Science.gov

Sample records for advanced mirror system

  1. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  2. Analytical verifications of NGST Advanced Mirror System Demonstrators

    NASA Astrophysics Data System (ADS)

    Cummings, Ramona O.; Peters, Bruce R.; Sutherlin, Steven; Smithers, Martin E.; Robinson, James

    2002-12-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper presents analytical verification and validation segments currently added to ambient and vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies for the Next Generation Space Telescope (NGST) project. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with analyses to be performed for AMSD testing, currently slated for calendar year 2003. These segments form a well-verified portion of the integrated modeling being conducted on AMSD for NGST performance predictions.

  3. Ball Semi-Rigid Advanced Mirror System Demonstrator (AMSD)

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Russell, Kevin (Technical Monitor)

    2001-01-01

    The AMSD Program is to design, fabricate, and test a 1.4-m point-to-point hexagon mirror system. The Ball semi-rigid approach will be described and its current status presented, The mirror system includes a lightweighted beryllium mirror that is attached through flexures and actuators to a composite reaction structure enabling optical performance at ambient and cryogenic temperatures and allowing changes of curvature to be imposed via actuation. This program is administered through NASA MSFC and is jointly funded by NASA, the USAF, and the NRO.

  4. Advanced metal mirror processing for tactical ISR systems

    NASA Astrophysics Data System (ADS)

    Schaefer, John P.

    2013-05-01

    Using its patented VQ™ finishing process, Raytheon EO Innovations has been producing low-scatter, low-figure and affordable aluminum 6061-based mirrors for long stand-off intelligence, surveillance and reconnaissance (ISR) systems in production since 2005. These common aperture multispectral systems require λ/30 root mean square (RMS) surface figure and sub-20Å RMS finishes for optimal visible imaging performance. This paper discusses the process results, scatter performance, and fabrication capabilities of Multispectral Reflective Lightweight Optics Technology (MeRLOT™), a new lightweight substrate material. This new technology enables lightweight, common-aperture, broadband performance that can be put in the hands of the warfighter for precision targeting and surveillance operations.

  5. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    SciTech Connect

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

  6. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  7. Mirror systems

    SciTech Connect

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs. (LEW)

  8. Advanced Curvature Deformable Mirrors

    DTIC Science & Technology

    2010-09-01

    designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer

  9. Alignment of an aspheric mirror subsystem for an advanced infrared catadioptric system

    NASA Astrophysics Data System (ADS)

    Tingstad, James S.

    1991-12-01

    With many optical systems the method that is used to align the optical system needs to be an integral portion of the system design and not an afterthought. Once all the pieces are in fabrication it may be too late to implement a cost-effective alignment procedure for both prototype and production designs. This is especially true with catadioptric systems where the mirror alignment tends to be very critical as far as system performance is concerned. This paper describes the design and use of an aspheric null mirror for the alignment of a two mirror subsystem to a lens cell. The optical system to be aligned was a six-in. EFL, F/2 system working in the 3-5 micrometers bandpass. It consisted of two aspheric mirrors, one aspheric lens, and two spherical lenses.

  10. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  11. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  12. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  13. Afocal two-mirror system

    NASA Astrophysics Data System (ADS)

    Puryaev, Daniil T.

    1993-06-01

    With mirrors of any aperture, the afocal two-mirror system has no spherical aberration. One mirror is spherical, and the other mirror is always an aspherical surface that is equidistant to the virtual parabolic mirror, the focal length of the latter being equal to the air separation between the mirrors. Therefore, a possibility exists of inspecting the aspherical surface shape by means of the known testing methods of the parabolic mirror. The system under consideration has some important technological advantages in comparison with the well-known Mersen system.

  14. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  15. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  16. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  17. Two-mirror optical system with a small fold mirror

    NASA Astrophysics Data System (ADS)

    Liu, Xinping; Li, Yingcai; Yang, Jianfeng

    1998-09-01

    A new configuration of two-mirror optical system with a small fold mirror is presented in this paper. Consisting of a concave (positive power) primary mirror followed by a small flat mirror, a concave (positive power) secondary mirror, four lenses and a beam splitter, it gives the excellent image quality. A 1.5-m EFL, F/10 system of the upper configuration is designed over the 4 degree(s) field angle and 0.50 approximately 0.70 micrometers wavelength range. The aberrations have been highly corrected and the distortion is less than 0.3% over the field. The obscuration could be minimized by reducing primary radius of curvature and avoiding the spider that holds the small fold mirror.

  18. Advanced Mirror Technology Development for Very Large Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  19. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  20. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold,William R., Sr.; Bevan, Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  1. Integration of Mirror Design with Suspension System Using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Bevan, Ryan M.; Stahl, H. Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  2. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  3. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  4. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    NASA Astrophysics Data System (ADS)

    1997-03-01

    Performing beyond expectations, the high- resolution mirrors for NASA's most powerful orbiting X-ray telescope have successfully completed initial testing at Marshall Space Flight Center's X-ray Calibration Facility, Huntsville, AL. "We have the first ground test images ever generated by the telescope's mirror assembly, and they are as good as -- or better than -- expected," said Dr. Martin Weisskopf, Marshall's chief scientist for NASA's Advanced X-ray Astrophysics Facility (AXAF). The mirror assembly, four pairs of precisely shaped and aligned cylindrical mirrors, will form the heart of NASA's third great observatory. The X-ray telescope produces an image by directing incoming X-rays to detectors at a focal point some 30 feet beyond the telescope's mirrors. The greater the percentage of X-rays brought to focus and the smaller the size of the focal spot, the sharper the image. Tests show that on orbit, the mirror assembly of the Advanced X-ray Astrophysics Facility will be able to focus approximately 70 percent of X-rays from a source to a spot less than one-half arc second in radius. The telescope's resolution is equivalent to being able to read the text of a newspaper from half a mile away. "The telescope's focus is very clear, very sharp," said Weisskopf. "It will be able to show us details of very distant sources that we know are out there, but haven't been able to see clearly." In comparison, previous X-ray telescopes -- Einstein and Rosat -- were only capable of focusing X- rays to five arc seconds. The Advanced X-ray Telescope's resolving power is ten times greater. "Images from the new telescope will allow us to make major advances toward understanding how exploding stars create and disperse many of the elements necessary for new solar systems and for life itself," said Dr. Harvey Tananbaum, director of the Advanced X- ray Astrophysics Facility Science Center at the Smithsonian Astrophysical Observatory, in Cambridge, MA -- responsible for the telescope

  5. Advances in very lightweight composite mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Bowers, Charles W.; Content, David A.; Marzouk, Marzouk; Romeo, Robert C.

    2000-09-01

    We report progress in the development of very lightweight (< 5 kg/m2) mirrors made by replication using graphite fiber cyanate ester resin composites. The replication process is optimized to significantly improve the surface smoothness and figure quality. Achievements include near- diffraction-limited optical performance [< 1/20 wave root mean square (rms) at 632.8 nm] in replica flats, fractional wave rms performance in curved mirrors at 90% pupil, and almost exact reproduction of the surface microroughness of the mandrel. The curved mirrors typically show some edge roll off and several waves (rms optical) of astigmatism, coma, and third-order spherical aberration. These are indications of thermal contraction in an inhomogeneous medium. This inhomogeneity is due to a systematic radial variation in density and fiber/resin ratio induced in composite plies when draped around a small and highly curved mandrel. The figure accuracy is expected to improve with larger size optics and in mirrors with longer radii of curvature. Nevertheless, the present accuracy figure is sufficient for using postfiguring techniques such as ion milling to achieve diffraction-limited performances at optical and UV wavelengths. We demonstrate active figure control using a simple apparatus of low-mass, low-force actuators to correct astigmatism. The optimized replication technique is applied to the fabrication of a 0.6-m-diam mirror with an areal density of 3.2 kg/m2. Our result demonstrates that the very lightweight, large-aperture construction used in radio telescopes can now be applied to optical telescopes.

  6. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Bevan Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication is making very large space based telescopes possible. In the many applications, only monolithic mirrors meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass. Again, available and planned payload shroud size limits near term designs to 4 meter class mirror. Practical 8 meter and beyond designs could encourage planners to include larger shrouds if it can be proven that such mirrors can be manufactured. These two factors lower mass and larger mirrors, presents the classic optimization problem. There is a practical upper limit to how large a mirror can be supported by a purely kinematic mount system and be launched. This paper shows how the design of the suspension system and mirror blank needs to be designed simultaneously. We will also explore the concepts of auxiliary support systems, which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass. The AMTD project is developing and maturing the processes for future replacements for HUBBLE, creating the design tools, validating the methods and techniques necessary to manufacture, test and launch extremely large optical missions. This paper will use the AMTD 4 meter "design point" as an illustration of the typical use of the modeler in generating the multiple models of mirror and suspension systems used during the conceptual design phase of most projects. The influence of Hexapod geometry, mirror depth, cell size and construction techniques (Exelsis Deep Core Low Temperature Fusion (c) versus Corning Frit Bonded (c) versus Schott Pocket Milled Zerodur (c) in this particular study) are being evaluated. Due to space and time consideration we will only be able to present snippets of the study in this paper. The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low

  7. Enabling advanced mirror blank design through modern optical fabrication technology

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy J.; Genberg, Victor L.

    1994-02-01

    Mirror blanks used in high-reliability optical systems for airborne and spaceborne applications have many requirements in terms of weight, stiffness and moment of inertia, as well as mounting and gravitational influences. Lightweight and ultra-lightweight mirror blank design techniques have been enhanced by recent technological developments in mirror blank fabrication and optical figuring. This paper briefly reviews traditional mirror blank design considerations in light of new fabrication technologies such as abrasive water jet machining of mirror cores and ion figuring of optical surfaces. The impact of these new technologies on mirror blank design is also discussed, as well as new design and analytical techniques using NASTRAN. Actual production data using these techniques are presented.

  8. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  9. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  10. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  11. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  12. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  13. Mirror Advanced Reactor Study (MARS): executive summary and overview

    SciTech Connect

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  14. AMTD: Advanced Mirror Technology Development in mechanical stability

    NASA Astrophysics Data System (ADS)

    Knight, J. B.

    2015-09-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  15. AMTD - Advanced Mirror Technology Development in Mechanical Stability

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2015-01-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  16. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  17. Single-layer mirrors for advanced research light sources

    NASA Astrophysics Data System (ADS)

    Störmer, M.; Horstmann, C.; Siewert, F.; Scholze, F.; Krumrey, M.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-01

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  18. Single-layer mirrors for advanced research light sources

    SciTech Connect

    Stoermer, M.; Horstmann, C.; Siewert, F.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-23

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  19. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.

  20. Evaluation of microfabricated deformable mirror systems

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Lee, Max K.; Bright, Victor M.; Welsh, Byron M.

    1998-09-01

    This paper presents recent result for aberration correction and beam steering experiments using polysilicon surface micromachined piston micromirror arrays. Microfabricated deformable mirrors offer a substantial cost reduction for adaptive optic systems. In addition to the reduced mirror cost, microfabricated mirrors typically require low control voltages, thus eliminating high voltage amplifiers. The greatly reduced cost per channel of adaptive optic systems employing microfabricated deformable mirrors promise high order aberration correction at low cost. Arrays of piston micromirrors with 128 active elements were tested. Mirror elements are on a 203 micrometers 12 by 12 square grid. The overall array size is 2.4 mm square. The arrays were fabricated in the commercially available DARPA supported MUMPs surface micromachining foundry process. The cost per mirror array in this prototyping process is less than 200 dollars. Experimental results are presented for a hybrid correcting element comprised of a lenslet array and piston micromirror array, and for a piston micromirror array only. Also presented is a novel digital deflection micromirror which requires no digital to analog converters, further reducing the cost of adaptive optics system.

  1. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  2. Tandem mirror magnet system for the mirror fusion test facility

    SciTech Connect

    Bulmer, R.H.; Van Sant, J.H.

    1980-10-14

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper.

  3. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  4. LSST secondary mirror system final design

    NASA Astrophysics Data System (ADS)

    Neill, Douglas R.; Bogan, Gregory; Zajac, Dale; Araujo, Constanza; Gressler, William J.; DeVries, Joe; Hileman, Edward A.; Lotz, Paul J.; Mills, Dave; Thomas, Sandrine; Sebring, Thomas A.; Sebag, Jacques; Warner, Mike; Wiecha, Oliver

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) has a 10 degrees square field of view which is achieved through a 3 mirror optical system comprised of an 8.4 meter primary, 3.5 meter secondary (M2) and a 5 meter tertiary mirror. The M2 is a 100mm thick meniscus convex asphere. The mirror surface is actively controlled by 72 axial electromechanical actuators (axial actuators). Transverse support is provided by 6 active tangential electromechanical actuators (tangent links). The final design has been completed by Harris Corporation. They are also providing the fabrication, integration and testing of the mirror cell assembly, as well as the figuring of the mirror. The final optical surface will be produced by ion figuring. All the actuators will experience 1 year of simulated life testing to ensure that they can withstand the rigorous demands produced by the LSST survey mission. Harris Corporation is providing optical surface metrology to demonstrate both the quality of the optical surface and the correctablility produced by the axial actuators.

  5. The mirror neuron system: a fresh view.

    PubMed

    Casile, Antonino; Caggiano, Vittorio; Ferrari, Pier Francesco

    2011-10-01

    Mirror neurons are a class of visuomotor neurons in the monkey premotor and parietal cortices that discharge during the execution and observation of goal-directed motor acts. They are deemed to be at the basis of primates' social abilities. In this review, the authors provide a fresh view about two still open questions about mirror neurons. The first question is their possible functional role. By reviewing recent neurophysiological data, the authors suggest that mirror neurons might represent a flexible system that encodes observed actions in terms of several behaviorally relevant features. The second question concerns the possible developmental mechanisms responsible for their initial emergence. To provide a possible answer to question, the authors review two different aspects of sensorimotor development: facial and hand movements, respectively. The authors suggest that possibly two different "mirror" systems might underlie the development of action understanding and imitative abilities in the two cases. More specifically, a possibly prewired system already present at birth but shaped by the social environment might underlie the early development of facial imitative abilities. On the contrary, an experience-dependent system might subserve perception-action couplings in the case of hand movements. The development of this latter system might be critically dependent on the observation of own movements.

  6. Satellite mirror systems for providing terrestrial power - System concept

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.

  7. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  8. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  9. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  10. Stability design considerations for mirror support systems in ICF lasers

    SciTech Connect

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems.

  11. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles; Arnold, William

    2013-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  12. Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements

  13. Transverse ion loss in the end mirror systems of an ambipolar confinement system (tandem mirror)

    SciTech Connect

    Pekker, L.S.

    1983-03-01

    This paper analyzes the transverse loss of the ''central'' ions confined by the end mirror systems of a tendem mirror system. This loss results from the pronounced elongation of the drift trajectories in the transverse direction and can substantially shorten the plasma confinement time in the system, tau/sub c/. A classification of the drift surfaces of the trapped ions is offered. The current of these ions drawn by the limiter is calculated. The effect of the ''inverse-loss-cone'' instability and of the radial electric field on tau/sub c/ is also discussed.

  14. Compact neutron imaging system using axisymmetric mirrors

    SciTech Connect

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  15. [Moving Mirror Scanning System Based on the Flexible Hinge Support].

    PubMed

    Xie, Fei; Feng, Fei; Wang, Fu-bei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    In order to improve moving mirror drive of Fourier transform infrared spectrometer, we design a dynamic scanning system based on flexible hinge support. Using the flexible hinge support way and the voice coil motor drive mode. Specifically, Using right Angle with high accuracy high stability type flexible hinge support mechanism support moving mirror, dynamic mirror can be moved forward and backward driven by voice coil motor reciprocating motion, DSP control system to control the moving mirror at a constant speed. The experimental results show that the designed of moving mirror scanning system has advantages of stability direction, speed stability, superior seismic performance.

  16. Magnetohydrodynamic Instabilities in a Simple Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Hawk, Clark W.

    2004-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. To evaluate whether a gasdynamic mirror could indeed confine plasmas in a stable manner for long periods of time, a small scale experimental gasdynamic mirror was built and tested. The objective of this experiment was to determine ranges of mirror ratios and plasma densities over which gasdynamic mirror could maintain stable plasmas. Theoretical analyses indicated that plasma magnetohydrodynamic instabilities were likely to occur during subsonic to supersonic flow transitions in the mirror throat region of the gasdynamic mirror. The experimental evidence based upon data derived from the Langmuir probe measurements seems to confirm this analysis. The assumption that a gasdynamic mirror using a simple mirror geometry could be used as a propulsion system, therefore, appears questionable. Modifications to the simple mirror concept are presented which could mitigate these MHD instabilities.

  17. System Estimates Radius of Curvature of a Segmented Mirror

    NASA Technical Reports Server (NTRS)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  18. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  19. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  20. Performance Optimization of the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Kammash, Terry

    1999-01-01

    Nuclear fusion appears to be a most promising concept for producing extremely high specific impulse rocket engines. Engines such as these would effectively open up the solar system to human exploration and would virtually eliminate launch window restrictions. A preliminary vehicle sizing and mission study was performed based on the conceptual design of a Gasdynamic Mirror (GDM) fusion propulsion system. This study indicated that the potential specific impulse for this engine is approximately 142,000 sec. with about 22,100 N of thrust using a deuterium-tritium fuel cycle. The engine weight inclusive of the power conversion system was optimized around an allowable engine mass of 1500 Mg assuming advanced superconducting magnets and a Field Reversed Configuration (FRC) end plug at the mirrors. The vehicle habitat, lander, and structural weights are based on a NASA Mars mission study which assumes the use of nuclear thermal propulsion' Several manned missions to various planets were analyzed to determine fuel requirements and launch windows. For all fusion propulsion cases studied, the fuel weight remained a minor component of the total system weight regardless of when the missions commenced. In other words, the use of fusion propulsion virtually eliminates all mission window constraints and effectively allows unlimited manned exploration of the entire solar system. It also mitigates the need to have a large space infrastructure which would be required to support the transfer of massive amounts of fuel and supplies to lower a performing spacecraft.

  1. The mirror neuron system in post-stroke rehabilitation

    PubMed Central

    2013-01-01

    Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation. PMID:24134862

  2. Corrected mirror systems with double reflection

    NASA Astrophysics Data System (ADS)

    Artyukhina, N. K.; Shkadarevich, A. P.

    2007-03-01

    We propose objectives consisting of two mirrors with central holes for passage of a light beam. The optical layout ensures multiple reflection of rays from both mirrors. We consider several approaches to calculating the design parameters for which three and four aberrations do not occur. The objectives can be used in optical devices operating in the UV and IR regions of the spectrum.

  3. Interference systems for wideband mid-IR VO2 mirrors

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Konovalova, O. P.; Sidorov, Aleksandr I.; Shaganov, Igor I.

    1999-01-01

    We performed the analyze of principles of wide-band VO2- mirrors creation for mid-IR (2.5 - 12 micrometers ) laser radiation control. It was shown, that the choice of interference system of VO2-mirror makes possible to extend region of maximum reflection change up to 1 - 2 (mu) . Calculations and experimental results are presented for mirrors with dR/d>0 and <0 with the change of reflection coefficient from 0.1 up to 94 - 98%.

  4. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    SciTech Connect

    Kammash, Terry; Tang, Ricky

    2005-02-06

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust.

  5. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  6. Production of metal matrix composite mirrors for tank fire control systems

    NASA Astrophysics Data System (ADS)

    Geiger, Alan L.; Ulph, Eric, Sr.

    1992-09-01

    The first production lot of 50 units of metal matrix composite mirrors for the Leopard I tank fire control system was recently completed by Optical Corporation of America (OCA), Garden Grove, California. The mirror substrates were finish machined from forgings of Optical Grade SXATM metal matrix composite manufactured by Advanced Composite Materials Corporation (ACMC), Greer, South Carolina. Use of forgings rather than hot pressed billet yields more efficient use of material and reduces machining time, resulting in lower cost. The mirrors were fabricated by a process sequence of machining, thermal stabilization, electroless nickel plating, polishing, and coating with a high efficiency, laser damage-resistant optical coating. The mirrors are used in the fire control system for a day channel (direct view) and near infrared (CCD), a muzzle reference system laser transceiver, a laser range finder, and an infrared thermal imaging system. SXA composite was chosen over competitive mirror materials (glass and beryllium) because of its high specific strength and stiffness, good stability, and moderate machining cost. The mirrors exhibit excellent stability and optical performance. Field trials of prototype mirrors in fire control systems have proven successful.

