Science.gov

Sample records for advanced military aircraft

  1. Mechanical Chevrons and Fluidics for Advanced Military Aircraft Noise Reduction

    DTIC Science & Technology

    2011-03-01

    block………………………………………………………………………….11 Figure 11. Strouhal number of the screech frequency versus fully expanded jet Mach number as predicted by the...cell spacing LES – Large Eddy Simulation Md – Design Mach Number Mj – Mach number of a fully expanded jet Mic – microphone NPR – Nozzle...geometry mechanism used on tactical military jets currently in the field. The four nozzles have design Mach numbers (MD) of 1.0, 1.3, 1.5 and 1.65. The

  2. Design, cost, and advanced technology applications for a military trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Harper, M.

    1975-01-01

    The potential impact is examined of advanced aerodynamic and propulsive technologies in terms of operating and acquisition costs on conceptual mission and performance requirements for a future undergraduate jet pilot trainer aircraft.

  3. Prospects for a civil/military transport aircraft

    NASA Technical Reports Server (NTRS)

    Jobe, C. E.; Noggle, L. W.; Whitehead, A. H., Jr.

    1978-01-01

    The similarities and disparities between commercial and military payloads, design features, missions, and transport aircraft are enumerated. Two matrices of civil/military transport aircraft designs were evaluated to determine the most cost effective payloads for a projected commercial route structure and air freight market. The probability of this market developing and the prospects for alternate route structures and freight markets are evaluated along with the possible impact on the aircraft designs. Proposals to stimulate the market and increase the viability of the common aircraft concept are reviewed and the possible impact of higher cargo demand on prospects for common civil/military freighters is postulated. The implications of planned advanced technology developments on the aircraft performance and cost are also considered.

  4. Military Aircraft: Policies on Government Officials’ Use of 89th Military Airlift Wing Aircraft

    DTIC Science & Technology

    1992-04-01

    Dear Mr. Horton: This report responds to your request that we review the policies governing the use of military aircraft from the Air Force’s 89th... military aircraft by government officials is addressed in a variety of official policy documents, including Office of Management and Budget Circular A-126...specific aircraft management issues at individual agencies, and specific questions concerning the use of both government and military aircraft in certain

  5. The cetaceopteryx: A global range military transport aircraft

    NASA Technical Reports Server (NTRS)

    Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED

    1993-01-01

    This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.

  6. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  7. Advancing Military Professionalism in Africa

    DTIC Science & Technology

    2014-07-01

    costs for not having established strong professional militaries are high: persistent instability, chronic poverty , deterred investment, and stunted...attributes become the norm throughout the continent. Breaking the spiral of instability, poverty , and misgovernance depends on it. Advancing Military...officers. Lieutenant training included socialization (to become militarily minded ), armed combat training, and military education (understanding the

  8. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  9. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  10. 10 CFR 70.14 - Foreign military aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  11. 10 CFR 70.14 - Foreign military aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  12. 10 CFR 70.14 - Foreign military aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  13. 10 CFR 70.14 - Foreign military aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  14. 10 CFR 70.14 - Foreign military aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  15. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  16. Hazardous materials incidents in military aircraft.

    PubMed

    Voge, V M; Tolan, G

    1993-07-01

    We evaluated 10 years of reported hazardous cargo incident information from the U.S. Air Force and Naval Safety Centers. In this first of two papers describing the hazardous cargo problems reported by the two services, we describe types of aircraft and types of hazardous cargo involved in incidents not causing aircraft mishaps. Normally, hazardous cargo must be manifested as such and no passengers are allowed on such flights. Unauthorized hazardous cargo was found on military aircraft carrying passengers. The most common problem was fuel spills or fumes. The most frequent cause of a hazardous cargo incident was improper manifest of same. Improvements are recommended for the incompatible or inconsistent hazardous cargo incident reporting systems, in order to improve prevention of hazardous cargo incidents.

  17. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  18. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  19. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  20. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  1. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  2. Advanced supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Driver, C.

    1977-01-01

    A multidiscipline approach is taken to the application of the latest technology to supersonic cruise aircraft concept definition, and current problem areas are identified. Particular attention is given to the performance of the AST-100 advanced supersonic cruise vehicle with emphasis on aerodynamic characteristics, noise and chemical emission, and mission analysis. A recently developed aircraft sizing and performance computer program was used to determine allowable wing loading and takeoff gross weight sensitivity to structural weight reduction.

  3. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  4. Overview of computational structural methods for modern military aircraft

    NASA Technical Reports Server (NTRS)

    Kudva, J. N.

    1992-01-01

    Computational structural methods are essential for designing modern military aircraft. This briefing deals with computational structural methods (CSM) currently used. First a brief summary of modern day aircraft structural design procedures is presented. Following this, several ongoing CSM related projects at Northrop are discussed. Finally, shortcomings in this area, future requirements, and summary remarks are given.

  5. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  6. Defense Transportation: DOD Can Better Ensure That Federal Agencies Fully Reimburse for Using Military Aircraft

    DTIC Science & Technology

    2014-02-01

    governing the use of military aircraft by senior federal government officials from DOD, other executive branch agencies, the White House ...TRANSPORTATION DOD Can Better Ensure That Federal Agencies Fully Reimburse for Using Military Aircraft Why GAO Did This Study Senior federal government ...the management and use of these aircraft . GAO was requested to examine government officials’ use of military aircraft and the regulations

  7. Advanced aircraft ignition CRADA final report

    SciTech Connect

    Early, J.W.

    1997-03-01

    Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

  8. Quantitative Inspection Technologies for Aging Military Aircraft

    DTIC Science & Technology

    2013-11-01

    177 Figure 133. Aircraft Mockup With EDM Notches Marked As Red Dots And Numbered In Magnified Photos...178 ix Approved for public release; distribution is unlimited Figure 134. First Test Of The Pantograph Scanner On The Mockup Aircraft...180 Figure 137. CAD Model Of Arc Scanner And Simulated Aircraft Fitting Mockup Panel ..................................... 181 Figure 138

  9. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  10. Improving Access to Military Aircraft During Civilian Wildfires

    DTIC Science & Technology

    2015-12-01

    documents. These directions can be found in the National Interagency Mobilization Guide,136 often referred to simply as the “ Mob Guide.” The Mob ...available civilian resources have are committed.”138 Another limitation regarding military aircraft identified by the Mob Guide is that, “It should be...the Mob Guide clearly identifies the current limitations to the use of DOD aircraft when responding to civilian wildfires. Another manual that

  11. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate of... aircraft or naval vessel of that government or organization or via the Defense Transportation Service...

  12. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate of... aircraft or naval vessel of that government or organization or via the Defense Transportation Service...

  13. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate of... aircraft or naval vessel of that government or organization or via the Defense Transportation Service...

  14. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate of... aircraft or naval vessel of that government or organization or via the Defense Transportation Service...

  15. 22 CFR 126.6 - Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Foreign-owned military aircraft and naval... aircraft and naval vessels, and the Foreign Military Sales program. (a) A license from the Directorate of... aircraft or naval vessel of that government or organization or via the Defense Transportation Service...

  16. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  17. Military Standardization Handbook: Aircraft Refueling Handbook

    DTIC Science & Technology

    1992-10-20

    aircraft by closing the and spill fuel. poppet valve on the aircraft refueling nozzle. 3. The "LINE WING CHECK VALVE 7. Place the "AUrX" and "MAIN...these position. switches in the "OPEN" position to obtain maximum fuel load (including auxiliary tanks). 8. Open refueling nozzle poppet valve and...under the right conditions, such as severe agitition, valve , packing. and tither equipment) and can cause mists can form which are as flammable and

  18. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  19. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... certificated Government aircraft? You may use dual-use military FSCAP on non-military aircraft operated under... MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government......

  20. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... certificated Government aircraft? You may use dual-use military FSCAP on non-military aircraft operated under... MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government......

  1. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... certificated Government aircraft? You may use dual-use military FSCAP on non-military aircraft operated under... MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government......

  2. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... certificated Government aircraft? You may use dual-use military FSCAP on non-military aircraft operated under... MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government......

  3. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... certificated Government aircraft? You may use dual-use military FSCAP on non-military aircraft operated under... MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government......

  4. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  5. Criteria for Handling Qualities of Military Aircraft.

    DTIC Science & Technology

    1982-06-01

    loop precognitive manner. The pilot is able to apply discrete, step-like inputs which more or less exactly produce the desired aircraft response. Some...While closed loop operation depends upon the frequency domain response characteristics, successful precognitive control requires the time domain...represents the other extreme of the pilot task from the precognitive time response situation. Mich work was done in attempting to predict pilot opinion from

  6. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  7. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  8. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  9. Acoustic intensity near a high-powered military jet aircraft.

    PubMed

    Stout, Trevor A; Gee, Kent L; Neilsen, Tracianne B; Wall, Alan T; James, Michael M

    2015-07-01

    The spatial variation in vector acoustic intensity has been calculated between 100 and 3000 Hz near a high-performance military aircraft. With one engine of a tethered F-22A Raptor operating at military power, a tetrahedral intensity probe was moved to 27 locations in the geometric near and mid-fields to obtain the frequency-dependent intensity vector field. The angles of the maximum intensity region rotate from aft to sideline with increasing frequency, becoming less directional above 800 Hz. Between 100 and 400 Hz, which are principal radiation frequencies, the ray-traced dominant source region rapidly contracts and moves upstream, approaching nearly constant behavior by 1000 Hz.

  10. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  11. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  12. Ranking the risk of wildlife species hazardous to military aircraft

    USGS Publications Warehouse

    Zakrajsek, E.J.; Bissonette, J.A.

    2005-01-01

    Collisions between birds and aircraft (birdstrikes) pose a major threat to aviation safety. Different species pose different levels of threat; thus, identification of the most hazardous species can help managers identify the level of hazard and prioritize mitigation efforts. Dolbeer et al. (2000) assessed the hazard posed by birds to civilian aircraft by analyzing data from the Federal Aviation Administration's (FAA) Wildlife Strike Database to rank the hazardous species and species groups. A similar analysis has not been done for the military but would be useful and necessary. Military flight characteristics differ from those of civilian flights. During the period 1985-1998, birdstrikes cost the United States Air Force (USAF) an average of $35 million/year in damage. Using the USAF Birdstrike Database, we selected and evaluated each species or species group by the number of strikes recorded in each of 3 damage categories. We weighted damage categories to reflect extent and cost of damage. The USAF Birdstrike Database contained 25,519 records of wildlife strikes in the United States. During the period 1985-1998, 22 (mean = 1.6/year) Class-A birdstrikes (>$1,000,000 damage, loss of aircraft, loss of life, or permanent total disability) were sustained, accounting for 80% of total monetary losses caused by birds. Vultures (Cathartes aura, Coragyps atratus, Caracara cheriway) were ranked the most hazardous species group (Hazard Index Rank [HIR] = 127) to USAF aircraft, followed by geese (Branta canadensis, Chen caerulescens, HIR = 76), pelicans (Pelecanus erythrorhynchos, P. occidentalis, HIR = 47), and buteos (Buteo sp., HIR = 30). Of the smaller flocking birds, blackbirds and starlings (mostly Agelaius phoeniceus, Euphagus cyanocephalus, Molothrus ater, Sturnus vulgaris, HIR = 46), horned larks (Eremophila alpestris, HIR = 24), and swallows (Families Hirundinidae, Apodidae, HIR = 23) were species groups ranked highest. Coupling these results with local bird census

  13. Changes in the mean hearing threshold levels in military aircraft maintenance conscripts.

    PubMed

    Park, Won-Ju; Moon, Jai-Dong

    2016-11-01

    Aircraft maintenance crews are constantly exposed to severe aircraft noise. The purpose of this study was to verify whether noise from aircraft adversely affects the hearing threshold levels (HTLs) of aircraft maintenance conscripts during their 2 years of mandatory military service. This study included 3,000 male aircraft maintenance conscripts who work in the military runway area. We measured and analyzed HTLs at 2-4 kHz. The duration of exposure to noise increased with an increase in rank; however, HTLs showed a tendency to decrease. We attributed such contradicting results to the learning effect and adaptation to military service. However, we suspected that sudden deafness in 6 conscripts (0.2%) was due to loud noise in the runway area during military service. The effectiveness of the hearing conservation program for short-term military service personnel could be increased by focusing on preventing sudden deafness and preenlistment baseline audiogram tests.

  14. 41 CFR 102-33.115 - Are there special requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? 102-33.115 Section 102-33... acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? Yes, when you acquire military Flight...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Acquiring...

  15. 41 CFR 102-33.115 - Are there special requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? 102-33.115 Section 102-33... acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? Yes, when you acquire military Flight...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Acquiring...

  16. 41 CFR 102-33.115 - Are there special requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? 102-33.115 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Acquiring Government... acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? Yes, when you acquire military...

  17. 41 CFR 102-33.115 - Are there special requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? 102-33.115 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Acquiring Government... acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? Yes, when you acquire military...

  18. 41 CFR 102-33.115 - Are there special requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? 102-33.115 Section 102-33...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Acquiring Government... acquiring military Flight Safety Critical Aircraft Parts (FSCAP)? Yes, when you acquire military...

  19. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  20. An advanced maintenance free aircraft battery system

    SciTech Connect

    Beutler, J.; Green, J.; Kulin, T.

    1996-11-01

    This paper describes an advanced aircraft battery system designed to provide 20 years of maintenance free operation with the flexibility for use on all US Air Force aircraft. System, battery, and charger/analyzer requirements are identified. The final design approach and test results are also presented. There are two general approaches to reduce the maintenance cost of batteries. One approach is to develop a disposable battery system, such that after some time interval the battery is simply replaced. The other approach, the subject of this paper, is to develop a battery that does not require any scheduled maintenance for the design life of the aircraft. This approach is currently used in spacecraft applications where battery maintenance is not practical.

  1. The Reduction of Advanced Military Aircraft Noise

    DTIC Science & Technology

    2011-12-01

    the total pressure upstream of the nozzle. The facility uses helium - air jet mixtures to simulate heated air jets. The partial pressures of both the...the tank , and then the air flow is regulated via pressure regulators and control valves located in a piping cabinet before being fed to a plenum and...provide the helium -air mixture jets in order to simulate the heated jets. The individually partial pressures of the helium and air are both

  2. Neck Injury in Advanced Military Aircraft Environments

    DTIC Science & Technology

    1990-02-01

    vertebrae 20 Extra vertebrae 8 Spina bifida 49 Total 101 Aberrations of posture Scoliosis 95 Curvatures straightened out 89 Hyperkyfosis /-lordosis 35 Total...iito trdiologcl I%~I;T I I l, x I lead1,I ittlk 6,lrtire degeidiet’veI clii[g\\ i I I dmie aniita thoird hRlpo piesetitediija deal of auhi~ Ievia spina ...34 t" y tpes T, s octi rnur s iro enýs L -5 A, i te I a lo i g ul sit tlt 1 I Iconm 13.lroonbo 14. Syna Bifida 15. Spinal Canal Steo fss 16

  3. Application of slender wing benefits to military aircraft

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  4. Advanced Terrain Displays for Transport Category Aircraft.

    DTIC Science & Technology

    1992-02-01

    Map Displays, Terrain Displays, DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH Pilo t Performance, THE NATIONAL TECHNICAL INFORMATION SERVICE , Cockp •t...DOT/FAA/RD-9214 Advanced Terran Wigays DOT-VNTSC-FAA-92-4 frTaaotCta Research and Development Servic fo rasor atgr Washington, DC 20591 Aircraft...U.S. Department of Transportation Final Report Federal Aviation Administration January 1991-Sept. 1991 Research and Development Service Washington, DC

  5. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  6. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  7. A brief review of the source noise technology applicable to fixed-wing military aircraft

    NASA Astrophysics Data System (ADS)

    Pinker, R. A.

