clinical outcomes were increased in patients with higher CRS7 scores, but were not statistically significant (p=0.12 clinical outcomes, and p=0.07 HCC). A SNP in AZIN1 was significantly associated with fibrosis progression. Conclusions CRS7 was validated as a predictor of fibrosis progression and cirrhosis among HALT-C patients, who all had advanced fibrosis. CRS7 was not predictive of clinical outcome. PMID:21946897

  11. Iron Levels in Hepatocytes and Portal Tract Cells Predict Progression and Outcome of Patients with Advanced Chronic Hepatitis C1

    PubMed Central

    Lambrecht, Richard W.; Sterling, Richard K.; Naishadham, Deepa; Stoddard, Anne M.; Rogers, Thomas; Morishima, Chihiro; Morgan, Timothy R.; Bonkovsky, Herbert L.

    2011-01-01

    Background & Aims Iron might influence severity and progression of non-hemochromatotic liver diseases. We assessed the relationships between iron, variants in HFE, and progression and outcomes using data from the HALT-C Trial. We determined whether therapy with pegylated interferon (PegIFN) affects iron variables. Methods Participants were randomly assigned to groups given long-term therapy with PegIFN (n=400) or no therapy (n=413) for 3.5 y and followed for up to 8.7 y (median 6.0 y). Associations between patient characteristics and iron variables, at baseline and over time, were made using Kaplan-Meier analyses, Cox regression models, and repeated measures analysis of covariance. Iron was detected by Prussian blue staining. Results Patients with poor outcomes (increase in Child-Turcotte-Pugh score to ≥ 7, development of ascites, encephalopathy, variceal bleeding, spontaneous bacterial peritonitis, hepatocellular carcinoma, death) had significantly higher baseline scores for stainable iron in hepatocytes and cells in portal tracts than those without outcomes. Staining for iron in portal triads correlated with lobular and total Ishak inflammatory and fibrosis scores (P<0.0001). High baseline levels of iron in triads increased the risk for poor outcome (hazard ratio=1.35, P=0.02). Iron staining decreased in hepatocytes but increased in portal stromal cells over time (P<0.0001). Serum levels of iron and total iron binding capacity decreased significantly over time (P <0.0001), as did serum ferritin (P=0.0003). Long-term therapy with PegIFN did not affect levels of iron staining. Common variants in HFE did not correlate with outcomes, including development of hepatocellular carcinoma. Conclusions Degree of stainable iron in hepatocytes and portal tract cells predicts progression and clinical and histological outcomes of patients with advanced chronic hepatitis C. Long-term therapy with low-dose PegIFN did not improve outcomes or iron variables. PMID:21335007

  12. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  13. What can the CMB tell about the microphysics of cosmic reheating?

    SciTech Connect

    Drewes, Marco

    2016-03-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang.

  14. Sensitivity of Cloud Microphysics to Choice of Physics Parameterizations : a Crm Study

    NASA Astrophysics Data System (ADS)

    Sarangi, C.; Tripathi, S. N.

    2013-12-01

    Weather Research and Forecasting regional meteorological model coupled with chemistry (WRF-Chem) is being used widely to study direct and indirect effect of aerosols. The results of a numerical study on the impacts of aerosols on meteorology and microphysics depend on the accuracy with which the model parameterizes any weather conditions. This study investigates the sensitivity of simulated hydrometeors at 3 km resolution over Northern India, to different types of microphysics parameterizations, such as ETA microphysics (only warm rain processes are parameterized), LIN microphysics (single moment including ice processes) and Morrison microphysics (double moment including ice processes) and planetary boundary layer parameterizations (Yonsei and MYJ). WRF's ability to simulate the vertical and horizontal distribution of hydrometeors using cloud resolving mode is evaluated using in-situ aircraft measurements of hydrometeors during CAIPEEX campaign and cloud products from MODIS satellite. The results suggest that the model underestimates the mass concentration of hydrometeors, but can reasonably simulate the distribution of hydrometeors at most places, except a few places where the hydrometeors are modeled simulated at higher altitude than observed. Ongoing work includes aerosol impact on these simulated hydrometeors distribution.

  15. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  16. Linking Complex Problem Solving and General Mental Ability to Career Advancement: Does a Transversal Skill Reveal Incremental Predictive Validity?

    ERIC Educational Resources Information Center

    Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel

    2015-01-01

    Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…

  17. Microphysical Properties of Warm Clouds During The Aircraft Take-Off and Landing Over Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Nicolae Vajaiac, Sorin; Boscornea, Andreea

    2016-06-01

    This paper is focused on airborne measurements of microphysical parameters into warm clouds when the aircraft penetrates the cloud, both during take-off and landing. The experiment was conducted during the aircraft flight between Bucharest and Craiova, in the southern part of Romania. The duration of the experimental flight was 2 hours and 35 minutes in October 7th, 2014, but the present study is dealing solely with the analysis of cloud microphysical properties at the beginning of the experiment (during the aircraft take-off) and at the end, when it got finalized by the aircraft landing procedure. The processing and interpretation of the measurements showed the differences between microphysical parameters, emphasizing that the type of cloud over Bucharest changed, as it was expected. In addition, the results showed that it is important to take into account both the synoptic context and the cloud perturbation due to the velocity of the aircraft, in such cases.

  18. Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances

    NASA Astrophysics Data System (ADS)

    Rathke, Carsten; Neshyba, Steven; Shupe, Matthew D.; Rowe, Penny; Rivers, Aaron

    2002-12-01

    The information content of multiangle downwelling infrared radiance spectra of stratus clouds is investigated. As an example, 76 sets of spectra were measured at angles of 0, 15, 30 and 45° from zenith, using an interferometer based at the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp. Exploiting the angular variation of radiance in infrared microwindows, a "geometric" algorithm is used to determine cloud temperature and optical depth without auxiliary information. For comparison, a spectral method allows us to infer cloud microphysical properties for each angle; each multiangle set therefore constitutes a microphysical characterization of horizontal inhomogeneity of the cloudy scene. We show that cloud temperatures determined with both approaches agree with temperatures obtained from lidar/radiosonde data. The multiangle radiance observations can also be used to calculate the longwave flux reaching the surface. We find that up to 14 W m-2 of the overcast fluxes can be attributed to horizontal variations in cloud microphysical properties.

  19. Understanding the Covariance of Microphysics, Thermodynamics, and Dynamics in Mixed Phase Clouds using Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Comstock, J. M.; Fan, J.; Tomlinson, J. M.; Hubbe, J.; Kluzek, C.; Schmid, B.

    2013-12-01

    The physical processes responsible for cloud initiation and lifecycle are complex and involve the interaction between the microphysics, thermodynamics, and dynamics of the atmosphere. Representation of these processes in models requires understanding of the covariance of important parameters at scales that are difficult to resolve in models. We utilize aircraft based measurements in mixed phase clouds to examine the relationship of ice phase partitioning and microphysics with thermodynamic properties and vertical motion. Results are compiled from observational data obtained in convective mixed phase clouds during the Calwater and Two Column Aerosol Project (TCAP) field campaigns conducted using the Department of Energy Gulfstream-1 aircraft. Our results provide a basis for building statistical relationships between microphysical, thermodynamic, and dynamic properties in clouds that are useful for model development and evaluation.

  20. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Madeleine, J.-B.; Forget, F.; Spiga, A.; Millour, E.; Montmessin, F.; Määttänen, A.