  7. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  8. Strain gauge ambiguity sensor for segmented mirror active optical system

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Howe, T. L. (Inventor)

    1974-01-01

    A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.

  9. Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Lu-yuan; Qiang, Shi; Wu, Guo-rong; Qi, Li; Feng, Dang; Zhu, Qing-shi; Hong, Zhang

    2002-05-01

    A simple optical multiple reflection system is developed with two cylindrical concave mirrors at an appropriate spacing. The two cylindrical mirrors have different focal lengths and their principal sections are orthogonal. The alternate focusing of the two cylindrical mirrors at different direction keep the reflecting spots small. The reflecting spots fall on Lissajous patterns on the cylindrical mirrors. The mathematics for this optical system is described and the calculated coordinates of beam spots are very close matches of the experimental observations. The cylindrical mirror optical system is easy to construct and align, with a suitable method for obtaining long optical paths and a large number of passes in small volumes. In a photoacoustic spectrometer the beam family enhance the effective power in the photoacoustic cell and thus the signal-to-noise ratio of photoacoustic signal. An experimental result for photoacoustic spectrum of HDSe gas is given.

  10. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  11. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  12. [Mirror neuron system dysfunction in schizophrenia and its clinical implication].

    PubMed

    Kato, Motoichiro; Kato, Yutaka

    2014-06-01

    Since the discovery of mirror neuron system, several neurophysiological and neuroimaging studies showed that the mirror neuron system might have a role in understanding other people's actions and intentions with automatic simulation of their actions. Moreover, some studies suggested that mirror neurons have a broader role in social cognition including understanding others' emotions and empathy. It has not been proved, however, whether the mirror neuron system is necessarily involved in empathy processes. In the domain of social cognition deficits, it is important to investigate the involvement of mirror neuron system dysfunction in psychosis such as schizophrenia. Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement). Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase locking factors and gamma-synchronization predominantly in right parietal cortex. This finding demonstrated that untreated patients with schizophrenia exhibited aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization.

  13. Calibration of a catadioptric omnidirectional vision system with conic mirror

    NASA Astrophysics Data System (ADS)

    Marcato Junior, J.; Tommaselli, A. M. G.; Moraes, M. V. A.

    2016-03-01

    Omnidirectional vision systems that enable 360° imaging have been widely used in several research areas, including close-range photogrammetry, which allows the accurate 3D measurement of objects. To achieve accurate results in Photogrammetric applications, it is necessary to model and calibrate these systems. The major contribution of this paper relates to the rigorous geometric modeling and calibration of a catadioptric, omnidirectional vision system that is composed of a wide-angle lens camera and a conic mirror. The indirect orientation of the omnidirectional images can also be estimated using this rigorous mathematical model. When calibrating the system, which is composed of a wide-angle camera and a conic mirror, misalignment of the conical mirror axis with respect to the camera's optical axis is a critical problem that must be considered in mathematical models. The interior calibration technique developed in this paper encompasses the following steps: wide-angle camera calibration; conic mirror modeling; and estimation of the transformation parameters between the camera and conic mirror reference systems. The main advantage of the developed technique is that it does not require accurate physical alignment between the camera and conic mirror axis. The exterior orientation is based on the properties of the conic mirror reflection. Experiments were conducted with images collected from a calibration field, and the results verified that the catadioptric omnidirectional system allows for the generation of ground coordinates with high geometric quality, provided that rigorous photogrammetric processes are applied.

  14. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  15. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  16. Area scanning vision inspection system by using mirror control

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Y.; Min, Sungwook; Yang, Wonyoung

    2001-02-01

    12 As the pressure increases to deliver vision products with faster speed while inspection higher resolution at lower cost, the area scanning vision inspection system can be one of the good solutions. To inspect large area with high resolution, the conventional vision system requires moving either camera or the target, therefore, the system suffers low speed and high cost due to the requirements of mechanical moving system or higher resolution camera. Because there are only tiny mirror angle movements required to change the field of view, the XY mirror controlled area scanning vision system is able to capture random area images with high speed. Elimination of external precise moving mechanism is another benefit of the mirror control. The image distortion due to the lens and the mirror system shall be automatically compensated right after each image captured so that the absolute coordination can be calculated in real- time. Motorized focusing system is used for the large area inspection, so that the proper focusing achieved for the variable working distance between lens and targets by the synchronization to the mirror scanning system. By using XY mirror controlled area scanning vision inspection system, fast and economic system can be integrated while no vibration induced and smaller space required. This paper describes the principle of the area scanning method, optical effects of the scanning, position calibration method, inspection flows and some of implementation results.

  17. Performance prediction of the TMT tertiary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) optical design of Thirty Meter Telescope (TMT) calls for a 3.1m diameter secondary mirror (M2M) and an elliptical tertiary mirror (M3M) of 3.5m along its major axis and 2.5m along its minor axis. The M3M is a thin, large, flat, solid elliptical mirror which directs the f/15 beam from the M2M to the multiple instruments on both Nasmyth platforms. The M3M will weigh approximately two metric tons and the mirror support system will maintain the mirror figure at different gravity orientations. A recent reduction of the field of view to 15 arc minutes allows a reduction in the size of the M3M, which in turn requires re-optimization of the mirror support system. The proposed M3M optimized support system consists of 60 tri-axial supports mounted at the mirror back surface. These tri-axial supports accommodate motions of M3M in three gravity directions. The print-though RMS surface errors of M3M are 10nm for axial gravity loadings and 1nm for lateral gravity loadings. The M3 system (M3S) has an active optics (aO) capability to accommodate potential mechanical or thermal errors; its ability to correct low-order aberrations has been analyzed. A structure function (SF) of the axial gravity support print-through was calculated.

  18. Microprocessor controlled optical measuring system for large mirror modules

    NASA Astrophysics Data System (ADS)

    Koehne, R.; Rach, E.; Reich, F.

    1985-10-01

    A microprocessor controlled contactless measuring system was developed in order to determine how the beam quality of mirrors influences the performance of solar plants with focusing collectors. The system was installed to investigate large flat and curved mirror surfaces ( or = 10 sq m). An algorithm to evaluate the measured data was derived. The very accurate method is based on laser ray tracing to determine the ripple and the deviations from the ideal contour which can be expressed as a root mean square value. Measurements on parabolic trough mirrors and heliostat segments yield rms values of 10 and 3.7 mrad, respectively.

  19. Imaging performance of elliptical-boundary varifocal mirrors in active optical systems

    NASA Astrophysics Data System (ADS)

    Lukes, Sarah Jane

    Micro-electro-mechanical systems deformable-membrane mirrors provide a means of focus control and attendant spherical aberration correction for miniaturized imaging systems. The technology has greatly advanced in the last decade, thereby extending their focal range capabilities. This dissertation describes a novel SU-8 2002 silicon-on-insulator wafer deformable mirror. A 4.000 mm x 5.657 mm mirror for 45o incident light rays achieves 22 mum stroke or 65 diopters, limited by snapdown. The mirrors show excellent optical quality while flat. Most have peak-to-valley difference of less than 150 nm and root-mean-square less than 25 nm. The process proves simple, only requiring a silicon-on-insulator wafer, SU-8 2002, and a metal layer. Xenon difluoride etches the silicon to release the mirrors. Greater than 90% of the devices survive fabrication and release. While current literature includes several aberration analyses on static mirrors, analyses that incorporate the dynamic nature of these mirrors do not exist. Optical designers may have a choice between deformable mirrors and other types of varifocal mirrors or lenses. Furthermore, a dynamic mirror at an incidence angle other than normal may be desired due to space limitations or for higher throughput (normal incidence requires a beam splitter). This dissertation presents an analysis based on the characteristic function of the system. It provides 2nd and 3rd order aberration coefficients in terms of dynamic focus range and base ray incidence angle. These afford an understanding of the significance of different types of aberrations. Root-mean-square and Strehl calculations provide insight into overall imaging performance for various conditions. I present general guidelines for maximum incidence angle and field of fiew that provide near diffraction-limited performance. Experimental verification of the MEMS mirrors at 5o and 45o incidence angles validates the analytical results. A Blu-ray optical pick-up imaging

  20. Scan mirror remote temperature sensing system and method

    NASA Technical Reports Server (NTRS)

    VanDyk, Steven G. (Inventor); Balinski, Walter (Inventor); Choo, Ronald J. (Inventor); Bortfeldt, Paul E. (Inventor)

    2000-01-01

    A remote temperature sensing system (10) for a scanning mirror (7). The system (10) includes a sensor which detects heat radiated by the mirror and provides a signal in response thereto. In the illustrative implementation, the system (10) includes a thermistor mounted within a housing. The housing is contoured to maximize the receipt of thermal energy thereby. A mounting assembly maintains the thermistor a predetermined nonzero distance from the scanning mirror (7). The invention includes a shroud (12) mounted on the mirror (7) for shielding the thermistor and a support tube connected to the thermistor housing on a first end and to a base on the second end thereof. The support tube is adapted to remain stationary within the shroud as the scanning mirror and the shroud rotate due to the scanning of the mirror. Wires are connected to the thermistor on a first end thereof and are wrapped around the support tube. The wires include a length of electrically conductive material having a resistivity which has a low sensitivity to temperature variations. The sensor output is processed in a conventional manner to provide an output indicative of the temperature of the mirror.

  1. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  2. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  3. An image stabilization optical system using deformable freeform mirrors.

    PubMed

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-15

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors.

  4. The neurobiology of sign language and the mirror system hypothesis

    PubMed Central

    Emmorey, Karen

    2014-01-01

    I suggest two puzzles for the Mirror System Hypothesis. First, there is little evidence that mirror neuron populations for words or for signs exist in Broca’s area, and a mirror system is not critical for either speech or sign perception. Damage to Broca’s area (or to the mirror system for human action) does not result in deficits in sign or speech perception. Second, the gesticulations of speakers are highly integrated with speech, but pantomimes and modern protosigns (conventional gestures) are not co-expressive with speech, and they do not co-occur with speech. Further, signers also produce global, imagistic gesticulations with their mouths and bodies simultaneously while signing with their hands. The expanding spiral of protosign and protospeech does not predict the integrated and co-expressive nature of modern gestures produced by signers and speakers. PMID:24707322

  5. An Image Stabilization Optical System Using Deformable Freeform Mirrors

    PubMed Central

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-01

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors. PMID:25599423

  6. Smart co-phasing system for segmented mirror telescopes

    NASA Astrophysics Data System (ADS)

    Simar, Juan F.; Stockman, Yvan; Surdej, Jean

    2016-07-01

    Space observations of fainter and more distant astronomical objects constantly require telescope primary mirrors with a larger size. The diameter of monolithic primary mirrors is limited to 10 m because of manufacturing and logistics limitations. For space telescopes, monolithic primary mirrors are limited to less than 5 m due to fairing capacity. Segmented primary mirrors thus constitute an alternative solution to deal with the steadily increase of the primary mirror size. The optical path difference between the individual segments must be close to zero (few nm) in order to be diffraction limited over the full telescope aperture. In this paper a new system that may co-phase 7 segments at once with the light of a star and without artificial one is proposed. First the measuring methods and feedback system is explained, then the breadboard setup is presented and the results are analyzed and discussed, finally a comparison with Keck telescope is performed. This system can be adapted in order to be used in the co-phasing system of future segmented mirrors, its dynamic range starts from several hundred of microns till some tenths of nanometers

  7. A water-cooled mirror system for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    DiGennaro, Richard; Gee, Bruce; Guigli, Jim; Hogrefe, Henning; Howells, Malcolm; Rarback, Harvey

    1988-04-01

    This paper describes the design and performance of a directly-cooled soft X-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance . Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T miniundulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with a peak absorbed power density of 520 W/cm 2. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract #DE-AC03-76SF00098.

  8. A water-cooled mirror system for synchrotron radiation

    SciTech Connect

    DiGennaro, R.; Gee, B.; Guigli, J.; Hogrefe, H.; Howells, M.; Rarback, H.

    1987-06-01

    This paper describes the design and performance of a directly-cooled soft x-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance. Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T mini-undulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with peak absorbed power density of 520 W/cm/sup 2/. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. 11 refs., 8 figs.

  9. LSST mirror system status: from design to fabrication and integration

    NASA Astrophysics Data System (ADS)

    Araujo-Hauck, Constanza; Sebag, Jacques; Liang, Ming; Neill, Douglas; Muller, Gary; Thomas, Sandrine J.; Vucina, Tomislav; Gressler, William J.

    2016-07-01

    In the construction phase since 2014, the Large Synoptic Survey Telescope (LSST) is an 8.4 meter diameter wide-field (3.5 degrees) survey telescope located on the summit of Cerro Pachón in Chile. The reflective telescope uses an 8.4 m f/1.06 concave primary, an annular 3.4 m meniscus convex aspheric secondary and a 5.2 m concave tertiary. The primary and tertiary mirrors are aspheric surfaces figured from a monolithic substrate and referred to as the M1M3 mirror. This unique design offers significant advantages in the reduction of degrees of freedom, improved structural stiffness for the otherwise annular surfaces, and enables a very compact design. The three-mirror system feeds a threeelement refractive corrector to produce a 3.5 degree diameter field of view on a 64 cm diameter flat focal surface. This paper describes the current status of the mirror system components and provides an overview of the upcoming milestones including the mirror coating and the mirror system integrated tests prior to summit integration.

  10. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  11. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  12. Overview and accomplishments of advanced mirror technology development phase 2 (AMTD-2) project

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2015-09-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick `biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror

  13. Focusing of an elliptical mirror based system with aberrations

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ai, Min; Zhang, He; Wang, Chao; Tan, Jiubin

    2013-10-01

    The effect of primary aberrations on the focusing of an elliptical mirror based system is studied by using the Debye integral. Specifically, the apodization function for elliptical mirror is derived and expressed by the eccentricity of the elliptical mirror. For the elliptical mirror with low aperture, intensity distributions in the presence of aberrations near focus are presented based on the derived scalar theory, while for the high-aperture condition, vectorial theory is used to describe the electric field in the focal region. In particular, the effect of aberrations is studied under radially polarized illumination. Moreover, tolerance conditions are given based on the knowledge of focusing with aberrations. It is found that the elliptical mirror based system shares a similar level of tolerance conditions with that of the single lens, while both of them are more sensitive to the presence of astigmatism than other aberrations. It is believed that the results will theoretically support the application of the high-aperture elliptical mirror in scanning microscopy.

  14. Deformable MEMS mirrors in secure optical communication system

    NASA Astrophysics Data System (ADS)

    Ziph-Schatzberg, Leah; Bifano, Thomas; Cornelissen, Steven; Stewart, Jason; Bleier, Zvi

    2009-05-01

    An optical communication system suitable for voice communication, data retrieval from remote sensors and identification had been designed, built and tested. The system design allows operation at ranges of several hundred meters. The heart of the system is a modulated MEMS mirror that is electrostatically actuated and changes between a flat reflective state and a corrugated diffractive state. A process for mass producing these mirrors at low cost was developed and implemented. The mirror was incorporated as a facet in a hollow retro-reflector, allowing temporal modulation of an interrogating beam and the return of the modulated beam to the interrogator. This modulator unit thus consists of a low power, small and light communication node with large (about 60°) angular extent. The system's range and pointing are determined by the interrogator /detector / demodulator unit (the transceiver), whereas the communicating node remains small, low power and low cost. This transceiver is comprised of a magnified optical channel to establish line of sight communication, an interrogating laser at 1550nm, an avalanche photo diode to detect the return signal and electronics to drive the laser and demodulate the returned signal and convert it to an audio signal. Voice communication in free space was demonstrated at ranges larger than 200 meters. A new retro-reflector design, incorporating more modulated mirrors had been constructed. This configuration was built and tested. Its performance and advantages as compared to the single mirror retro-reflector are discussed. An alternative system design that allows higher bandwidth data transmission is described

  15. A novel collinear optical system with annulus mirrors for holographic disc driver

    NASA Astrophysics Data System (ADS)

    Wang, Ye

    2008-12-01

    This paper focus on a novel collinear lens system with annulus mirrors for holographic disc driver, both information beam and reference beam are use same laser beam. The expanded and parallel laser beam, center part of it as the information beam then through Fourier transform lens, the beam around center part as a reference beam. On this axis, the ring reference beam reflected by two annulus shaped mirrors, then became a convergent beam, together with the information beam which through the first Fourier transform lens then produce holographic pattern to be write into the holographic disc behind of them, this lens system with two mirrors made the angle between information beam and reference beam more wide, can improved the multiplex level of holographic storage. Pair of Fourier transform lens with advance performance is designed in this paper.

  16. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  17. Crack Branching and Fracture Mirror Data of Glasses and Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    The fracture mirror and crack branching constants were determined from three glasses and nine advanced ceramics tested under various loading and specimen configurations in an attempt to use the constants as a data base for fractography. The ratios of fracture mirror or crack branching constant to fracture toughness were found to be approximately two for most ceramic materials tested. A demonstration of how to use the two constants as a tool for verifying stress measurements was presented for silicon nitride disk specimens subjected to high-temperature, constant stress-rate biaxial flexure testing.

  18. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  19. Coil system for a mirror-based hybrid reactor

    SciTech Connect

    Hagnestal, A.; Agren, O.; Moiseenko, V. E.

    2012-06-19

    Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

  20. Dissociation of mirroring and mentalising systems in autism.

    PubMed

    Marsh, Lauren E; Hamilton, Antonia F de C

    2011-06-01

    The role of mirror neuron systems and mentalising systems in causing poor social and communication skills in individuals with autistic spectrum conditions is hotly debated. We studied 18 adults with autistic spectrum conditions in comparison to 19 age and IQ matched typical individuals. Behavioural assessments revealed difficulties in mental state attribution and action comprehension in the autism sample. We examined brain responses when observing rational and irrational hand actions, because these actions engage mirror and mentalising components of the social brain respectively. Both typical and autistic participants activated the left anterior intraparietal sulcus component of the mirror system when viewing hand actions compared to moving shapes. The typical but not autistic participants activated the posterior mid cingulate cortex/supplementary motor area and bilateral fusiform cortex when viewing hand actions. When viewing irrational hand actions, the medial prefrontal cortex of typical participants deactivated but this region did not distinguish the different stimuli in autistic participants. These results suggest that parietal mirror regions function normally in autism, while differences in action understanding could be due to abnormal function of cingulate, fusiform and medial prefrontal regions. Thus, brain regions associated with mirroring and mentalising functions are differentially affected in autistic spectrum conditions.

  1. Mirror Quality Required By The Antares Laser System

    NASA Astrophysics Data System (ADS)

    Sweatt, W. C.

    1980-11-01

    The Antares laser system is a large (100 kJ) CO2 pulse laser operating at 10.6 pm. The system has 72 beam lines, each with an aperture of 900 cm2. The system will be composed primarily of large copper-faced mirrors whose principal dimensions range up to 65 cm. These mirrors will be single-point diamond turned (SPDT) at the Y-12 facility of Union Carbide Corporation in Oak Ridge, Tennessee. We have had to develop surface quality specifications for these mirrors. These specifications were initially set at 50 nm peak-to-valley (p-v) surface error for the microsurface over 0.5-mm areas and 500 nm (p-v) over the whole mirror surface. In this paper an attempt has been made to refine these specifications to a more phys-ically meaningful set based on the performance of the system. The optical specification for Antares is that 80% of the energy from each beam should be deliverable inside a 400-μm circle. The diffraction limited focal spot is 160 pm across, so small amounts of low spa-tial frequency wavefront aberrations are acceptable. This is the "figure error" and can be represented by a best-fit fourth-order polynomial. It is specified separately from the higher spatial frequency "subfigure" errors that diffract light out of the 400-μm circle. Antares will have a completely automatic alignment and centering system. A more versatile and less expensive alignment system can be developed if the alignment is done with visible light. This tightens the tolerances on the microsurface but not the figure error. These requirements, along with several lesser ones, must be considered when tolerancing the mirror quality. It appears that the SPDT mirrors turned at Y-12 will meet our minimum requirements.