    1992-04-01

    Although the last two decades have seen major reductions in the noise from civil aircraft, noise from military operations, both around airfields and from low-flying aircraft, continues to be a source of irritation and a potential health hazard. Because of the continuing concern about the noise levels produced by combat aircraft, the following paper is intended to provide some of the background to the main conclusions and recommendations reached in the final report of the NATO/Committee on the Challenges of a Modern Society (CCMS) Pilot Study on aircraft noise. Although biased towards fixed wing combat aircraft noise, the paper also considers other fixed wing military aircraft, but specifically excludes sonic booms and rotary wing aircraft as they both have their own particular noise sources and problems.

  8. A Comprehensive Program for Measurement of Military Aircraft Emissions

    SciTech Connect

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  9. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Harris, B.; Hashmonay, R.; Holdren, M.; Kaganan, R.; Spicer, C.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power setting increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.

  10. Advances in Protective Coatings and Their Application to Ageing Aircraft

    DTIC Science & Technology

    2000-04-01

    Materials for the Structure f Aging Aircraft [les Nouveaux Materiaux metalliques pour les structures des aeronefs d’ancienne generation] To order the...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...fluid resistance and greater flexibility. New methods of paint stripping and novel processes for the 2.1 Design repair of pre-treatments and metal

  11. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  12. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  13. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  14. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  15. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    An assessment is presented of three separate programs that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. The second technology is the application of laminar flow control to the aircraft to reduce the aerodynamic drag. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel.

  16. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  17. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Kish, Jules G.

    1993-03-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  18. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  19. Application of advanced technology to future long-range aircraft

    NASA Technical Reports Server (NTRS)

    Schrader, O. E.

    1976-01-01

    The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of an span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

  20. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  1. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  2. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  3. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  4. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  5. Aircraft Electrical Repairman, 2-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This three-volume textbook and three student workbooks for a secondary-postsecondary level course in aircraft electrical repair comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the individualized, self-paced…

  6. Aircraft Pneudraulic Repairman, 2-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of four volumes of individualized, self-paced texts and workbooks for use by those studying to become aircraft pneudraulic repairmen. Covered in the individual volumes are the following topics: pneudraulic functions and career program (housekeeping and safety practices, hydraulic fluids and…

  7. Jet aircraft engine emissions database development: 1992 military, charter, and nonscheduled traffic

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1995-01-01

    Studies relating to environmental emissions database for the military, charter, and non-scheduled traffic for the year 1992 were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report also includes a comparison with a previous emission database for year 1990. Discussions of the methodology used in formulating these databases are provided.

  8. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  9. Special effects of gust loads on military aircraft

    NASA Technical Reports Server (NTRS)

    Houbolt, John C.

    1994-01-01

    In the operation of airplanes, atmospheric turbulence creates a broad spectrum of problems. The nature of these problems is presented in this paper. Those that are common to both the commercial carriers and to the military fleet are discussed first. Attention is then focused on the problems that are of special concern in military operations. An aim is to bring out the need for continued effort in the gust research area.

  10. Energy Efficiency for Military Aircraft and Operations: Surveillance, Reconnaissance, Tanker

    DTIC Science & Technology

    2009-06-01

    JET & TURBO-PROP 4.1. Tanker & Surveillance Aircraft, General Overview 4.2. Bomber Aircraft, General Overview 5. TANKERS 5.1. Analysis Method 5.2...A400M MRTT 5.9. Tanker Performance Comparisons (Turbo-jet / Turbo-fan / Turbo-prop) 6. RECONNAISSANCE / SURVEILLANCE AIRCRAFT 6.1. General 6.2...Boeing / Northrop Grumman E-8C (JSTARS) 6.10. Boeing 737-AEW �Wedgetail� 6.11. Comparisons 7. BOMBERS 7.1. General 7.2. B-1B & TU-160 7.3. B-52

  11. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  12. The X-31 aircraft: Advances in aircraft agility and performance

    NASA Astrophysics Data System (ADS)

    Alcorn, C. W.; Croom, M. A.; Francis, M. S.; Ross, H.

    1996-08-01

    The X-31 enhanced fighter maneuverability (EFM) demonstrator has pioneered agile flight in the post-stall flight regime and explored integrated multi-axis thrust vectoring across a broad flight envelope. Its maneuvering achievements include sustained flight up to 70 degrees angle of attack, velocity vector rolls in deep post-stall conditions, and post-stall turns from high entry to exit speeds with ultra low turning/transitional conditions. The concept of post-stall maneuverability was extensively studied in simulations preceding initiation of the X-31 program. These simulations provided a baseline for tactical utility demonstrations and vehicle design requirements. Post-stall maneuverability was not achieved without encountering and mitigating the effects of highly unsteady, asymmetric, vortex-dominated flow-fields associated with post-stall flight. Anomalies in vehicle response to control inputs were observed at high angles of attack, as were differences between simulator and actual flight parameters due to a misrepresentation of the effects of these complex flowfields. Some preliminary force and moment data for the X-31 configuration during dynamic maneuvers are provided to highlight the complex nature of the flowfield. The X-31 aircraft's enabling capabilities, including multi-axis thrust vectoring and integrated flight/propulsion control also provided performance enhancements across the entire flight envelope. In what were known as ‘quasi-tailless’ experiments, conventional aerodynamic control surfaces were used to reduce or eliminate the stabilizing influence of the vertical stabilizer, while the vehicle's multi-axis thrust vectoring capability was used for restabilization. Properly exploited, these technologies can lead to the reduction or elimination of traditional aerodynamic control surfaces, which provides profound improvements in vehicle range, weight, payload, and low observability. This review focuses on some of the principal aerodynamic issues

  13. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  14. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  15. Advanced MRI in Acute Military TBI

    DTIC Science & Technology

    2015-11-01

    brain injury in Afghanistan." Neurology 85(3): 219-227. http://www.ncbi.nlm.nih.gov/pubmed/26109715 Binder, E. B., Bradley , R. G., Liu, W., Epstein...J., Carroll , L.J., Holm, L.W., and Cassidy, J.D. 2014. Systematic review of 401 prognosis after mild traumatic brain injury in the military: results

  16. Propulsion-airframe integration for commercial and military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1988-01-01

    A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.

  17. Synthesis of optical polarization signatures of military aircraft

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.; Duggin, Michael J.

    2002-01-01

    Focal plane wide band IR imagery will be compared with visual wide band focal plane digital imagery of a camouflaged B-52 bomber. Extreme enhancement is possible using digital polarized imagery. The experimental observations will be compared to theoretical calculations and modeling result of both specular and shadowed areas to allow extrapolations to the synthesis of the optical polarization signatures of other aircraft. The relationship of both the specular and the shadowed areas to surface structure, orientation, specularlity, roughness, shadowing and the complex index of refraction will be illustrated. The imagery was obtained in two plane-polarized directions. Many aircraft locations were measured as well as sky background.

  18. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Preliminary design studies are presented for an advanced general aviation aircraft. Advanced guidance and display concepts, laminar flow, smart structures, fuselage and wing structural design and manufacturing, and preliminary configuration design are discussed. This project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in Aeronautics. The results obtained during the fall semester of 1990 (Phase 1) and the spring semester of 1991 (Phase 2) are presented.

  19. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  20. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts were evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy materials are now under development.

  1. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts have been evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy material is now under development.

  2. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  3. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  4. Competition and Innovation in the U.S. Fixed-Wing Military Aircraft Industry

    DTIC Science & Technology

    2003-01-01

    TL685.3.C5754 2003 358.4��—dc21 2003005937 Cover design by Peter Soriano iii PREFACE Defense policymakers in the United States have grown...increasingly concerned over the past decade that further consolidation in the industry that designs and manufactures U.S. military aircraft could degrade U.S...trend continues, the Department of Defense (DoD) may have no choice but to acquire aircraft that are designed and produced in a far less competitive and

  5. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  6. Advanced Distributed Learning: A Paradigm Shift for Military Education.

    ERIC Educational Resources Information Center

    Curda, Stephen K.; Curda, L. K.

    2003-01-01

    Briefly examines past military distance education practices and then focuses on discussion of the Department of Defense's (DoD's) initiative in Advanced Distributed Learning (ADL). Outlines some of the potential problems that should be addressed in the near future and possible solutions towards the goal of implementing a successful ADL system for…

  7. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  8. Distance Learning in Advanced Military Education: Analysis of Joint Operations Course in the Taiwan Military

    ERIC Educational Resources Information Center

    Tung, Ming-Chih; Huang, Jiung-yao; Keh, Huan-Chao; Wai, Shu-shen

    2009-01-01

    High-ranking officers require advanced military education in war tactics for future combat. However, line officers rarely have time to take such courses on campus. The conventional solution to this problem used to take the inefficient correspondence courses. Whereas Internet technologies progress, online course is the current trend for military…

  9. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  10. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  11. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  12. Terminal area considerations for an advanced CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.

    1975-01-01

    Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

  13. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  14. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  15. Unsteady aerodynamic characterization of a military aircraft in vertical gusts

    NASA Technical Reports Server (NTRS)

    Lebozec, A.; Cocquerez, J. L.

    1985-01-01

    The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.

  16. Advanced emergency openings for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    Explosively actuated openings in composite panels are proposed to enhance passenger survivability within commercial aircraft by providing improvements in emergency openings, fuselage venting, and fuel dump. The concept is to embed a tiny, highly stable explosive cord in the periphery of a load-carrying composite panel; on initiation of the cord, the panel is fractured to create a well-defined opening. The panel would be installed in the sides of the fuselage for passenger egress, in the top of the fuselage for smoke venting, and in the bottoms of the fuel cells for fuel dump. Described are the concerns with the use of explosive systems, safety improvements, advantages, experimental results, and recommended approach to gain acceptance and develop this concept.

  17. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  18. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  19. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  20. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  1. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2000-01-01

    Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

  2. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  3. Increased levels of sister chromatid exchanges in military aircraft pilots.

    PubMed

    Silva, M J; Carothers, A; Castelo Branco, N; Dias, A; Boavida, M G

    1999-04-26

    Sister chromatid exchanges (SCEs) were scored in lymphocytes of nine high-performance pilots of alphajet aircrafts and of ten control individuals from the same air base. Statistical analysis of the mean SCE count per cell in the total number of cells analyzed as well as in those having 12 or more SCEs (high-frequency cells, HFCs) revealed a significant difference between pilots and controls, after adjusting for the effect of smoking. Analysis of the cell cycle kinetic data (replication and mitotic indices) revealed no significant differences either between pilots and controls or between smokers and nonsmokers. Previously, we reported an increase in the SCE levels in workers of the aeronautical industry exposed to noise and whole-body vibration. The present results corroborate those findings and indicate that noise and whole-body vibration may cause genotoxic effects in man.

  4. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  5. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  6. Use of eternal flight unmanned aircraft in military operations

    NASA Astrophysics Data System (ADS)

    Kök, Zafer

    2014-06-01

    Unmanned Aerial Vehicles (UAV), are planned to use solar energy, are being more common and interesting gradually. Today, these systems are very promising while fossil fuels are diminishing rapidly. Academic research is still being conducted to develop unmanned aerial systems which will store energy during day time and use it during night time. Development of unmanned aerial systems, which have eternal flight or very long loiter periods, could be possible by such an energy management. A UAV, which can fly very long time, could provide many advantages that cannot be obtained by conventional aircrafts and satellites. Such systems can be operated as fixed satellites on missions with very low cost in circumstances that require continuous intelligence. By improving automation systems these vehicles could be settled on operation area autonomously and can be grounded easily in case of necessities and maintenance. In this article, the effect of solar powered UAV on operation area has been done a literature review, to be used in surveillance and reconnaissance missions.

  7. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  8. Advances in experimental mechanics for advanced aircraft structures

    NASA Astrophysics Data System (ADS)

    O'Brien, Eddie W.

    1997-03-01

    The industrial requirement for higher efficiency, lean performance, airframe structures to form the basis of more cost effective Commercial Aircraft has encouraged developments in all aspects of aeronautical design and manufacture. Until recently the main emphasis has been in the area of computer and numerical analysis, however new developments in experimental mechanics are emerging as very powerful tools for use in the validation of numerical analyses and for primary stress analysis data. The developments described have been forced by economic drivers that address more efficient analysis techniques with respect to cost, specific weight and expended time for analysis.

  9. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  10. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  11. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  12. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  13. Liquid lubricants for advanced aircraft engines

    SciTech Connect

    Loomis, W.R.; Fusaro, R.L.

    1992-08-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  14. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  15. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  16. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  17. Advanced Battery Management Challenges for Military Vehicles

    DTIC Science & Technology

    2013-12-06

    NCA, NCM) 2.5-4.1 7.5-12.3 10-16.4 15-24.6 17.5-28.7 20-32.8 L F P Nominal Voltage(V) ( LiFePO4 ) 3.3 9.9 13.2 19.8 23.1 26.4 n x 3.3 Voltage range...V) ( LiFePO4 ) 2.0-3.7 6-11.1 8-14.8 12-22.2 14-25.9 16-29.6 15 12V 6T 24V 6T UNCLASSIFIED Advanced Chemistry BMS • Required for Li-ion

  18. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  19. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  20. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  1. Boom and the problems related to the supersonic flights of military aircraft

    NASA Astrophysics Data System (ADS)

    Thery, Christian; Lecomte, Claude

    1992-04-01

    The flight of a supersonic projectile is accompanied by a clapping called ballistic detonation. At the same time an aircraft in supersonic flight creates a boom which travels to the ground. The boom represents an impulsional characteristic which provokes a startled reaction in living beings and makes structures vibrate. Because of the elevated altitude of the flight of aircraft the boom is felt along a band of terrain situated along each side of the trajectory of the aircraft, as large as many tens of kilometers. The intensity of the boom essentially depends on the size of the aircraft that creates it, on its altitude, and on the maneuver that it is executing; the maneuvers which are executed by military aircraft provoke locally a very great intensification of booms, these are focalizations and superfocalizations. These phenomena appear especially at the time of transonic acceleration and when turning. The annoyance resulting from these focalized booms is therefore certain and related damage to aging or poorly constructed structures can occur; the sole means of limiting the nuisance which results will be to situate these focalized boom zones over uninhabited regions. A good preview of the affected zones requires precise a priori knowledge of the actual trajectory of the aircraft and the meteorological conditions; in practice therefore, the zones susceptible to being affected by these phenomena are fairly large. Above all, the effects of boom must not be overestimated. The first temporary damages to the auditory system are observed for levels of wave intensity greatly superior to the levels of booms (3000 to 5000 Pa as opposed to 50 or 70 Pa for a boom). The structural effects of normal booms are comparable to those resulting from natural inclemency (wind) or related to modern life (highway traffic). The focalized boom cannot have an impact on sound and well-constructed buildings except by cumulative effect (fatigue).

  2. Aircraft Environmental System Mechanic, 2-9. Block III--Aircraft Environmental Systems Units. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  3. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  4. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  5. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  6. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  7. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  8. Free-To-Roll Analysis of Abrupt Wing Stall on Military Aircraft at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Capone, Francis J.; Brandon, Jay M.; Cunningham, Kevin; Chambers, Joseph R.

    2003-01-01

    Transonic free-to-roll and static wind tunnel tests for four military aircraft - the AV-8B, the F/A-18C, the preproduction F/A-18E, and the F-16C - have been analyzed. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel as a part of the NASA/Navy/Air Force Abrupt Wing Stall Program. The objectives were to evaluate the utility of the free-to-roll test technique as a tool for predicting areas of significant uncommanded lateral motions and for gaining insight into the wing-drop and wing-rock behavior of military aircraft at transonic conditions. The analysis indicated that the free-to-roll results had good agreement with flight data on all four models. A wide range of motions - limit cycle wing rock, occasional and frequent damped wing drop/rock and wing rock divergence - were observed. The analysis shows the effects that the static and dynamic lateral stability can have on the wing drop/rock behavior. In addition, a free-to-roll figure of merit was developed to assist in the interpretation of results and assessment of the severity of the motions.