    2014-07-01

    Water ice clouds play a key role in the radiative transfer of the Martian atmosphere, impacting its thermal structure, its circulation, and, in turn, the water cycle. Recent studies including the radiative effects of clouds in global climate models (GCMs) have found that the corresponding feedbacks amplify the model defaults. In particular, it prevents models with simple microphysics from reproducing even the basic characteristics of the water cycle. Within that context, we propose a new implementation of the water cycle in GCMs, including a detailed cloud microphysics taking into account nucleation on dust particles, ice particle growth, and scavenging of dust particles due to the condensation of ice. We implement these new methods in the Laboratoire de Météorologie Dynamique GCM and find satisfying agreement with the Thermal Emission Spectrometer observations of both water vapor and cloud opacities, with a significant improvement when compared to GCMs taking into account radiative effects of water ice clouds without this implementation. However, a lack of water vapor in the tropics after Ls = 180° is persistent in simulations compared to observations, as a consequence of aphelion cloud radiative effects strengthening the Hadley cell. Our improvements also allow us to explore questions raised by recent observations of the Martian atmosphere. Supersaturation above the hygropause is predicted in line with Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars observations. The model also suggests for the first time that the scavenging of dust by water ice clouds alone fails to fully account for the detached dust layers observed by the Mars Climate Sounder.

  1. Evaluation of Microphysics Parameterization for Convective Clouds in the NCAR Community Atmosphere Model CAM5

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Li, J. F.

    2012-12-01

    A physically-based two-moment microphysics parameterization scheme for convective clouds is implemented in the NCAR CAM5 to improve the representation of convective clouds and their interaction with large-scale clouds and aerosols. The explicit treatment of mass mixing ratio and number concentration of cloud and precipitation particles enables the scheme to account for the impact of aerosols on convection. The scheme is linked to aerosols through cloud droplet activation and ice nucleation processes, and to stratiform cloud parameterization through convective detrainment of cloud liquid/ice water content (LWC/IWC) and droplet/crystal number concentration (DNC/CNC). A 5-yr simulation with the new convective microphysics scheme shows that both cloud LWC/IWC and DNC/CNC are in good agreement with observations, indicating the scheme describes microphysical processes in convection well. Moreover, the microphysics scheme is able to represent the aerosol effects on convective clouds such as the suppression of warm rain formation and enhancement of freezing when aerosol loading is increased. With more realistic simulations of convective cloud microphysical properties and their detrainment, the mid- and low-level cloud fraction is increased significantly over the ITCZ/SPCZ and subtropical oceans, making it much closer to the observations. Correspondingly the serious negative bias in cloud liquid water path over subtropical oceans observed in the standard CAM5 is reduced markedly. The large-scale precipitation is increased and precipitation distribution is improved as well. The longstanding precipitation bias in the western Pacific is significantly alleviated due to microphysics-thermodynamics-circulation feedbacks.

  2. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical

  3. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  4. Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Barnes, Hannah C.; Houze, Robert A.

    2016-07-01

    To equitably compare the spatial pattern of ice microphysical processes produced by three microphysical parameterizations with each other, observations, and theory, simulations of tropical oceanic mesoscale convective systems (MCSs) in the Weather Research and Forecasting (WRF) model were forced to develop the same mesoscale circulations as observations by assimilating radial velocity data from a Doppler radar. The same general layering of microphysical processes was found in observations and simulations with deposition anywhere above the 0°C level, aggregation at and above the 0°C level, melting at and below the 0°C level, and riming near the 0°C level. Thus, this study is consistent with the layered ice microphysical pattern portrayed in previous conceptual models and indicated by dual-polarization radar data. Spatial variability of riming in the simulations suggests that riming in the midlevel inflow is related to convective-scale vertical velocity perturbations. Finally, this study sheds light on limitations of current generally available bulk microphysical parameterizations. In each parameterization, the layers in which aggregation and riming took place were generally too thick and the frequency of riming was generally too high compared to the observations and theory. Additionally, none of the parameterizations produced similar details in every microphysical spatial pattern. Discrepancies in the patterns of microphysical processes between parameterizations likely factor into creating substantial differences in model reflectivity patterns. It is concluded that improved parameterizations of ice-phase microphysics will be essential to obtain reliable, consistent model simulations of tropical oceanic MCSs.

  5. A Cloud-Resolving Modeling Intercomparison Study on Properties of Cloud Microphysics, Convection, and Precipitation for a Squall Line Cas

    NASA Astrophysics Data System (ADS)

    Fan, J.; Han, B.; Morrison, H.; Varble, A.; Mansell, E.; Milbrandt, J.; Wang, Y.; Lin, Y.; Dong, X.; Giangrande, S. E.; Jensen, M. P.; Collis, S. M.; North, K.; Kollias, P.

    2015-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult (1) to further our understanding of deep convection and (2) to define "benchmarks" and recommendations for their use in parameterization developments. Past model intercomparison studies used different models with different complexities of dynamic-microphysics interactions, making it hard to isolate the causes of differences between simulations. In this intercomparison study, we employed a much more constrained approach - with the same model and same experiment setups for simulations with different cloud microphysics schemes (one-moment, two-moment, and bin models). Both the piggybacking and interactive approaches are employed to explore the major microphysical processes that control the model differences and the significance of their feedback to dynamics through latent heating/cooling and cold pool characteristics. Real-case simulations are conducted for the squall line case 20 May 2011 from the MC3E field campaign. Results from the piggybacking approach show substantially different responses of the microphysics schemes to the same dynamical fields. Although the interactive microphysics-dynamics simulations buffer some differences compared with those from the piggyback runs, large differences still exist and are mainly contributed by ice microphysical processes parameterizations. The presentation will include in-depth analyses of the major microphysical processes for the squall line case, the significance of the feedback of the processes to dynamics, and how those results differ in different cloud microphysics schemes.

  6. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  7. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena

    2010-01-01

    AIRS (Atmospheric Infra-Red Sounder), was launched, in conjunction with AMSU-A (Advanced Microwave Sounding Unit-A) on the NASA polar orbiting research satellite EOS (Earth Observing System) Aqua satellite in May 2002 as a next generation atmospheric sounding system. Atmospheric sounders provide information primarily about the vertical distribution of atmospheric temperature and water vapor distribution. This is achieved by measuring outgoing radiation in discrete channels (spectral intervals) which are sensitive primarily to variations of these geophysical parameters. The primary objectives of AIRS/AMSU were to utilize such information in order to improve the skill of numerical weather prediction as well as to measure climate variability and trends. AIRS is a multi-detector array grating spectrometer with 2378 channels covering the spectral range 650/cm (15 microns) to 2660/cm (3.6 microns) with a resolving power (i/a i) of roughly 1200 where a i is the spectral channel bandpass. Atmospheric temperature profile can be determined from channel observations taken within the 15 micron (the long-wave CO2 absorption band) and within the 4.2 micron (the short-wave CO2 absorption band). Radiances in these (and all other) spectral intervals in the infrared are also sensitive to the presence of clouds in the instrument?s field of view (FOV), which are present about 95% of the time. AIRS was designed so as to allow for the ability to produce accurate Quality Controlled atmospheric soundings under most cloud conditions. This was achieved by having 1) extremely low channel noise values in the shortwave portion of the spectrum and 2) a very flat spatial response function within a channel?s FOV. IASI, the high spectral resolution IR interferometer flying on the European METOP satellite, does not contain either of these important characteristics. The AIRS instrument was also designed to be extremely stabile with regard to its spectral radiometric characteristics, which is