  2. Adaptive optics control system for segmented MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Kempf, Carl J.; Helmbrecht, Michael A.; Besse, Marc

    2010-02-01

    Iris AO has developed a full closed-loop control system for control of segmented MEMS deformable mirrors. It is based on a combination of matched wavefront sensing, modal wavefront estimation, and well-calibrated open-loop characteristics. This assures closed-loop operation free of problems related to co-phasing segments or undetectable waffle patterns. This controller strategy results in relatively simple on-line computations which are suitable for implementation on low cost digital signal processors. It has been successfully implemented on Iris AO's 111 actuator (37 segment) deformable mirrors used in test-beds and research systems.

  3. The Mirror Neuron System: Grasping Others' Actions from Birth?

    ERIC Educational Resources Information Center

    Lepage, Jean-Francois; Theoret, Hugo

    2007-01-01

    In the adult human brain, the presence of a system matching the observation and the execution of actions is well established. This mechanism is thought to rely primarily on the contribution of so-called "mirror neurons", cells that are active when a specific gesture is executed as well as when it is seen or heard. Despite the wealth of evidence…

  4. On Empathy: The Mirror Neuron System and Art Education

    ERIC Educational Resources Information Center

    Jeffers, Carol S.

    2009-01-01

    This paper re/considers empathy and its implications for learning in the art classroom, particularly in light of relevant neuroscientific investigations of the mirror neuron system recently discovered in the human brain. These investigations reinterpret the meaning of perception, resonance, and connection, and point to the fundamental importance…

  5. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    SciTech Connect

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs. (LEW)

  6. Advances in thermal control and performance of the MMT M1 mirror

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.; Williams, G. G.; Callahan, S.; Comisso, B.; Ortiz, R.; Williams, J. T.

    2010-07-01

    Strategies for thermal control of the 6.5-meter diameter borosilicate honeycomb primary (M1) mirror at the MMT Observatory have included: 1) direct control of ventilation system chiller setpoints by the telescope operator, 2) semiautomated control of chiller setpoints, using a fixed offset from the ambient temperature, and 3) most recently, an automated temperature controller for conditioned air. Details of this automated controller, including the integration of multiple chillers, heat exchangers, and temperature/dew point sensors, are presented here. Constraints and sanity checks for thermal control are also discussed, including: 1) mirror and hardware safety, 2) aluminum coating preservation, and 3) optimization of M1 thermal conditions for science acquisition by minimizing both air-to-glass temperature differences, which cause mirror seeing, and internal glass temperature gradients, which cause wavefront errors. Consideration is given to special operating conditions, such as high dew and frost points. Precise temperature control of conditioned ventilation air as delivered to the M1 mirror cell is also discussed. The performance of the new automated controller is assessed and compared to previous control strategies. Finally, suggestions are made for further refinement of the M1 mirror thermal control system and related algorithms.

  7. Tip-tilt mirror suspension: beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals.

    PubMed

    Slagmolen, Bram J J; Mullavey, Adam J; Miller, John; McClelland, David E; Fritschel, Peter

    2011-12-01

    We describe the design of a small optic suspension system, referred to as the tip-tilt mirror suspension, used to isolate selected small optics for the interferometer sensing and control beams in the advanced LIGO gravitational wave detectors. The suspended optics are isolated in all 6 degrees of freedom, with eigenmode frequencies between 1.3 Hz and 10 Hz. The suspended optic has voice-coil actuators which provide an angular range of ±4 mrad in the pitch and yaw degrees of freedom.

  8. Analysis of the three-mirror systems for survey telescopes

    NASA Astrophysics Data System (ADS)

    Butylkina, K. D.; Romanova, G. E.; Bakholdin, A. V.

    2016-07-01

    Normally, telescope systems applied for astronomic purposes have rather narrow field. Survey telescopes which are the systems with angular field up to several degrees are applied in several spheres not only for astronomic purposes but also for weather observing, comets and asteroids detecting (asteroid and comet threats or ACT). Systems with relatively small diameters (below 1.5m) are of interest both for ground-based and space instruments. As a rule, such systems should be fast (up to F/3 … F/1.5 and faster). Therefore, the most part of survey telescopes are reflective systems with additional lens correctors. Lens elements in these instruments can lead to some difficulties because the possibility of manufacturing large size lens correctors of the optimal glass sort is not always exist. So, from that point mirror systems can provide more advantages. Mirror systems are also of great interest due to the wide spectrum range used for operation. However, the design of the mirror system that can give both sufficient f-number and large angular field is the complicated and complex task, first of all because of difficulty during the choosing the initial principal scheme. Using the expressions based on the third-order aberration theory several system of survey telescopes were chosen which can provide the needed characteristics. The examples of the schemes are given, including their optical characteristics.

  9. Vibrational properties of quasiregular systems with mirror symmetry

    NASA Astrophysics Data System (ADS)

    Montalbán, A.; Velasco, V. R.; Tutor, J.; Fernández-Velicia, F. J.

    2005-12-01

    We have studied the vibrational frequencies and atom displacements of one-dimensional systems formed by combinations of quasiregular stackings having mirror symmetry. The materials are described by nearest-neighbor force constants and the corresponding atom masses. Fibonacci, Thue-Morse and Rudin-Shapiro sequences are considered. These systems exhibit differences in the frequency spectrum as compared to the original systems with no mirror symmetry. Localized modes are found in the wide primary gaps and near the band edges of the Fibonacci structures. In the Rudin-Shapiro structures localized modes near the band edges are also found whereas in the Thue-Morse structures no such features are found. Besides this a selective confinement of the atom displacements in one of the sequences forming the total system is found for different frequency ranges in all the systems studied.

  10. Multi-interferometric displacement measurement system with variable measurement mirrors.

    PubMed

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-06-10

    Laser interferometers have been widely implemented for the displacement sensing and positioning calibration of the precision mechanical industry, due to their excellent measuring features and direct traceability to the dimensional definition. Currently some kinds of modified Fabry-Perot interferometers with a planar mirror or a corner cube prism as the measurement mirror have been proposed. Each optical structure of both models has the individual particularity and performance for measuring applications. In this investigation, a multi-interferometric displacement system has been proposed whose measurement mirror can be quickly and conveniently altered with a planar mirror or a corner cube reflector depending on the measuring demand. Some experimental results and analyses about the interpolation error and displacement measurements with both reflectors have been demonstrated. According to the results, suggestions about the choice of a measuring reflector and interpolation model have been presented. With the measuring verifications, the developed system with a maximum standard deviation less than 0.2081 μm in measuring range of 300 mm would be a compact and robust tool for sensing or calibrating the linear displacement of mechanical equipment.

  11. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, GuoQing; Zhou, WeiMin; Ye, KaiRong; Leng, YongBin

    2011-12-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  12. Secure optical communication system utilizing deformable MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Ziph-Schatzberg, Leah; Bifano, Thomas; Cornelissen, Steven; Stewart, Jason; Bleier, Zvi

    2009-02-01

    An optical communication system suitable for voice, data retrieval from remote sensors and identification is described. The system design allows operation at ranges of several hundred meters. The heart of the system is a modulated MEMS mirror that is electrostatically actuated and changes between a flat reflective state and a corrugated diffractive state. A process for mass producing these mirrors at low cost was developed and is described. The mirror was incorporated as a facet in a hollow retro-reflector, allowing temporal modulation of an interrogating beam and the return of the modulated beam to the interrogator. This system thus consists of a low power, small and light communication node with large (about 60°) angular extent. The system's range and pointing are determined by the interrogator /detector/demodulator (Transceiver) unit. The transceiver is comprised of an optical channel to establish line of sight communication, an interrogating laser at 1550nm, an avalanche photo diode to detect the return signal and electronics to drive the laser and demodulate the detected signal and convert it to an audio signal. A functional prototype system was built using a modified compact optical sight as the transceiver. Voice communication in free space was demonstrated. The design and test of major components and the complete system are discussed.

  13. Overview and Recent Accomplishments of Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  14. Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.

  15. Properties and performance of grazing-incidence mirror systems

    NASA Astrophysics Data System (ADS)

    Aspnes, D. E.; Kelso, S. M.

    1982-04-01

    We investigate the performance of, and the origin of aberrations in, beam lines based on simple and the recently proposed CARSA mirror elements. New results include the identification of the sums of off-grazing angles and their squares as figures of merit for total reflectance and scattering losses in near-grazing-incidence systems, and the discovery that the usual image distortions and aberrations previously associated with simple elements can essentially be eliminated with pairs of elliptical mirrors having a common rotational symmetry axis. Slit throughput efficiencies and sensitivities to system stability are calculated for both horizontal and vertical dispersion for several representative beam lines using a ray-tracing program developed for CARSA systems. We find that high-resolution operation is possible with no entrance slit for CARSA combinations.

  16. Optical design of systems with off-axis spherical mirrors

    NASA Astrophysics Data System (ADS)

    Malacara-Hernández, Daniel; Gomez-Vieyra, Armando

    2011-09-01

    The astigmatism in reflective imaging systems can be eliminated by a proper configuration. However, the spherical and coma are the main residual aberrations in third order theory, but the behavior of all aberrations is not yet fully The main aberration of classical off-axis reflecting systems is primary astigmatism. The astigmatism in off-axis spherical understood. Expressions for the wavefront aberrations in an off-axis spherical mirror are presented. These formulas are derived from the optical path difference between an ellipsoid and a sphere, assuming a relatively small pupil and a small angle of incidence as it will be described with detail. Using the principle of the optical path difference, we developed the mathematical expressions that describe the third order wavefront aberrations in a two spherical mirror system when the object is finite.

  17. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  18. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    SciTech Connect

    Post, R F

    2009-11-20

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  19. Ray tracing analysis of the image quality of a high collection efficiency mirror system

    SciTech Connect

    Seitzinger, N.K.; Martin, J.C.; Keller, R.A. )

    1990-10-01

    Recently, a high collection efficiency mirror system was developed by Watson (Cytometry, {bold 10}, 681--688 (1989)) to increase the sensitivity of low level fluorescence detection. The mirror system consists of an ellipsoidal imaging mirror and spherical backreflecting mirror. The fluorescing sample is located at one focus of the ellipsoid, and its image is formed at the other focus. In this paper we evaluate the image quality of this geometry using a PC-based ray tracing program. The analysis demonstrates high collection efficiency but poor image quality. The effect of poor image quality on single molecule detection is discussed. Keywords: Fluorescence, ellipsoidal mirror, spherical mirror, single molecule detection, flow cytometry.

  20. Tritium systems for the mirror upgrade MFTF-. cap alpha. +T

    SciTech Connect

    Finn, P.A.

    1983-01-01

    The tritium systems and the tritium needed for MFTF-..cap alpha..+T were assessed. This mirror reactor produces 20 MW of power, has 10% availability, and uses tritium positive neutral beams with 20 to 30% total gas efficiency as fuelers. The two burn times considered were 10 h and 100 h. A reference processing case was developed including types, sizes, and cost of units.

  1. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L. Curtis

    1993-01-01

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

  2. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L.C.

    1993-09-28

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  3. The W. M. Keck Telescope segmented primary mirror active control system

    SciTech Connect

    Jared, R.C.; Arthur, A.A.; Andreae, S.; Biocca, A.; Cohen, R.W.; Fuertes, J.M.; Franck, J.; Gabor, G.; Llacer, J.; Mast, T.; Meng, J.; Merrick, T.; Minor, R.; Nelson, J.; Orayani, M.; Salz, P.; Schaefer, B.; Witebsky, C.

    1989-07-01

    The ten meter diameter primary mirror of the W. M. Keck Telescope is a mosaic of thirty-six hexagonal mirrors. An active control system stabilizes the primary mirror. The active control system uses 168 measurements of the relative positions of adjacent mirror segments and 3 measurements of the primary mirror position in the telescope structure to control the 108 degrees of freedom needed to stabilize the figure and position of the primary mirror. The components of the active control system are relative position sensors, electronics, computers, actuators that position the mirrors, and software. The software algorithms control the primary mirror, perform star image stacking, emulate the segments, store and fit calibration data, and locate hardware defects. We give an overview of the active control system, its functional requirements and test measurements. 12 refs.

  4. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system

    PubMed Central

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory

    2013-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313

  5. A primary mirror metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a <60" square acquisition and guiding camera field, and a Shack Hartmann wavefront sensor. The PMS is seen as a significant factor in risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly

  6. A surface-profile measuring system for synchrotron radiation mirrors

    SciTech Connect

    Sato, S. ); Higashi, Y. ); Haya, S.; Otsuka, M.; Yamamoto, H. )

    1992-01-01

    The optical head for a new surface-profile measuring system was constructed on the basis of the Twyman--Green interferometer with heterodyne phase detection method. Stability in optical path difference (OPD) was within 2 nm for a fixed point under the well shielded condition. The measured OPD map at the null fringe condition shows the possibility for direct or segment measurement method of aspheric and/or large size mirrors in SR optics. Based on experiments, a new surface-profile measuring system by phase measurement interferometry and segment method is designed. Designed features of the system are briefly reported.

  7. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  8. Measuring Change in Health-System Pharmacy Over 50 Years: "Reflecting" on the Mirror, Part II.

    PubMed

    Weber, Robert J; Stevenson, James G; White, Sara J

    2014-01-01

    The Director's Forum guides pharmacy leaders in establishing patient-centered services in hospitals and health systems. 2013 marked the 50th anniversary of the publication of the Mirror to Hospital Pharmacy, which was a comprehensive study of hospital pharmacy services in the United States. This iconic textbook was co-authored by Donald Francke, Clifton J. Latiolais, Gloria N. Francke, and Norman Ho. The Mirror's results profiled hospital pharmacy of the 1950s; these results established goals for the profession in 6 paradigms: (1) professional philosophy and ethics; (2) scientific and technical expansion of health-system pharmacy; (3) development of administrative and managerial acumen; (4) increased practice competence; (5) wage and salary commensurate with professional responsibilities; and (6) health-system pharmacy as a vehicle for advancing the profession as a whole. This article critically reviews our progress on the last of 3 goals. An understanding of the profession's progress on these goals since the seminal work of the Mirror provides directors of pharmacy a platform from which to develop strategies to enhance patient-centered pharmacy services.

  9. Measuring change in health-system pharmacy over 50 years: "reflecting" on the mirror, part I.

    PubMed

    Weber, Robert J; Stevenson, James; Ng, Christine; White, Sara

    2013-12-01

    The Director's Forum guides pharmacy leaders in establishing patient-centered services in hospitals and health systems. August 2013 marked the 50th anniversary of the publication of the Mirror to Hospital Pharmacy, which was a comprehensive study of hospital pharmacy services in the United States. This iconic textbook was co-authored by Donald Francke, Clifton J. Latiolais, Gloria N. Francke, and Norman Ho. The Mirror profiled hospital pharmacy of the 1950s and established goals for the profession in 6 paradigms: (1) professional philosophy and ethics, (2) scientific and technical expansion of health-system pharmacy, (3) development of administrative and managerial acumen, (4) increased practice competence, (5) wage and salary compensation commensurate with professional responsibilities, and (6) health-system pharmacy as a vehicle for advancing the profession as a whole. This article critically reviews the profession's progress on the first 3 goals; an article in the January 2014 issue of Hospital Pharmacy will review the final 3 goals. An understanding of the profession's progress on these goals since the seminal work of the Mirror provides directors of pharmacy a platform from which to develop strategies to enhance patient-centered pharmacy services.

  10. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  11. Controllable Mirror Devices

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A deformable Mirror Device (DMD) is a type of spatial light modulator in which mirrors fabricated monolithically on a silicon chip are deformed, or tilted, under electronic control to change the direction of light that falls upon the mirror. NASA and Texas Instruments (TI) have worked to develop this technology, which has subsequently been commercialized by TI. Initial application is the DMD 2000 Travel Information Printer for high speed, high volume printing of airline tickets and boarding passes. Other possible applications range from real-time object tracking to advanced industrial machine vision systems.

  12. Development of achromatic full-field x-ray microscopy with compact imaging mirror system

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Emi, Y.; Kino, H.; Sano, Y.; Kohmura, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2013-09-01

    Compact advanced Kirkpatrick-Baez optics are used to construct a microscope that is easy to align and robust against vibrations and thermal drifts. The entire length of the imaging mirror system is 286 mm, which is 34% shorter than the previous model. A spatial resolution test is performed in which magnified bright-field images of a pattern are taken with an X-ray camera at an energy of 10 keV at the BL29XUL beamline of SPring-8. A line-and-space pattern having a 50- nm width could be resolved, although the image contrast is low.

  13. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  14. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOEpatents

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  15. Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris

    2006-06-01

    The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.

  16. Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.

    2006-06-01

    The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.

  17. Final Report Advanced Quasioptical Launcher System

    SciTech Connect

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  18. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  19. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  20. Optimization design for the supporting system of 5m collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Guan, Shaohua; Ma, Tianmeng; Zhang, Ming

    2016-10-01

    Primary mirror is an important component of collimator. The surface figure error of primary mirror is a critical factor affecting the imaging quality of collimator. Besides, the support system of primary mirror of collimator must be steady, while collimator need be moved safely as an elementary optical measuring tool. The support system of the primary mirror is composed of axial support and lateral support. Due to the axis of the primary mirror is horizontal when collimator working, the lateral support of the primary mirror has a far greater impact on the figure error of the primary mirror. In this paper, static structure analysis with finite element method is carried out for a 5m collimator primary mirror with V-block support under gravity load. With the analysis, the relationship between the structure parameters in primary mirror V-block support and the deformation of the primary mirror is built. With this relationship, the optimization parameters are found out to reduce the gravity deformation of the primary mirror.

  1. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  2. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  3. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  4. Optimal mirror deformation for multi conjugate adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Raffetseder, S.; Ramlau, R.; Yudytskiy, M.

    2016-02-01

    Multi conjugate adaptive optics (MCAO) is a system planned for all future extremely large telescopes to compensate in real-time for the optical distortions caused by atmospheric turbulence over a wide field of view. The principles of MCAO are based on two inverse problems: a stable tomographic reconstruction of the turbulence profile followed by the optimal alignment of multiple deformable mirrors (DMs), conjugated to different altitudes in the atmosphere. We present a novel method to treat the optimal mirror deformation problem for MCAO. Contrary to the standard approach where the problem is formulated over a discrete set of optimization directions we focus on the solution of the continuous optimization problem. In the paper we study the existence and uniqueness of the solution and present a Tikhonov based regularization method. This approach gives us the flexibility to apply quadrature rules for a more sophisticated discretization scheme. Using numerical simulations in the context of the European extremely large telescope we show that our method leads to a significant improvement in the reconstruction quality over the standard approach and allows to reduce the numerical burden on the computer performing the computations.

  5. Toward high-dynamic active mirrors for LGS refocusing systems

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Madec, Fabrice; Vives, Sébastien; Ferrari, Marc; Le Mignant, David; Cuby, Jean Gabriel

    2010-07-01

    In the frame of the E-ELT-EAGLE instrument phase A studies, we designed a convex VCM able to compensate for the focus variation on the Laser Guide Star (LGS) wavefront sensor, due to the elevation of the telescope and the fixed sodium layer altitude. We present an original optical design including this active convex mirror, providing a large sag variation on a spherical surface with a 120mm clear aperture, with an optical quality better than lambda/5 RMS up to 820μm of sag and better than lambda/4 RMS up to 1000μm of sag. Finite element analysis (FEA) allowed an optimisation of the mirror's variable thickness distribution to compensate for geometrical and material non linearity. Preliminary study of the pre-stressing has also been performed by FEA, showing that a permanent deformation remains after removal of the loads. Results and comparison with the FEA are presented in the article of F.Madec et al (AS10-7736-119, this conference), with an emphasis on the system approach.

  6. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  7. More than an imitation game: Top-down modulation of the human mirror system.