  9. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliot, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    The need for regional aircraft stems from the problem of hub airport congestion. Regional travel will allow a passenger to commute from one spoke city to another spoke city without entering the congested hub airport. In addition, those people traveling longer routes may begin the flight at home instead of traveling to the hub airport. At this time, there is no American aerospace company that produces a regional transport for under 100 passengers. The intention of the Developmental Advanced Regional Transport (DART-75) is to fill this void with a modern, efficient regional aircraft. This design achieves the efficiency through a number of advanced features including three lifting surfaces, partial composite construction, and an advanced engine design. Efficiency is not the only consideration. Structural integrity, fatigue life, ease of maintenance, passenger comfort and convenience, and environmental aspects must all be considered. These factors force the design team to face many tradeoffs that are studied to find the best solution. The final consideration that cannot be overlooked is that of cost. The DART-75 is a 75-passenger medium-range regional transport intended for spoke-to-spoke, spoke-to-hub, and some hub-to-hub operations. Included are the general descriptions of the structures, weight and balance, stability and control, performance, and engine design.

  10. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  11. Advanced Avionics and the Military Aircraft Man/Machine Interface.

    DTIC Science & Technology

    1982-07-01

    34 d’une donnde par l’oeil, l’oreille ou tout autre capteur humain (con- tact, pression, effort, acc§16ration, capt~s par les mains, les canaux semni...compense les variations de difficult6 de tAche par une augmentation de charge de travail sans variation de performances. LES CAPTEURS HUMAINS Pour...completer le tableau de pr6sentation de l’op~rateur humain il serail- n~cessaire de d~crire les caract~ristiques de fonctionnement des divers capteurs

  12. Draft standard for color AMLCDs in U.S. military aircraft

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Dolezal, William K.; Schur, Keith; Liccione, John W.

    1994-06-01

    Flight instruments have begun to use color active liquid crystal displays (AMLCDs), signaling the beginning of a significant transition from electromechanical and cathode ray tube display designs to AMLCD designs. We have the opportunity with this new technology to establish common products capable of meeting user requirements for sunlight-readable, color and gray scale-capable, high-pixel-count, flat-panel displays for weapon systems. The Wright Laboratory is leading the development of standard and specification documentation for this new generation of display modules based on requirements for U.S. military aircraft. These requirements are similar in many ways to those of both the civil aviation and automotive industries. Accordingly, commonality with these applications is incorporated, where possible, along with the requirements for all military combat applications. Industry and government organizations are involved in this process through workshops and draft review processes. Military procurement specifications for combat system applications may use this information as a source of recommended best practice for this new generation of digital flat panel displays. The draft standard will be revised based upon continuing feedback by early 1995.

  13. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  14. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  15. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  16. ADWICE - Advanced Diagnosis and Warning system for aircraft ICing Environments

    NASA Astrophysics Data System (ADS)

    Leifeld, C.; Hauf, T.; Tafferner, A.; Leykauf, H.

    2003-04-01

    Inflight icing is a serious hazard, as attested by recent crashes of aircraft. The number of world-wide known accidents and serious incidents in which icing played a major role exceeds 800. Obviously current protection systems and icing forecasting, the latter relying mostly on reported icing by pilots and the evaluation of radiosonde ascents, are inadequate to control the threat. Aircraft inflight icing occurs when areas of supercooled liquid cloud droplets or precipitation are traversed. Ice accumulation on aerodynamic surfaces causes modification of the aerodynamics of the aircraft up to the point of uncontrolled flight. The safest way and the recommended practise would be to avoid the icing conditions. This however requires the forecast of supercooled liquid water (SLWC) in clouds and complete ice microphysics model scheme. Since the forecast quality of SLWC still is insufficient to completely rely on that quality for forecasting aircraft icing, other methods are under development. They rely on algorithms which deduce the potential icing threat from measured (mainly radiosonde ascents) or forecast (numerical models) distributions of temperature and humidity. ADWICE, the Advanced Diagnosis and Warning System for aircraft ICing Environments, has been developed since 1998 in a joint cooperation between the Institut für Physik der Atmosphäre at DLR, the Deutscher Wetterdienst (DWD) and the Institut für Meteorologie und Klimatologie (IMUK) at the University of Hannover. To identify icing environments, ADWICE merges forecast model data of the Local Model of the DWD with SYNOP and radar data. Using a slightly modified version of the NCAR/RAP algorithm, which is based on temperature and humidity fields, a first guess icing volume is calculated. Under certain conditions radar and SYNOP data allow corrections of the icing volume. Other data e.g. from satellites may be used in future, too. Since January 2001 ADWICE is running in a testing phase at the DWD. Using PIREPs

  17. Aircraft Environmental System Mechanic, 2-9. Block I--Fundamentals. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  18. Status of noise technology for advanced supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gutierrez, O. A.

    1980-01-01

    Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined.

  19. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  20. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  1. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  2. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  3. US and USSR Military Aircraft and Missile Aerodynamics 1970-1980. A selected, annotated bibliography, volume 1

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Maddalon, D. V.

    1981-01-01

    The purpose of this selected bibliography (281 citations) is to list available, unclassified, unlimited publications which provide aerodynamic data on major aircraft and missiles currently used by the military forces of the United States of America and the Union of Soviet Socialist Republics. Technical disciplines surveyed include aerodynamic performance, static and dynamic stability, stall-spin, flutter, buffet, inlets nozzles, flap performance, and flying qualities. Concentration is on specific aircraft including fighters, bombers, helicopters, missiles, and some work on transports, which are or could be used for military purposes. The bibliography is limited to material published from 1970 to 1980. The publications herein illustrate many of the types of aerodynamic data obtained in the course of aircraft development programs and may therefore provide some guidance in identifying problems to be expected in the conduct of such work. As such, this information may be useful in planning future research programs.

  4. Advances in aircraft design: Multiobjective optimization and a markup language

    NASA Astrophysics Data System (ADS)

    Deshpande, Shubhangi

    Today's modern aerospace systems exhibit strong interdisciplinary coupling and require a multidisciplinary, collaborative approach. Analysis methods that were once considered feasible only for advanced and detailed design are now available and even practical at the conceptual design stage. This changing philosophy for conducting conceptual design poses additional challenges beyond those encountered in a low fidelity design of aircraft. This thesis takes some steps towards bridging the gaps in existing technologies and advancing the state-of-the-art in aircraft design. The first part of the thesis proposes a new Pareto front approximation method for multiobjective optimization problems. The method employs a hybrid optimization approach using two derivative free direct search techniques, and is intended for solving blackbox simulation based multiobjective optimization problems with possibly nonsmooth functions where the analytical formof the objectives is not known and/or the evaluation of the objective function(s) is very expensive (very common in multidisciplinary design optimization). A new adaptive weighting scheme is proposed to convert a multiobjective optimization problem to a single objective optimization problem. Results show that the method achieves an arbitrarily close approximation to the Pareto front with a good collection of well-distributed nondominated points. The second part deals with the interdisciplinary data communication issues involved in a collaborative mutidisciplinary aircraft design environment. Efficient transfer, sharing, and manipulation of design and analysis data in a collaborative environment demands a formal structured representation of data. XML, a W3C recommendation, is one such standard concomitant with a number of powerful capabilities that alleviate interoperability issues. A compact, generic, and comprehensive XML schema for an aircraft design markup language (ADML) is proposed here to provide a common language for data

  5. Distance-Learning for Advanced Military Education: Using Wargame Simulation Course as an Example

    ERIC Educational Resources Information Center

    Keh, Huan-Chao; Wang, Kuei-Min; Wai, Shu-Shen; Huang, Jiung-yao; Hui, Lin; Wu, Ji-Jen

    2008-01-01

    Distance learning in advanced military education can assist officers around the world to become more skilled and qualified for future challenges. Through well-chosen technology, the efficiency of distance-learning can be improved significantly. In this paper we present the architecture of Advanced Military Education-Distance Learning (AME-DL)…

  6. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  7. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  8. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  9. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  10. Measurement and prediction of noise from low-altitude military aircraft operations

    NASA Astrophysics Data System (ADS)

    Barry, Bernard F.; Payne, Richard C.; Harris, Anthony L.; Weston, Ralph J.

    1992-04-01

    In response to the rapid growth in demand for information on noise levels around military airfields in the UK, NPL developed AIRNOISE, a mathematical model for computing aircraft noise contours. Since its first applications in 1981, the model has been used to determine zones of eligibility within the MoD compensation scheme. The model has been subject to continuous development, e.g., the incorporation of Harrier V/STOL operations. We have now extended the model to include noise from high-speed, low-level operations. The model predicts not only maximum levels but the complete time-history, so that the time-onset rate can be estimated. To aid refinement and validation of the model, a special exercise has been conducted in which Tornado, Harrier, Jaguar, Hawk, F-15 and F-16 aircraft have flown straight and level at heights between about 100 and 400 feet, at various speeds and engine power settings over an array of microphones. This paper describes the trial and the results obtained. The prediction model is outlined and comparisons made between predictions and measurements.

  11. Robust active noise control in the loadmaster area of a military transport aircraft.

    PubMed

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  12. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  13. Computerized structural mechanics for 1990's: Advanced aircraft needs

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Backman, B. F.

    1989-01-01

    The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.

  14. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  15. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  16. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  17. Advanced Propulsion Systems Study for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Mount, R.

    2003-01-01

    This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.

  18. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  19. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    PubMed

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made.

  20. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  1. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  2. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  3. A study of extractive and remote-sensing sampling and measurement of emissions from military aircraft engines

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Dawn; Corporan, Edwin

    2010-12-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of "extractive" and "optical remote-sensing" (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70-80% of the military aviation fuel each year. JP-8 and Fischer-Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).

  4. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  5. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of military aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly (up to

  6. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2013-12-01

    difficult to calculate mathematically the precise confidence levels associated with life - cycle cost estimates prepared for Major Defense Acquisition...Contractor Location South Oyster Bay Road 600 Grumman Road West Bethpage, NY 11714-3582 Contract Number, Type N00019-12-C-0063/5, FFP Award Date...and Evaluation Squadron One (VX-1)* - 2 aircraft at Naval Strike Air Warfare Center (NSAWC)* Aircraft Flight Hours Life Limit: 9,600 Pipeline

  7. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  8. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  9. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  10. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  11. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  12. Some inadequacies of the current human factors certification process of advanced aircraft technologies

    NASA Technical Reports Server (NTRS)

    Paries, Jean

    1994-01-01

    Automation related accidents or serious incidents are not limited to advanced technology aircraft. There is a full history of such accidents with conventional technology aircraft. However, this type of occurrence is far from sparing the newest 'glass cockpit' generation, and it even seems to be a growing contributor to its accident rate. Nevertheless, all these aircraft have been properly certificated according to the relevant airworthiness regulations. Therefore, there is a growing concern that with the technological advancement of air transport aircraft cockpits, the current airworthiness regulations addressing cockpit design and human factors may have reached some level of inadequacy. This paper reviews some aspects of the current airworthiness regulations and certification process related to human factors of cockpit design and focuses on questioning their ability to guarantee the intended safety objectives.

  13. Rapid Measurement of Emissions From Military Aircraft Turbine Engines by Downstream Extractive Sampling of Aircraft on the Ground: Results for C-130 and F-15 Aircraft (POSTPRINT)

    DTIC Science & Technology

    2009-02-01

    engines were tested using indoor engine test facilities (F110, F101, J85 -GE-5M, PT6A-68, TF41-A2, TF30-P103 and TF30- P109), while others were studied while...afterburning). Engine T56-A-15 F100-PW-100 F110 F101 J85 -GE-5M PT6A-68 TF-39-1C CFM-56-3 TF41-A2 TF30-P103 TF30-P109 Misc. Type Turboprop Turbofan...AIRCRAFT TURBINE ENGINES BY DOWNSTREAM EXTRACTIVE SAMPLING OF AIRCRAFT ON THE GROUND: RESULTS FOR C-130 AND F-15 AIRCRAFT Chester Spicer and

  14. Advanced Nanostructured Hybrid Coatings for the Protection of Aircraft

    DTIC Science & Technology

    2005-10-01

    barrier function (Figure 2B). The SEM cross-section is clearly reminiscent of the structure of the seashells (Figure 2C). The strength and other...tough as nacre (lining material of the seashells ). This will ensure their durability on the aircrafts. 11 4. A new type of microscopy, i.e. confocal

  15. Autogenic-feedback training as a treatment for airsickness in high-performance military aircraft: Two case studies

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; Miller, Neal E.; Reynoso, Samuel

    1994-01-01

    The purpose of this paper is to present a detailed description of the physiological and performance responses of two military pilots undergoing a treatment for motion sickness. The treatment used, Autogenic-Feedback Training (AFT), is an operant conditioning procedure where subjects are taught to control several of their autonomic responses and thereby suppress their motion sickness symptoms. Two male, active duty military pilots (U.S. Navy and U. S. Marine Corps), ages 30 and 35, were each given twelve 30-minute training sessions. The primary criterion for success of training was the subject's ability to tolerate rotating chair motion sickness tests for progressively longer periods of time and at higher rotational velocities. A standardized diagnostic scale was used during motion sickness to assess changes in the subject's perceived malaise. Physiological data were obtained from one pilot during tactical maneuvers in an F-18 aircraft after completion of his training. A significant increase in tolerance to laboratory-induced motion sickness tests and a reduction in autonomic nervous system (ANS) response variability was observed for both subjects after training. Both pilots were successful in applying AFT for controlling their airsickness during subsequent qualification tests on F-18 and T-38 aircraft and were returned to active duty flight status.

  16. V/STOL tilt rotor aircraft study. Volume 1: Conceptual design of useful military and/or commercial aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The conceptual designs of four useful tilt-rotor aircraft for the 1975 to 1980 time period are presented. Parametric studies leading to design point selection are described, and the characteristics and capabilities of each configuration are presented. An assessment is made of current technology status, and additional tilt-rotor research programs are recommended to minimize the time, cost, and risk of development of these vehicles.

  17. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  18. Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode

    DTIC Science & Technology

    1979-08-01

    regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission...analog hardware specifications and seleccion on the DFCS performance. * Consideration of the potential degradation of DFCS performance and handling...systems research or even for the engineering design of an aircraft or FCS, matters of style and personal taste can dictate how one chooses to

  19. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    SciTech Connect

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  20. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  1. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  2. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  3. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  4. Sale of US military aircraft to Saudi Arabia. Master`s thesis

    SciTech Connect

    Bents, E.R.

    1995-05-01

    The end of the Cold War in the late 1980s resulted in a gigantic downsizing and consolidation of America`s defense industries, as domestic demand plummeted and the volume of international arms trading fell. However, in total world arms exports the United States exports more arms than any other nation. The country of Saudi Arabia has been the destination of a disproportionate amount of these weapons. The following account is an examination of the US military aerospace industry, the world military aerospace market, US government policy concerning arms exports, and the Saudi aerospace market. Each of these entities profoundly impacts US-Saudi military aerospace commerce. By individually analyzing the above factors, it will be demonstrated that the supply relationship between the US and Saudi Arabia is dependent on the convergence of several long standing and deep seated aspirations on the part of the three major players: the US Aerospace Industry, the US Government, and the Saudi Government. The US military aerospace industry`s exports are critical to ensure its independent survival, help fund crucial RD programs, and maintain a viable defense high tech industrial base in the U.S. In addition, it wishes to exert a military presence in the Gulf area and nurture relations with Saudi Arabia in particular, as the world`s leading oil producer. The Saudi government requires a military defense anchored in high tech aerospace systems, as well as a dependable and capable military ally such as the US.

  5. Advanced turboprop aircraft noise annoyance - A review of recent NASA research

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Leatherwood, J. D.; Shepherd, K. P.

    1986-01-01

    Passenger and community response to advanced turboprop aircraft noise are studied. Four experiments were conducted utilizing an aircraft noise synthesis system, an exterior effects room, an anechoic listening room, and a Space Station/aircraft acoustic apparatus; the experimental conditions and procedures for the psychoacoustic studies are described. The community noise studies involved evaluating the effects of various tonal characteristics on annoyance. It was observed that the frequency envelope shape did not effect annoyance; however, the interaction of the fundamental frequency with tone-to-broadband noise ratio did have a large effect on annoyance. The effects of low frequency tones, turbulent boundary layer noise, and tonal beats on passenger annoyance are investigated. The data reveal that passenger annoyance is greater for a given level of boundary layer noise when tones are at levels sufficient to increase the overall sound pressure level within the cabin. The annoyance response of an advanced turboprop and a conventional aircraft are compared. It is determined that the flyover noise level for the turboprop aircraft is not more annoying than that of a conventional aircraft.