  8. The predictability of serum anti-Müllerian level in IVF/ICSI outcomes for patients of advanced reproductive age

    PubMed Central

    2011-01-01

    Background The role of serum anti-Müllerian hormone (AMH) as predictor of in-vitro fertilization outcomes has been much debated. The aim of the present study is to investigate the practicability of combining serum AMH level with biological age as a simple screening method for counseling IVF candidates of advanced reproductive age with potential poor outcomes prior to treatment initiation. Methods A total of 1,538 reference patients and 116 infertile patients aged greater than or equal to 40 years enrolled in IVF/ICSI cycles were recruited in this retrospective analysis. A reference chart of the age-related distribution of serum AMH level for Asian population was first created. IVF/ICSI patients aged greater than or equal to 40 years were then divided into three groups according to the low, middle and high tertiles the serum AMH tertiles derived from the reference population of matching age. The cycle outcomes were analyzed and compared among each individual group. Results For reference subjects aged greater than or equal to 40 years, the serum AMH of the low, middle and high tertiles were equal or lesser than 0.48, 0.49-1.22 and equal or greater than 1.23 ng/mL respectively. IVF/ICSI patients aged greater than or equal to 40 years with AMH levels in the low tertile had the highest cycle cancellation rate (47.6%) with zero clinical pregnancy. The nadir AMH level that has achieved live birth was 0.56 ng/mL, which was equivalent to the 36.4th percentile of AMH level from the age-matched reference group. The optimum cut-off levels of AMH for the prediction of nonpregnancy and cycle cancellation were 1.05 and 0.68 ng/mL, respectively. Conclusions Two criteria: (1) age greater than or equal to 40 years and (2) serum AMH level in the lowest tertile (equal or lesser than 33.3rd percentile) of the matching age group, may be used as markers of futility for counseling IVF/ICSI candidates. PMID:21843363

  9. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  10. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  11. Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7-9 October 2007 over Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahbub Alam, M.

    2014-03-01

    In the present study, the Advanced Research WRF (ARW) version 3.2.1 has been used to simulate the heavy rainfall event that occurred between 7 and 9 October 2007 in the southern part of Bangladesh. Weather Research and Forecast (WRF-ARW version) modelling system with six different microphysics (MP) schemes and two different cumulus parameterization (CP) schemes in a nested configuration was chosen for simulating the event. The model domains consist of outer and inner domains having 9 and 3 km horizontal resolution, respectively with 28 vertical sigma levels. The impacts of cloud microphysical processes by means of precipitation, wind and reflectivity, kinematic and thermodynamic characteristics of the event have been studied. Sensitivity experiments have been conducted with the WRF model to test the impact of microphysical and cumulus parameterization schemes in capturing the extreme weather event. NCEP FNL data were used for the initial and boundary condition. The model ran for 72 h using initial data at 0000 UTC of 7 October 2007. The simulated rainfall shows that WSM6-KF combination gives better results for all combinations and after that Lin-KF combination. WSM3-KF has simulated, less area average rainfall out of all MP schemes that were coupled with KF scheme. The sharp peak of relative humidity up to 300 hPa has been simulated along the vertical line where maximum updraft has been found for all MPs coupled with KF and BMJ schemes. The simulated rain water and cloud water mixing ratio were maximum at the position where the vertical velocity and reflectivity has also been maximum. The production of rain water mixing ratio depends on MP schemes as well as CP schemes. Rainfall depends on rain water mixing ratio between 950 and 500 hPa. Rain water mixing ratio above 500 hPa level has no effect on surface rain.

  12. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    NASA Astrophysics Data System (ADS)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  13. Parameterizations of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann

    2005-01-01

    Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).

  14. Impact of cloud microphysics on the CSU GCM atmospheric moisture budget

    SciTech Connect

    Fowler, L.D.; Randall, D.A.

    1993-12-31

    In this article, we present the first maps of the global distribution of the cloud liquid and ice water contents of the atmosphere. It is shown that the cloud microphysics package produces realistic distributions of both moisture variables. We axe presently adapting the present model so that long-term simulations with the CSU GCM may be made. In the near future, we plan to couple the cloud liquid and ice water contents prognosed by the cloud microphysics package with the cloud fraction and cloud optical properties.

  15. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    SciTech Connect

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  16. Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne

    2007-01-01

    Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.

  17. Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain

    NASA Astrophysics Data System (ADS)

    Planche, Céline; Mann, Graham W.; Carslaw, Kenneth S.; Dalvi, Mohit; Marsham, John H.; Field, Paul R.

    2017-03-01

    changes in the vertical and at different points in the spin-up, showing how CCN concentrations are introduced both by the emissions close to the surface and at higher altitudes during strong wind-speed conditions associated to the intense convective period. We also explore how the non-linear variation of sea-salt emissions with wind speed propagates into variations in sea-salt mass mixing ratio and CCN concentrations, finding less variation in the latter two quantities due to the longer transport timescales inherent with finer CCN, which sediment more slowly. The complex mix of sources and diverse community of processes involved makes sub-grid parameterisation of CCN variations difficult. However, the results presented here illustrate the limitations of predictions with large-scale models and the high-resolution aerosol microphysics-dynamics modelling system shows promise for future studies where the aerosol variations will propagate through to modified cloud microphysical evolution.

  18. Intercomparison of four cloud microphysics schemes in the Weather Research and Forecasting (WRF) model for the simulation of summer monsoon precipitation in the Langtang Valley, Himalayas

    NASA Astrophysics Data System (ADS)

    Orr, Andrew; Couttet, Margaux; Collier, Emily; Immerzeel, Walter

    2016-04-01

    Better understanding of regional-scale precipitation patterns in the Himalayan region, and how these are affecting snow and ice, is critically required to increase our knowledge of the impacts of climate change on glaciers and snowpacks. This study examines how 4 different cloud microphysical schemes (Thompson, Morrison, WRF Single-Moment 5-class (WSM5; which is the WRF default scheme), and WRF Double-Moment 6-class (WDM6)) simulated precipitation in the Langtang Valley, Himalayas during the summer monsoon in the Weather Research and Forecasting (WRF) model. The precipitation is simulated for a ten-day period during July 2012 at high spatial-resolution (1.1 km) so as to simulate the local conditions in great detail. The model results are validated through a comparison with precipitation and radiation measurements made at two observation sites located on the main Langtang Valley floor and the mountain slopes. Analysis of water vapour and hydrometeors from each of the 4 schemes are also investigated to elucidate the main microphysics processes. The results show that the choice of microphysics scheme has a strong influence on precipitation in the Langtang Valley, with the simulated precipitation exhibiting large inter-model differences and significantly different day-to-day variability compared to measurements. The inter-model differences in simulated radiation were less marked, although under cloudy conditions all schemes demonstrated a significant positive bias in incoming radiation. However, overall the Morrison scheme showed the best agreement in terms of both precipitation and radiation over the ten-day period, while the poorest performing scheme is WDM6. Analysis of microphysics outputs suggested that 'cold-rain processes' is a key precipitation formation mechanism. The good performance of the Morrison scheme is consistent with its double-moment prediction of every ice-phase hydrometeor, which is ideally suited to represent this mechanism. By contrast, WDM6 is

  19. Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation?

    NASA Astrophysics Data System (ADS)

    Sato, Yousuke; Nishizawa, Seiya; Yashiro, Hisashi; Miyamoto, Yoshiaki; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2015-12-01

    This study investigated the impact of several cloud microphysical schemes on the trade wind cumulus in the large eddy simulation model. To highlight the differences due to the cloud microphysical component, we developed a fully compressible large eddy simulation model, which excluded the implicit scheme and approximations as much as possible. The three microphysical schemes, the one-moment bulk, two-moment bulk, and spectral bin schemes were used for sensitivity experiments in which the other components were fixed. Our new large eddy simulation model using a spectral bin scheme successfully reproduced trade wind cumuli, and reliable model performance was confirmed. Results of the sensitivity experiments indicated that precipitation simulated by the one-moment bulk scheme started earlier, and its total amount was larger than that of the other models. By contrast, precipitation simulated by the two-moment scheme started late, and its total amount was small. These results support those of a previous study. The analyses revealed that the expression of two processes, (1) the generation of cloud particles and (2) the conversion from small droplets to raindrops, were crucial to the results. The fast conversion from cloud to rain and the large amount of newly generated cloud particles at the cloud base led to evaporative cooling and subsequent stabilization in the sub-cloud layer. The latent heat released at higher layers by the condensation of cloud particles resulted in the development of the boundary layer top height.