    PubMed

    Campbell, Megan E J; Cunnington, Ross

    2017-01-30

    All interpersonal interactions are underpinned by action: perceiving and understanding the actions of others, and responding by planning and performing self-made actions. Perception of action, both self-made and observed, informs ongoing motor responses by iterative feedback within a perception-action loop. This fundamental phenomenon occurs within single-cells of the macaque brain which demonstrate sensory and motor response properties. These 'mirror' neurons have led to a swathe of research leading to the broadly accepted idea of a human mirror system. The current review examines the putative human mirror system literature to highlight several inconsistencies in comparison to the seminal macaque data, and ongoing controversies within human focused research (including mirror neuron origin and function). In particular, we will address the often-neglected other side to the 'mirror': complementary and opposing actions. We propose that engagement of the mirror system in meeting changing task-demands is dynamically modulated via frontal control networks.

  8. System-Engineering Methods and Design Decisions for the Mirror Fusion Propulsion System (MFPS)

    NASA Astrophysics Data System (ADS)

    Deveny, Marc E.; Carpenter, Scott A.

    1994-07-01

    We describe the design trades and rationale supporting development of a continuous-thrusting space-fusion-propulsion system called the Mirror Fusion Propulsion System (MFPS). The MFPS is the result of an earlier design study to adapt and optimize a terrestrial fusion reactor for propulsion in space. In this paper, we focus on the configuration trades that are necessary to make top-level design decisions. Configuration trades include the fusion reactor configuration, fuel combinations (fuel mix and fuel-pellet shelling), plasma temperature, reduced-electron-temperature operating mode, magnetic-field-ripple, electrically-conducting-wall stabilization, superconductor technology and cooling mode (closed-cycle cryocooler or LH2-propellant cooled), and many others. To qualitatively sort through all of these trades and identify directions for further improvement in performance, we developed and applied three distinct design principles useful to adapt, and then optimize, terrestrial fusion reactor configurations for propulsion in space. To quantitatively optimize MFPS, we developed an engineering-design tool that embeds the User in all phases of the design. This Tool is called IDEAs (Integrated Design Environment Algorithms) and it allows the systems engineer to ``see'' several varying results simultaneously. IDEAs converts the top-level systems design into a much easier task. The decision flow results in an advanced space propulsion system with a 500-tonne dry-engine, 4-kWthrust / kgengine specific power, and 4-full-power-year (FPY) design end of life (EOL).

  9. Performance of a two mirror, four reflection, ring field imaging system

    SciTech Connect

    Sommargren, G.E.

    1995-01-25

    The surface figure of the individual mirrors of a two mirror, four reflection, ring field imaging system has been measured after each phase of the construction process: substrate fabrication, coating and potting. Contributions to the final system wavefront error and performance of the system in terms of the modulation transfer function and initial imaging tests are discussed.

  10. Systems and methods for mirror mounting with minimized distortion

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)

    2012-01-01

    A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.

  11. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  12. Qualification of concentrating mirror systems with the Hermes measurement system and the Helios simulation program

    NASA Astrophysics Data System (ADS)

    Kleih, Juergen

    1991-02-01

    An overview of methods (direct and indirect) for measuring highly concentrated solar radiation, which were used for qualifying solar power plants (from the parabolic mirror up to the tower plant) is provided. In particular, it goes into the Hermes measuring system which was used to measure two membrane mirrors (of diameter 17 and 7.5 m respectively). Measurements were made of maximum radiant flux densities of more than 2 MW/sq m for the 17 m mirror and of more than 9 MW/sq m for the 7.5 m mirror. The HELIOS simulation program was used to check the measurement results. The agreement between measurement and calculation was satisfactory over all.

  13. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  14. Ray tracing analysis of the image quality of a high collection efficiency mirror system.

    PubMed

    Seitzinger, N K; Martin, J C; Keller, R A

    1990-10-01

    Recently, a high collection efficiency mirror system was developed by Watson [Cytometry 10, 681-688 (1989)] to increase the sensitivity of low level fluorescence detection. The mirror system consists of an ellipsoidal imaging mirror and spherical backreflecting mirror. The fluorescing sample is located at one focus of the ellipsoid, and its image is formed at the other focus. In this paper we evaluate the image quality of this geometry using a PC-based ray tracing program. The analysis demonstrates high collection efficiency but poor image quality. The effect of poor image quality on single molecule detection is discussed.

  15. Minimization of the Ohmic Loss of Grooved Polarizer Mirrors in High-Power ECRH Systems

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Leuterer, F.; Kasparek, W.; Stober, J.

    2017-02-01

    A set of two corrugated polarizer mirrors is typically used in high-power electron cyclotron resonance heating (ECRH) systems to provide the required polarization of the ECRH output beam. The ohmic losses of these mirrors can significantly exceed the losses of plane mirrors depending on the polarization of the incident beam with respect to the orientation of the grooves. Since polarizer mirrors incorporated into miter bends of a corrugated waveguide line are limited in size, active water cooling can become critical in high-power cw systems like the one for ITER. The ohmic loss of polarizer mirrors has been investigated experimentally at high power. A strategy to minimize the losses for given mirror geometries has been found.

  16. Micromachined mirrors

    NASA Astrophysics Data System (ADS)

    Conant, Robert Alan

    -micromachined mirrors scanning in orthogonal directions to reflect a modulated laser beam in a raster pattern. By interfacing this raster-scanning system with a computer video card, we demonstrate a full-motion video system with resolution of 41 x 52 pixels and grayscale capability. The dynamic deformation of the surface-micromachined MEMS mirrors used in this video display is shown to be the factor that limits its optical resolution. (Abstract shortened by UMI.)

  17. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  18. Thrust enhancement of the gasdynamic mirror (GDM) fusion propulsion system

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Lee, Myoung-Jae; Poston, David I.

    1997-01-01

    The gasdynamic mirror propulsion system is a device that utilizes a magnetic mirror configuration to confine a hot plasma to allow fusion reactions to take place while ejecting a fraction of the energetic charged particles through one end to generate thrust. Because the fusion fuel is generally an isotope of hydrogen, e.g., deuterium or tritium, this propulsion device is capable of producing very large specific impulses (e.g., 200,000 seconds) but at modest thrusts. Since large thrusts are desirable, not only for reducing travel time but also for lifting sizable payloads, we have examined methods by which GDM's thrust could be enhanced. The first consists of utilizing the radiation generated by the plasma, namely bremsstrahlung and synchrotron radiation, to heat a hydrogen propellant which upon exhausting through a nozzle produces the additional thrust. We asses the performance in this case by using an ideal model that ignores heat transfer considerations of the chamber wall, and one that takes into account heat flow and wall temperature limitations. We find in the case of a DT burning plasma that although thrust enhancement is significant, it was more than offset by the large drop in the specific impulse and a concomitant increase in travel time. The second method consisted of not altering the original GDM operation, but simply increasing the density of the injected plasma to achieve higher thrust. It is shown that the latter approach is more effective since it is compatible with improved performance in that it reduces trip time but at the expense of larger vehicle mass. For a D-He3 burning device the use of hydrogen to enhance thrust appears to be more desirable since the radiated power that goes into heating the hydrogen propellant is quite large.

  19. Mirror neuron system based therapy for aphasia rehabilitation

    PubMed Central

    Chen, Wenli; Ye, Qian; Ji, Xiangtong; Zhang, Sicong; Yang, Xi; Zhou, Qiumin; Cong, Fang; Chen, Wei; Zhang, Xin; Zhang, Bing; Xia, Yang; Yuan, Ti-Fei; Shan, Chunlei

    2015-01-01

    Objective: To investigate the effect of hand action observation training, i.e., mirror neuron system (MNS) based training, on language function of aphasic patients after stroke. In addition, to reveal the tentative mechanism underlying this effect. Methods: Six aphasic patients after stroke, meeting the criteria, undergo 3 weeks' training protocol (30 min per day, 6 days per week). Among them, four patients accepted an ABA training design, i.e., they implemented Protocol A (hand action observation combined with repetition) in the first and third weeks and carried out Protocol B (static object observation combined with repetition) in the second week. Conversely, for the other two patients, BAB training design was adopted, i.e., patients took Protocol B in the first and third weeks and accepted Protocol A in the second week. Picture naming test, western aphasia battery (WAB) and Token Test were applied to evaluate the changes of language function before and after each week's training. Furthermore, two subjects (one aphasic patient and one healthy volunteer) attended a functional MRI (fMRI) experiment, by which we tried to reveal the mechanism underlying possible language function changes after training. Results: Compared with static object observation and repetition training (Protocol B), hand action observation and repetition training (Protocol A) effectively improved most aspects of the language function in all six patients, as demonstrated in the picture naming test, subtests of oral language and aphasia quotient (AQ) of WAB. In addition, the fMRI experiment showed that Protocol A induced more activations in the MNS of one patient and one healthy control when compared to Protocol B. Conclusion: The mirror neuron based therapy may facilitate the language recovery for aphasic patients and this, to some extent, provides a novel direction of rehabilitation for aphasia patients. PMID:26579046

  20. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  1. Magnetic mirror fusion-fission early history and applicability to other systems

    SciTech Connect

    Moir, R

    2009-08-24

    In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed

  2. DESIGN OF MIRRORS AND APODIZATION FUNCTIONS IN PHASE-INDUCED AMPLITUDE APODIZATION SYSTEMS

    SciTech Connect

    Cady, Eric

    2012-08-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors that reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any given pair of mirrors, or conversely mirror shapes chosen for given apodizers, to produce an arbitrary amplitude profile at the output of the system. We show how classical PIAA systems may be designed by this method and present the design of a novel four-mirror system with higher throughput than a standard two-mirror system. We also discuss the limitations due to diffraction and the design steps that may be taken to mitigate them.

  3. Off-axis mirror based optical system design for circularization, collimation, and expansion of elliptical laser beams.

    PubMed

    Serkan, Mert; Kirkici, Hulya; Cetinkaya, Hakan

    2007-08-01

    In this paper, we present two optical system design methods for beam circularization, collimation, and expansion of semiconductor laser output beam for possible application in LIDAR systems. Two different optical mirror systems are investigated: an off-axis hyperbolic/parabolic mirror system and an off-axis parabolic mirror system. Equations specific to these mirror systems are derived and computer package programs such as ZEMAX and MATLAB are used to simulate the optical designs. The beam reshaping results are presented.

  4. Off-axis mirror based optical system design for circularization, collimation, and expansion of elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Serkan, Mert; Kirkici, Hulya; Cetinkaya, Hakan

    2007-08-01

    In this paper, we present two optical system design methods for beam circularization, collimation, and expansion of semiconductor laser output beam for possible application in LIDAR systems. Two different optical mirror systems are investigated: an off-axis hyperbolic/parabolic mirror system and an off-axis parabolic mirror system. Equations specific to these mirror systems are derived and computer package programs such as ZEMAX and MATLAB are used to simulate the optical designs. The beam reshaping results are presented.

  5. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  6. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  7. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  8. Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system

    NASA Astrophysics Data System (ADS)

    Deng, Jian; An, Xiaoqiang; Tian, Hao

    2010-05-01

    Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.

  9. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  10. Design of the aplanatic and anastigmatic two-mirror four-reflection system

    NASA Astrophysics Data System (ADS)

    Gallert, Frank

    1996-08-01

    The invention relates to a mirror system with two mirrors and four reflections, comprising a concentrating reflector and a diffusion reflector fitted on the same optical axis, an image field and a detector. The concentrating reflector has a central drilling. The concentrating reflector reflects the light to the outer part of the diffusion reflector, from where the light is reflected on the concentrating reflector again, that reflects the light on the central part of the diffusion reflector, that in turn reflects the light through the central drilling to the image plane. Prior art twin- mirror systems like the Ritchey-Chretien system do not correct astigmatism, curvature of the image field and distortion. According to the invention spherical aberration, coma and astigmatism are corrected by double reflection at both mirrors, whereby the concentrating mirror and the outer part are hyperbolically shaped and whereby the inner part of the diffusion reflector is elliptical, spherical or ellipsoidal shaped. That depends from the axial radius of curvature of the diffusion mirror in relation to the distance between both mirrors. Hence--this shape depends from the overall focal length of the mirror system in relation to the paraxial focal length of the concentrating reflector.

  11. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    SciTech Connect

    Subramanian, V. R.; Dolton, W.; Wells, G.; Hallin, E.; Achenbach, S.; Klymyshyn, D. M.; Augustin, M.

    2010-06-23

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

  12. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  13. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  14. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles; Arnold, William

    2013-01-01

    AMTD partner Exelis developed & demonstrated a technique to manufacture a 400 mm thick substrate via stacking and fusing core structural elements to front and back faceplates; making a 40 cm cut-out of a 4 meter diameter 60 kilograms per square meter mirror. This new process offers a lower cost approach for manufacturing large-diameter high-stiffness mirrors.

  15. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

  16. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  17. Morphological differences in the mirror neuron system in Williams Syndrome

    PubMed Central

    Ng, Rowena; Brown, Timothy T.; Erhart, Matthew; Järvinen, Anna M.; Korenberg, Julie R.; Bellugi, Ursula; Halgren, Eric

    2015-01-01

    Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic resonance imaging methods were used to examine the structural integrity of the MNS of adults with WS versus typically developing (TD) individuals. The Social Responsiveness Scale (SRS), a tool typically used to screen for social features of ASD, was also employed to assess the relationships between social functioning with the MNS morphology in WS participants. WS individuals showed reduced cortical surface area of MNS substrates yet relatively preserved cortical thickness as compared to TD adults. Increased cortical thickness of the inferior parietal lobule was associated with increased deficits in social communication, social awareness, social cognition, and autistic mannerisms. However, social motivation was not related to anatomical features of the MNS. Our findings indicate that social deficits typical to both ASD and WS may be attributed to an aberrant MNS, whereas the unusual social drive marked in WS is subserved by substrates distinct from this network. PMID:26230578

  18. Morphological differences in the mirror neuron system in Williams syndrome.

    PubMed

    Ng, Rowena; Brown, Timothy T; Erhart, Matthew; Järvinen, Anna M; Korenberg, Julie R; Bellugi, Ursula; Halgren, Eric

    2016-01-01

    Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic resonance imaging (MRI) methods were used to examine the structural integrity of the MNS of adults with WS versus typically developing (TD) individuals. The Social Responsiveness Scale (SRS), a tool typically used to screen for social features of ASD, was also employed to assess the relationships between social functioning with the MNS morphology in WS participants. WS individuals showed reduced cortical surface area of MNS substrates yet relatively preserved cortical thickness as compared to TD adults. Increased cortical thickness of the inferior parietal lobule (IPL) was associated with increased deficits in social communication, social awareness, social cognition, and autistic mannerisms. However, social motivation was not related to anatomical features of the MNS. Our findings indicate that social deficits typical to both ASD and WS may be attributed to an aberrant MNS, whereas the unusual social drive marked in WS is subserved by substrates distinct from this network.

  19. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  20. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  1. Scalar clouds in charged stringy black hole-mirror system

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Junkun; Wu, Xinghua; Zhang, Yanming

    2015-04-01

    It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency , where is the azimuthal index and is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition for a charged scalar field, where is the charge of the scalar field, and is the horizon's electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations . It is shown that analytical results of the mirror location for the clouds perfectly coincide with numerical results in the regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations for the scalar clouds in the regime.

  2. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  3. Global Radius of Curvature Estimation and Control System for Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M. (Inventor)

    2006-01-01

    An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.

  4. The Alignment Test System for AXAF-I's High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Waldman, Mark

    1995-01-01

    The AXAF-1 High Resolution Mirror Assembly (HRMA) consists of four nested mirror pairs of Wolter Type-1 grazing incidence optics. The HRMA assembly and alignment will take place in a vibration-isolated, cleanliness class 100, 18 meter high tower at an Eastman Kodak Company facility in Rochester, NY. Each mirror pair must be aligned such that its image is coma-free, and the four pairs must be aligned such that their images are coincident. In addition, both the HRMA optical axis and focal point must be precisely known with respect to physical references on the HRMA. The alignment of the HRMA mirrors is measured by the HRMA Alignment Test System (HATS), which is an integral part of the tower facility. The HATS is configured as a double-pass, autocollimating Hartmann test where each mirror aperture is scanned to determine the state of alignment. This paper will describe the design and operation of the HATS.

  5. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  6. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  7. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  8. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  9. Shell Separation for Mirror Replication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  10. Development of high-order harmonic focusing system based on ellipsoidal mirror.

    PubMed

    Motoyama, H; Sato, T; Iwasaki, A; Takei, Y; Kume, T; Egawa, S; Hiraguri, K; Hashizume, H; Yamanouchi, K; Mimura, H

    2016-05-01

    We have developed a focusing system for extreme ultraviolet light produced by high-order harmonic generation. An ellipsoidal mirror with a precise surface shape was fabricated and installed into the focusing system. A rigid mirror manipulator and a beam profiler were employed to perform precise and stable mirror alignment. As a demonstration of the focusing performance, high-order harmonics in the wavelength range of 13.5-19.5 nm were successfully focused into a 2.4 × 2.3 μm(2) spot.

  11. Improving the Performance of Three-Mirror Imaging Systems with Freeform Optics

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Wolbach, Steven

    2013-01-01

    The image quality improvement for three-mirror systems by Freeform Optics is surveyed over various f-number and field specifications. Starting with the Korsch solution, we increase the surface shape degrees of freedom and record the improvements.

  12. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  13. Characterising x-ray mirror deformations with a phase measuring deflectometry system

    NASA Astrophysics Data System (ADS)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400µm. One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure. In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces. A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  14. Design of dual-curvature mirror for linear medium concentration photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-01-01

    The impact of mirror shape on energy production in Skyline Solar's reflective trough medium concentration photovoltaic system is reviewed using a combination of commercial and proprietary modeling tools. For linear concentrators, an important parameter for efficiency optimization is the uniformity of the flux line on the photovoltaic cells. A significant source of nonuniformity is the discontinuity of reflected light due to the gap between mirrors along the length of the trough. Standard concentrating solar power trough mirrors have a typical length of 1.5 m with a gap between mirrors of 10 to 20 mm. To reduce nonuniformity of the flux line due to this mirror to mirror gap, Skyline Solar developed a dual curvature mirror that stretches the flux line along the trough axis. Extensive modeling and experiments have been conducted to analyze the impact of this design. The methodology of optimization is presented for the X14 Skyline system architecture, and benefits of up to 3% of energy can be realized at locations with latitude below 30 deg.

  15. Advanced Optical Fiber Communication Systems

    DTIC Science & Technology

    1992-08-01

    Optical Network with Physical Star Topology," Advanced Fiber Communications Technologies , Leonid G. Kazovsky... advances in the performance and capabilities of optical fiber communication systems. While some of these technologies are interrelated (for example...multi gigabit per second hybrid circuit/packet switched lightwave network ," Proc. SPIE Advanced Fiber Communications Technologies , Boston 󈨟, Sept.

  16. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; Buckley, Chris B.; Diegelman, Thomas E.; Hall, Timothy A.; Hood, Deborah; Reynolds, Fisher F.; Toschlog, Jason R.; Tucker, Tyson

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  17. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  18. The design and analysis of 2m telescope's K Mirror system

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Zhang, Jingxu; Yang, Fei; Zhang, Yan

    2014-09-01

    During the alt-azimuth telescope tracking, due to the frame structure of tracking support and relative movement of each mirror in Coude optical path, image plane is rotating. To eliminate the effects of image rotation for imaging and subsequent image processing, dove prism or K mirror are generally used. A set of K mirror system designed for 2m telescope. Affected by various errors in the alignment process, the rotating axis K, the optical axis of the K mirror, and the optical axis of the telescope's optical system can't be fully coincide. This causes the track optical axis drawn on the image is not a point, but a Pascal's limacon. The impact caused by the various sources of error were analyzed in this paper and simulation results have important guiding significance for the alignment error distribution.

  19. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  20. Quantum noise in the mirror-field system: A field theoretic approach

    SciTech Connect

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise correlations can

  1. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  3. A human mirror neuron system for language: Perspectives from signed languages of the deaf.