  6. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  7. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  8. Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    2000-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  9. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  10. Aircraft Environmental System Mechanic, 2-9. Block II--Air Conditioning Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-pace and/or small…

  11. Demonstration of advanced underwater sensors for military and civilian applications

    NASA Astrophysics Data System (ADS)

    Rankin, Walter; Cooper, Michael T.; Wood-Putnam, Jody L.; Lathrop, John D.

    1999-08-01

    Many operations undertaken by the Defense Department must cope with the active or residual effects of a variety of methods of warfare that a defender can use to inhibit maritime use of the oceans. Prominent cases encountered by the naval forces are mien warfare, salvage and recovery operations, and debris clearance. The office of Naval Research has sponsored development of a family of underwater object location sensors which have a strongly enhanced capability to detect, classify, and identify underwater objects of interest. Use of these sensors in a military exercise, in an operation to locate debris from the Swissair crash, and in a test to demonstrate technology for underwater debris location is described.

  12. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  13. V-22 Osprey Joint Services Advanced Vertical Lift Aircraft (V-22)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-212 V-22 Osprey Joint Services Advanced Vertical Lift Aircraft (V-22) As of FY 2017...POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To

  14. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  15. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system is used to generate 18 realistic, time varying simulations of propeller aircraft takeoff noise in which the harmonic content is systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs are presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  16. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance - Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system was used to generate 18 realistic, time varyring simulations of propeller aircraft takeoff noise in which the harmonic content was systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  17. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  18. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  19. Aircraft developments that hold promise for increased compatability with an advanced ATC system

    NASA Technical Reports Server (NTRS)

    Hodge, K. E.

    1978-01-01

    In terms of an advanced air traffic control environment, consideration is given to a wake vortex advisory system and V/STOL aircraft. The terminal configured vehicle program is described. Procedures for all-weather operations are reviewed and the search and rescue satellite system is described. Predictions are made concerning an advanced national aviation system, digital communications, integrated control technology, and cockpit avionics. Human factors in both general and civil aviation are discussed.

  20. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    for enhancing aircrew performance at high sustained +GZ accelerations. Finally, increasing attention has been paid over the last two decades to the...comprehensive published review of the design and performance of Advanced Oxygen Systems. It has been written principally by present and past members... performance required of Advanced Oxygen Systems and with the design and assessment of the first and later generations of these systems. The monograph

  1. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  2. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  3. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  4. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  5. Evaluation of Aircraft Ejection Seat Safety When Using Advanced Helmet Sensors

    DTIC Science & Technology

    2015-03-09

    Defense F r a u d , W a s t e & A b u s e DODIG-2015-090 ( Project No. D2014-DT0TAD-0002.000) │ i Results in Brief Evaluation of Aircraft Ejection Seat ...Aircraft Ejection Seat Safety When Using Advanced Helmet Sensors Management Comments and Our Response The Deputy Assistant Secretary of the Navy, Air...the following page. DODIG-2015-090 ( Project No. D2014-DT0TAD-0002.000) │ iii Recommendations Table Management Recommendations Requiring Comment No

  6. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  7. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  8. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  9. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  10. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  11. To Err is Human Case Reports of Two Military Aircraft Accidents

    PubMed Central

    Dikshit, Mohan B

    2010-01-01

    It has been postulated that pilot error or in-flight incapacitation may be the main contributory factors to 70–80% of aircraft accidents. Two fatal aircraft accidents are presented in which either of the above possibilities may have played a role. The first case report describes an erroneous decision by a fighter pilot to use a seat position adjustment of the ejection seat leading to fatal injuries when he had to eject from his aircraft. Injuries to the body of the pilot, and observations on the state of his flying clothing and the ejection seat were used to postulate the mechanism of fatal injury and establish the cause of the accident. The second case report describes the sequence of events which culminated in the incapacitation of a fighter pilot while executing a routine manouevre. This resulted in a fatal air crash. Possible contributions of environmental factors which may have resulted in failure of his physiological mechanisms are discussed. PMID:21509093

  12. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  13. Aircraft Electrical Repairman Technician, 2-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a volume of text information; a student workbook containing objectives, reading assignments, chapter review exercises, and answers; a volume review exercise; and two illustration booklets for use with the student exercises. Covered in the course are the following topics: use and maintenance…

  14. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  15. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  16. Use of Airspace by U.S. Military Aircraft and Firings Over the High Seas

    DTIC Science & Technology

    1981-01-13

    seas shall observe: a. International Civil Aviation Organization ( ICAO ) flight procedures. b. Reasonable warning procedures with regard to the...Procedures for Conducting Aircraft Operations a. Operations Conducted Under ICAO Procedures. Normally, routine point-to-point and navigation flights shall...follow ICAO flight procedures. The General Planning section of reference (c) provides ICAO information, definitions, rules, and procedures. b

  17. Development of a maintenance free lead acid battery for inertial navigation systems in large military aircraft

    SciTech Connect

    Johnson, W.R.; Vutetakis, D.G.

    1995-07-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The US Navy and Air Force developed separate systems during their respective INS Developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66% of the systems sold.

  18. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  19. Annoyance caused by advanced turboprop aircraft flyover noise: Counter-rotating-propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Two experiments were conducted to quantify the annoyance of people to flyover noise of advanced turboprop aircraft with counter rotating propellers. The first experiment examined configurations having an equal number of blades on each rotor and the second experiment examined configurations having an unequal number of blades on each rotor. The objectives were to determine the effects on annoyance of various tonal characteristics, and to compare annoyance to advanced turboprops with annoyance to conventional turboprops and turbofans. A computer was used to synthesize realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. The simulations represented different combinations fundamental frequency and tone-to-broadband noise ratio. Also included in each experiment were recordings of 10 conventional turboprop and turbofan takeoffs. Each noise was presented at three sound pressure levels in an anechoic chamber. In each experiment, 64 subjects judged the annoyance of each noise stimulus. Analyses indicated that annoyance was significantly affected by the interaction of fundamental frequency with tone-to-broadband noise ratio. No significant differences in annoyance between the advanced turboprop aircraft and the conventional turbofans were found. The use of a duration correction and a modified tone correction improved the annoyance prediction for the stimuli.

  20. Military trauma training at civilian centers: a decade of advancements.

    PubMed

    Thorson, Chad M; Dubose, Joseph J; Rhee, Peter; Knuth, Thomas E; Dorlac, Warren C; Bailey, Jeffrey A; Garcia, George D; Ryan, Mark L; Van Haren, Robert M; Proctor, Kenneth G

    2012-12-01

    In the late 1990s, a Department of Defense subcommittee screened more than 100 civilian trauma centers according to the number of admissions, percentage of penetrating trauma, and institutional interest in relation to the specific training missions of each of the three service branches. By the end of 2001, the Army started a program at University of Miami/Ryder Trauma Center, the Navy began a similar program at University of Southern California/Los Angeles County Medical Center, and the Air Force initiated three Centers for the Sustainment of Trauma and Readiness Skills (C-STARS) at busy academic medical centers: R. Adams Cowley Shock Trauma Center at the University of Maryland (C-STARS Baltimore), Saint Louis University (C-STARS St. Louis), and The University Hospital/University of Cincinnati (C-STARS Cincinnati). Each center focuses on three key areas, didactic training, state-of-the-art simulation and expeditionary equipment training, as well as actual clinical experience in the acute management of trauma patients. Each is integral to delivering lifesaving combat casualty care in theater. Initially, there were growing pains and the struggle to develop an effective curriculum in a short period. With the foresight of each trauma training center director and a dynamic exchange of information with civilian trauma leaders and frontline war fighters, there has been a continuous evolution and improvement of each center's curriculum. Now, it is clear that the longest military conflict in US history and the first of the 21st century has led to numerous innovations in cutting edge trauma training on a comprehensive array of topics. This report provides an overview of the decade-long evolutionary process in providing the highest-quality medical care for our injured heroes.

  1. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  2. Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.

    2011-01-01

    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.

  3. The practical implementation of fatigue requirements to military aircraft and helicopters in the United Kingdom

    NASA Technical Reports Server (NTRS)

    Maxwell, R. D. J.

    1972-01-01

    The methods adopted in the United Kingdom to ensure the structural integrity of military aeroplanes and helicopters from the fatigue point of view are described. The procedure adopted from the writing of the specification to the monitoring of fatigue life in service are presented along with the requirements to be met and the way in which they are satisfied. Some of the outstanding problems that remain to be solved are indicated.

  4. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...EPA is issuing this Advance Notice of Proposed Rulemaking (ANPR) to describe information currently available and information being collected that will be used by the Administrator to issue a subsequent proposal regarding whether, in the Administrator's judgment, aircraft lead emissions from aircraft using leaded aviation gasoline (avgas) cause or contribute to air pollution which may......

  5. Advanced combustion techniques for controlling NO/x/ emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments have been and continue to be sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere. Of particular concern are the oxides of nitrogen (NO/x/) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NO/x/ emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  6. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  7. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  8. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  9. Applications of advanced aerodynamic technology to light aircraft.

    NASA Technical Reports Server (NTRS)

    Crane, H. L.; Mcghee, R. J.; Kohlman, D. L.

    1973-01-01

    This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers. Preliminary data on the characteristics of the new airfoil are discussed. The configuration of an experimental wing for a Piper Seneca PA-34 and estimated airplane performance with this wing are discussed.

  10. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  11. Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli.

  12. Impact of Decision Criteria on Federal Aviation Administration Certification of Military Commercial Derivative Aircraft

    DTIC Science & Technology

    2012-03-01

    resulting in the sale of items that should never have been made available to the public. Obviously, extreme diligence must be exercised in carrying out 24...of a statistical index or representative group opinion. This group opinion is typically the result of several iterations conducted with...associated. It would be most embarrassing to have the parts pool partners exercise political options and keep one of our aircraft from completing

  13. Comparison of Military and Commercial Design-to-Cost Aircraft Procurement and Operational Support Practices

    DTIC Science & Technology

    1975-07-01

    of cont=ination if comercial syst-m were serviced with mil oil arni cost of flushing and of changing seals in all c ets). and acre ~han offset the...production line * Increased the risk of mixing seals and sub-system con- tamination when airline industry support capabi’lity is used e Added overhaul...Airplane Strength and Rigidity, Flight Loads. MIL-C-8073 Core Material, Plastic Honeycomb, Laminated Glass Fabric Base, for Aircraft Structural

  14. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  15. Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.

  16. An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.

    1986-01-01

    Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.

  17. Advances on Propulsion Technology for High-Speed Aircraft. Volume 2

    DTIC Science & Technology

    2007-03-01

    ADVANCES ON PROPULSION TECHNOLOGY FOR HIGH-SPEED AIRCRAFT March 12-15, 2007 SCRAMJETS M. Smart The University of Queensland , Australia Scramjets...Michael Smart Centre for Hypersonics, The University of Queensland , Brisbane, Australia. 4072 Nomenclature A area (in2) T temperature (K) Cf skin friction...programmes will be reviewed here; (1) ajoint CIAM/NASA flight test conducted in 1998, (2) the HyShot 2 flight conducted by The University of Queensland

  18. The next generation in aircraft protection against advanced MANPADS

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart

    2014-10-01

    This paper discusses the advanced and novel technologies and underlying systems capabilities that Selex ES has applied during the development, test and evaluation of the twin head Miysis DIRCM System in order to ensure that it provides the requisite levels of protection against the latest, sophisticated all-aspect IR MANPADS. The importance of key performance parameters, including the fundamental need for "spherical" coverage, rapid time to energy-on-target, laser tracking performance and radiant intensity on seeker dome is covered. It also addresses the approach necessary to ensure that the equipment is suited to all air platforms from the smallest helicopters to large transports, while also ensuring that it achieves an inherent high reliability and an ease of manufacture and repair such that a step change in through-life cost in comparison to previous generation systems can be achieved. The benefits and issues associated with open architecture design are also considered. Finally, the need for extensive test and evaluation at every stage, including simulation, laboratory testing, platform and target dynamic testing in a System Integration Laboratory (SIL), flight trial, missile live-fire, environmental testing and reliability testing is also described.

  19. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  20. Cost benefit study of advanced materials technology for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  1. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  2. Estimating and Explaining the Production Cost of High-Technology Systems: The Case of Military Aircraft

    DTIC Science & Technology

    1989-05-17

    Engine)Technology (PLATTECH) = AP. 2. Flyaway Aircraft System Technology ( FLYTECH ) = ASP 3. Weapons and Avionics System Technology (SYSTECH) = ASP/AP...multiplied by modifiers to arrive at ASP. 9 TABLE 2 INITIAL TECHNOLOGY MEASURES CBS PROGRAMI FLAT 7E2’ SVSTECH FLYTECH I A-IJ 6.57 0.10837 3.34 2 A-IE/G/M...trend line.) 12 TABLE 3 REGRESSION OF TECH ON YEAR Dependent Variable PLATTECH SYSTECH FLYTECH Independent Variable YEAR YEAR YEAR Intercept -8.619

  3. Night vision imaging systems design, integration, and verification in military fighter aircraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David

    2012-04-01

    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and

  4. Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation.

    PubMed

    Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-01-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re

  5. Aircraft Design Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The helicopter pictured is the twin-turbine S-76, produced by Sikorsky Aircraft division of United Technologies, Stratford, Connecticut. It is the first transport helicopter ever dey n e d purely as a commercial vehicle rather than an adaptation of a military design. Being built in large numbers for customers in 16 countries, the S-76 is intended for offshore oil rig support, executive transportation and general utility service. The craft carries 12 passengers plus a crew of two and has a range of more than 450 miles-yet it weighs less than 10,000 pounds. Significant weight reduction was achieved by use of composite materials, which are generally lighter but stronger than conventional aircraft materials. NASA composite technology played a part in development of the S-76. Under contract with NASA's Langley Research Center, Sikorsky Aircraft designed and flight-tested a helicopter airframe of advanced composite materials.

  6. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  7. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  8. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  9. Potential reduction of en route noise from an advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1990-01-01

    When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.

  10. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect

    1991-06-14

    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  11. Advances in Systems and Technologies Toward Interopoerating Operational Military C2 and Simulation Systems

    DTIC Science & Technology

    2014-06-01

    Standards   Organization   (SISO)   provides   a   collaborative   environment   for   exchange   of   information   about...19th  ICCRTS   “C2  Agility:  Lessons   Learned  from  Research  and  Operations”   Advances  in  Systems  and...Their vision is a future where military organizations can link their C2 and simulation systems without special preparation in support of coalition

  12. Lessons learned from pilot errors using automated systems in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) sponsored a project at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology ( glass cockpit'') aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA's data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Two types of models were developed to provide complementary perspectives of these tasks: sequential models and functional models. Both types of models show the errors that occur in actual altitude deviation events in advanced technology aircraft. Then, errors from the ASRS data base were categorized according to the models, to help understand the potential causes of the different error types. This paper summarizes the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation errors, and the application of these results for the introduction of advanced technology in nuclear power plants.

  13. Lessons learned from pilot errors using automated systems in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1993-04-01

    The National Aeronautics and Space Administration (NASA) sponsored a project at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology (``glass cockpit``) aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA`s data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Two types of models were developed to provide complementary perspectives of these tasks: sequential models and functional models. Both types of models show the errors that occur in actual altitude deviation events in advanced technology aircraft. Then, errors from the ASRS data base were categorized according to the models, to help understand the potential causes of the different error types. This paper summarizes the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation errors, and the application of these results for the introduction of advanced technology in nuclear power plants.

  14. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications.