  20. Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS

    DTIC Science & Technology

    2013-09-30

    Hurricane Earl (2010) Rapid-scan satellite-derived winds, inner core airborne Doppler radar radial wind (Vr) and dropsonde observations are assimilated...airborne Doppler radar ra- dial wind and dropsonde observations using EnKF for Hurricane Earl (2010), the Goddard Lin micro- physics and MYJ PBL schemes were...with MSLP except for an immediate spin - ning-down in the first 3 hours. In summary, the assimilation of satellite-derived winds improves the track

  1. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold Air Outbreaks One Month in Advance

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has confirmed the feasibility of forecasting CAOs one month in advance.

  2. Assessment of biomass burning smoke influence on environmental conditions for multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-09-01

    We use the Weather Research and Forecasting (WRF) system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the U.S. during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included, and smoke emissions are constrained using an inverse modeling technique and satellite-based aerosol optical depth observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low-level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics, and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  3. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    SciTech Connect

    Kuboi, Nobuyuki Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  4. Microphysical relationships of clouds observed during March 2000 Cloud IOP at SGP Site and important implications

    SciTech Connect

    Lu, C.; Liu, Y.

    2010-03-15

    Cloud droplet size distributions ---- hence the key microphysical quantities of climate importance (e.g., the total droplet concentration, liquid water content, relative dispersion, mean-volume radius, radar reflectivity, and effective radius) are determined by different physical mechanisms such as pre-cloud aerosols, cloud updraft and turbulent entrainment-mixing processes. Therefore, the relationships among these microphysical properties are expected to behave differently in response to aerosols, cloud updrafts and turbulent entrainment-mixing processes. Identifying and quantifying the influences on these microphysical relationships of the various mechanisms is critical for accurately representing cloud microphysics in climate models and for reducing the uncertainty in estimates of aerosol indirect effects. This study first examines the characteristics of the relationships between relative dispersion, droplet concentration, liquid water content, mean-volume radius, effective radius and radar reflectivity calculated from in-situ measurements of cloud droplet size distributions collected during the March 2000 Cloud IOP at the SGP site. The relationships are further analyzed to dissect the effects from different mechanisms/factors (aerosols, updraft, and different turbulent entrainment-mixing processes). Potential applications to improve radar retrievals of cloud properties will be explored as well.

  5. Microphysics in Multi-scale Modeling System with Unified Physics (Invited)

    NASA Astrophysics Data System (ADS)

    Tao, W.; Lang, S. E.; Wu, D.; Chern, J.

    2013-12-01

    Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving models (Goddard Cumulus Ensemble, GCE, model), regional scale (Weather Research and Forecast, WRF) model and MMF. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2011); a 4-ICE (cloud ice, snow, graupel and hail; Lang et al. 2013) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. These models have improved the radiative processes and their interactions with cloud and aerosol. The performance of these schemes has been evaluated by using observational data from TRMM and major field campaigns. In this talk, we will present high-resolution GCE, WRF and MMF model simulations and compare the model results with observations [i.e., Typhoon (Morakot 2009 - an updated simulations), Anvil and Aerosol (AMMA 2006); MCSs (MC3E; 2010; diurnal variation) and CloudSat/TRMM]. In addition, the main issues of the microphysics schemes in high-resolution (1-6 km grid spacing) numerical models will be discussed.

  6. The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.

  7. Evaluating the Influence of Ice Microphysics on an Idealized Simulation of Orographic Precipitation

    NASA Astrophysics Data System (ADS)

    Morales, A.; Posselt, D. J.

    2015-12-01

    This study aims to understand the impacts on surface precipitation and mesoscale flow structures associated with ice and mixed-phase microphysical processes. Experiments are conducted in the NCAR Cloud Model 1 (CM1) using an idealized moist stable flow interacting with a Gaussian bell-shaped mountain. The control simulation uses a liquid-only (Kessler) scheme, while ice microphysics experiments are performed using two parameterizations available in CM1 (NASA-Goddard version of the Lin, Farley, Orville (LFO) scheme and the Morrison (MOR) scheme), which both contain three ice species: cloud ice, snow, and graupel/hail. LFO simulations produce flow structures that are comparable to the control run, but generate less precipitation. MOR simulations produce a completely different flow structure, exhibiting laminar flow downstream of the mountain while the LFO and control simulation produce a breaking wave and downslope windstorm. This results in a "double-peaked" precipitation distribution in MOR, with warm-rain processes seemingly dominating the first peak and melting of ice species contributing to the secondary peak. A change in the rimed ice species results in systematic differences in amount and location of precipitation received on the mountain slope. Overall, the choice of microphysics parameterization has a larger impact on the dynamical features and surface precipitation rates than the choice of rimed ice species (graupel vs. hail). These results were similarly found in simulations with different initial conditions. This presentation will focus on the microphysical processes leading to the substantial differences between the LFO and MOR experiments.

  8. Evaluation of Retrieval Algorithms for Ice Microphysics Using CALIPSO/CloudSat and Earthcare

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Hagihara, Yuichiro; Ishimoto, Hiroshi; Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2016-06-01

    We developed lidar-radar algorithms that can be applied to Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and CloudSat data to retrieve ice microphysics. The algorithms were the extended version of previously reported algorithm [1] and can treat both of nadir pointing of CALIPSO lidar period and 3°-off-nadir pointing one. We used the scattering data bank produced by the physical optics methods [2] and created lidar look-up tables of quasi-horizontally oriented ice plates (Q2D-plate) for nadir- and off-nadir lidar pointing periods. Then LUTs were implemented in the ice retrieval algorithms. We performed several sensitivity studies to evaluate uncertainties in the retrieved ice microphysics due to ice particle orientation and shape. It was found that the implementation of orientation of horizontally oriented ice plate model in the algorithm drastically improved the retrieval results in both for nadir- and off-nadir lidar pointing periods. Differences in the retrieved microphysics between only randomly oriented ice model (3D-ice) and mixture of 3D-ice and Q2Dplate model were large especially in off-nadir period, e.g., 100% in effective radius and one order in ice water content, respectively. And differences in the retrieved ice microphysics among different mixture models were smaller than about 50% for effective radius in nadir period.

  9. A low-cost digital holographic imager for calibration and validation of cloud microphysics remote sensing

    NASA Astrophysics Data System (ADS)

    Chambers, Thomas E.; Hamilton, Murray W.; Reid, Iain M.

    2016-10-01

    Clouds cover approximately 70% of the Earth's surface and therefore play a crucial rule in governing both the climate system and the hydrological cycle. The microphysical properties of clouds such as the cloud particle size distribution, shape distribution and spatial homogeneity contribute significantly to the net radiative effect of clouds and these properties must therefore be measured and understood to determine the exact contribution of clouds to the climate system. Significant discrepancies are observed between meteorological models and observations, particularly in polar regions that are most sensitive to changes in climate, suggesting a lack of understanding of these complex microphysical processes. Remote sensing techniques such as polarimetric LIDAR and radar allow microphysical cloud measurements with high temporal and spatial resolution however these instruments must be calibrated and validated by direct in situ measurements. To this end a low cost, light weight holographic imaging device has been developed and experimentally tested that is suitable for deployment on a weather balloon or tower structure to significantly increase the availability of in situ microphysics retrievals.

  10. The Dependence on Grid Resolution of Numerically Simulated Convective Cloud Systems Using Ice Microphysics

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo; Lang, Stephen E.; Ferrier, Bradley S.