    PubMed

    Knapp, Heather Patterson; Corina, David P

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences, 28, 105-167; Arbib M.A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal de Physiologie Paris 102, 4-20]. Signed languages of the deaf are fully-expressive, natural human languages that are perceived visually and produced manually. We suggest that if a unitary mirror neuron system mediates the observation and production of both language and non-linguistic action, three prediction can be made: (1) damage to the human mirror neuron system should non-selectively disrupt both sign language and non-linguistic action processing; (2) within the domain of sign language, a given mirror neuron locus should mediate both perception and production; and (3) the action-based tuning curves of individual mirror neurons should support the highly circumscribed set of motions that form the "vocabulary of action" for signed languages. In this review we evaluate data from the sign language and mirror neuron literatures and find that these predictions are only partially upheld.

  4. Qualification of concentrating mirror systems with the HERMES measurement system and the HELIOS simulation program

    NASA Astrophysics Data System (ADS)

    Kleih, Juergen

    1989-08-01

    An overview of direct and indirect methods of measuring highly concentrated solar radiation is presented. The methods are used to qualify solar power plants (parabolic dishes up to tower systems). The HERMES measuring system is described. HERMES is used to examine two membrane concentrators, 17 and 7.5 m in diameter. Maximum measured values of radiant flux density are greater than 2 mw/sq m for the 17 m mirror and greater than 9 mw/sq m for the 7.5 mirror, normalized to a direct insolation of 800 w/sq m. The HELIOS computer code is used as a checking tool for the measurements. Acceptable agreement between the measurements and calculated values is found.

  5. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  6. System for precise temperature sensing and thermal control of borosilicate honeycomb mirrors during polishing and testing

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, Michael

    1990-07-01

    The Steward Observatory Mirror Laboratory has implemented a large borosilicate honeycomb telescope mirror polishing system in which thermal distortion is reduced to negligible levels by maintaining the glass in an isothermal state to within 0.1 C. Testing of the polished surface is conducted in air, using a laser and interferometer mounted above the mirror; the control of refractive index variation in the laser's light-path entails that the air also be isothermal, to within 0.2 C. Thermocouples are used as sensors in the polishing room, in air ducts, and on the mirror. Measurements are made to an accuracy of 0.005 C at the rate of one thermocouple/sec.

  7. Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System

    PubMed Central

    Molnar-Szakacs, Istvan; Uddin, Lucina Q.

    2013-01-01

    Recent evidence for the fractionation of the default mode network (DMN) into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN – medial prefrontal cortex and posterior cingulate cortex – as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network. Drawing from a rapidly evolving social-cognitive neuroscience literature, we propose that embodied simulation and mentalizing are processes which allow us to gain insight into another’s physical and mental state by providing privileged access to our own physical and mental states. Embodiment implies that the same neural systems are engaged for self- and other-understanding through a simulation mechanism, while mentalizing refers to the use of high-level conceptual information to make inferences about the mental states of self and others. These mechanisms work together to provide a coherent representation of the self and by extension, of others. Nodes of the DMN selectively interact with brain systems for embodiment and mentalizing, including the mirror neuron system, to produce appropriate mappings in the service of social-cognitive demands. PMID:24062671

  8. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.

  9. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    PubMed

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R

    2015-07-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy.

  10. Numerical analysis on the beam quality improvements of high power chemical laser system with water cooled mirrors

    NASA Astrophysics Data System (ADS)

    Han, Kai; Li, Bin; Xu, Xiao-jun

    2011-06-01

    Chemical laser is one of the most widely used high power infrared sources. Thermal deformation of mirrors in a resonator is a key factor which hinders the improvement of the beam quality in high power chemical lasers, and it has been a matter of the utmost concern in the design of high power chemical laser systems. Water-cooled technique is one of the most widely methods employed in cooling mirrors in high power laser systems. Several kinds of water-cooled mirrors have been studied by researchers in the world. Research teams of the United States and Russia have done a lot of work and their water cooled mirrors behave very well. In China, the study of micro-channel water cooled silicon mirror has been carried out by Cheng Zuhai in detail and the research of water jet cooled mirror has been performed by Li Bin. Both the two types of water cooled mirrors show excellent capabilities in alleviating the thermal deformation of mirrors. However, the issues that how and to what extent the beam quality is improved when the water cooled mirrors are involved have not been analyzed so far. In this paper, through numerical simulations, the beam qualities of linear resonators with various types of water cooled mirrors are analyzed in detail, and the effects of the two types of water cooled mirrors are compared. The thermal distortion of uncooled Si mirrors is characterized by Zernike polynomials and the beam quality is characterized with Strehl ratio, β factor, and M2 factor, which degenerates as the beam oscillates in the distorted resonator. The aberrance of mirrors non-uniformly heated by high energy laser mainly distributes on the low-even-order Zernike polynomials. When the uncooled Si mirrors are replaced by water cooled mirrors, the distortion decreases greatly and the beam quality is improved a lot. Although the performance of the water jet cooled mirror on mitigating distortion is better than the micro-channel water cooled mirror, the resonator made up of two water jet

  11. Improving Vision-Based Motor Rehabilitation Interactive Systems for Users with Disabilities Using Mirror Feedback

    PubMed Central

    Martínez-Bueso, Pau; Moyà-Alcover, Biel

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (Ts) and time-to-complete (Tc)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (Ts = 7.09 (P < 0.001) and Tc = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310

  12. Improving vision-based motor rehabilitation interactive systems for users with disabilities using mirror feedback.

    PubMed

    Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T(s)) and time-to-complete (T(c))). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T(s) = 7.09 (P < 0.001) and T(c) = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems.

  13. Profile Coating for KB Mirror Applications at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, C.; Assoufid, L.; Macrander, A.; Ice, G.; Tischler, J.

    2002-01-01

    For microfocusing x-ray mirrors, an ellipse shape is desirable for aberration-free optics. However, it is difficult to polish elliptical mirrors to x-ray quality smoothness. A differential coating method to convert a cylindrical mirror to an elliptical one has been previously reported The differential coating was obtained by varying the sputter source power while the mirror was passed through. Here we report a new method of profile coating to achieve the same goal more effectively. In the profile coating, the sputter source power is kept constant, while the substrate is passed over a contoured mask at a constant speed. The mask is placed very close to the substrate level (within 1.0 mm) on a shield-can over the sputter gun. Four-inch-diameter Si wafers were coated through a 100-mm-long by 152-mm-wide aperture on the top of the shield-can. The thickness distribution was then obtained using a spectroscopic ellipsometer with computer-controlled X-Y translation stages. A model has been developed to fit the measured thickness distribution of stationary growth. The relative thickness weightings are then digitized at every point 1 mm apart for the entire open area of the aperture. When the substrate is moving across the shield-can during a deposition, the film thickness is directly proportional to the length of the opening on the can along the moving direction. By equating the summation of relative weighting to the required relative thickness at the same position, the length of the opening at that position can be determined. By repeating the same process for the whole length of the required profile, a contour can be obtained for a desired thickness profile. The contoured mask is then placed on the opening of the shield-can. The number of passes and the moving speed of the substrate are determined according to the required thickness and the growth-rate calibration. The mirror coating profile is determined from the ideal surface figure of a focus ellipse and that obtained

  14. Suppression of the first flute mode in a long axisymmetric mirror system

    SciTech Connect

    Arsenin, V.V.

    1982-05-01

    The lowest mode of the flute instability of a plasma with ..beta..<<1 in a confinement system with a simple mirror field: the displacement of the plasma as a whole: can be suppressed if the confinement system is connected with another plasma-filled, axisymmetric, annular confinement system, so that there is a sharp maximum in B beyond the outer boundary of the bell-shaped plasma in the annular system. If the simple mirror is so long that all the other flute modes are stabilized by the finite-Larmor-radius effect, the plasma proves stable with respect to flute perturbations.

  15. No evidence for mirror system dysfunction in schizophrenia from a multimodal TMS/EEG study.

    PubMed

    Andrews, Sophie C; Enticott, Peter G; Hoy, Kate E; Thomson, Richard H; Fitzgerald, Paul B

    2015-08-30

    Dysfunctional mirror neuron systems have been proposed to contribute to the social cognitive deficits observed in schizophrenia. A few studies have explored mirror systems in schizophrenia using various techniques such as TMS (levels of motor resonance) or EEG (levels of mu suppression), with mixed results. This study aimed to use a novel multimodal approach (i.e. concurrent TMS and EEG) to further investigate mirror systems and social cognition in schizophrenia. Nineteen individuals with schizophrenia or schizoaffective disorder and 19 healthy controls participated. Single-pulse TMS was applied to M1 during the observation of hand movements designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded brain activity. Participants also completed facial affect recognition and theory of mind tasks. The schizophrenia group showed significant deficits in facial affect recognition and higher level theory of mind compared to healthy controls. A significant positive relationship was revealed between mu suppression and motor resonance for the overall sample, indicating concurrent validity of these measures. Levels of mu suppression and motor resonance were not significantly different between groups. These findings indicate that in stable outpatients with schizophrenia, mirror system functioning is intact, and therefore their social cognitive difficulties may be caused by alternative pathophysiology.

  16. Reflecting on the mirror neuron system in autism: a systematic review of current theories.

    PubMed

    Hamilton, Antonia F de C

    2013-01-01

    There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed.

  17. Advanced ultraviolet-resistant silver mirrors for use in solar reflectors

    DOEpatents

    Jorgensen, Gary J.; Gee, Randy

    2009-11-03

    A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.

  18. Profile coating for KB mirror applications at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Chian; Assoufid, L.; Macrander, Albert T.; Ice, Gene E.; Tischler, J. Z.

    2002-12-01

    For microfocusing x-ray mirrors, an ellipse shape is desirable for aberration-free optics. However, it is difficult to polish elliptical mirrors to x-ray quality smoothness. A differential coating method to convert a cylindrical mirror to an elliptical one has been previously reported The differential coating was obtained by varying the sputter source power while the mirror was passed through. Here we report a new method of profile coating to achieve the same goal more effectively. In the profile coating, the sputter source power is kept constant, while the substrate is passed over a contoured mask at a constant speed. The mask is placed very close to the substrate level (within 1.0 mm) on a shield-can over the sputter gun. Four-inch-diameter Si wafers were coated through a 100-mm-long by 152-mm-wide aperture on the top of the shield-can. The thickness distribution was then obtained using a spectroscopic ellipsometer with computer-controlled X-Y translation stages. A model has been developed to fit the measured thickness distribution of stationary growth. The relative thickness weightings are then digitized at every point 1 mm apart for the entire open area of the aperture. When the substrate is moving across the shield-can during a deposition, the film thickness is directly proportional to the length of the opening on the can along the moving direction. By equating the summation of relative weighting to the required relative thickness at the same position, the length of the opening at that position can be determined. By repeating the same process for the whole length of the required profile, a contour can be obtained for a desired thickness profile. The contoured mask is then placed on the opening of the shield-can. The number of passes and the moving speed of the substrate are determined according to the required thickness and the growth-rate calibration. The mirror coating profile is determined from the ideal surface figure of a focus ellipse and that obtained

  19. Control System Modeling for the Thirty Meter Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Shelton, J. Chris; Roberts, Lewis C., Jr.; Colavita, M. Mark; Sirota, Mark J.

    2011-01-01

    The Thirty Meter Telescope primary mirror is composed of 492 segments that are controlled to high precision in the presence of wind and vibration disturbances, despite the interaction with structural dynamics. The higher bandwidth and larger number of segments compared with the Keck telescopes requires greater attention to modeling to ensure success. We focus here on the development and validation of a suite of quasi-static and dynamic modeling tools required to support the design process, including robustness verification, performance estimation, and requirements flowdown. Models are used to predict the dynamic response due to wind and vibration disturbances, estimate achievable bandwidth in the presence of control-structure-interaction (CSI) and uncertainty in the interaction matrix, and simulate and analyze control algorithms and strategies, e.g. for control of focus-mode, and sensor calibration. Representative results illustrate TMT performance scaling with parameters, but the emphasis is on the modeling framework itself.

  20. Vibration control of an active mirror pointing system

    NASA Astrophysics Data System (ADS)

    Su, Joseph C.; Huang, Chien Y.; Austin, Fred; Knowles, Gareth J.

    1993-09-01

    An active vibration control experiment for precision mirror pointing using smart structure is described. The setup consists of a flexible plate clamped to the shaft of an electric motor. Part of the plate is polished to reflect a laser beam whose direction accuracy is the performance criterion. Electroceramic actuators and sensors are incorporated into the plate to control vibration. The analytical model is generated using the ANSYS program. Six flexible modes are kept to investigate the interaction between the rigid and the flexible modes. Three different control strategies were examined. The goal is to suppress the first and the second mode with very little spillover effects from other modes. Simulation results show that the performance objectives can be met. These analytical studies are verified in actual experiments in the near future.

  1. Advanced satellite communication system

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  2. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  3. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  4. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated.

  5. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror

    NASA Astrophysics Data System (ADS)

    Wang, Donglin; Fu, Linlai; Wang, Xin; Gong, Zhongjian; Samuelson, Sean; Duan, Can; Jia, Hongzhi; Ma, Jun Shan; Xie, Huikai

    2013-08-01

    A microelectromechanical system (MEMS) mirror based endoscopic swept-source optical coherence tomography (SS-OCT) system that can perform three-dimensional (3-D) imaging at high speed is reported. The key component enabling 3-D endoscopic imaging is a two-axis MEMS scanning mirror which has a 0.8×0.8 mm2 mirror plate and a 1.6×1.4 mm2 device footprint. The diameter of the endoscopic probe is only 3.5 mm. The imaging rate of the SS-OCT system is 50 frames/s. OCT images of both human suspicious oral leukoplakia tissue and normal buccal mucosa were taken in vivo and compared. The OCT imaging result agrees well with the histopathological analysis.

  6. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  7. Advanced Microdisplays for Portable Systems

    DTIC Science & Technology

    1999-08-01

    THROUGH SCIENCE mm WE DEFEND TECHNICAL REPORT NATICK/TR-99/037 AD ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS by Phillip Alvelda Michael...1996 - 19 October 1998 4. TITLE AND SUBTITLE ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS 6. AUTHOR(S) Phillip Alvelda , Michael Bolotski, Ramon...MIT’s Artificial Intelligence Laboratory which forms the basis for this proposal. Under DARPA funding, Mr. Alvelda and Mr. Knight developed the highest

  8. Understanding animate agents: distinct roles for the social network and mirror system.

    PubMed

    Wheatley, Thalia; Milleville, Shawn C; Martin, Alex

    2007-06-01

    How people understand the actions of animate agents has been vigorously debated. This debate has centered on two hypotheses focused on anatomically distinct neural substrates: The mirror-system hypothesis proposes that the understanding of others is achieved via action simulation, and the social-network hypothesis proposes that such understanding is achieved via the integration of critical biological properties (e.g., faces, affect). In this study, we assessed the areas of the brain that were engaged when people interpreted and imagined moving shapes as animate or inanimate. Although observing and imagining the moving shapes engaged the mirror system, only activation of the social network was modulated by animacy.

  9. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    PubMed

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-01-07

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.

  10. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    DOEpatents

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  11. Design of stereoscopic viewing system based on a compact mirror and dual monitor

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Huang P.; Chang, Shih-Hsin

    2010-02-01

    Stereoscopic technologies continue to accelerate the adoption of 3-D in both professional and consumer applications. Stereo 3-D displays have the potential to benefit geospatial intelligence, complex visualization, pharmaceutical development, petroleum exploration, medicine, entertainment, architecture, simulation, and other difficult tasks. A single-mirror dual monitor stereoscope system that can offer the full resolution of the current LCD display for 3-D viewing is proposed. This new approach utilizes an isosceles trapezoid mirror and two monitors to provide a cost-effective approach for stereoscopic viewing. Mathematical formulas for the design of the compact mirror were derived based on a novel scheme, and an implementation of the system was conducted to verify the practicability of the proposed method. We believe its compactness, low cost, and high image quality can become a very competitive choice among various display techniques currently available.

  12. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  13. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  14. Automated Mobile Infrared Mirror System Applied To Laser Welding Of Nuclear Components

    NASA Astrophysics Data System (ADS)

    Cai, Giulio; Cruciani, Diego; Cantello, Maichi

    1988-07-01

    Oxygen-free copper mirrors are currently used for transmitting, aiming and focusing high power infrared laser beams. When used in automated laser material processing systems, additional requirements are demanded of them. This paper deals with the solution adopted for their design, manufacture, assembly and in-service testing, as applied to laser welding heavy section components in AISI 304 with a 15 kW CW carbon-dioxide laser. The beam handling devices were used to demonstrate the suitability of the laser welding technique for assembling some of the structures of the reactor core in the French Superphenix nuclear plant. Two multiple rotating mirror systems, connected to each other for correct processing, had to be manufactured to perform circular welds to join sleeves to the plates of tne main diagrid, with a welding thickness of up to 15 mm. AISI 304 stainless steel is suitable for defect-free laser welded joints. Each multiple mirror systeid was dedicated to a particular welding technique: the first with the laser impinging uwards on the workpiece, the second downwards. In the latter case, special assist gas nozzles were needed to protect the mirrors from the metal vapour jets. Beam handling on a horizontal plane was also tested using another rotating mirror system for internally welding sleeves to plates. The results demonstrated the feasibility and suitability of the automated process for industrial applications. The accuracy of the results obtained using the multiple mirror system enables it to be adopted for assembling metallic structures similar to the Superphenix main diagrid. The reduction in manufacturing costs using such automated laser beam handling devices is calculated to be 30 - 40% of the total.

  15. Update on UCO's advanced coating lab development of silver-based mirror coatings

    NASA Astrophysics Data System (ADS)

    Phillips, Andrew C.; Fryauf, David M.; Kobayashi, Nobuhiko P.; DuPraw, Brian; Cheleden, Spencer; Ratliff, Christopher; Bolte, Michael J.; Cowley, David

    2016-08-01

    We present progress in efforts underway at the University of California Observatories to develop high performance durable silver-based mirror coatings for telescope and instruments. Silver-based coatings are extremely prone to tarnish and/or corrosion, and successful coatings depend not only on the materials used but also the deposition processes employed. Our physical vapor deposition (PVD) chamber allows both sputtering and ion-assisted e-beam depositions for head-to-head comparison of deposition processes, and we present results of these comparisons. In this paper, we review the problem and discuss our recent activities and findings. We discuss a systematic study to determine which oxides, nitrides and fluorides provide the best protection in environmental tests. We present initial results into the effects of stress in our specific thin films, and thee effects of stress on mirror coating durability. We also discuss studies using Atomic Layer Deposition (ALD) over-coating of Ag, and we describe a large ALD research chamber currently under construction that will demonstrate ALD processes on larger substrates (70 cm diameter).

  16. Advanced Teleprocessing Systems.

    DTIC Science & Technology

    1984-09-30

    it is assumed that the length of the start-up duration depends on the arrival proccess . Two types of systems are analyzed: 1) A system where the start...complexity of the models (see a detailed discussion of this issue in section 1.1) and the limitations of the available analysis tools have caused research- ers...the models where it is used. The limitation of queueing theory and of other analysis tools do not allow us to easily analyze a system where the events

  17. Autism and the mirror neuron system: insights from learning and teaching.

    PubMed

    Vivanti, Giacomo; Rogers, Sally J

    2014-01-01

    Individuals with autism have difficulties in social learning domains which typically involve mirror neuron system (MNS) activation. However, the precise role of the MNS in the development of autism and its relevance to treatment remain unclear. In this paper, we argue that three distinct aspects of social learning are critical for advancing knowledge in this area: (i) the mechanisms that allow for the implicit mapping of and learning from others' behaviour, (ii) the motivation to attend to and model conspecifics and (iii) the flexible and selective use of social learning. These factors are key targets of the Early Start Denver Model, an autism treatment approach which emphasizes social imitation, dyadic engagement, verbal and non-verbal communication and affect sharing. Analysis of the developmental processes and treatment-related changes in these different aspects of social learning in autism can shed light on the nature of the neuropsychological mechanisms underlying social learning and positive treatment outcomes in autism. This knowledge in turn may assist in developing more successful pedagogic approaches to autism spectrum disorder. Thus, intervention research can inform the debate on relations among neuropsychology of social learning, the role of the MNS, and educational practice in autism.