    PubMed

    Sikder, A K; Sikder, Nirmala

    2004-08-09

    Energetic materials used extensively both for civil and military applications. There are continuous research programmes worldwide to develop new materials with higher performance and enhanced insensitivity to thermal or shock insults than the existing ones in order to meet the requirements of future military and space applications. This review concentrates on recent advances in syntheses, potential formulations and space applications of potential compounds with respect to safety, performance and stability.

  15. Development of longitudinal handling qualities criteria for large advanced supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sudderth, R. W.; Mcneill, W. E.

    1976-01-01

    A piloted simulation study was conducted with the aim of advancing the development of longitudinal handling qualities criteria for large supersonic cruise aircraft. The areas of study investigated included high-speed cruise maneuvering, and stall-recovery control power. Comparisons were made with existing criteria and, for the cruise condition, a time response criterion was developed which correlated well with pilot ratings and comments. For low-speed stall recovery a new criterion was developed in terms of nose-down angular acceleration capability.

  16. 22 CFR 121.3 - Aircraft and related articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., aircraft means aircraft designed, modified, or equipped for a military purpose, including aircraft described as “demilitarized.” All aircraft bearing an original military designation are included in Category... equipped, re-equipped, or modified for military operations: (a) Cargo aircraft bearing “C” designations...

  17. 22 CFR 121.3 - Aircraft and related articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., aircraft means aircraft designed, modified, or equipped for a military purpose, including aircraft described as “demilitarized.” All aircraft bearing an original military designation are included in Category... equipped, re-equipped, or modified for military operations: (a) Cargo aircraft bearing “C” designations...

  18. The new low nitrogen steel LNS -- A material for advanced aircraft engine and aerospace bearing applications

    SciTech Connect

    Berns, H.; Ebert, F.J.

    1998-12-31

    Development tendencies for future aircraft jet engines require new design concepts for rolling element bearings because of an overall increase of loads, temperatures, rotational speeds and the use of new high temperature lubricants. This paper reviews some of the key parameters which in the past led to the development and application of the known aircraft bearing steels such as M50, M50 NiL and recently Cronidur 30{reg_sign} (AMS 5898). The performance limits of the currently used aerospace bearing steels and the increasing demands on bearing performance for future aerospace applications gave the impact to the design of a new corrosion resistant steel grade of the nitrogen alloyed type, which is suitable for case hardening by nitrogen--the so called Low nitrogen steel (LNS). The development of the alloy (US pat. 5,503,797), the attainable properties and the corresponding heat treatment process are presented. Achievable hardness, case depth, residual stress pattern and corrosion resistance prove the new LNS to be a promising candidate for the next generation of aircraft engine bearings and for advanced, integrated bearing-gear-shaft design concepts.

  19. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  20. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  1. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Hardin, Jay C.; Mosiane, Lotlamoreng; Kaushal, Patel; Blankson, Isaiah M.

    2000-01-01

    In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines

  2. Health Care Providers’ Attitudes and Practices Regarding the use of Advance Directives in a Military Health Care Setting

    DTIC Science & Technology

    2007-11-02

    and skills about advance directives have been cited for low completion rates. Family nurse practitioners ( FNPs ), in both civilian and military settings...receive training on ethical and moral implications of advanced nursing practice. These characteristics make the FNP an ideal candidate for promoting...environment (Hunter et al., 1997). Advanced Nursing Role Family nurse practitioners ( FNPs ) are well suited to initiate conversations concerning end-of-life

  3. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  4. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  5. Lessons learned from the introduction of cockpit automation in advanced technology aircraft

    SciTech Connect

    Nelson, W.R.; Byers, J.C.; Haney, L.N.; Ostrom, L.T.; Reece, W.J.

    1995-10-01

    The commercial aviation industry has many years of experience in the application of computer based human support systems, for example the flight management systems installed in today`s advanced technology (``glass cockpit``) aircraft. This experience can be very helpful in the design and implementation of similar systems for nuclear power plants. The National Aeronautics and Space Administration (NASA) sponsored a study at the Idaho National Engineering Laboratory (INEL) to investigate pilot errors that occur during interaction with automated systems in advanced technology aircraft. In particular, we investigated the causes and potential corrective measures for pilot errors that resulted in altitude deviation incidents (i.e. failure to capture or maintain the altitude assigned by air traffic control). To do this, we analyzed altitude deviation events that have been reported in the Aviation Safety Reporting System (ASRS), NASA`s data base of incidents self-reported by pilots and air traffic controllers. We developed models of the pilot tasks that are performed to capture and maintain altitude. Incidents from the ASRS data base were mapped onto the models, to highlight and categorize the potential causes of the errors. This paper reviews some of the problems that have resulted from the introduction of glass cockpit aircraft, the methodology used to analyze pilot errors, the lessons learned from the study of altitude deviation events, and the application of the results to the introduction of computer-based human support systems in nuclear power plants. In addition, a framework for using reliability engineering tools to incorporate lessons learned from operational experience into the design, construction, and operation of complex systems is briefly described.

  6. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  7. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  8. Why Has the Cost of Fixed-Wing Aircraft Risen? A Macroscopic Examination of the Trends in U.S. Military Aircraft Costs over the Past Several Decades

    DTIC Science & Technology

    2008-01-01

    equipment, and manufacturer fees and profits have helped increase the cost of aircraft about 3.5 percent annually—which is less than the rate of...airframe structure that is aluminum, steel, titanium , composite, or other. 7 Air Force factsheets include those available at http://www.af.mil...aircraft tend to have less complexity, including fewer mission systems and fewer requirements for avionics and weap- ons. One reason for the high rate

  9. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  10. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  11. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  12. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  13. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  14. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  15. Military Strategy,

    DTIC Science & Technology

    1968-01-01

    with a grass surface. This aircraft has the following cal- culated characteristics: maximum «peed 2500-2700 km/hour, service cell - ing up to...mobi- lisation of all the national resources to repel the enemy, and the systematic growth of the technical equipment of our Armed Forces. For...bombers. Cannon- machlnegun aircraft weapons have been replaced by rocket weapons. In recent years the speed and celling of military planes has

  16. Cruise noise of an advanced single-rotation propeller measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Ranaudo, Richard J.

    1989-01-01

    Results are reported from flight measurements of the noise from a full-scale SR-7L advanced single-rotation turbofan model mounted on the wing of the NASA Lewis Propfan Test Assessment (PTA) aircraft (a modified Gulfstream II). Data obtained on the PTA with an outboard microphone boom and by the NASA Lewis acoustically instrumented Learjet flying along several sidelines relative to the PTA are presented in tables and graphs and briefly discussed. It is found that the PTA-boom and Learjet sound levels are in good agreement at Mach 0.69 and altitude 20,000 ft, but the Learjet values are significantly lower than the boom levels at Mach 0.79 and altitude 36,000 ft.

  17. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  18. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  19. Effect of Advanced Location Methods on Search and Rescue Duration for General Aviation Aircraft Accidents in the Contiguous United States

    ERIC Educational Resources Information Center

    Wallace, Ryan J.

    2013-01-01

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization…

  20. Technical and economic assessment of swept-wing span-distributed load concepts for civil and military air cargo transports

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.

  1. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military...

  2. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military...

  3. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military...

  4. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military...

  5. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military...

  6. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  7. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  8. Military medical advances resulting from the conflict in Korea, Part I: Systems advances that enhanced patient survival.

    PubMed

    Baker, Michael S

    2012-04-01

    The Korean War started several years after the World War II had ended and no recognition of the threat or preparation was made for this possibility. The military and its medical service had been downsized after World War II and had to quickly ramp up to meet the surprise attack. The war provided the laboratory for trials and experimentation with the new technological developments of the era. The Korean conflict led to numerous advances in medical systems and patient care. The Mobile Army Surgical Hospital came of age, and was instrumental in saving many lives. Helicopters saw their first regular use as flying ambulances to take the injured to definitive care in a timely fashion. The national blood banking program was rapidly geared up and new techniques such as plastic bags for collection and delivery resulted. Body armor was developed that would allow mobility while offering protection and was widely used for the first time. Each of these systems improvements saved the lives of soldiers in combat and were soon to be used in the civilian sector to save and improve lives around the world.

  9. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  10. Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.

    2011-02-01

    To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.

  11. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  12. High-Speed Propeller for Aircraft

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  13. Iron Sharpens Iron: A Comparative Study of the Advanced Military Studies Program and the School of Advanced Air and Space Studies

    DTIC Science & Technology

    2012-05-17

    COL School of Advanced Military Studies ___________________________________ Director, Robert F . Baumann, Ph.D. Graduate Degree Programs...College Level Training Study,” Final Report, (U.S. Army War College, 13 June 1983), F -4. 15 Department of the Army Headquarters, Field Manual 100-5...increases, see Dr. Benson’s dissertation, “Educating the Army’s Jedi,” page 100, or Huba Wass de Czege’s Training Report, page F -31. 24CGSC Public

  14. Transition of advanced technology to military, homeland security, and law enforcement users

    NASA Astrophysics Data System (ADS)

    Jarrett, Stephen M.

    2004-09-01

    With the attack on the United States and the subsequent war on terror and the wars in Afghanistan and Iraq a need has been exposed for the transition of technology to all of our defenders both combat forces on the foreign battlefield and domestic forces here at home. The establishment of the Department of Homeland Security has also provided a focus on inserting technology to dramatically improve the capability of airport security forces, law enforcement, and all first responder networks. The drastic increase in the use of Special Forces in combat has also required new advanced technology capabilities at a much faster rate of development than the standard military procurement system. Technology developers must address the questions of interoperability, cost, commercialization, of how these groups will use the technology delivered and the adoption criteria of users in the deployment environment. The successful transition to the field must address the formation of complex concepts of operations in the user's adoption criteria. Prototype transition for two systems, a pocket infrared camera and an acoustic/seismic detector, will be highlighted in their effect on the wars in Iraq and Afghanistan and in the heightening of homeland security.

  15. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces.

    PubMed

    Tien, Homer; Beckett, Andrew; Garraway, Naisan; Talbot, Max; Pannell, Dylan; Alabbasi, Thamer

    2015-06-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future.

  16. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces

    PubMed Central

    Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer

    2015-01-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784

  17. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  18. Ballistic impact study of some advanced aircraft materials at sub-ordnance velocities

    SciTech Connect

    Finnegan, S.A.; Covino, J.; Robbs, R.L.

    1995-12-31

    This paper describes the results of ballistic impact tests on two advanced titanium-based aircraft materials to determine damage threshold levels for low-velocity (15-160 m/s) impacts of the kind experienced during take-off and landing operations. The two materials investigated included a super alpha-2 titanium aluminide alloy and a fiber-reinforced beta titanium alloy (i.e., metal-matrix composite). The first was tested in the form of curved truss-core panels and the second in the form of flat sheets. Two different panel configurations and two different fiber layups were examined. Projectiles consisted of aluminum spheres. Impacts were at normal incidence and in the velocity regime below the minimum for perforation (i.e., ballistic limit velocity). Materials were assessed in terms of threshold velocities for permanent deformation and fracture and also in terms of impact dynamics (e.g., projectile rebound velocities and projectile/target contact times). Target damage (e.g., fracture morphology) was also assessed using optical and scanning electron microscopy and ultrasound.

  19. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  20. Advanced low NO/x/ combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Shekleton, J. R.; White, D. J.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO(x), of two advanced aircraft combustor concepts at a simulated, high-altitude cruise condition. The two combustor designs, both members of the lean-reaction, pre-mixed family, are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.127-m size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO(x) level of 1.1 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa, 833 K inlet pressure and temperature, respectively and 1778 K outlet temperature on Jet-A1 fuel. In addition, emissions data were obtained at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  1. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  2. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  3. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  4. How Past Loss of Control Accidents May Inform Safety Cases for Advanced Control Systems on Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2008-01-01

    This paper describes five loss of control accidents involving commercial aircraft, and derives from those accidents three principles to consider when developing a potential safety case for an advanced flight control system for commercial aircraft. One, among the foundational evidence needed to support a safety case is the availability to the control system of accurate and timely information about the status and health of relevant systems and components. Two, an essential argument to be sustained in the safety case is that pilots are provided with adequate information about the control system to enable them to understand the capabilities that it provides. Three, another essential argument is that the advanced control system will not perform less safely than a good pilot.

  5. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  6. External store effects on the stability of fighter and interceptor airplanes. [application to military aircraft mission requirements

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Sawyer, W. C.

    1974-01-01

    Some criteria for external carriage of missiles for fighter aircraft intended for aerial combat missions and for fighter-interceptor missions are considered. The mission requirements discussed include the short-range fighter-interceptor, the short-range interceptor, the medium-range interceptor, and the long-range interceptor. Missiles types considered to be compatible with the various point mission designs include the short-range missile, the medium-range missile, and the long-range missile. From the study, it appears that point mission design aircraft can be arranged in such a way that the required external-store arrangement will not impair the stability of the aircraft. An extensive reference list of NASA external store research is included.

  7. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  8. DOD Initiatives to Rapidly Transition Advanced Coating and Surface Finishing Technologies for Military Turbine Engine Manufacture and Repair

    DTIC Science & Technology

    2005-03-21

    of PEWG Projects Involving Plating, Coating, and Surface Finishing • Advanced thermal spray coatings (HVOF) • Electrospark deposition • Laser...EWI, GEAE, P&W, Rolls-Royce FUNDING SOURCES RTOC STATUS OC-ALC request for FY06 Funding 3/21/2005 22 Other Technologies • Electrospark Deposition for...Aircraft Engines PEWG MANAGER Chuck Alford, Anteon Corp TECHNOLOGY OPPORTUNITY ADVANTAGES: Kinetic spray technologies deposit thick coatings with a

  9. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  10. Cost-Effectiveness of Flight Simulators for Military Training. Volume 2. Estimating Costs of Training in Simulators and Aircraft

    DTIC Science & Technology

    1977-08-01

    academico and simulator session and each flight sortie (for each category of pilot and NFO.) These descriptions, though, are the same for both pilot and...for which acquisition has not been completed. Aircraft used in continuation and transition training generoally have mobilization assignments, and the

  11. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  12. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  13. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 2. Abstract Data Base

    DTIC Science & Technology

    1980-11-05

    B81iq NADC-79123 9-60 Af B-1 FUELS TECHNOLOGYI B.1.3 OTHER AVIATION FUELS U1.1.3.1 NAVY FUNDED ut- R ~Bl-82 J NADC-79239-6U B...determine aerodynamic performance. (Report) NM B.2.1.2.87 73A16634 Oct 1972 US Army, Air Mobility Research and Development Laboratory, Fort Eustis, VA...multi-role aircraft. (Article in Aircraft Engineering Vol. I B.2.1.2.138 R-A750356 Jul 74 AVSCOM Air Mobility R and D Lab Unknoun TitIL: Aircraft

  14. Advance and Retreat: Tobacco Control Policy in the U.S. Military

    PubMed Central

    Arvey, Sarah R.; Malone, Ruth E.

    2009-01-01

    This archival study explored why military tobacco control initiatives have thus far largely failed to meet their goals. We analyzed more than 5,000 previously undisclosed internal tobacco industry documents made public via an online database and additional documents obtained from the U.S. military. In four case studies, we illustrate how pressures exerted by multiple political actors resulted in weakening or rescinding military tobacco control policy initiatives. Our findings suggest that lowering military smoking rates will require health policymakers to better anticipate and counter political opponents. The findings also suggest that effective tobacco control policies may require strong, explicit implementation instructions and high-level Department of Defense support. Finally, policy designers should also consider ways to reduce or eliminate existing perverse incentives to increase tobacco consumption, such as allowing exchange store tobacco sales to fund Morale, Recreation, and Welfare Programs. PMID:19160617

  15. Advance and retreat: tobacco control policy in the U.S. military.

    PubMed

    Arvey, Sarah R; Malone, Ruth E

    2008-10-01

    This archival study explored why military tobacco control initiatives have thus far largely failed to meet their goals. We analyzed more than 5,000 previously undisclosed internal tobacco industry documents made public via an online database and additional documents obtained from the U.S. military. In four case studies, we illustrate how pressures exerted by multiple political actors resulted in weakening or rescinding military tobacco control policy initiatives. Our findings suggest that lowering military smoking rates will require health policymakers to better anticipate and counter political opponents. The findings also suggest that effective tobacco control policies may require strong, explicit implementation instructions and high-level Department of Defense support. Finally, policy designers should also consider ways to reduce or eliminate existing perverse incentives to increase tobacco consumption, such as allowing exchange store tobacco sales to fund Morale, Recreation, and Welfare Programs.