    1999-01-01

    Mesoscale research and forecast models are increasingly being used at horizontal resolutions of 1-8 km to simulate a variety of precipitating systems. When the model is used to simulate convective systems, it is uncertain to what extent the dynamics and microphysics of convective updrafts can be resolved with grids larger than 1 km. In this study, two- and three-dimensional versions of the Goddard Cumulus Ensemble model are used to determine the impact of horizontal grid resolution on the behavior of the simulated storms and on the characteristics of the cloud microphysical fields. It will be shown that as resolution decreases from about 1 km to greater than 3 km, there is a fairly rapid degradation of the storm structure in the form of reduced convective mass fluxes, updraft tilts, and cloud microphysics. A high-resolution simulation of hurricane outer rainbands using the MM5 mesoscale model shows also that there can be a substantial modification of the key microphysical processes that contribute to rainfall as a result of reducing the horizontal resolution.

  11. MicroRNA Expression Profiling of Peripheral Blood Samples Predicts Resistance to First-line Sunitinib in Advanced Renal Cell Carcinoma Patients12

    PubMed Central

    Gámez-Pozo, Angelo; Antón-Aparicio, Luis M; Bayona, Cristina; Borrega, Pablo; Gallegos Sancho, María I; García-Domínguez, Rocío; de Portugal, Teresa; Ramos-Vázquez, Manuel; Pérez-Carrión, Ramón; Bolós, María V; Madero, Rosario; Sánchez-Navarro, Iker; Fresno Vara, Juan A; Arranz, Enrique Espinosa

    2012-01-01

    Anti-angiogenic therapy benefits many patients with advanced renal cell carcinoma (RCC), but there is still a need for predictive markers that help in selecting the best therapy for individual patients. MicroRNAs (miRNAs) regulate cancer cell behavior and may be attractive biomarkers for prognosis and prediction of response. Forty-four patients with RCC were recruited into this observational prospective study conducted in nine Spanish institutions. Peripheral blood samples were taken before initiation of therapy and 14 days later in patients receiving first-line therapy with sunitinib for advanced RCC. miRNA expression in peripheral blood was assessed using microarrays and L2 boosting was applied to filtered miRNA expression data. Several models predicting poor and prolonged response to sunitinib were constructed and evaluated by binary logistic regression. Blood samples from 38 patients and 287 miRNAs were evaluated. Twenty-eight miRNAs of the 287 were related to poor response and 23 of the 287 were related to prolonged response to sunitinib treatment. Predictive models identified populations with differences in the established end points. In the poor response group, median time to progression was 3.5 months and the overall survival was 8.5, whereas in the prolonged response group these values were 24 and 29.5 months, respectively. Ontology analyses pointed out to cancer-related pathways, such angiogenesis and apoptosis. miRNA expression signatures, measured in peripheral blood, may stratify patients with advanced RCC according to their response to first-line therapy with sunitinib, improving diagnostic accuracy. After proper validation, these signatures could be used to tailor therapy in this setting. PMID:23308047

  12. Probing the impact of different aerosol sources on cloud microphysics and precipitation through in-situ measurements of chemical mixing state

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Heymsfield, A.; Roberts, G. C.; DeMott, P. J.; Sullivan, R. C.; Rosenfeld, D.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosol particles play a crucial role in affecting cloud processes by serving as cloud nuclei. However, our understanding of which particles actually form cloud and ice nuclei limits our ability to treat aerosols properly in climate models. In recent years, it has become possible to measure the chemical composition of individual cloud nuclei within the clouds using on-line mass spectrometry. In-situ high time resolution chemistry can now be compared with cloud physics measurements to directly probe the impact of aerosol chemistry on cloud microphysics. This presentation will describe results from two recent field campaigns, CalWater in northern California and ICE-T in the western Caribbean region. Ground-based and aircraft measurements will be presented of aerosol mixing state, cloud microphysics, and meteorology. Results from single particle mass spectrometry will show the sources of the cloud seeds, including dust, biomass burning, sea spray, and biological particles. Details will be provided on how we are now able to probe the sources and cycling of atmospheric aerosols by measuring individual aerosols, cloud nuclei, and precipitation chemistry. The important role of dust, both Asian and African, and bioparticles in forming ice nuclei will be discussed. Finally, a summary will be provided discussing how these new in-situ measurements are being used to advance our understanding of complex atmospheric processes, and improve our understanding of aerosol impacts on climate.

  13. LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei

    NASA Astrophysics Data System (ADS)

    Vié, B.; Pinty, J.-P.; Berthet, S.; Leriche, M.

    2016-02-01

    The paper describes the LIMA (Liquid Ice Multiple Aerosols) quasi two-moment microphysical scheme, which relies on the prognostic evolution of an aerosol population, and the careful description of the nucleating properties that enable cloud droplets and pristine ice crystals to form from aerosols. Several modes of cloud condensation nuclei (CCN) and ice freezing nuclei (IFN) are considered individually. A special class of partially soluble IFN is also introduced. These "aged" IFN act first as CCN and then as IFN by immersion nucleation at low temperatures. All the CCN modes are in competition with each other, as expressed by the single equation of maximum supersaturation. The IFN are insoluble aerosols that nucleate ice in several ways (condensation, deposition and immersion freezing) assuming the singular hypothesis. The scheme also includes the homogeneous freezing of cloud droplets, the Hallett-Mossop ice multiplication process and the freezing of haze at very low temperatures. LIMA assumes that water vapour is in thermodynamic equilibrium with the population of cloud droplets (adjustment to saturation in warm clouds). In ice clouds, the prediction of the number concentration of the pristine ice crystals is used to compute explicit deposition and sublimation rates (leading to free under/supersaturation over ice). The autoconversion, accretion and self-collection processes shape the raindrop spectra. The initiation of the large crystals and aggregates category is the result of the depositional growth of large crystals beyond a critical size. Aggregation and riming are computed explicitly. Heavily rimed crystals (graupel) can experience a dry or wet growth mode. An advanced version of the scheme includes a separate hail category of particles forming and growing exclusively in the wet growth mode. The sedimentation of all particle types is included. The LIMA scheme is inserted into the Meso-NH cloud-resolving mesoscale model. The flexibility of LIMA is illustrated

  14. Serum lactate dehydrogenase predicts prognosis and correlates with systemic inflammatory response in patients with advanced pancreatic cancer after gemcitabine-based chemotherapy

    PubMed Central

    Yu, Shu-Lin; Xu, Li-Tao; Qi, Qi; Geng, Ya-Wen; Chen, Hao; Meng, Zhi-Qiang; Wang, Peng; Chen, Zhen

    2017-01-01

    Serum lactate dehydrogenase (LDH) concentrations correlate with tumor progression and poor outcome. We evaluated the predictive value of serum LDH level for overall survival (OS) of patients with advanced pancreatic cancer after gemcitabine-based chemotherapy. We retrospectively enrolled 364 patients with locally advanced or metastatic pancreatic adenocarcinoma who were then allocated to training (n = 139) and validation cohorts (n = 225). We evaluated the association between serum LDH levels and OS as well as with markers of systemic inflammation, including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and lymphocyte/monocyte ratio (LMR). Kaplan–Meier analyses revealed that low serum LDH levels in the training cohort significantly correlated with longer OS. Multivariate analysis identified the serum LDH levels as an independent prognostic predictor of OS (p = 0.005). Serum LDH levels correlated positively with NLR and PLR and correlated negatively with LMR. Similar results were obtained for the validation cohort, except that multivariate analysis identified the serum LDH level as a significant prognostic predictor and only a statistical trend for OS (p = 0.059). We conclude that serum LDH levels were associated with the systemic inflammatory response and served as a significant prognostic predictor of OS. Serum LDH levels predicted OS in patients with advanced pancreatic cancer after gemcitabine-based palliative chemotherapy. PMID:28345594