  18. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  19. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    In this paper we describe an R&D effort to define an OS architecture suitable for the requirements of the Data Acquisition and Control of an LHC experiment. Large distributed computing systems are foreseen to be the core part of the DAQ and Control system of the future LHC experiments. Neworks of thousands of processors, handling dataflows of several gigaBytes per second, with very strict timing constraints (microseconds), will become a common experience in the following years. Problems like distributyed scheduling, real-time communication protocols, failure-tolerance, distributed monitoring and debugging will have to be faced. A solid software infrastructure will be required to manage this very complicared environment, and at this moment neither CERN has the necessary expertise to build it, nor any similar commercial implementation exists. Fortunately these problems are not unique to the particle and high energy physics experiments, and the current research work in the distributed systems field, especially in the distributed operating systems area, is trying to address many of the above mentioned issues. The world that we are going to face in the next ten years will be quite different and surely much more interconnected than the one we see now. Very ambitious projects exist, planning to link towns, nations and the world in a single "Data Highway". Teleconferencing, Video on Demend, Distributed Multimedia Applications are just a few examples of the very demanding tasks to which the computer industry is committing itself. This projects are triggering a great research effort in the distributed, real-time micro-kernel based operating systems field and in the software enginering areas. The purpose of our group is to collect the outcame of these different research efforts, and to establish a working environment where the different ideas and techniques can be tested, evaluated and possibly extended, to address the requirements of a DAQ and Control System suitable for LHC

  20. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  1. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    PubMed Central

    Pineda, Jaime A

    2008-01-01

    A core assumption of how humans understand and infer the intentions and beliefs of others is the existence of a functional self-other distinction. At least two neural systems have been proposed to manage such a critical distinction. One system, part of the classic motor system, is specialized for the preparation and execution of motor actions that are self realized and voluntary, while the other appears primarily involved in capturing and understanding the actions of non-self or others. The latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system in the brain that has evolved to share many of the same circuits involved in motor control. Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or simulating the actions of others. A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy. However, mirroring systems that evolve from the classic motor system present at least three problems: a development, a correspondence, and a control problem. Developmentally, the question is how does a mirroring system arise? How do humans acquire the ability to simulate through mapping observed onto executed actions? Are mirror neurons innate and therefore genetically programmed? To what extent is learning necessary? In terms of the correspondence problem, the question is how does the observer agent know what the observed agent's resonance activation pattern is? How does the matching of motor activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently control a mirroring system when it is turned on automatically through observation? Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue

  2. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  3. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  4. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Sehui; Lee, Changho; Kim, Jin Young; Kim, Jeehyun; Lim, Geunbae; Kim, Chulhong

    2016-10-01

    Compact size and fast imaging abilities are key requirements for the clinical implementation of an optical coherence tomography (OCT) system. Among the various small-sized technology, a microelectromechanical system (MEMS) scanning mirror is widely used in a miniaturized OCT system. However, the complexities of conventional MEMS fabrication processes and relatively high costs have restricted fast clinical translation and commercialization of the OCT systems. To resolve these problems, we developed a two-axis polydimethylsiloxane (PDMS)-based MEMS (2A-PDMS-MEMS) scanning mirror through simple processes with low costs. It had a small size of 15×15×15 mm3, was fast, and had a wide scanning range at a low voltage. The AC/DC responses were measured to evaluate the performance of the 2A-PDMS-MEMS scanning mirror. The maximum scanning angles were measured as ±16.6 deg and ±11.6 deg along the X and Y axes, respectively, and the corresponding field of view was 29.8 mm×20.5 mm with an optical focal length of 50 mm. The resonance frequencies were 82 and 57 Hz along the X and Y axes, respectively. Finally, in vivo B-scan and volumetric OCT images of human fingertips and palms were successfully acquired using the developed SD-OCT system based on the 2A-PDMS-MEMS scanning mirror.

  5. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  6. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  7. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  8. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  9. Telescope Wavefront Aberration Compensation with a Deformable Mirror in an Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijiang; Crossfield, Ian

    2005-01-01

    With the goal of reducing the surface wavefront error of low-cost multi-meter-diameter mirrors from about 10 waves peak-to-valley (P-V), at lpm wavelength, to approximately 1-wave or less, we describe a method to compensate for slowly varying wavefront aberrations of telescope mirrors. A deformable mirror is utilized in an active optical compensation system. The kMS wavefront error of a 0.3m telescope improved to 0.05 waves (0.26 waves P-V) from the original value of 1.4 waves RMS (6.5 waves P-V), measured at 633nm, and the Strehl ratio improved to 89% from the original value of 0.08%.

  10. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  11. Session: CSP Advanced Systems -- Advanced Overview (Presentation)

    SciTech Connect

    Mehos, M.

    2008-04-01

    The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

  12. Understanding others' actions and goals by mirror and mentalizing systems: a meta-analysis.

    PubMed

    Van Overwalle, Frank; Baetens, Kris

    2009-11-15

    This meta-analysis explores the role of the mirror and mentalizing systems in the understanding of other people's action goals. Based on over 200 fMRI studies, this analysis demonstrates that the mirror system - consisting of the anterior intraparietal sulcus and the premotor cortex - is engaged when one perceives articulated motions of body parts irrespective of their sensory (visual or auditory) or verbal format as well as when the perceiver executes them. This confirms the matching role of the mirror system in understanding biological action. Observation of whole-body motions and gaze engage the posterior superior temporal sulcus and most likely reflects an orientation response in line with the action or attention of the observed actor. In contrast, the mentalizing system - consisting of the temporo-parietal junction, the medial prefrontal cortex and the precuneus - is activated when behavior that enables inferences to be made about goals, beliefs or moral issues is presented in abstract terms (e.g., verbal stories or geometric shapes) and there is no perceivable biological motion of body parts. A striking overlap of brain activity at the temporo-parietal junction between social inferences and other, non-social observations (e.g., Posner's cuing task) suggests that this area computes the orientation or direction of the behavior in order to predict its likely end-state (or goal). No conclusions are drawn about the specific functionality of the precuneus and the medial prefrontal cortex. Because the mirror and mentalizing systems are rarely concurrently active, it appears that neither system subserves the other. Rather, they are complementary. There seems, however, to be a transition from the mirror to the mentalizing system even when body-part motions are observed by perceivers who are consciously deliberating about the goals of others and their behavioral executions, such as when perceived body motions are contextually inconsistent, implausible or pretended.

  13. A Human Mirror Neuron System for Language: Perspectives from Signed Languages of the Deaf

    ERIC Educational Resources Information Center

    Knapp, Heather Patterson; Corina, David P.

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). "Behavioral and Brain Sciences, 28", 105-167; Arbib…

  14. The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations

    ERIC Educational Resources Information Center

    van Gog, Tamara; Paas, Fred; Marcus, Nadine; Ayres, Paul; Sweller, John

    2009-01-01

    Learning by observing and imitating others has long been recognized as constituting a powerful learning strategy for humans. Recent findings from neuroscience research, more specifically on the mirror neuron system, begin to provide insight into the neural bases of learning by observation and imitation. These findings are discussed here, along…

  15. Overview of Mirror Technology Development for Large Lightweight Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Stahl, H. P.; Rose, M. Frank (Technical Monitor)

    2000-01-01

    The Space Optics Manufacturing Technology Center of Marshall Space Flight Center is involved in the development of lightweight optics for spacebased'systems. The NGST and other future NASA programs require large aperture space-based instruments. This paper reviews the technologies under development for NGST including discussions of the environmental testing of candidate segment for the NGST primary mirror.

  16. Two-axis Beam Steering Mirror Control system for Precision Pointing and Tracking Applications

    SciTech Connect

    Ulander, Klaus

    2006-01-01

    Precision pointing and tracking of laser beams is critical in numerous military and industrial applications. This is particularly true for systems requiring atmospheric beam propagation. Such systems are plagued by environmental influences which cause the optical signal to break up and wander. Example applications include laser communications, precision targeting, active imaging, chemical remote sensing, and laser vibrometry. The goal of this project is to build a beam steering system using a two-axis mirror to maintain precise pointing control. Ultimately, position control to 0.08% accuracy (40 {micro}rad) with a bandwidth of 200 Hz is desired. The work described encompasses evaluation of the instrumentation system and the subsequent design and implementation of an analog electronic controller for a two-axis mirror used to steer the beam. The controller operates over a wide temperature range, through multiple mirror resonances, and is independent of specific mirrors. The design was built and successfully fielded in a Lawrence Livermore National Laboratory free-space optics experiment. All measurements and performance parameters are derived from measurements made on actual hardware that was built and field tested. In some cases, specific design details have been omitted that involve proprietary information pertaining to Lawrence Livermore National Laboratory patent positions and claims. These omissions in no way impact the general validity of the work or concepts presented in this thesis.

  17. Speech-Associated Gestures, Broca's Area, and the Human Mirror System

    ERIC Educational Resources Information Center

    Skipper, Jeremy I.; Goldin-Meadow, Susan; Nusbaum, Howard C.; Small, Steven L.

    2007-01-01

    Speech-associated gestures are hand and arm movements that not only convey semantic information to listeners but are themselves actions. Broca's area has been assumed to play an important role both in semantic retrieval or selection (as part of a language comprehension system) and in action recognition (as part of a "mirror" or…

  18. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  19. Hexagonal Mirror Array

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  20. Hexagonal Mirror Array

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  1. Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation.

    PubMed

    Capa, Rémi L; Marshall, Peter J; Shipley, Thomas F; Salesse, Robin N; Bouquet, Cédric A

    2011-03-01

    Action perception may involve a mirror-matching system, such that observed actions are mapped onto the observer's own motor representations. The strength of such mirror system activation should depend on an individual's experience with the observed action. The motor interference effect, where an observed action interferes with a concurrently executed incongruent action, is thought to arise from mirror system activation. However, this view was recently challenged. If motor interference arises from mirror system activation, this effect should be sensitive to prior sensorimotor experience with the observed action. To test this prediction, we measured motor interference in two groups of participants observing the same incongruent movements. One group had received brief visuo-motor practice with the observed incongruent action, but not the other group. Action observation induced a larger motor interference in participants who had practiced the observed action. This result thus supports a mirror system account of motor interference.

  2. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system.

    PubMed

    Ciaramidaro, Angela; Becchio, Cristina; Colle, Livia; Bara, Bruno G; Walter, Henrik

    2014-07-01

    Being able to comprehend communicative intentions and to recognize whether such intentions are directed toward us or not is extremely important in social interaction. Two brain systems, the mentalizing and the mirror neuron system, have been proposed to underlie intention recognition. However, little is still known about how the systems cooperate within the process of communicative intention understanding and to what degree they respond to self-directed and other-directed stimuli. To investigate the role of the mentalizing and the mirror neuron system, we used functional magnetic resonance imaging with four types of action sequence: communicative and private intentions as well as other-directed and self-directed intentions. Categorical and functional connectivity analyses showed that both systems contribute to the encoding of communicative intentions and that both systems are significantly stronger activated and more strongly coupled in self-directed communicative actions.

  3. Advanced quantum communication systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  4. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  5. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    PubMed

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism.

  6. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors.

    PubMed

    Knoernschild, Caleb; Kim, Changsoon; Lu, Felix P; Kim, Jungsang

    2009-04-27

    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 micros settling time. Full simulation of the optical system provides insights on the scalability of the system. Such a system can provide a versatile tool for applications where fast laser multiplexing is necessary.

  7. Research of large scale replicate mirror of IR radiant cooler system for satellite

    NASA Astrophysics Data System (ADS)

    Liu, Guoqing; Guo, Xuejian

    2006-02-01

    Aluminum honeycomb mirror is an important component of the IR radiant cooler system employing in the aerospace applications. The radiant cooler system has a great impact on the quality of IR measurements. The quality of the mirror affects that of the radiant cooler. This article mainly introduces the manufacture of a large scale replicate mirror using thin film technology on a honeycomb-shaped aluminum plate. It discusses several technical difficulties, such as requisition of the mother board, selection of the glue and the techniques of replication on large scale aluminum plate. Borosilicate glass, which has low index of thermal expansion, is used as mother board material. It is requested to be processed to a good plane, N < or = -5, ΔN < or = 0.3.. After extensive experiments, the type of resin and solidifier and the ratio of those materials are confirmed. The selection is in consideration of the application in outer space condition and for the favor of processing big replicated mirror.

  8. Design of four-mirror afocal principal system for wide field multichannel infrared imaging

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Huang, Ying; Li, Yan

    2015-08-01

    The image space scanning system is widely used for multichannel infrared imaging to overcome the absence of large infrared focal plane array. The field of view of afocal system directly influences the time resolution of the image space scanning system. The field of view of afocal system is generally less than 7°. Therefore, it is significant to design larger field of view of afocal system for increasing time resolution. The method of four-mirror afocal system design based on primary aberration is explored. The structural parameters are calculated according to magnification and obscuration ratio of each mirror. The conic parameters are calculated according to primary aberration coefficients. The procedure for calculating initial structural parameters is programmed. Then a four-mirror afocal system is designed with an entrance pupil diameter of 200mm, a field of view of 20°×1°, the operating wave band of 3~12μm, compression ratio of 2.5 times and the distance of exit pupil of 620mm. The results indicate that the maximum root mean square (RMS) wavefront error is less than 0.042λ(λ=7.5μm), the maximum optical path difference(OPD) is less than λ/4(λ=3~12μm). It has high imaging quality and the modulation transfer function (MTF) is approached to the diffraction limit. The method of afocal system design can be widely used for wide field multichannel infrared imaging.

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. Replicated Electro-Formed Nickel Alloy Mirror

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).

  13. An ellipsoidal mirror display analyzer system for electron energy and angular measurements

    NASA Astrophysics Data System (ADS)

    Eastman, D. E.; Donelon, J. J.; Hien, N. C.; Himpsel, F. J.

    1980-05-01

    A new electron imaging analyzer is described which consists of a retarding field ellipsoidal mirror low pass energy filter, a retarding field spherical grid high pass filter, and an area detector which consists of a CEMA multiplier, phosphor screen, and data acquisition system. This analyzer system energy analyzes and directly displays and measures all angular (momentum) directions within a ˜85° cone (˜1.8 sr). Angular resolutions of δθ ⋍ 2° and energy resolutions ΔE ⪅ 100 meV are obtained for angle-resolved photoemission measurements using synchrotron radiation. It has a very high throughput when used as an angle-integrated analyzer, with a resolution ΔE ⪅ 0.2 eV which can be achieved for a wide range of energies through the use of a spherical pre-retard lens. Descriptions are given of the ellipsoidal mirror design, system design, and system performance.

  14. Vectorial velocity filter for ultracold neutrons based on a surface-disordered mirror system.

    PubMed

    Chizhova, L A; Rotter, S; Jenke, T; Cronenberg, G; Geltenbort, P; Wautischer, G; Filter, H; Abele, H; Burgdörfer, J

    2014-03-01

    We perform classical three-dimensional Monte Carlo simulations of ultracold neutrons scattering through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a vectorial velocity filter for ultracold neutrons. The absorbing-reflecting mirror system proposed allows beams of ultracold neutrons with low angular divergence to be formed. The range of velocity components can be controlled by adjusting the geometric parameters of the system. First experimental tests of its performance are presented. One potential future application is the investigation of transport and scattering dynamics in confined systems downstream of the filter.

  15. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  16. Mirror fusion test facility magnet system. Final design report

    SciTech Connect

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  17. A microwave tomography system using a tunable mirror for beam steering

    SciTech Connect

    Tayebi, A.; Tang, J.; Paladhi, P. Roy; Udpa, L.; Udpa, S.

    2014-02-18

    Microwave tomography is a fast-growing technique in the fields of NDE and medical industry. This paper presents a new microwave tomography system which reduces the complexities of conventional microwave imaging systems by utilizing a reconfigurable mirror, a tunable reflectarray antenna. In order to build a tunable reflectarray with beam steering capabilities, the unit cell characteristics should dynamically alter. Modelling and experimental results of a single unit cell are presented in this work.

  18. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  19. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  20. Miniaturization and Evaluation of Laser Communication System for Satellite by 2-Axis Steering Mirror Mechanism

    NASA Astrophysics Data System (ADS)

    Aoyanagi, Yoshihide; Kato, Toshiki; Yasunaka, Toshihiko; Uematsu, Tsutomu; Satori, Shin

    A laser communication system has an advantage of realizing the high speed transmission under the conditions of small size and low electrical power. The laser communication system requires a high accuracy of pointing control because of the directional characteristics of laser beam. Due to the attitude control accuracy of micro-satellites, the pointing device carried in micro-satellite is required to have mitigated pointing accuracy, wide range pointing, small size, mass and low electrical power. We have developed a new pointing device characterized by two-axis pointing control mechanism. Breadboard model of pointing control mechanism consists of steering mirror, angular sensor and electrical unit. The steering mirror mechanism is accomplished using rod-end-bearings. The pointing accuracy and the performance of tracking system of the laser communication device were evaluated in simulator of between satellite and ground station. This paper describes development of the breadboard model of pointing control mechanism and the performance evaluation.

  1. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  2. Grating exchange system of independent mirror supported by floating rotary stage

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan

    2015-10-01

    The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.

  3. An augmented reality home-training system based on the mirror training and imagery approach.

    PubMed

    Trojan, Jörg; Diers, Martin; Fuchs, Xaver; Bach, Felix; Bekrater-Bodmann, Robin; Foell, Jens; Kamping, Sandra; Rance, Mariela; Maaß, Heiko; Flor, Herta

    2014-09-01

    Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a "Snake" video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.

  4. Caycedo's Sophrology and Lozanov's Suggestology: Mirror Images of a System.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    In the 1960's, two medical doctors, Georgi Lozanov and Alfonso Caycedo, discovered independently that certain yogic techniques of physical and mental relaxation could be used to produce not only analgesia but also improved memory and concentration. Systems originally used in medicine and psycho-therapy were applied to education, in particular to…

  5. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    PubMed Central

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  6. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  7. Stand alone computer system to aid the development of Mirror Fusion Test Facility rf heating systems

    SciTech Connect

    Thomas, R.A.

    1983-12-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase.

  8. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system

    PubMed Central

    Bai, Cheng-Hua; Wang, Dong-Yang; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    We propose a scheme for the creation of robust entanglement between a movable mirror and atomic ensemble at the macroscopic level in coupled optomechanical system. We numerically simulate the degree of entanglement of the bipartite macroscopic entanglement and show that it depends on the coupling strength between the cavities and is robust with respect to the certain environment temperature. Inspiringly and surprisingly, according to the reported relation between the mechanical damping rate and the mechanical frequency of the movable mirror, the numerical simulation result shows that such bipartite macroscopic entanglement persists for environment temperature up to 170 K, which breaks the liquid nitrogen cooling and liquid helium cooling and largely lowers down the experiment cost. We also investigate the entanglement transfer based on this coupled system. The scheme can be used for the realization of quantum memories for continuous variable quantum information processing and quantum-limited displacement measurements. PMID:27624534

  9. Improvement in QEPAS system based on miniaturized collimator and flat mirror

    NASA Astrophysics Data System (ADS)

    Wang, Fupeng; Chang, Jun; Wang, Qiang; Liu, Yuanyuan; Liu, Zhaojun; Qin, Zengguang; Zhu, Cunguang

    2016-12-01

    An improved QEPAS (quartz enhanced photo-acoustic spectroscopy) system based on an optical structure comprising miniaturized collimator and flat mirror is proposed. The beam diameter of the miniaturized collimator is designed less than 0.2 mm in a 20 mm working distance. Experiments are set up to compare the beam quality and photo-acoustic performance of three optical structures (this one, fiber lead mode and conventional focus mode). By virtue of the micro-resonator tubes and flat mirror, the new proposed structure achieves a SNR of 260 for a 3000 ppmv water vapor sample, which is much better than 183 for the fiber lead mode and 193 for the conventional focus mode respectively. This test is achieved by using the same self-designed circuit with the same parameters. The proposed optical structure is simpler and easier for optical alignment, and provides an alternative way in improving and simplifying the QEPAS system for industrial applications.