  16. Keeping a Competitive U.S. Military Aircraft Industry Aloft: Findings from an Analysis of the Industrial Base

    DTIC Science & Technology

    2011-01-01

    RAND completed its previous study in 2003, the aerospace industry had just gone through several decades of consolida- tion and mergers , and policymakers...addition 2003 study : Near-term addition 2003 study : Base case Figure B.3 2003 RDT&E Prediction Compared with FY 2000–2010 Actual Funding and FY 2011...2020 0 2003 study : Major combat aircraft addition 2003 study : Near-term addition 2003 study : Base case FY 2000–2010 actuals 2011 FYDP: Current plan

  17. Development of fiber optic sensors for advanced aircraft testing and control

    NASA Astrophysics Data System (ADS)

    Meller, Scott A.; Jones, Mark E.; Wavering, Thomas A.; Kozikowski, Carrie L.; Murphy, Kent A.

    1999-02-01

    Optical fiber sensors, because of the small size, low weight, extremely high information carrying capability, immunity to electromagnetic interference, and large operational temperature range, provide numerous advantages over conventional electrically based sensors. This paper presents preliminary results from optical fiber sensor design for monitoring acceleration on aircraft. Flight testing of the final accelerometer design will be conducted on the F-18 Systems Research Aircraft at NASA Dryden Flight Research Center in Edwards, CA.

  18. Advanced supersonic technology and its implications for the future

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1979-01-01

    A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.

  19. The development of advanced automatic flare and decrab for powered lift short haul aircraft using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gevaert, G.; Feinreich, B.

    1977-01-01

    Advanced automatic flare and decrab control laws were developed for future powered lift STOL aircraft using the NASA-C-8A augmentor wing vehicle as the aircraft model. The longitudinal control laws utilize the throttle for flight path control and use the direct lift augmentor flap chokes for flight path augmentation. The elevator is used to control airspeed during the approach phase and to enhance path control during the flare. The forward slip maneuver was selected over the flat decrab technique for runway alignment because it can effectively handle the large crab angles obtained at STOL approach speeds. Performance evaluation of selected system configurations were obtained over the total landing environment. Limitations were defined and critical failure modes assessed. Pilot display concepts are discussed.

  20. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  1. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  2. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  3. Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    A flight service evaluation of composite inboard ailerons on the L-1011 is discussed. This is the second annual report of the maintenance evaluation program, and covers the period from July 1983 when the first yearly inspections were completed, through July 1984. Four shipsets of graphite/epoxy composite ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons were installed in 1980 on Lockheed's flight test L-1011. A visual inspection was also conducted on these components. No visible damage was observed on any of the composite ailerons, and no maintenance action has occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 6318 to 6989 hours, after approximately 2 years of service.

  4. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  5. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  6. Effect of commercial and military performance requirements for transport category aircraft on space shuttle booster design and operation

    NASA Technical Reports Server (NTRS)

    Bithell, R. A.; Pence, W. A., Jr.

    1972-01-01

    The effect of two sets of performance requirements, commercial and military, on the design and operation of the space shuttle booster is evaluated. Critical thrust levels are established according to both sets of operating rules for the takeoff, cruise, and go-around flight modes, and the effect on engine requirements determined. Both flyback and ferry operations are considered. The impact of landing rules on potential shuttle flyback and ferry bases is evaluated. Factors affecting reserves are discussed, including winds, temperature, and nonstandard flight operations. Finally, a recommended set of operating rules is proposed for both flyback and ferry operations that allows adequate performance capability and safety margins without compromising design requirements for either flight phase.

  7. Military Education: DOD Needs To Develop Performance Goals and Metrics for Advanced Distributed Learning in Professional Military Education. Report to the Ranking Minority Member Committee on Armed Services, House of Representatives. GAO-04-873

    ERIC Educational Resources Information Center

    US Government Accountability Office, 2004

    2004-01-01

    As part of its transformation to prepare the armed forces to meet current and future challenges, the Department of Defense (DOD) is expanding its use of advanced distributed learning (ADL) techniques in senior- and intermediate-level officer professional military education (PME).To determine whether DOD uses a systematic process for evaluating the…

  8. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  9. Development of TMI Logistic Fuel Solid Oxide Fuel Cell (SOFC) for Advanced Military Power Generation Systems

    DTIC Science & Technology

    2007-11-02

    Power generation systems based on the Technology Management, Inc. (TMI) solid oxide fuel cell (SOFC) are an optional modality for military...integrated system using TMI’s proprietary sulfur-tolerant planar solid oxide fuel cell (SOFC) and steam reformer, integrated into a compact unit which

  10. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 3: Penetrating and Overhauling Wreckage

    DTIC Science & Technology

    2011-10-01

    testing, AFRL identified a United States source for the diamond hole saw blade, Broco Cutting and Welding Products, that sold a similar blade for...capability to penetrate and cut through a variety of materials including carbon bismaleimide (BMI) composite, aircraft canopies , metal containers, armored

  11. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  12. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  13. Advances in Sensors and Their Integration into Aircraft Guidance and Control Systems,

    DTIC Science & Technology

    1983-06-01

    OPERATING PRINCIPLES In the military applications of LLTV, the history of competition between photo-emissive and photo-conductive camera tubes has been...consider the natural environment. After tracing the history of the development of opto-mechanical scanners, it will describe a modern high performance...compon- ents. (See reference 3.) A vortex rate sensor, sensitive to yaw rate, drove a pneumatic aileron servo by way of a series of fluidic amplifiers

  14. Effect of advanced location methods on search and rescue duration for general aviation aircraft accidents in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wallace, Ryan J.

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization ceasing satellite monitoring for 121.5 MHz ELTs in 2009 was factored into the study. Additionally, the effect of using radar forensic analysis and cellular phone forensic search methods were also assessed. The study's data was derived from an Air Force Rescue Coordination Center database and included 365 historical general aviation search and rescue missions conducted between 2006 and 2011. Highly skewed data was transformed to meet normality requirements for parametric testing. The significance of each ELT model was assessed using a combination of Brown-Forsythe Means Testing or Orthogonal Contrast Testing. ANOVA and Brown-Forsythe Means testing was used to evaluate cellular phone and radar forensic search methods. A Spearman's Rho test was used to determine if the use of multiple search methods produced an additive effect in search efficiency. Aircraft which utilized an Emergency Locator Transmitter resulted in a shorter search duration than those which did not use such devices. Aircraft utilizing GPS-Aided 406 MHz ELTs appeared to require less time to locate than if equipped with other ELT models, however, this assessment requires further study due to limited data. Aircraft equipped with 406 MHz ELTs required slightly less time to locate than aircraft equipped with older 121.5 MHz ELTs. The study found no substantial difference in the search durations for 121.5 MHz ELTs monitored by COSPAS-SARSAT verses those which were not. Significance testing revealed that the use of cellular phone forensic data and radar forensic data both resulted in substantially higher mission search durations. Some possible explanations for this

  15. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  16. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  17. Comparative analysis and exprimental results of advanced control strategies for vibration suppression in aircraft wings

    NASA Astrophysics Data System (ADS)

    Birs, Isabela R.; Folea, Silviu; Copot, Dana; Prodan, Ovidiu; Muresan, Cristina-I.

    2017-01-01

    The smart beam is widely used as a means of studying the dynamics and active vibration suppression possibilities in aircraft wings. The advantages obtained through this approach are numerous, among them being aircraft stability and manoeuvrability, turbulence immunity, passenger safety and reduced fatigue damage. The paper presents the tuning of two controllers: Linear Quadratic Regulator and Fractional Order Proportional Derivative controller. The active vibration control methods were tested on a smart beam, vibrations being mitigated through piezoelectric patches. The obtained experimental results are compared in terms of settling time and control effort, experimentally proving that both types of controllers can be successfully used to reduce oscillations. The analysis in this paper provides for a necessary premise regarding the tuning of a fractional order enhanced Linear Quadratic Regulator, by combining the advantages of both control strategies.

  18. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  19. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  20. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  1. Douglas Aircraft Company Advanced Concept Ejection Seat (ACES II). Revision C

    DTIC Science & Technology

    1983-01-01

    single place aircraft, ) OGM "PLOYS "A 01, 0t7 0.7 the inertia reel may be initiated by the seat-mounted initiator. Q SoAAc ,INTs o., o., 0, ole Pressure...the switch is selected to -46-DEC PITCH. I160-DEC ROLLI 250 G00 467 "automatic," transmission will commence following seat-man ’FOR THIS CASE, IMPACT

  2. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  3. Thrust Vectoring for Advanced Fighter Aircraft - High Angle of Attack Intake Investigations -

    DTIC Science & Technology

    2001-06-01

    radius Tt total temperature Numerical flow calculations ( CFD ) were to be performed to WAT normalized engine mass flow support the analysis of the... CFD ) investigations will be but could also result in damages of the engine and/or aircraft detailed. Results and comparisons between flows at small...dominated measured, by the shielding of the fuselage and the canard. 4.4 Data analysis During all the testing the intake lip position has been held fixed at

  4. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  5. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    DTIC Science & Technology

    2007-12-20

    Sim6es, D. E. Tallman, G. P. Bierwagen, "Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys ," Corrosion Science 48 (2006...December 20, 200 Final Report July 1, 2004-June 30, 2007 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Corrosion Protection of Al Alloys for Aircraft by...Prof. Dennis E. Tallman: A) New Scanning Probe Studies of Novel Cr-free Active Coatings B) Examination of the Influence of Surface Preparation of Al

  6. Advancing under Fire: Wartime Change and the U.S. Military

    DTIC Science & Technology

    2008-12-01

    database of information on the local population for use by the officers. The following year, a retired special operations colonel joined the program...Service. Retrieved from November 15, 2008, from Lexis-Nexis database . Allen, M. (1993). Military helicopter doctrines of the major powers, 1945-1992...Post. Retrieved November 8, 2008, from ProQuest database . Axe, D. (2007). Learning curve; mine-resistant vehicle program highlights pitfalls of

  7. Exploiting Human Science Advances for Military Operations: Past Challenges & Future Vision

    DTIC Science & Technology

    2009-10-01

    6 RTO-MP-HFM-181 REFERENCES [1] Bell, D. et al. Effects of caffeine , ephedrine, and their combination on high intensity aerobic exercise...only locate, fix, and “kill” military targets, but to also do so from afar. The RMA concepts were effectively demonstrated in operations during the...use of drugs by athletes to improve their performance. 4. EXAMPLES OF POTENTIAL RESEARCH QUESTIONS LEADING TO KNOWLEDGE EXPLOITATION Creative

  8. School of Advanced Military Studies Research Catalog AY 1983 - 1984 through 1991 - 1992

    DTIC Science & Technology

    1992-01-01

    Force Structure and the Modern Battlefield, ADA 167 257 Cottrell, Scott D., Major, EN, Command and Control Relationships and Organization of Baribeau...MI, The Artist’s Ap - the Counterstroke: The Airmechanized Divi- proach to Military Decision-Making at the sion at the Operational Level of War, ADA...Tactical Lift: Herding, Mark P., Major, AR, Physical Train- Flexibility Shortfall in AirLand Operations, ing for the Modem Battlefield: Are We ADA

  9. Optical Quality, Threshold Target Identification, and Military Target Task Performance After Advanced Keratorefractive Surgery

    DTIC Science & Technology

    2012-05-01

    in this study since pregnancy has been shown to cause a change in the spectacle prescription. Walter Reed National Military Medical Center...UNKNOWN RISKS TO YOU OR AN UNBORN CHILD/FETUS It is not known whether this treatment or the medication associated with the surgery might harm an unborn... medications may be passed from mother to child. A period of six month must elapse from the cessation of breast feeding before a soldier is eligible for

  10. Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1979-01-01

    Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.

  11. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  12. Fibre reinforced composites in aircraft construction

    NASA Astrophysics Data System (ADS)

    Soutis, C.

    2005-02-01

    Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.

  13. The New Aztecs: Ritual and Restraint in Contemporary Western Military Operations (Advancing Strategic Thought Series)

    DTIC Science & Technology

    2011-07-01

    contemporary humanitarian law.45 Combat often took on a judicial air , being seen as a means to resolve conflict through the supposed intervention of God’s...allowing large parts of the war zone to serve as sanctuaries81 where American ground troops were never sent, and where air strikes were seldom undertaken...82 Strict requirements were imposed on air combat aircraft to visually identify their potential targets, thus render- ing their long-range missiles

  14. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having a different number of blades on each rotor (nxm, e.g., 10 x 8, 12 x 11). The objectives were: (1) compare annoyance to nxm CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft; (2) determine the effects of tonal content on annoyance; and (3) determine the ability of aircraft noise measurement procedures and corrections to predict annoyance for this new class of aircraft. A computer synthesis system was used to generate 35 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent combinations of 15 fundamental frequency (blade passage frequency) combinations and three tone-to-broadband noise ratios. The fundamental frequencies, which represented blade number combinations from 6 x 5 to 13 x 12 and 7 x 5 to 13 x 11, ranged from 112.5 to 292.5 Hz. The three tone-to-broadband noise ratios were 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  15. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1988-05-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  16. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  17. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  18. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  19. 78 FR 1253 - Schweizer Aircraft Corporation, a Subsidiary of Sikorsky Aircraft Corporation, a Division of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Schweizer Aircraft Corporation, a Subsidiary of Sikorsky Aircraft Corporation, a Division of United Technologies, Inc., DBA Sikorsky Military Completion Center, Including...

  20. Advanced cargo aircraft may offer a potential renaissance in freight transportation

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J.; Sawyer, Wallace C.

    1993-01-01

    The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.

  1. Development of high-lift wing modifications for an advanced capability EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1990-01-01

    NASA-Langley has been in a development program aimed at improvements of the EA-6B electronic countermeasures aircraft's maneuvering capabilities; one objective of this effort is the investigation of relatively simple wing design modifications which could yield improved low speed high lift performance with minimum degradation of higher-speed performance. Various two- and three-dimensional low speed and transonic CFD techniques have accordingly been used during the design effort, which involved leading-edge slat and trailing-edge flap contour evaluations by both computation and wind tunnel experiment. Significant low-speed maximum-lift enhancements were obtained without cruise-speed deterioration.

  2. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  3. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  4. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  5. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  6. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  7. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  8. Military and civilian emergency aeromedical services: common goals and different approaches.

    PubMed

    De Lorenzo, R A

    1997-01-01

    Military and civilian organizations in the U.S. operate separate but parallel emergency aeromedical services. Despite common origins, military and civilian approaches and methods have diverged. This article compares and contrasts the capabilities, priorities, safety, equipment, training and personnel of the largest military service, the U.S. Army, to civilian rotary wing (helicopter) emergency aeromedical programs. The different successes of military and civilian emergency aeromedical programs can be considered for use to improve the services of each. In general, Army programs operate larger aircraft and utilize two pilots per aircraft. Safety is a high priority and the Army aeromedical safety record is excellent. The Army also places a high degree of emphasis on crashworthiness and protective gear for the crew. Most civilian air Emergency Medical Service (EMS) programs operate small to moderate-sized aircraft flying with a single pilot. The recent safety record has improved dramatically. Civilian programs may add to their safety by considering two pilots and incorporating the crashworthy and protective advancements made by the military. Civilian programs fly with two highly trained medical technicians, nurses or physicians, equipped with state-of-the-art medical equipment. Army helicopters fly with one lesser-trained medical crewmember and less equipment. Improved combat casualty care and battlefield survival may be possible by increasing both the number and training of the medical attendants on Army aircraft.