  15. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  16. MAD-VenLA: a microphysical modal representation of clouds for the IPSL Venus GCM

    NASA Astrophysics Data System (ADS)

    Guilbon, Sabrina; Määttänen, Anni; Burgalat, Jérémie; Montmessin, Franck; Stolzenbach, Aurélien; Bekki, Slimane

    2016-10-01

    Venus is enshrouded by 20km-thick clouds, which are composed of sulfuric acid-water solution droplets. Clouds play a crucial role on the climate of the planet. Our goal is to study the formation and evolution of Venusian clouds with microphysical models. The goal of this work is to develop the first full 3D microphysical model of Venus coupled with the IPSL Venus GCM and the photochemical model included (Lebonnois et al. 2010, Stolzenbach et al. 2016).Two particle size distribution representations are generally used in cloud modeling: sectional and modal. The term 'sectional' means that the continuous particle size distribution is divided into a discrete set of size intervals called bins. In the modal approach, the particle size distribution is approximated by a continuous parametric function, typically a log-normal, and prognostic variables are distribution or distribution-integrated parameters (Seigneur et al. 1986, Burgalat et al. 2014). These two representations need to be compared to choose the optimal trade-off between precision and computational efficiency. At high radius resolution, sectional models are computationally too demanding to be integrated in GCMs. That is why, in other GCMs, such as the IPSL Titan GCM, the modal scheme is used (Burgalat et al. 2014).The Venus Liquid Aerosol cloud model (VenLA) and the Modal Dynamics of Venusian Liquid Aerosol cloud model (MAD-VenLA) are respectively the sectional and the modal model discussed here and used for defining the microphysical cloud module to be integrated in the IPSL Venus GCM. We will compare the two models with the key microphysical processes in 0D setting: homogeneous and heterogeneous nucleation, condensation/evaporation and coagulation. Then, MAD-VenLA will be coupled with the IPSL VGCM. The first results of the complete VGCM with microphysics coupled with chemistry will be presented.

  17. Studies of Radiation and Microphysics in Cirrus and Marine Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two tasks were completed during this period. In the first, we examined the polarization of millimeter-wavelength radar beams scattered by ice crystals. Because of their non-spherical shape and size, ice crystals depolarize the incident polarized radar beam. In principle, this depolarization can be used to identify ice from liquid water, as well as provide some information on size. However, the amount of de-polarization is small, producing only a weak signal at the receiver. Our task was to determine the magnitude of such a signal and decide if our radar would be capable of measuring it under typical cirrus conditions. The theoretical study was carried out by Henrietta Lemke, a visiting graduate student from Germany. She had prior experience using a discrete dipole code to compute scattering depolarization. Dr. Kultegin Aydin of the Penn State Electrical Engineering Department, who is also expert in this area, consulted with us on this project at no cost to the project. Our conclusion was that the depolarization signal is too weak to be usefully measured by our system. Therefore we proceeded no further in this study. The second task involved the study of the effect of stratus microphysics on surface cloud forcing. Manajit Sengupta, a graduate student, and the project PI jointly carried out this task. The study used data culled from over a year of continuous radar and radiometer observations at the Atmospheric Radiation Measurement (ARM) site in Oklahoma. The study compared solar radiation calculations made using constant microphysics with calculations made using a retrieved mean particle size. The results showed that on average the constant microphysics produced the correct forcing when compared with the observed forcing. We conclude, therefore, that there is little impetus on radiation grounds alone to include explicit microphysics in climate models. The question of pollutant particle emission impacts on microphysics remains to be resolved. A manuscript is in

  18. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    NASA Technical Reports Server (NTRS)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-01-01

    This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.

  19. The hydrometeor partitioning and microphysical processes over the Pacific Warm Pool in numerical modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Wang, Pao K.

    2017-01-01

    Numerical modeling is conducted to study the hydrometeor partitioning and microphysical source and sink processes during a quasi-steady state of thunderstorms over the Pacific Warm Pool by utilizing the microphysical model WISCDYMM to simulate selected storm cases. The results show that liquid-phase hydrometeors dominate thunderstorm evolution over the Pacific Warm Pool. The ratio of ice-phase mass to liquid-phase mass is about 41%: 59%, indicating that ice-phase water is not as significant over the Pacific Warm Pool as the liquid water compared to the larger than 50% in the subtropics and 80% in the US High Plains in a previous study. Sensitivity tests support the dominance of liquid-phase hydrometeors over the Pacific Warm Pool. The major rain sources are the key hail sinks: melting of hail and shedding from hail; whereas the crucial rain sinks are evaporation and accretion by hail. The major snow sources are Bergeron-Findeisen process, transfer of cloud ice to snow and accretion of cloud water; whereas the foremost sink of snow is accretion by hail. The essential hail sources are accretions of rain, cloud water, and snow; whereas the critical hail sinks are melting of hail and shedding from hail. The contribution and ranking of sources and sinks of these precipitates are compared with the previous study. Hydrometeors have their own special microphysical processes in the development and depletion over the Pacific Warm Pool. Microphysical budgets depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  20. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  1. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    NASA Astrophysics Data System (ADS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  2. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Li, J. L. F.; Mohr, K. I.

    2015-12-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products, CloudSat/CALIPSO cloud fractions, and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow/graupel as functions of temperature and mixing ratio. Despite the cloud microphysics improvements, systematic errors associated with sub-grid processes and cyclic lateral boundaries in the embedded CRMs remain and will require future improvement.

  3. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  4. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  5. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    The V/STOL Aircraft Propulsive Effects (VAPE) computerized prediction method is evaluated. The program analyzes viscous effects, various jet, inlet, and Short TakeOff and Landing (STOL) models, and examines the aerodynamic configurations of V/STOL aircraft.

  6. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as

  7. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  8. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  9. Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report

    SciTech Connect

    X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

    2007-09-30

    Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

  10. Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part 2; Cloud Microphysics and Storm Dynamics Interactions

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2009-01-01

    Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

  11. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold Air Outbreaks One Month in Advance

    NASA Astrophysics Data System (ADS)

    Cai, Ming

    2016-04-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.

  12. Sensitivity analysis of the microphysics scheme in WRF-Chem contributions to AQMEII phase 2

    NASA Astrophysics Data System (ADS)

    Baró, Rocio; Jiménez-Guerrero, Pedro; Balzarini, Alessandra; Curci, Gabriele; Forkel, Renate; Grell, Georg; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Žabkar, Rahela

    2015-08-01

    The parameterization of cloud microphysics is a crucial part of fully-coupled meteorology-chemistry models, since microphysics governs the formation, growth and dissipation of hydrometeors and also aerosol cloud interactions. The main objective of this study, which is based on two simulations for Europe contributing to Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII) is to assess the sensitivity of WRF-Chem to the selection of the microphysics scheme. Two one-year simulations including aerosol cloud interactions with identical physical-chemical parameterizations except for the microphysics scheme (Morrison -MORRAT vs Lin -LINES) are compared. The study covers the difference between the simulations for two three-month periods (cold and a warm) during the year 2010, allowing thus a seasonal analysis. Overall, when comparing to observational data, no significant benefits from the selection of the microphysical schemes can be derived from the results. However, these results highlight a marked north-south pattern of differences, as well as a decisive impact of the aerosol pollution on the results. The MORRAT simulation resulted in higher cloud water mixing ratios over remote areas with low CCN concentrations, whereas the LINES simulation yields higher cloud water mixing ratios over the more polluted areas. Regarding the droplet number mixing ratio, the Morrison scheme was found to yield higher values both during winter and summer for nearly the entire model domain. As smaller and more numerous cloud droplets are more effective in scattering shortwave radiation, the downwelling shortwave radiation flux at surface was found to be up to 30 W m-2 lower for central Europe for the MORRAT simulation as compared to the simulation using the LINES simulation during wintertime. Finally, less convective precipitation is simulated over land with MORRAT during summertime, while no almost difference was found for the winter. On the other hand, non

  13. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  14. FDA Approval Summary: Nivolumab in Advanced Renal Cell Carcinoma After Anti-Angiogenic Therapy and Exploratory Predictive Biomarker Analysis.