  10. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  11. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  12. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  13. Design of a multipurpose mirror system for LCLS-2 photon transport studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Morton, Daniel S.; Cocco, Daniele; Kelez, Nicholas M.; Srinivasan, Venkat N.; Stefan, Peter M.; Zhang, Lin

    2016-09-01

    LCLS-2 is a high repetition rate (up to 1 MHz) superconducting FEL and the soft x-ray branch will operate from 0.2 to 1.3 keV. Over this energy range, there is a large variation in beam divergence and therefore, a large variation in the beam footprint on the optics. This poses a significant problem as it creates thermal gradients across the tangential axis of the mirror, which, in turn, creates non-cylindrical deformations that cannot be corrected using a single actuator mechanical bender. To minimize power loss and preserve the wave front, the optics requires sub-nanometer RMS height errors and sub-microradian slope errors. One of the key components of the beam transport in the SXR beamline is the bendable focusing mirror system, operated in a Kirkpatrick-Baez Configuration. For the first time in the Synchrotron or FEL world, the large bending needed to focus the beam will be coupled with a cooling system on the same mirror assembly, since the majority of the FEL power is delivered through every optic leading up to the sample. To test such a concept, we have developed a mirror bender system to be used as a multipurpose optic. The system has been very accurately modeled in FEA. This, along with very good repeatability of the bending mechanism, makes it ideal for use as a metrology tool for calibrating instruments as well as to test the novel cooling/bending concept. The bender design and the tests carried out on it will be presented.

  14. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  15. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    SciTech Connect

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  16. Associative sequence learning: the role of experience in the development of imitation and the mirror system

    PubMed Central

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2009-01-01

    A core requirement for imitation is a capacity to solve the correspondence problem; to map observed onto executed actions, even when observation and execution yield sensory inputs in different modalities and coordinate frames. Until recently, it was assumed that the human capacity to solve the correspondence problem is innate. However, it is now becoming apparent that, as predicted by the associative sequence learning model, experience, and especially sensorimotor experience, plays a critical role in the development of imitation. We review evidence from studies of non-human animals, children and adults, focusing on research in cognitive neuroscience that uses training and naturally occurring variations in expertise to examine the role of experience in the formation of the mirror system. The relevance of this research depends on the widely held assumption that the mirror system plays a causal role in generating imitative behaviour. We also report original data supporting this assumption. These data show that theta-burst transcranial magnetic stimulation of the inferior frontal gyrus, a classical mirror system area, disrupts automatic imitation of finger movements. We discuss the implications of the evidence reviewed for the evolution, development and intentional control of imitation. PMID:19620108

  17. Design of the aplanatic and anastigmatic two-mirror four-reflection system (according German patent application)

    NASA Astrophysics Data System (ADS)

    Gallert, Frank

    1997-03-01

    The invention relates to a mirror system with two mirrors and four reflections, comprising a concentrating reflector and a diffusing reflector fitted on the same optical axis, an image field and a detector. The concentrating reflector has a central drilling. The concentrating reflector reflects the light to the outer part of the diffusing reflector, from where the light is reflected on the concentrating reflector again, that reflects the light on the central part of the diffusing reflector, that in turn reflects the light through the central drilling to the image plane. Prior art two-mirror systems like the Ritchey-Chretien system do not correct astigmatism, image field curvature and distortion. According to the invention, spherical aberration, coma, and astigmatism are corrected by double reflection at both mirrors, whereby the inner part of the diffusing reflector is elliptical, spherical or ellipsoidal shaped. That depends from the axial radius of curvature of the diffusing mirror in relation to the distance between both mirrors. Hence -- this shape depends from the overall focal length of the mirror system about the paraxial focal length of the concentrating reflector.

  18. Advanced uncooled infrared system electronics

    NASA Astrophysics Data System (ADS)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  19. Superradiant Instability of D-Dimensional Reissner—Nordström Black Hole Mirror System

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun; Zhang, Yan-Ming

    2015-05-01

    We analytically study the superradiant instability of charged massless scalar field in the background of D-dimensional Reissner-Nordström (RN) black hole caused by mirror-like boundary condition. By using the asymptotic matching method to solve the Klein-Gordon equation that governs the dynamics of scalar field, we have derived the expressions of complex parts of boxed quasinormal frequencies, and shown they are positive in the regime of superradiance. This indicates the charged scalar field is unstable in D-dimensional Reissner-Nordström (RN) black hole surrounded by mirror. However, the numerical work to calculate the boxed quasinormal frequencies in this system is still required in the future. Supported by the National Natural Science Foundation of China under Grant No. 11205048

  20. Progress report towards a digital mirror device based confocal microscopic system

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Lin, Shunhua; Huang, Simian; Xie, Shaochuan

    2013-12-01

    It is widely believed that by using a digital mirror device (DMD) as the spatial light modulator (SLM) of a programmable array microcopy (PAM), it is possible to achieve a cost-effective alternative to expensive confocal imaging devices. During the past decade, the design of such a DMD based PAM instrument has been frequently reported to enhance resolution and contrast, convincing images with improved quality are rare to be seen. The concrete implementation of a DMD based PAM instrument needs to successfully resolve multiple issues such as the adverse effects caused by the tilt angle of the micro-mirrors from the base board, the registration between a micro mirror of the DMD and the image pixel of the photo-detector and so on. In this paper, we report the design of a middle body consisting of a DMD as an independent attachment to a conventional microscope to convert the latter into a confocal imaging system, in a similar way as a filter turret that is placed below the head and the objectives of a regular microscopy to convert it into a fluorescent microscopy. Images of real objects with improved contrast are provided to demonstrate the effectiveness of using a DMD as SLM to improve the contrast of a PAM instrument. Such a PAM instrument has many advantages compared to conventional laser-scanning confocal systems including lower costs and higher imaging speeds. In addition, it allows convenient dynamic adjustments between imaging quality and imaging speed.

  1. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  2. Design of an interferometric system for piston measurements in segmented primary mirrors

    NASA Astrophysics Data System (ADS)

    Arasa, Josep; Laguarta, Ferran; Pizarro, Carlos; Tomas, Nuria; Pinto, Agusti

    2000-10-01

    Recently, telescopes with segmented primary mirrors are becoming increasingly popular due to their ability of achieving large apertures without the inconveniences caused by the fabrication and handling of monolithic surfaces with 8m (or over) in diameter. The difference in position of each pair of adjacent segments along the local normal of their interface (called piston hereafter), however, needs to be precisely measured in order to provide a diffraction- limited image. If a system yielding the nanometric accuracy required in piston measurements worked in daylight hours, the resultant saving in observation time would be an important advance on a majority of the state-of-the-art piston measurement systems. An interferometric piston measurement instrument accomplishing such objectives has been designed starting from the usual Michelson configuration at the CD6 (Terrassa, Spain), and its final test has been carried out in the test workbench of the Instituto de Astrofisica de Canarias (IAC, Canary Islands, Spain). Its optical layout relies on projecting the reference arm of the interferometer onto one of the segments of the pair considered, along the direction of the local normal to the surface while the measurement arm is projected onto the interface which divides the pair of segments considered. The field of view and its illumination are calculated to be equivalent in both segments. The lateral shift of the fringes in both interferograms determines the piston error present. A combination of monochromatic and white light is used, in order to remove the (lambda) /2 phase ambiguities present in piston measurements without losing the required resolution in the measurement. In this paper, the optical design of this interferometric piston measurement instrument will be presented. The particular configuration used in the interferometer, the implementation of an imaging system allowing to see both the interface of the segments and the interference fringes, the effect of the

  3. A selective representation of the meaning of actions in the auditory mirror system.

    PubMed

    Galati, Gaspare; Committeri, Giorgia; Spitoni, Grazia; Aprile, Teresa; Di Russo, Francesco; Pitzalis, Sabrina; Pizzamiglio, Luigi

    2008-04-15

    Mirror neurons in the monkey's premotor cortex respond during both execution and observation of actions and are thought to be critical for understanding others' actions. Human studies have shown premotor cortex activation while viewing actions, hearing their sounds, listening to or reading action-related sentences, and have compared execution and observation of similar actions. However, we still lack direct evidence in humans of the most striking and theoretically relevant feature of mirror neurons, i.e., that they map seen/heard actions onto motor representations of the same actions at an abstract level. Here we combine fast event-related functional magnetic resonance imaging with an unconscious semantic priming paradigm and show that the human auditory mirror system also holds an abstract representation of the meaning of heard actions. We analyzed the effect on brain activity of trial-by-trial semantic congruency between a target sound denoting a hand or mouth action (or an environmental event) and a briefly flashed written word acting as an unconscious cross-modal prime. Left inferior frontal and posterior temporal regions selectively responded to action sounds in a non-somatotopic fashion and were modulated by semantic congruency only in action sound trials. We also observed regions selective for either hand or mouth actions, which however did not show a corresponding effector-specific effect of semantic congruency. These results provide evidence that the human mirror system represents the meaning of actions (but not of other events) (a) at an abstract, semantic level, (b) independently of the effector, and (c) independently of conscious awareness.

  4. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  5. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  6. Looking at the U.S. health care system in the rear-view mirror.

    PubMed

    Baucus, Max

    2005-01-01

    John Wennberg and his colleagues hold up a rear-view mirror on the U.S. health care system, reflecting pervasive inconsistencies and showing that more resources are not necessarily equivalent to better care. The work shows that although many hospitals are investing time and money to improve efficiency, quality, and overall patient care, the system is in trouble. Two basic reforms would help produce a system that encourages value, with efficient, effective, patient-centered care. These changes involve how we pay for care and investment in health information technology. We should begin by implementing these principles in Medicare, the largest U.S. purchaser of care.

  7. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    SciTech Connect

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  8. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  9. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  10. Advanced glycation end product associated skin autofluorescence: a mirror of vascular function?

    PubMed

    Hofmann, Britt; Adam, Anne-Catrin; Jacobs, Kathleen; Riemer, Marcus; Erbs, Christian; Bushnaq, Hasan; Simm, Andreas; Silber, Rolf-Edgar; Santos, Alexander Navarrete

    2013-01-01

    Advanced glycation end products (AGEs) seem to be involved in aging as well as in the development of cardiovascular diseases. During aging, AGEs accumulate in extracellular matrix proteins like collagen and contribute to vessel stiffness. Whether non-invasive measurement of AGE accumulation in the skin may reflect vessel function and vessel protein modification is unknown. Herein we set out to analyze the AGE-modifications in the collagens extracted from residual bypass graft material, the skin autofluorescence reflecting the accumulation of AGEs in the body as well as the pulse wave velocity reflecting vessel stiffness. Collagen types I and III (pepsin digestible collagen fraction) were isolated from the veins of 52 patients by proteolysis. The residual collagen fraction was further extracted by collagenase digestion. Collagen was quantified by hydroxyproline assay and AGEs by the AGE intrinsic fluorescence. Skin autofluorescence was measured with an autofluorescence reader; pulse wave velocity with the VICORDER. The collagen AGE autofluorescence in patient vein graft material increased with patient age. The pepsin digestible collagen fraction was significantly less modified in comparison to the collagenase digestible fraction. Decreasing amounts of extracted collagenase digestible collagen correspond with increasing AGE autofluorescence. Skin autofluorescence and vessel stiffness were significantly linked to the AGE autofluorescence of the collagenase digestible collagen fraction from graft material. In conclusion we have found that skin autofluorescence and pulse wave velocity as non-invasive parameters significantly correlate with the AGE contained in graft material and therefore are strong predictors of vessel AGE modifications in patients with coronary heart disease. Whether the analysis of the skin autofluorescence leads to an improvement of the risk stratification in patients suffering from cardiovascular disease has to be further tested.

  11. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  12. Advanced System for Process Engineering

    SciTech Connect

    Williams, K. E.; Saus, L. S.; Regenhardt, P. A.

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.

  13. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    SciTech Connect

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  14. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  15. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  16. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  17. Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Xie, Huikai; Fedder, Gary K.; Pan, Yingtian

    2003-11-01

    Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

  18. A New Device for Bimorph Mirrors Technology: the A1902BS Bipolar Power Supply System

    NASA Astrophysics Data System (ADS)

    Cautero, M.; Cautero, G.; Krastanov, B.; Billè, F.; Borghes, R.; Iviani, L.; Cocco, D.; Sostero, G.; Signorato, R.

    2007-01-01

    An important feature of X-ray Piezoelectric Bimorph Mirror (PBM) is the possibility to continuously vary its curvature (dynamical bending); this ability allows the precise adjustment of their optical properties to different beamline geometries and permits the variation of the grazing angle of incidence or to optimize the focal spot dimensions in the experimental chamber. When a driving voltage is applied at a particular position of the mirror, one of the piezo plates shrinks while the other one expands and, as an example, it can result in a purely spherical bending of the device if the same voltage is applied to all electrodes. The applied voltages have to be kept extremely stable on a very long time scale (weeks or even months). This means that the performance and the general behavior of the mirror are strongly dependent on the power supply used to drive it. For this challenging application, Sincrotrone Trieste developed a particularly stable high voltage bipolar power supply system (ranging from -2kV to + 2kV, zero crossing). This system is controlled by an Intel SBC board and accessible via Ethernet through any common web browser, Lab VIEW client or some of the most popular synchrotron facility control systems (Epics and Tango for instance). The maximum drain and source capabilities are 500uA per channel. Voltage monitoring is achieved by sensing the real output and feeding it to a true 16bit ADC. The voltage resolution achieved is about 60mV while the current resolution is about 60nA. Noise and residual ripple (rms) are better than 15ppm/FS and, most important, the long term stability (1 week observation) is better than 100ppm/FS. Some metrological measurements, on different bimorph mirrors, was carried out at the optical laboratory of Elettra. These measures demonstrate the high level of resolution and stability of the power supplies, able to change considerably the radius of curvature of the mirror and, in the meantime, correct even very small shape error.

  19. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  20. The effects of epoxy shrinkage on the Advanced X-ray Astrophysics Facility Technology Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Cohen, L. M.

    1984-01-01

    A method is shown analytically which reduces the effects of epoxy shrinkage for an ultra-high precision X-ray telescope to within the system error budget. The three-dimensional shrinkage effects are discussed with reference to this telescope. The results of the analysis point to the use of an interrupted rather than continuous bond line as the best solution. Discussion of the finite element modelling techniques is included.

  1. A USPL functional system with articulated mirror arm for in-vivo applications in dentistry

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Dehn, Claudia; Oehme, Bernd; Bourauel, Christoph; Frentzen, Mathias

    Ultra-short pulsed laser (USPL) systems for dental application have overcome many of their initial disadvantages. However, a problem that has not yet been addressed and solved is the beam delivery into the oral cavity. The functional system that is introduced in this study includes an articulated mirror arm, a scanning system as well as a handpiece, allowing for freehand preparations with ultra-short laser pulses. As laser source an Nd:YVO4 laser is employed, emitting pulses with a duration of tp < 10 ps at a repetition rate of up to 500 kHz. The centre wavelength is at 1064 nm and the average output power can be tuned up to 9 W. The delivery system consists of an articulated mirror arm, to which a scanning system and a custom made handpiece are connected, including a 75 mm focussing lens. The whole functional system is compact in size and moveable. General characteristics like optical losses and ablation rate are determined and compared to results employing a fixed setup on an optical table. Furthermore classical treatment procedures like cavity preparation are being demonstrated on mammoth ivory. This study indicates that freehand preparation employing an USPL system is possible but challenging, and accompanied by a variety of side-effects. The ablation rate with fixed handpiece is about 10 mm3/min. Factors like defocussing and blinding affect treatment efficiency. Laser sources with higher average output powers might be needed in order to reach sufficient preparation speeds.

  2. Mapping the flow of information within the putative mirror neuron system during gesture observation.

    PubMed

    Schippers, Marleen B; Keysers, Christian

    2011-07-01

    The putative mirror neuron system may either function as a strict feed-forward system or as a dynamic control system. A strict feed-forward system would predict that action observation leads to a predominantly temporal→parietal→premotor flow of information in which a visual representation is transformed into motor-programs which contribute to action understanding. Instead, a dynamic feedback control system would predict that the reverse direction of information flow predominates because of a combination of inhibitory forward and excitatory inverse models. Here we test which of these conflicting predictions best matches the information flow within the putative mirror neuron system (pMNS) and between the pMNS and the rest of the brain during the observation of comparatively long naturalistic stretches of communicative gestures. We used Granger causality to test the dominant direction of influence. Our results fit the predictions of the dynamic feedback control system: we found predominantly an information flow within the pMNS from premotor to parietal and middle temporal cortices. This is more pronounced during an active guessing task than while passively reviewing the same gestures. In particular, the ventral premotor cortex sends significantly more information to other pMNS areas than it receives during active guessing than during passive observation.

  3. High-precision system identification method for a deformable mirror in wavefront control.

    PubMed

    Huang, Lei; Ma, Xingkun; Bian, Qi; Li, Tenghao; Zhou, Chenlu; Gong, Mali

    2015-05-10

    Based on a mathematic model, the relation between the accuracy of the influence matrix and the performance of the wavefront correction is established. Based on the least squares method, a two-step system identification is proposed to improve the accuracy of the influence matrix, where the measurement noise can be suppressed and the nonlinearity of the deformable mirror can be compensated. The validity of the two-step system identification method is tested in the experiment, where improvements in wavefront correction precision as well as closed-loop control efficiency were observed.

  4. Development of fast steering mirror control system for plasma heating and diagnostics

    SciTech Connect

    Okada, K. Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.; Nishiura, M.

    2014-11-15

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  5. A prototype micro-autonomous positioning system for mirror deployment within multi-object instruments

    NASA Astrophysics Data System (ADS)

    Taylor, W. D.; Atkinson, D. C.; Cochrane, W. A.; Montgomery, D. M.; Schnetler, H.; Baillie, T. E. C.; Clausen, S.

    2010-07-01

    The complexity and size of instruments for next generation telescopes demands innovative approaches to existing problems. Within this framework, we present MAPS; a Micro Autonomous Positioning System for mirror deployment in an E-ELT instrument such as EAGLE. The micro-robots have a 25mmx25mm footprint and utilise RF communications and small rechargeable batteries to be completely wireless. Coarse positioning and fine alignment is achieved through the use of miniature gear motors and gearheads. Positional information is determined externally and corrective motions relayed to the robots. This paper reports on the challenges which such a system presents, current developments, and areas of expected future research.

  6. Design of incomplete derivative fuzzy PID control system for fast-steering mirror

    NASA Astrophysics Data System (ADS)

    Ai, Zhiwei; Tan, Yi; Wu, Qiongyan; Ren, Ge; Tan, Yufen; Zhu, Nengbing; Zhu, Fuyin

    2016-10-01

    The structure parameters of fast-steering mirror (FSM) might change with time goes by. In order to reduce the impact of this change on the output performance of FSM system, an incomplete derivative fuzzy PID control system is proposed. This control system can effectively improve the time domain quality of FSM system by optimizing the PID control parameters online. First, the dynamic model of FSM is established. Second, the initial parameters of the incomplete derivative PID control system are designed according to the frequency domain quality of the closed-loop system. Then, the rules and related factors of the fuzzy controller are designed on the basis of the initial parameters. Finally, simulation experiments are carried out. The results show that the incomplete derivative PID control system has shorter adjustment time, less overshoot and lower dependence on the parameters of FSM when compared with the fixed parameters PID control system.

  7. Virtual Mirrors

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90° to each other and two parallel mirrors. Optical phenomena of this complexity are most easily approached by the Method of Virtual Mirrors.

  8. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  9. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  10. Disassembling and reintegration of large telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  11. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  12. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems.