  9. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  10. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  11. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  12. Lift Enhancing Surfaces on Several Advanced V/STOL Fighter/Attack Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Smith, Stephen C.

    1981-01-01

    An analysis of the relative influences of for-ward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate surface that larger LFX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  13. Lift-enhancing surfaces on several advanced V/STOL fighter/attack aircraft concepts

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smith, S. C.

    1981-01-01

    An analysis of the relative influences of forward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate that larger LEX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  14. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    The V/STOL Aircraft Propulsive Effects (VAPE) computerized prediction method is evaluated. The program analyzes viscous effects, various jet, inlet, and Short TakeOff and Landing (STOL) models, and examines the aerodynamic configurations of V/STOL aircraft.

  15. Military medical advances resulting from the conflict in Korea, Part II: Historic clinical accomplishments.

    PubMed

    Baker, Michael S

    2012-04-01

    Throughout the recorded history of civilization, there has been armed conflict. Warfare has been associated with advances in care for the wounded. Many of these advances when shown effective on the battlefield become incorporated into civilian health care. It is a laboratory where there is unfortunately much clinical material and presents opportunity for the creative, curious, and innovative. This article reviews the medical advances that resulted from the Korean War. There were notable advances in neurosurgery, vascular surgery, and plastic surgery. Tools from prior wars were rediscovered, dusted off, and used to stop combat losses from psychiatric trauma. A treatment was developed for cleft lip by a plastic surgeon, thus giving hope to young lives. War is a disruptive, destructive, and harrowing experience--but can lead to improvements in care for the wounded and these developments can improve the lives of people everywhere.

  16. Acquisition: Air Force Transition of Advanced Technology Programs to Military Applications

    DTIC Science & Technology

    2006-05-31

    Requirements Review and Assessment process examines capabilities in Global Strike, Homeland Security, Global Response, Global Mobility , Air and Space...Sum m ary of A dvanced T echnology D evelopm ent Projects R eview ed 23 Note: See footnotes at the end of the appendix. Advanced Technology...Armaments Center (AAC) Yes Yes No Yes Yes n/a10 (Cat 2B) Yes Yes Global Air Mobility Advanced Technologies

  17. Incidence of airsickness among military parachutists.

    PubMed

    Antuñano, M J; Hernandez, J M

    1989-08-01

    This study describes the incidence of airsickness among military parachutists and analyzes the factors involved in its occurrence. Each of 45 healthy male subjects (28 students and 17 advanced parachutists) was studied. Each student participated in five parachute-jump exercises (one daily) and each advanced parachutist participated in one exercise only (proficiency). A questionnaire used for the diagnostic evaluation of motion sickness symptoms was completed by the subjects after each training exercise. A positive diagnosis of airsickness was established for 64% of the students on their first jump and for 35% of the advanced paratroopers on their proficiency jump. By the fifth jump, only 25% of the students experienced airsickness. This suggests that some students developed tolerance to airsickness after five consecutive exposures to inflight vestibular stimulation. Airsickness among student and advanced paratroopers occurred during the transport flight. This can be attributed to vestibular stimulation resulting from the aircraft maneuvers and inflight air turbulence.

  18. A study of rapid engine response systems for an advanced high subsonic, long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Barber, J. H.; Bennett, G. W.; Derosier, T. A.

    1973-01-01

    A dynamic model representing the characteristics of an advanced technology study engine (1985 certification time period) was constructed and programmed on an analogue/digital computer. This model was then exercised to study and evaluate a large number of techniques, singly and in combination, to improve engine response. Several effective methods to reduce engine accelerating time are identified.

  19. Analysis and Modeling of Information Handling Tasks in Supervisory Control of Advanced Aircraft.

    DTIC Science & Technology

    1982-05-01

    Information Management Multi-task Supervision Decision Making Information Seeking Supervisory Control Human-Computer Interactior Information Value...Specific objectives of the three-year program included the following: (1) Formulate a working taxonomy of supervisory control func- tions in advanced...for field application of the information evaluation and management programs in operational airborne systems. The initial year’s work established

  20. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  1. Simulation Modeling of Advanced Pilot Training: The Effects of a New Aircraft Family of Systems

    DTIC Science & Technology

    2014-03-01

    Vendor 4 Figure 2. Advanced Pilot Training The shaded portion of Figure 2 depicts T-38s utilized by the Air Education and Training Command...requirements and resource availability on student throughput. The model runs each scenario fifty times to generate the appropriate data in analysis...parameters in this study can be determined with 10 or 20 replications, however MTBM requires fifty replications to gain accuracy within ±.1 maintenance

  2. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  3. The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.

  4. The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.

  5. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  6. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  7. Development of an advanced pitch active control system and a reduced area horizontal tail for a wide-body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.

    1984-01-01

    The development of an advanced pitch active control system (PACS) and a reduced area horizontal tail for a wide-body jet transport (L-1011) with a flying horizontal stabilizer is discussed. The advanced PACS control law design objectives were to provide satisfactory handling qualities for aft c.g. flight conditions to negative static stability margins of 10 percent and to provide good maneuver control column force gradients for nonlinear stability flight conditions. Validity of the control laws were demonstrated by piloted flight simulation tests on the NASA Langley Visual Motion Simulator. Satisfactory handling qualities were actually demonstrated to a negative 20 percent static stability margin. The PACS control laws were mechanized to provide the system architecture that would be suitable for an L-1011 flight test program to a negative stability margin of 3 percent which represents the aft c.g. limits of the aircraft. Reduced area horizontal tail designs of 30 and 38 percent with respect to the L-1011 standard tail were designed, fabricated and wind tunnel tested. Drag reductions and weight savings of the 30 percent smaller tail would provide an L/D benefit of about 2% and the 38% small tail L/D benefit would be about 3 percent. However, forward c.g. limitations would have to be imposed on the aircraft because the maximum horizontal tail lift goal was not achieved and sufficient aircraft nose-up control authority was not available. This limitation would not be required for a properly designed new aircraft.

  8. On design methods for bolted joints in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Ireman, Tomas; Nyman, Tonny; Hellbom, Kurt

    The problems related to the determination of the load distribution in a multirow fastener joint using the finite element method are discussed. Both simple and more advanced design methods used at Saab Military Aircraft are presented. The stress distributions obtained with an analytically based method and an FE-based method are compared. Results from failure predictions with a simple analytically based method and the more advanced FE-based method of multi-fastener tension and shear loaded test specimens are compared with experiments. Finally, complicating factors such as three-dimensional effects caused by secondary bending and fastener bending are discussed and suggestions for future research are given.

  9. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  10. Redesigning of a Canard Control Surface of an Advanced Fighter Aircraft: Effect on Buckling and Aerodynamic Behavior

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    A redesign of canard control-surface of an advanced all-metallic fighter aircraft was carried out by using carbon fibre composite (CFC) for ribs and panels. In this study ply-orientations of CFC structure are optimized using a Genetic-Algorithm (GA) with an objective function to have minimum failure index (FI) according to Tsai-Wu failure criterion. The redesigned CFC structure was sufficiently strong to withstand aerodynamic loads from stress and deflection points of view. Now, in the present work CFC canard structure has been studied for its buckling strength in comparison to existing metallic design. In this study, the existing metallic design was found to be weak in buckling. Upon a detailed investigation, it was revealed that there are reported failures in the vicinity of zones where initial buckling modes are excited as predicted by the finite element based buckling analysis. In view of buckling failures, the redesigned CFC structure is sufficiently reinforced with stringers at specific locations. After providing reinforcements against buckling, the twist and the camber variations of the airfoil are checked and compared with existing structure data. Finally, the modal analysis has been carried out to compare the variation in excitation frequency due to material change. The CFC structure thus redesigned is safe from buckling and aerodynamic aspects as well.

  11. A joint numerical and experimental study of the jet of an aircraft engine installation with advanced techniques

    NASA Astrophysics Data System (ADS)

    Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.

    2012-01-01

    This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.

  12. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  13. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  14. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  15. A study of engine variable geometry systems for an advanced high subsonic long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Compagnon, M. A.

    1973-01-01

    Several variable geometry high Mach inlet concepts, aimed at meeting a system noise objective of 15 EPNdB below FAR part 36, for a long range, Mach 0.9 advanced commercial transport are assessed and compared to a fixed geometry inlet with multiple splitters. The effects of a variable exhaust nozzle (mixed exhaust engine) on noise, inlet geometry requirements, and economics are also presented. The best variable geometry inlet configuration identified is a variable cowl design which relies on a high throat Mach number for additional inlet noise suppression only at takeoff, and depends entirely on inlet wall treatment for noise suppression at approach power. Relative economic penalties as a function of noise level are also presented.

  16. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  17. Military Psychology.

    DTIC Science & Technology

    MILITARY FORCES(FOREIGN), *MILITARY PSYCHOLOGY , *TEXTBOOKS, USSR, ORGANIZATIONS, COMBAT READINESS, PSYCHOMOTOR FUNCTION, REASONING, SURVEYS...TRANSLATIONS, MILITARY TRAINING, OFFICER PERSONNEL, PERCEPTION( PSYCHOLOGY ), PERSONALITY, COMMUNISM, INTERPERSONAL RELATIONS, EMOTIONS.

  18. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  19. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  20. Social Workers in Combat: Application of Advanced Practice Competencies in Military Social Work and Implications for Social Work Education

    ERIC Educational Resources Information Center

    Brand, Michael W.; Weiss, Eugenia L.

    2015-01-01

    This article illustrates the types of situations that U.S. uniformed social workers have experienced in combat deployments to Iraq and Afghanistan with the purpose of preparing current and future social workers to effectively serve military and veteran clients in either military or civilian settings. Vignettes demonstrate the application of the…

  1. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  2. Advanced composites characterization with x-ray technologies

    NASA Astrophysics Data System (ADS)

    Baaklini, George Y.

    1993-12-01

    Recognizing the critical need to advance new composites for the aeronautics and aerospace industries, we are focussing on advanced test methods that are vital to successful modeling and manufacturing of future generations of high temperature and durable composite materials. These newly developed composites are necessary to reduce propulsion cost and weight, to improve performance and reliability, and to address longer-term national strategic thrusts for sustaining global preeminence in high speed air transport and in high performance military aircraft.

  3. Advanced Low-Emissions Catalytic-Combustor Program, phase 1. [aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.

    1981-01-01

    Six catalytic combustor concepts were defined, analyzed, and evaluated. Major design considerations included low emissions, performance, safety, durability, installations, operations and development. On the basis of these considerations the two most promising concepts were selected. Refined analysis and preliminary design work was conducted on these two concepts. The selected concepts were required to fit within the combustor chamber dimensions of the reference engine. This is achieved by using a dump diffuser discharging into a plenum chamber between the compressor discharge and the turbine inlet, with the combustors overlaying the prediffuser and the rear of the compressor. To enhance maintainability, the outer combustor case for each concept is designed to translate forward for accessibility to the catalytic reactor, liners and high pressure turbine area. The catalytic reactor is self-contained with air-cooled canning on a resilient mounting. Both selected concepts employed integrated engine-starting approaches to raise the catalytic reactor up to operating conditions. Advanced liner schemes are used to minimize required cooling air. The two selected concepts respectively employ fuel-rich initial thermal reaction followed by rapid quench and subsequent fuel-lean catalytic reaction of carbon monoxide, and, fuel-lean thermal reaction of some fuel in a continuously operating pilot combustor with fuel-lean catalytic reaction of remaining fuel in a radially-staged main combustor.

  4. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  5. Development of Pneumatic Channel Wing Powered-Lift Advanced Super-STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Campbell, Bryan A.

    2002-01-01

    The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. A preliminary design study of this pneumatic vehicle based on previous wind-tunnel and flight-test data for the two technologies integrated into a simple Pneumatic Channel Wing (PCW) configuration showed very strong Super-STOL potential. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (C(sub L) values of 8.5 to 9.0). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg-45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. This paper presents these experimental results, discusses variations in the configuration geometry under development, and extends this integrated technology to advanced design studies of PCW-type vehicles.

  6. Proposed Rule and Related Materials for Proposed Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare and Advance Notice of Proposed Rulemaking

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Proposed Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare and Advance Notice of Proposed Rulemaking

  7. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  8. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  9. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  10. 22 CFR 121.3 - Aircraft and related articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Aircraft and related articles. 121.3 Section... STATES MUNITIONS LIST Enumeration of Articles § 121.3 Aircraft and related articles. In Category VIII, aircraft means aircraft designed, modified, or equipped for a military purpose, including...

  11. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  12. 22 CFR 121.3 - Aircraft and related articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Aircraft and related articles. 121.3 Section... STATES MUNITIONS LIST Enumeration of Articles § 121.3 Aircraft and related articles. In Category VIII, aircraft means aircraft designed, modified, or equipped for a military purpose, including...

  13. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  14. Military applications of a cockpit integrated electronic flight bag

    NASA Astrophysics Data System (ADS)

    Herman, Robert P.; Seinfeld, Robert D.

    2004-09-01

    Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.

  15. Results of recent NASA studies on automatic spin prevention for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Nguyen, L. T.

    1976-01-01

    A broad based research program was developed to eliminate or minimize inadvertent spins for advanced military aircraft. Recent piloted simulator studies and airplane flight tests have demonstrated that the automatic control systems in use on current fighters can be tailored to provide a high degree of spin resistance for some configurations without restrictions to maneuverability. Such systems result in greatly increased tactical effectiveness, safety, and pilot confidence.

  16. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.

  17. Multirole cargo aircraft options and configurations. [economic analysis

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Vaughan, J. C., III

    1979-01-01

    A future requirements and advanced market evaluation study indicates derivatives of current wide-body aircraft, using 1980 advanced technology, would be economically attractive through 2008, but new dedicated airfreighters incorporating 1990 technology, would offer little or no economic incentive. They would be economically attractive for all payload sizes, however, if RD and T costs could be shared in a joint civil/military arrangement. For the 1994-2008 cargo market, option studies indicate Mach 0.7 propfans would be economically attractive in trip cost, aircraft price and airline ROI. Spanloaders would have an even lower price and higher ROI but would have a relatively high trip cost because of aerodynamic inefficiencies. Dedicated airfreighters using propfans at Mach 0.8 cruise, laminar flow control, or cryofuels, would not provide any great economic benefits. Air cushion landing gear configurations are identified as an option for avoiding runway constraints on airport requirements and/or operational constraints are noted.

  18. The Soviet Military Education System for Commissioning and Training Officers

    DTIC Science & Technology

    1980-09-01

    Organization; Instructor Complement; Curriculum; Manpower Levels; Military Academies; Other Advanced Officer Training; The Military Academy of the General Staff; Post Graduate Programs ; Central Hierarchy; Overall Manpower Estimates.

  19. Quiet propulsive-lift technology ready for civil and military applications

    NASA Technical Reports Server (NTRS)

    Cochrane, J. A.; Queen, S. J.

    1981-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) was designed as research aircraft for investigating terminal-area operations with an advanced propulsive-lift aircraft. The QSRA is a modified De Havilland C-8 Buffalo. The modification to the C-8 consisted of adding a new swept wing with four top-mounted Lycoming YF-102 turbofan engines to provide high levels of propulsive-lift through upper-surface blowing. The state of the art has reached the point where consideration can be given to various applications, including military transport aircraft, civil transports, and business jets. Attention is also given to a ground attack plane with QSRA, the payload advantage resulting from applying propulsive-life technology, and aspects of takeoff performance

  20. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  1. A Review of Selected Elements of the FY73 Programs on Test and Evaluation of Aircraft Survivability (TEAS). Volume 2. Appendix A: bibliography for Vulnerability and Survivability of Military Aircraft,

    DTIC Science & Technology

    1973-07-31

    17 S 1967 NASC-CREW SYSTEMS ’IV. Battle Damage und Casualty Information for Navy Air Operations In Southeast Aula 386,374L S 196...Fxpirlmental Aircraft Passive Ot f eiise Artnur System 891957L U 1970 AFATI. IK-70-112, BOOK I, II 891958L Bui 11. tic Impact Mechanics

  2. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  3. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    tensile properties. The cost increase is minimal. The alloy 7471.-T76 has been selected to replace 7075, since it has higher toughness and virtually the...i. / fy/’AtJ’Jk fyfJPt’Mi RAY PPff LOHOtKON WfJEK LOHuneOAJ Wf-Ti AL AL/ \\ \\ I I ENälNl COMPT AULA sopezPLAinc yexwD JET FLAP hwP

  4. Aircraft Environmental System Mechanic, 2-9. Block IV--Utility Systems and Flight Line Maintenance. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. The instructional design for this course is self-paced and/or small group-paced. Instructor materials contained in the…

  5. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  6. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  7. A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.