    PubMed

    Xu, James Xunhai; Maher, V Ellen; Zhang, Lijun; Tang, Shenghui; Sridhara, Rajeshwari; Ibrahim, Amna; Kim, Geoffrey; Pazdur, Richard

    2017-03-01

    On November 23, 2015, the U.S. Food and Drug Administration approved nivolumab (OPDIVO, Bristol-Myers Squibb Company) for patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy. The approval was based on efficacy and safety data demonstrated in an open-label, randomized study of 821 patients with advanced RCC who progressed after at least one anti-angiogenic therapy. Patients were randomized to nivolumab or everolimus and followed for disease progression. The primary end point was overall survival. Subsequent therapies, including everolimus for patients who developed progressive disease on the nivolumab arm, were allowed, but no cross-over was permitted. The median overall survival was 25.0 months on the nivolumab arm and 19.6 months on everolimus arm (hazard ratio: 0.73; 95% confidence interval: 0.60-0.89). The confirmed response rates were 21.5% versus 3.9%; median durations of response were 23.0 versus 13.7 months, and median times to response were 3.0 versus 3.7 months in the nivolumab and everolimus arms, respectively. A statistically significant improvement in progression-free survival was not observed in this trial. The safety profile of nivolumab in renal cell cancer was similar to that in other disease settings. However, the incidence of immune-mediated nephritis appeared to be higher in patients with RCC. The Oncologist 2017;22:311-317 IMPLICATIONS FOR PRACTICE: The overall benefit/risk profile demonstrated in trial CA209025 supported the approval of nivolumab as an additional treatment option for patients with advanced renal cell carcinoma after anti-angiogenic therapy. The use of nivolumab in patients who had received vascular endothelial growth factor-targeted therapy resulted in a 5.4 month improvement in median overall survival compared with the everolimus arm. This difference is statistically significant and clinically meaningful.

  15. The C-reactive protein/albumin ratio predicts overall survival of patients with advanced pancreatic cancer.

    PubMed

    Wu, Mengwan; Guo, Jing; Guo, Lihong; Zuo, Qiang

    2016-09-01

    Recent studies have demonstrated the prognostic value of the C-reactive protein/albumin (CRP/Alb) ratio in cancer. However, the role of the CRP/Alb ratio in advanced pancreatic cancer (PC) has not been examined. A retrospective study of 233 patients with advanced PC was conducted. We investigated the relationship between the CRP/Alb ratio, clinicopathological variables, and overall survival (OS). The optimal cutoff point of the CRP/Alb ratio was 0.54. A higher CRP/Alb ratio was significantly associated with an elevated neutrophil-lymphocyte ratio (NLR) (P < 0.001) and higher modified Glasgow prognostic score (mGPS) (P < 0.001). Using univariate analyses, we found that the age (P = 0.009), disease stage (P < 0.001), NLR (P < 0.001), mGPS (P < 0.001), and CRP/Alb ratio (P < 0.001) were significant predictors of OS. Patients with a higher CRP/Alb ratio had a worse OS than patients with a lower CRP/Alb ratio (hazard ratio (HR) 3.619; 95 % CI 2.681-4.886; P < 0.001). However, the CRP/Alb ratio was identified as the only inflammation-based parameter with an independent prognostic ability in the multivariate analyses (P < 0.001). The pretreatment CRP/Alb ratio is a superior prognostic and therapeutic predictor of OS in advanced PC.

  16. Impact of uncertainties in parameterized cloud-microphysical processes on the simulated development of an idealized 2-D squall line

    NASA Astrophysics Data System (ADS)

    Michelson, Sara; Bao, Jian-Wen; Grell, Evelyn

    2016-04-01

    In this study, numerical model simulations of an idealized 2-D squall line are investigated using microphysics budget analysis. Four commonly-used microphysics schemes of various complexity are used in the simulations. Diagnoses of the source and sink terms of the hydrometeor budget equations reveal that the differences related to the assumptions of hydrometeor size-distributions between the schemes lead to the differences in the simulations due to the net effect of various microphysical processes on the interaction between latent heating/evaporative cooling and flow dynamics as the squall line develops. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.

  17. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  18. P11: 18FDG-PET/CT for early prediction of response to first line platinum chemotherapy in advanced thymic epithelial tumors

    PubMed Central

    Palmieri, Giovannella; Ottaviano, Margaret; Del Vecchio, Silvana; Segreto, Sabrina; Tucci, Irene; Damiano, Vincenzo

    2015-01-01

    Background To investigate the value of the metabolic tumor response assessed with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), compared with clinicobiological markers, to predict the response disease to first line platinum based chemotherapy in advanced thymic epithelial tumors (TETs). Methods Twenty patients with diagnosis of TET and stage of disease III and IV sec, Masaoka-Koga, were retrospectively included in this monocentric study. Different pre-treatment clinical, biological and pathological parameters, including histotype sec, WHO 2004 and stage of disease sec, Masaoka-Koga were assessed. Tumor glucose metabolism at baseline and its change after the first line platinum based chemotherapy (from 4 to 6 cycles) were assessed using FDG-PET, moreover the response disease was assessed using total body CT scan for the evaluation of RECIST criteria 1.1. Results Twelve patients had an objective response to the first line platinum based chemotherapy according RECIST criteria 1.1 and all of them started with a SUVmax at baseline major than 5, indeed the other eight patients, non-responders to chemotherapy, had a SUVmax at baseline minor than 5. Conclusions It is important to define the chemosensitivity of advanced TETs early. Combining bio-pathological parameters with the metabolism at baseline assessed with FDG-PET can help the physician to early predict the probability of obtaining a disease response to first line platinum based chemotherapy. The SUVmax cut off of 5 at 18FDG-PET/CT performed at baseline treatment might be a new parameter for choosing the most powerful first line of chemotherapy. Given these results, further prospective studies are needed to establish a new first line therapy in advanced TETs with a low SUVmax at baseline, non-responders to conventional chemotherapy.

  19. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials.

    PubMed

    Winkler, David A

    2016-05-15

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods.

  20. Numerical Modeling for Springback Predictions by Considering the Variations of Elastic Modulus in Stamping Advanced High-Strength Steels (AHSS)

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Kimchi, Menachem

    2011-08-01

    This paper presents a numerical modeling approach for predicting springback by considering the variations of elastic modulus on springback in stamping AHSS. Various stamping tests and finite-element method (FEM) simulation codes were used in this study. The cyclic loading-unloading tensile tests were conducted to determine the variations of elastic modulus for dual-phase (DP) 780 sheet steel. The biaxial bulge test was used to obtain plastic flow stress data. The non-linear reduction of elastic modulus for increasing the plastic strain was formulated by using the Yoshida model that was implemented in FEM simulations for springback. To understand the effects of material properties on springback, experiments were conducted with a simple geometry such as U-shape bending and the more complex geometry such as the curved flanging and S-rail stamping. Different measurement methods were used to confirm the final part geometry. Two different commercial FEM codes, LS-DYNA and DEFORM, were used to compare the experiments. The variable elastic modulus improved springback predictions in U-shape bending and curved flanging tests compared to FEM with the constant elastic modulus. However, in S-rail stamping tests, both FEM models with the isotropic hardening model showed limitations in predicting the sidewall curl of the S-rail part after springback. To consider the kinematic hardening and Bauschinger effects that result from material bending-unbending in S-rail stamping, the Yoshida model was used for FEM simulation of S-rail stamping and springback. The FEM predictions showed good improvement in correlating with experiments.

  1. TU-G-303-00: Radiomics: Advances in the Use of Quantitative Imaging Used for Predictive Modeling

    SciTech Connect

    2015-06-15

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  2. A microphysical model of Harper-Dorn creep

    SciTech Connect

    Wang, J.N.

    1996-03-01

    Using experimental data for Harper-Dorn creep in different materials, it is demonstrated that the flow process in this creep may be dislocation glide plus climb with the climb being rate-controlling under a constant dislocation density determined by the magnitude of the Peierls stress. A rate equation is presented which may be used to predict the occurrence of Harper-Dorn creep in any crystalline material.

  3. Microphysical structure of simulated marine stratocumulus: Effects of physical and numerical approximations

    SciTech Connect

    Stevens, B.; Cotton, W.R.; Feingold, G.

    1996-04-01

    Over the past decade or so the evolution and equilibria of persistent decks of stratocumulus climatologically clinging to the edge of summertime subtropical highs have been an issue of increased scientific inquiry. The particular interest in the microphysical structure of these clouds stems from a variety of hypotheses which suggest that anthropogenic influences or biogenic feedbacks may alter the structure of these clouds in a climatically significant manner. Most of these hypotheses are quite tentative, based as they are on simple formulations of boundary layer structures and interactions between drops and aerosols. This work is concerned with an assessment of the microphysical structure of marine stratocumulus as simulated by an LES-EM model.

  4. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  5. The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties

    SciTech Connect

    Dunn, M; Johnson, K; Jensen, M

    2011-05-31

    This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

  6. Predictive lymphatic mapping: a method for mapping lymphatic channels in patients with advanced unilateral lymphedema using indocyanine green lymphography.

    PubMed

    Mihara, Makoto; Seki, Yukio; Hara, Hisako; Iida, Takuya; Oka, Aiko; Kikuchi, Kazuki; Narushima, Mitsunaga; Haragi, Makiko; Furniss, Dominic; Hin-Lun, Lawrence; Mitsui, Kito; Murai, Noriyuki; Koshima, Isao

    2014-01-01

    In severe lymphedema, indocyanine green lymphography cannot be used to map lymphatic channels before lymphaticovenular anastomosis (LVA) because linear lymphatics cannot be detected in a severely affected leg. Here, we describe a new method, which we refer to as predictive lymphatic mapping, to predict the location of lymphatics for anastomosis in unilateral lymphedema, thereby improving surgical accuracy and efficiency. The approach consists of marking anatomical landmarks and joining selected landmarks with fixed lines. The distance from these fixed lines to lymphatic channels mapped by indocyanine green lymphography in the unaffected leg is then measured, scaled up based on the difference in circumference between the legs, and transposed to the affected leg. To date, we have used this method in 5 cases of unilateral or asymmetric lymphedema of the lower extremities. In no cases have we failed to find a lymphatic channel suitable for LVA within a 2-cm incision. These results suggest that predictive lymphatic mapping is a useful additional tool for surgeons performing LVA under local anesthesia, which will help to improve the accuracy of incisions and the efficiency of surgery.

  7. Use of microphysical relationships to discern growth/decay mechanisms of cloud droplets with focus on Z-LWC relationships.

    SciTech Connect

    Liu,Y.; Daum, P.H.; Yum, S.S.; Wang, J.

    2008-05-01

    Cloud droplet size distributions hence the key microphysical quantities (e.g., radar reflectivity, droplet concentration, liquid water content, relative dispersion, and mean-volume radius) are determined by different physical mechanisms, including pre-cloud aerosols as CCNs, cloud updraft, and various turbulent entrainment-mixing processes. Therefore, different relationships among these microphysical properties are expected in response to these various mechanisms. The effect of turbulent entrainment-mixing processes is particularly vexing, with different entrainment-mixing processes likely leading to different microphysical relationships. Cloud radar has been widely used to infer the cloud liquid water content (L) from the measurement of radar reflectivity (Z) using a Z-L relationship. Existing Z-L expressions have been often obtained empirically, and differ substantially (Khain et al. 2008). The discrepancy among Z-L relations, which has been hindering the application of cloud radar in measuring cloud properties, likely stems from the different relationships between the relevant microphysical properties caused by different physical processes. This study first analyzes the Z-L relationship theoretically, and identify the key microphysical properties that affect this relationship, and then address the effects of various processes on the Z-L relationship by discerning the characteristics of the relationships between the relative dispersion, droplet concentration, liquid water content, and mean-volume radius calculated from in-situ measurements of cloud droplet size distributions. Effort is also made to further relate the microphysical relationships to physical processes such as turbulent entrainment-mixing.

  8. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder

  9. Optimal tumor shrinkage predicts long-term outcome in advanced nonsmall cell lung cancer (NSCLC) treated with target therapy

    PubMed Central

    He, Xiaobo; Zhang, Yang; Ma, Yuxiang; Zhou, Ting; Zhang, Jianwei; Hong, Shaodong; Sheng, Jin; Zhang, Zhonghan; Yang, Yunpeng; Huang, Yan; Zhang, Li; Zhao, Hongyun

    2016-01-01

    Abstract Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are used as standard therapies for advanced nonsmall cell lung cancer (NSCLC) patients with EGFR mutation positive. Because these targeted therapies could cause tumor necrosis and shrinkage, the purpose of the study is to search for a value of optimal tumor shrinkage as an appropriate indicator of outcome for advanced NSCLC. A total of 88 NSCLC enrollees of 3 clinical trials (IRESSA registration clinical trial, TRUST study and ZD6474 study), who received Gefitinib (250 mg, QD), Erlotinib (150 mg, QD), and ZD6474 (100 mg, QD), respectively, during December 2003 and October 2007, were retrospectively analyzed. The response evaluation criteria in solid tumors (RECIST) were used to identify responders, who had complete response (CR) or partial responses (PR) and nonresponders who had stable disease (SD) or progressive disease (PD). Receiver operating characteristics (ROC) analysis was used to find the optimal tumor shrinkage as an indicator for tumor therapeutic outcome. Univariate and multivariate Cox regression analyses were performed to compare the progression-free survival (PFS) and overall survival (OS) between responders and nonresponders stratified based on radiologic criteria. Among the 88 NSCLC patients, 26 were responders and 62 were nonresponders based on RECIST 1.0. ROC indicated that 8.32% tumor diameter shrinkage in the sum of the longest tumor diameter (SLD) was the cutoff point of tumor shrinkage outcomes, resulting in 46 responders (≤8.32%) and 42 nonresponders (≥8.32%). Univariate and multivariate Cox regression analyses indicated that (1) the responders (≤8.32%) and nonresponders (≥ −8.32%) were significantly different in median PFS (13.40 vs 1.17 months, P < 0.001) and OS (19.80 vs 7.90 months, P < 0.001) and (2) –8.32% in SLD could be used as the optimal threshold for PFS (hazard ratio [HR], 8.11, 95% CI, 3.75 to 17.51, P < 0.001) and OS

  10. MODIS Cloud Microphysics Product (MOD_PR06OD) Data Collection 6 Updates

    NASA Technical Reports Server (NTRS)

    Wind, Gala; Platnick, Steven; King, Michael D.

    2014-01-01

    The MODIS Cloud Optical and Microphysical Product (MOD_PR060D) for Data Collection 6 has entered full scale production. Aqua reprocessing is almost completed and Terra reprocessing will begin shortly. Unlike previous collections, the CHIMAERA code base allows for simultaneous processing for multiple sensors and the operational CHIMAERA 6.0.76 stream is also available for VIIRS and SEVIRI sensors and for our E-MAS airborne platform.

  11. Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Goswami, B.; Kulkarni, J.

    2009-12-01

    In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) d