  8. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  9. Aircraft recognition and tracking device

    NASA Astrophysics Data System (ADS)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  10. NASA advanced design program: Analysis, design, and construction of a solar powered aircraft. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.

  11. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  12. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  13. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  14. USSR Report, Military Affairs

    DTIC Science & Technology

    1985-04-24

    Contents: TEKHNIKA I VOORUZHENIYE No 1, 1985 (TEKHNIKA I VOORUZHENIYE, No 1, Jan 85) 18 AIR / AIR DEFENSE FORCES Party Work, Improving Technical...One night an enemy aircraft flew over us and dropped its supply of bombs which, I think, our air defense troops and fighters did not allow it to...Eastern, Carpathian, Kiev and Turkestan military districts, the Baltic Fleet, the Moscow Air Defense District, and the organizations led by comrades

  15. Emerging NDE Technology for aging aircraft

    SciTech Connect

    Moore, D.G.; Perry, R.L.

    1998-03-01

    This paper presents an overview of several emerging nondestructive evaluation technologies that are being employed or considered for use to inspect commercial transport, commuter aircraft and military aircraft. An overview of the Federal Aviation Administration (FAA) Airworthiness Assurance NDI Validation Center (AANC) is described and how AANC teams with industry, universities, and other federal entities to assess these technologies.

  16. Dumbo heavy lifter aircraft

    NASA Technical Reports Server (NTRS)

    Riester, Peter; Ellis, Colleen; Wagner, Michael; Orren, Scott; Smith, Byron; Skelly, Michael; Zgraggen, Craig; Webber, Matt

    1992-01-01

    The world is rapidly changing from one with two military superpowers, with which most countries were aligned, to one with many smaller military powers. In this environment, the United States cannot depend on the availability of operating bases from which to respond to crises requiring military intervention. Several studies (e.g. the SAB Global Reach, Global Power Study) have indicated an increased need to be able to rapidly transport large numbers of troops and equipment from the continental United States to potential trouble spots throughout the world. To this end, a request for proposals (RFP) for the concept design of a large aircraft capable of 'projecting' a significant military force without reliance on surface transportation was developed. These design requirements are: minimum payload of 400,000 pounds at 2.5 g maneuver load factor; minimum unfueled range of 6,000 nautical miles; and aircraft must operate from existing domestic air bases and use existing airbases or sites of opportunity at the destination.

  17. Aircraft Disinsection: A Guide for Military and Civilian Air Carriers (Desinsectisation des aeronefs: Un guide a l’intention des responsables des transports aeriens civils et militaires)

    DTIC Science & Technology

    1996-04-01

    D.K. Hayes, K. Stalker, and R. Pal, 1978. A comparison of Freon- and water -based insecticidal aerosols for air- craft disinsection. Bull. WHO 56(1):129...Chemical Pest Management Decision-making 32 12.2 Scheduling Insecticide Treatments 33 vi 12.3 Insecticide Selection 34 12.4 Equipment and Materials...walk to Aircraft Connections 42 12.7 Use of Insecticidal Baits 42 12.8 Fumigation 42 12.8.1 Fumigation with Methyl Bromide 42 12.8.2 Fumigation

  18. A global range military transport: The ostrich

    NASA Technical Reports Server (NTRS)

    Aguiar, John; Booker, Cecilia; Hoffman, Eric; Kramar, James; Manahan, Orlando; Serranzana, Ray; Taylor, Mike

    1993-01-01

    Studies have shown that there is an increasing need for a global range transport capable of carrying large numbers of troops and equipment to potential trouble spots throughout the world. The Ostrich is a solution to this problem. The Ostrich is capable of carrying 800,000 pounds 6,500 n.m. and returning with 15 percent payload, without refueling. With a technology availability date in 2010 and an initial operating capability of 2015, the aircraft incorporates many advanced technologies including laminar flow control, composite primary structures, and a unique multibody design. By utilizing current technology, such as using McDonnell Douglas C-17 fuselage for the outer fuselages on the Ostrich, the cost for the aircraft was reduced. The cost of the Ostrich per aircraft is $1.2 billion with a direct operating cost of $56,000 per flight hour. The Ostrich will provide a valuable service as a logistical transport capable of rapidly projecting a significant military force or humanitarian aid anywhere in the world.

  19. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.

  20. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  1. Experimentation and evaluation of threat detection and local area awareness using advanced computational technologies in a simulated military environment

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jason S.; Brick Larkin, Gabriella; Johnson, Tony; Oie, Kelvin; Paul, Victor; Davis, James

    2010-04-01

    Tomorrows military systems will require novel methods for assessing Soldier performance and situational awareness (SA) in mobile operations involving mixed-initiative systems. Although new methods may augment Soldier assessments, they may also reduce Soldier performance as a function of demand on workload, requiring concurrent performance of mission and assessment tasks. The present paper describes a unique approach that supports assessment in environments approximating the operational context within which future systems will be deployed. A complex distributed system was required to emulate the operational environment. Separate computational and visualization systems provided an environment representative of the military operational context, including a 3D urban environment with dynamic human entities. Semi-autonomous driving was achieved with a simulated autonomous mobility system and SA was assessed through digital reports. A military crew station mounted on a 6-DOF motion simulator was used to create the physical environment. Cognitive state evaluation was enabled using physiological monitoring. Analyses indicated individual differences in temporal and accuracy components when identifying key features of potential threats; i.e., comparing Soldiers and insurgents with non-insurgent civilians. The assessment approach provided a natural, operationally-relevant means of assessing needs of future secure mobility systems and detecting key factors affecting Soldier-system performance as foci for future development.

  2. Toward improved durability in advanced aircraft engine hot sections; Proceedings of the Thirty-third ASME International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, Netherlands, June 5-9, 1988

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1988-01-01

    The present conference on durability improvement methods for advanced aircraft gas turbine hot-section components discusses NASA's 'HOST' project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  3. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  4. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  5. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  6. Aircraft Survivability. Spring 2011

    DTIC Science & Technology

    2011-01-01

    advancing and applying technology to predict, evaluate , and improve combat survivability of US flight vehicles. John graduated from the University of...support for most of the aircraft and anti-aircraft programs conducted to date under LFT&E statutory requirements. A number of these test and evaluation ...initiatives to improve the state-of-the-art of LFT&E, to place greater emphasis on the evaluation of human casualties, to integrate Battle Damage

  7. Airline return-on-investment model for technology evaluation. [computer program to measure economic value of advanced technology applied to passenger aircraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This report presents the derivation, description, and operating instructions for a computer program (TEKVAL) which measures the economic value of advanced technology features applied to long range commercial passenger aircraft. The program consists of three modules; and airplane sizing routine, a direct operating cost routine, and an airline return-on-investment routine. These modules are linked such that they may be operated sequentially or individually, with one routine generating the input for the next or with the option of externally specifying the input for either of the economic routines. A very simple airplane sizing technique was previously developed, based on the Brequet range equation. For this program, that sizing technique has been greatly expanded and combined with the formerly separate DOC and ROI programs to produce TEKVAL.

  8. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  9. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  10. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... exclude military UASs, model aircraft, and commercial spacecraft operating under FAA waivers. ] List of... From the Federal Register Online via the Government Publishing Office NATIONAL TRANSPORTATION SAFETY BOARD 49 CFR Part 830 Notification and Reporting of Aircraft Accidents or Incidents and...

  11. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  12. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  13. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  14. Military Government

    DTIC Science & Technology

    1949-07-01

    CGSC MG MILITARY GOVERNMENT LIBHARY ARI\\’IY WAR COLLEGE CJ\\RLISLE BARRACKS, PAa This text is approved for resident and extension-course...and functions · of ’ military government . It conforms ·substantially to the subject matter , of Field Manual 27-5, Civil Affairs/ Military Government ...Teaching experience at the Command and General Staff College has ···--·demonstrated the need for a military government text which brings to- gether

  15. India and Pakistan Civil-Military Relations

    DTIC Science & Technology

    2015-05-21

    India and Pakistan Civil -Military Relations A Monograph by MAJ Brent Williams United States Army School of Advanced...2015 2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2014 – MAY 2015 4. TITLE AND SUBTITLE India and Pakistan Civil Military...explains civil -military relationships throughout a wide range of interactions between a society and the society’s military. The monograph uses this

  16. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some U.S. and U.S.S.R. aircraft. The emphasis is on the historical development of large aircraft - civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  17. Some comparisons of US and USSR aircraft design developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    A review is given of the design and development of some US and USSR aircraft. The emphasis is on the historical development of large aircraft-civil and military transports and bombers. Design trends are somewhat similar for the two countries and indications are that some fundamental characteristics are dictated more by ideological differences rather than technological differences. A brief description is given in a more or less chronological order of the major bomber aircraft, major civil and military transport aircraft, and the development of the air transport systems.

  18. Technical Seminar: "Progress in Aircraft Noise Research"""

    NASA Video Gallery

    Advances in aircraft noise research can be attributed to the development of new technologies and sustained collaboration with industry, universities and government organizations. Emphasis has been ...

  19. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  20. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  1. Beware of agents when flying aircraft: Basic principles behind a generic methodology for the evaluation and certification of advanced aviation systems

    NASA Technical Reports Server (NTRS)

    Javaux, Denis; Masson, Michel; Dekeyser, Veronique

    1994-01-01

    There is currently a growing interest in the aeronautical community to assess the effects of the increasing levels of automation on pilots' performance and overall safety. The first effect of automation is the change in the nature of the pilot's role on the flight deck. Pilots have become supervisors who monitor aircraft systems in usual situations and intervene only when unanticipated events occur. Instead of 'hand flying' the airplane, pilots contribute to the control of aircraft by acting as mediators, instructions given to the automation. By eliminating the need for manually controlling normal situations, such a role division has reduced the opportunities for the pilot to acquire experience and skills necessary to safely cope with abnormal events. Difficulties in assessing the state and behavior of automation arise mainly from four factors: (1) the complexity of current systems and consequence mode-related problems; (2) the intrinsic autonomy of automation which is able to fire mode transitions without explicit commands from the pilots; (3) the bad quality of feed-back from the control systems displays and interfaces to the pilots; and (4) the fact that the automation currently has no explicit representation of the current pilots' intentions and strategy. Assuming certification has among its major goals to guarantee the passengers' and pilots' safety and the airplane integrity under normal and abnormal operational conditions, the authors suggest it would be particularly fruitful to come up with a conceptual reference system providing the certification authorities both with a theoretical framework and a list of principles usable for assessing the quality of the equipment and designs under examination. This is precisely the scope of this paper. However, the authors recognize that the conceptual presented is still under development and would thus be best considered as a source of reflection for the design, evaluation and certification processes of advanced

  2. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  3. 75 FR 36034 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ...: EPA is announcing a 60-day extension of the public comment period for the Advance Notice of Proposed... Register on April 28, 2010. The public comment period was to end on June 28, 2010 (60 days after its publication in the Federal Register). This document extends the comment period an additional 60 days...

  4. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  5. N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    NASA Technical Reports Server (NTRS)

    Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir; Duge, Robert; OBrien, Mark; Cedoz, Robert; Barlow, Andrew; Martins, Steve; Viars, Phil; Rasheed, Adam; Kirby, Michelle; Raczynski, Chris; Roughen, Kevin; Doyle, Steven; Alston, Katherine; Page, Juliet; Plotkin, Kenneth J.

    2011-01-01

    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.

  6. Survey of needs and capabilities for wind tunnel testing of dynamic stability of aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Orlik-Ruckemann, K. J.

    1973-01-01

    A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.

  7. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  8. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  9. Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    The present conference on advanced marine vehicles discusses advancements in surface-effect ship (SES) technologies, small waterplane-area twin-hull (SWATH) ship operations, advanced marine vehicle concepts, ocean systems and subsurface vehicles, air-cushion vehicle (ACV) concepts, seaplane technologies, advanced hull hydrodynamics, wing-in-ground effect (WIGE) aircraft, competition-craft aerodynamics, and marine propulsion. Attention is given to military applications of the 'NES 200' SES platform, experiences over 16 years of SWATH ship operations, hydrofoil catamarans for military and civilian applications, SES passenger ferries for the N.Y.C. metropolitan area, advanced submarine concepts, parametric studies in SWATH ship design, ACV experience in Antarctica, the CL-215 seaplane, large-scale WIGE vehicles, an ocean spacecraft-launch facility, an ACV Arctic icebreaker, and 'marinizing' methods for gas turbine engines.

  10. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  11. The SnoDog: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Ashbaugh, Scott; Bartel, Kent; Cavalli, J. R.; Chan, John; Chung, Jason; Dimaranan, Liza; Freese, Mike; Levitt, Rick; Soban, Dani

    1991-01-01

    U.S. military forces are presently searching for the next generation Close Air Support aircraft. The following report presents the SnoDog, a low-cost ($14.8 million) aircraft capable of operating from remote battlefields and unimproved airstrips. The configuration consists of a conventional, low aspect-ratio wing, twin booms, twin canted vertical stabilizers along with a high-mounted joined horizontal tail. A supercritical airfoil for the wing enhances aerodynamic performance, while the SnoDog's instability increases maneuverability over current close air support aircraft. Survivability was incorporated into the design by the use of a titanium tub to protect the cockpit from anti-aircraft artillery, as well as, the twin booms and retracted gear disposition. The booms aid survivability by supplying separated, redundant controls, and the landing gear are slightly exposed when retracted to enable a belly landing in emergencies. Designed to fly at Mach .76, the SnoDog is powered by two low-bypass turbofan engines. Engine accessibility and interchangeable parts make the SnoDog highly maintainable. The SnoDog is adaptable to many different missions, as it is capable of carrying advanced avionics pods, carrying external fuel tanks or refueling in-air, and carrying various types of munitions. This makes the SnoDog a multirole aircraft capable of air-to-air and air-to-ground combat. This combination of features make the SnoDog unique as a close air support aircraft, capable of meeting the U.S. military's future needs.

  12. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  13. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft.

  14. Study of utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Campion, M. C.; Pei, G.

    1984-01-01

    The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.

  15. 11 CFR 100.93 - Travel by aircraft or other means of transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... government aircraft described in paragraph (e) of this section or a candidate or family owned aircraft...) For travel to or from a military airbase or other location not accessible to the general public, the... first-class commercial airline service that is geographically closest to the military airbase or...

  16. 11 CFR 100.93 - Travel by aircraft or other means of transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... government aircraft described in paragraph (e) of this section or a candidate or family owned aircraft...) For travel to or from a military airbase or other location not accessible to the general public, the... first-class commercial airline service that is geographically closest to the military airbase or...

  17. 11 CFR 100.93 - Travel by aircraft or other means of transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... government aircraft described in paragraph (e) of this section or a candidate or family owned aircraft...) For travel to or from a military airbase or other location not accessible to the general public, the... first-class commercial airline service that is geographically closest to the military airbase or...

  18. 11 CFR 100.93 - Travel by aircraft or other means of transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... government aircraft described in paragraph (e) of this section or a candidate or family owned aircraft...) For travel to or from a military airbase or other location not accessible to the general public, the... first-class commercial airline service that is geographically closest to the military airbase or...

  19. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1931-01-01

    The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.

  20. Noise requirements from a military point of view

    NASA Technical Reports Server (NTRS)

    Crawford, C. C., Jr.

    1978-01-01

    External and internal aircraft noise requirements are discussed in terms of application to military helicopters. The impact of the application of noise reduction technology to comply with FAA standards on cost and performance is emphasized.