    PubMed

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-03-25

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  13. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    PubMed Central

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  14. Design of null lens system for f/0.5 hyperboloid mirror

    NASA Astrophysics Data System (ADS)

    Wang, Zi-wu; Guo, Pei-ji; Chen, Xi; Peng, Ling-jie

    2016-10-01

    The aspherical mirror surface quality testing by using compensation null lens in interferometer is described in this paper. For 310mm, f/0.5 hyperboloid mirror microcrystalline components, based on the theory of aberration compensation, a kind of null lens system which is composed of three pieces of spherical lens is developed. A certain amount of spherical aberration is introduced to the null lens for compensating the deviation of aspheric surface in a normal direction. The design result shows that the primary aberration and the senior aberration are balanced well, the MTF is closed to the diffraction limit and the residual wave aberration (RMS) is less than 0.004λ (λ=0.6328μm). Every indicators of the system meets the requirements of high precision detection of null lens system design. In this paper, the errors caused by the manufacturing, testing and assembling of the null lens system are analyzed. Those errors can be divided into the symmetric error and the asymmetric error. Using the correction method, the influence of the asymmetric error is minimized which seemed bigger than the asymmetric one. Finally, analysis results show that the total residual wave aberration of the system is less than 0.0072λ, which satisfies the requirement of aspheric testing. This null lens system has been applied to aspheric processing.

  15. Lightweight active controlled primary mirror technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Gallieni, D.; Biasi, R.; Pereira, J.

    2007-10-01

    This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a space-borne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than λ/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror's optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

  16. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  17. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-11-29

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states.

  18. Polishing X-ray Mirror Mandrel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  19. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  20. Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture

    PubMed Central

    Arbib, Michael; Ganesh, Varsha; Gasser, Brad

    2014-01-01

    The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382

  1. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  2. Fabrication and integration of microprism mirrors for high-speed three-dimensional measurement in inertial microfluidic system

    NASA Astrophysics Data System (ADS)

    Koh, Joonyoung; Kim, Jihye; Shin, Jung H.; Lee, Wonhee

    2014-09-01

    Inertial microfluidics utilizes fluid inertia from high flow velocity to manipulate particles and fluids in 3D. Acquiring a 3D information of particle positions and complex flow patterns within microfluidic devices requires 3D imaging techniques such as confocal microscopy, which are often expensive and slow. Here, we report on a prism-mirror-embedded microfluidic device that allows simultaneous imaging of the top and side view of the microchannel for a high-speed, low-cost 3D imaging. The microprism mirrors are fabricated and integrated into a microfluidic system using conventional microfabrication techniques including wet etch and soft lithography. This inexpensive high quality prism mirror provides a highly reflective, smooth mirror surface with precise 45° reflection angle, enabling 3D measurement of inertial migration of microparticles in a rectangular channel at speeds in excess of 10 000 frame/s.

  3. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  4. Design of off-axis four-mirror optical system without obscuration based on free-form surface

    NASA Astrophysics Data System (ADS)

    Huang, Chenxu; Liu, Xin

    2015-11-01

    With the development of modern military technology, the requirements of airborne electro-optical search and tracking system are increasing on target detection and recognition. However, traditional off-axis three-mirror system couldn't meet the requirements for reducing weight and compacting size in some circumstances. Based on Seidel aberration theory, by restricting the aberration functions, the optical system could achieve initial construction parameters. During the designing process, decenters and tilts of mirrors were adjusted continuously to eliminate the obscurations. To balance off-axis aberration and increase angle of view, the free-form mirror was introduced into the optical system. Then an unobstructed optical system with effective focal length of 100 mm, FOV of 16°×16°, and relative aperture as F/7 is designed. The results show that the system structure is compact, with imaging qualities approaching diffraction limit.

  5. On The Problem Of In-vessel Mirrors For Diagnostic Systems Of ITER

    SciTech Connect

    Voitsenya, V. S.; Litnovsky, A.

    2008-03-12

    The present status of the investigations with ITER-candidate mirror materials and directed on solution of the in-vessel mirror problem, are presented in the paper. The current tasks in the R and D of diagnostic mirrors and outstanding questions are discussed.

  6. The University of Tokyo Atacama Observatory 6.5m Telescope: design of mirror coating system and its performances

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Yoshii, Yuzuru; Doi, Mamoru; Kohno, Kotaro; Miyata, Takashi; Motohara, Kentaro; Tanaka, Masuo; Minezaki, Takeo; Morokuma, Tomoki; Sako, Shigeyuki; Tamura, Yoichi; Tanabé, Toshihiko; Konishi, Masahiro; Kamizuka, Takafumi; Kato, Natsuko; Aoki, Tsutomu; Soyano, Takao; Tarusawa, Ken'ichi

    2016-07-01

    The telescope of the University of Tokyo Atacama Observatory has a primary mirror with a diameter in 6.5m. In order to fabricate the reflecting film initially on the mirror surface and to maintain its optical performance over a long period, we have a mirror-coating facility being installed at the summit of Co. Chajnantor (5,640m). The facility consists of a clean booth for stripping off the old film, a mirror coating chamber, and a cart with a lifter for handling the primary mirror. A conventional evaporation system with a metal pre-wetted filament array is adopted for achieving various optical requests. Among the many development items, the fabrication of the transportation and lifting cart has been already completed. It has efficient performance in load capacity (>60 tons) and maximum lifting height (1,750 mm). A cleaning machine having injection nozzles that can realize an efficient and safe cleaning sequence also been completed. A test of the evaporation system using dedicated filaments and filament boxes, which are customized to the TAO's requirements, has shown a uniform coating on a test mirror. An array pattern of the filaments has also been decided based on the coating tests to satisfy the optical specification of the telescope. A detailed design of the main chamber has been almost completed, it is only waiting for the production in the near future.

  7. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  8. Phase conjugate mirror system consisting of a rod amplifier and a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Lee, Hak K.; Lee, Sang-Soo

    1990-07-01

    The phase conjugate (PC) mirror system consisting of a rod amplifier and a nonlinear medium is presented and the theoretical analysis of the enhanced PC wave in the system is derived by taking into account of the overlap of the probe and counterpropagating PC wave in the amplifier. In order to examine experimentally the enhanced PC reflectivity in degenerate four wave mixing (DFWM) an amplifier is placed in the probe beam path. Experimental result of maximal R/R 90. 25 is obtained where R and R are PC reflectivities in the absence and presence of the amplifier respectively. The experimental results agree within 5 with the theoretical values. 1. THEORETICAL ANALYSIS Schematic digram of the PC mirror system consisting of an amplifier and a nonlinear medium is shown in Fig. 1. The phase distortion 4 is due to several effects such as inhomogemous pumping stress gain saturation thermal leasing and self-focusing/defocusing in the amplifier. 1 The amplifier is palced near the nonlinear medium so that the changes in phase (4) and gain (g) are negligible during the round trip time. Considering phase conjugation at the nonlinear medium the output signal SA8 over the input probe bA. is expressed as 8A ge+/ (ge14''A) J where R is PC reflectivity of nonlinear medium. There is no phase distortion term in output signal. Thus we obtain the following expression for the signal 6M photons/ 2

  9. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    SciTech Connect

    Sun Shihai; Jiang Musheng; Liang Linmei

    2011-06-15

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve's attack changes slightly with the degree of the FM imperfection.

  10. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  11. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results. (C) 2015 AIP Publishing LLC.

  12. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    SciTech Connect

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed.

  13. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  14. Size-changeable x-ray beam collimation using an adaptive x-ray optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, T.; Matsuyama, S.; Nakamori, H.; Hayashi, H.; Sano, Y.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2016-09-01

    A two-stage adaptive optical system using four piezoelectric deformable mirrors was constructed at SPring-8 to form collimated X-ray beams. The deformable mirrors were finely deformed to target shapes (elliptical for the upstream mirrors and parabolic for the downstream mirrors) based on shape data measured with the X-ray pencil beam scanning method. Ultraprecise control of the mirror shapes enables us to obtain various collimated beams with different beam sizes of 314 μm (358 μm) and 127 μm (65 μm) in the horizontal (vertical) directions, respectively, with parallelism accuracy of 1 μrad rms.

  15. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    NASA Astrophysics Data System (ADS)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  16. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  17. An asymmetric shaped mirror system for the Arecibo telescope, and its uses for SETI

    NASA Astrophysics Data System (ADS)

    von Hoerner, Sebastian

    A teamwork at Cornell University is described preparing a 6-fold upgrading for the 1000-ft spherical Arecibo radio telescope on Puerto Rico: re-adjustment of the surface to 2.3 mm rms error; fine-guidance, for 5 arcsec pointing error; a 60 ft high spillover screen along the rim; replacing the present multitude of narrow-band line feeds (correcting spherical aberration) by a Gregorian two-mirror system to cover the wavelength range from 4 cm to 2 m for 700 ft aperture illumination; strengthening the focal structure and adding more support cables for the increased loads; proving the feasibility by first building a "Mini-Gregorian", which illuminates 350 ft aperture of the Arecibo telescope. The main topic is the mirror system. Specially shaped surfaces are needed to transform a given (narrow) feed pattern into a wanted (almost uniform) aperture illumination; asymmetry is used to avoid spillover. Although the combination of both has no exact solution, very good approximation can be derived. The whole layout is optimized regarding gain, diffraction, polarization, compactness and cost. Built for normal science, it also will be the ideal instrument for many SETI searches, especially for the future multi-channel survey from NASA.

  18. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  19. Lightweight mirror construction optimization

    NASA Astrophysics Data System (ADS)

    Mooney, J. T.; Allen, M. A.; Bolton, J.; Dahl, R. J.; Lintz, E. A.

    2015-10-01

    Large, lightweight mirrors are a critical component in space based imaging applications. These mirrors have traditionally required long manufacturing cycle times with associated high costs. In this paper, the key cost and schedule drivers for the production of large, lightweight mirrors will be reviewed along with enabling solutions that could provide significant cost and schedule reductions while maintaining the high quality performance required for these challenging applications. The technologies include advancements in replication, construction, and bonding. Initial feasibility tests and associated results will be presented.

  20. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  1. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  2. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable

  3. Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian

    2017-01-01

    Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.

  4. Algorithm for the identification of malfunctioning sensors in the control systems of segmented mirror telescopes.

    PubMed

    Chanan, Gary; Nelson, Jerry

    2009-11-10

    The active control systems of segmented mirror telescopes are vulnerable to a malfunction of a few (or even one) of their segment edge sensors, the effects of which can propagate through the entire system and seriously compromise the overall telescope image quality. Since there are thousands of such sensors in the extremely large telescopes now under development, it is essential to develop fast and efficient algorithms that can identify bad sensors so that they can be removed from the control loop. Such algorithms are nontrivial; for example, a simple residual-to-the-fit test will often fail to identify a bad sensor. We propose an algorithm that can reliably identify a single bad sensor and we extend it to the more difficult case of multiple bad sensors. Somewhat surprisingly, the identification of a fixed number of bad sensors does not necessarily become more difficult as the telescope becomes larger and the number of sensors in the control system increases.

  5. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  6. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  7. Time domain analysis of superradiant instability for the charged stringy black hole-mirror system

    NASA Astrophysics Data System (ADS)

    Li, Ran; Tian, Yu; Zhang, Hongbao; Zhao, Junkun

    2015-11-01

    It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of charged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical methods. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington-Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge-Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good test ground to study the nonlinear development of superradiant instability.

  8. Quasi-null lens optical system for the fabrication of an oblate convex ellipsoidal mirror: application to the Wide Angle Camera of the Rosetta space mission.

    PubMed

    Pelizzo, Maria-Guglielmina; Da Deppo, Vania; Naletto, Giampiero; Ragazzoni, Roberto; Novi, Andrea

    2006-08-20

    The design of a quasi-null lens system for the fabrication of an aspheric oblate convex ellipsoidal mirror is presented. The Performance and tolerance of the system have been analyzed. The system has been applied successfully for the fabrication of the primary mirror of the Wide Angle Camera (WAC), the imaging system onboard the Rosetta, the European Space Agency cornerstone mission dedicated to the exploration of a comet. The WAC is based on an off-axis two-mirror configuration, in which the primary mirror is an oblate convex ellipsoid with a significant conic constant.

  9. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  10. Why is your spouse so predictable? Connecting mirror neuron system and self-expansion model of love.

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2008-12-01

    The simulation theory assumes we understand actions and intentions of others through a direct matching process. This matching process activates a complex brain network involving the mirror neuron system (MNS), which is self-related and active when one does something or observes someone else acting. Because social psychology admits that mutual intention's understanding grows in close relationship as love grows, we hypothesize that mirror mechanisms take place in love relationships. The similarities between the mirror matching process and the mutual intention's understanding that occurs when two persons are in love suggest that exposure to love might affect functional and neural mechanisms, thus facilitating the understanding of the beloved's intentions. Congruent with our hypothesis, our preliminary results from 38 subjects strongly suggest a significant facilitation effect of love on understanding the intentions of the beloved (as opposed to control stimuli). Based on these phenomenological, and neurofunctional findings we suggest that the mirror mechanisms are involved in the facilitation effects of love for understanding intentions, and might further be extended to any types of love (e.g., passionate love, maternal love). Love experiences are important not only to the beloved himself, but also to any societal, cultural, and institutional patterns that relate to love. Yet, concerning its subjective character, love experiences are difficult to access. The modern procedures and techniques of socio-cognitive neuroscience make it possible to understand love and self-related experiences not only by the analysis of subjective self-reported questionnaires, but also by approaching the automatic (non-conscious) mirror experiences of love in healthy subjects, and neurological patients with a brain damage within the mirror neuron system. Although the psychology of love is now well admitted, the systematic study of the automatic facilitation effect of love through mirror

  11. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  12. High-accuracy surface profile measuring system using a BSO phase conjugating mirror.

    PubMed

    Ikeda, O; Suzuki, T; Sato, T

    1982-12-15

    A highly accurate real-time surface profile measuring system has been constructed by combining a Bi(12)SiO(20) (BSO) phase conjugating mirror (PCM) with a Twyman-Green interferometer. In this new interferometer the convex lens collects and focuses the scattering object waves in the BSO crystal, and the PCM reconstructs the object field through the same lens. The method of deriving surface profile is similar to conventional ones but differs in that it does not require exact phase modulation of the interferograms. This system features a quite high measurement accuracy free of aberrations of the lens and of hysteresis or aging of the piston actuator used to change the phase of the reference field. The principle and basic experimental results are presented.

  13. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  14. Design of a compound eye system with planar micolens array and curved folded mirrors

    NASA Astrophysics Data System (ADS)

    Ma, Mengchao; Gao, Xicheng; Zhang, Jin; Deng, Huaxia

    2016-09-01

    Compound eye has the merits of large FOV (Field of View), high acuity to motion and compact structure. In order to achieve large FOV, most natural compound eyes have curved structures. However, a 3D microlens array alone cannot work properly with a planar image sensor, as a result, very complex relay optical design is required for beam-steering and image formation. On the other hand, artificial compound eyes with planar structure are easy to design and fabricated, but the field of view is very small. To address this issue, an innovated design is presented in this paper. The system comprises of a planar structured microlens array and two curved folded mirrors. A very high fill factor can be achieved by using planar microlens array. The design was verified with Zemax simulation and preliminary experiment. The results show that the system can achieve large FOV imaging without significant lens distortion and ghost image, demonstrating the feasibility and flexibility of the proposed method.

  15. Anatomical differences in the mirror neuron system and social cognition network in autism.

    PubMed

    Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen

    2006-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.

  16. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  17. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    SciTech Connect

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year.

  18. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  19. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  20. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    ERIC Educational Resources Information Center

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  1. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  2. Active Control of Adaptive Optics System in a Large Segmented Mirror Telescope

    DTIC Science & Technology

    2012-01-01

    aberration caused by the vibration of the mirror structure which introduces distortions in the final image. Report Documentation Page Form ApprovedOMB... aberration of the incoming light is measured by a wavefront sensor (WFS) and corrected by a Deformable Mirror (DM) which has the capability of changing...the phase of the reflected light by the deformation of the mirror surface (Tyson, 2010). For static aberration caused by imperfection, misalignment

  3. Optical design of soft x-ray focusing system with ellipsoidal mirror for laboratory-based sources

    NASA Astrophysics Data System (ADS)

    Motoyama, Hiroto; Saito, Takahiro; Mimura, Hidekazu

    2013-09-01

    The ellipsoidal mirror is one of the most effective achromatic focusing optic with large aperture and nanofocusing ability. Because of the large aperture of mm-order size, this optic is suitable for a laboratory-based light source that has a large divergence angle. Recently, soft X-rays produced by high-order harmonics have become available. Such a beam has high spatial coherency but relatively large divergence angle. This light in combination with an ellipsoidal mirror will generate a highly intense focusing nanobeam that will contribute to various experiments and analyses such as those of photoelectron spectroscopy and nonlinear optical phenomena. In this paper, we present the optical design for a lab-based soft X-ray beamline and the results of optical simulation considering the parameters of the source. Finally, we introduce a two-stage focusing system with an axisymmetric mirror as a promising soft X-ray focusing system.

  4. Mirror agnosia.

    PubMed

    Ramachandran, V S; Altschuler, E L; Hillyer, S

    1997-05-22

    Normal people rarely confuse the mirror image of an object with a real object so long as they realize they are looking into a mirror. We report a new neurological sign, 'mirror agnosia', following right parietal lesions in which this ability is severely compromised. We studied four right hemisphere stroke patients who had left visual field 'neglect'. i.e. they were indifferent to objects in their left visual field even though they were not blind. We then placed a vertical parasagittal mirror on each patients' right so that they could clearly see the reflection of objects placed in the (neglected) visual field. When shown a candy or pen on their left, the patients kept banging their hand into the mirror or groped behind it attempting to grab the reflection; they did not reach for the real object on the left, even though they were mentally quite lucid and knew they were looking into a mirror. Remarkably, all four patients kept complaining that the object was 'in the mirror', 'outside my reach' or 'behind the mirror'. Thus, even the patients' ability to make simple logical inferences about mirrors has been selectively warped to accommodate the strange new sensory world that they now inhabit. The finding may have implications for understanding how the brain creates representations of mirror reflections.

  5. Mirror agnosia.

    PubMed Central

    Ramachandran, V S; Altschuler, E L; Hillyer, S

    1997-01-01

    Normal people rarely confuse the mirror image of an object with a real object so long as they realize they are looking into a mirror. We report a new neurological sign, 'mirror agnosia', following right parietal lesions in which this ability is severely compromised. We studied four right hemisphere stroke patients who had left visual field 'neglect'. i.e. they were indifferent to objects in their left visual field even though they were not blind. We then placed a vertical parasagittal mirror on each patients' right so that they could clearly see the reflection of objects placed in the (neglected) visual field. When shown a candy or pen on their left, the patients kept banging their hand into the mirror or groped behind it attempting to grab the reflection; they did not reach for the real object on the left, even though they were mentally quite lucid and knew they were looking into a mirror. Remarkably, all four patients kept complaining that the object was 'in the mirror', 'outside my reach' or 'behind the mirror'. Thus, even the patients' ability to make simple logical inferences about mirrors has been selectively warped to accommodate the strange new sensory world that they now inhabit. The finding may have implications for understanding how the brain creates representations of mirror reflections. PMID:9178535

  6. Electronic film with embedded micro-mirrors for solar energy concentrator systems

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Mario; Davidson, Mark

    2004-01-01

    A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

  7. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.

  8. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  9. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Bendarouach, J.

    2016-08-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown.

  10. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  11. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  12. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  13. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  14. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  15. Advanced Information System Research Project.

    DTIC Science & Technology

    1980-06-01

    realistic near-term achievements. The research program objectives are to develop , manage , and coordinate activities relating to the following: o... development ; o Development and demonstration of tools, techniques, procedures, and advanced design concepts applicable to future management ... management is consolidated under the Division Property Book Officer. Property book accountability is maintained under the provisions of AR 735-35, and

  16. Calculus of bands and profiles of study the system mirror - resonance of the Fibonacci Pt/Zn

    NASA Astrophysics Data System (ADS)

    Castro-Arce, Lamberto; Figueroa-Navarro, Carlos; Campos-Garcia, Julio; Molinar-Tabares, Martin; Ramos-Mendieta, Felipe; Manzanares-Martinez, Betzabe

    2015-03-01

    In order to analyze the behavior of a mirror - located resonance of 2pi, in a given system and with a given filling factor equal to 0.4 a study has been realized in an arrangement fibonacci, also in periodic slabs jobs. It is observed how in a study of profile that some waves are annulled giving birth to the mirror placed in 2pi. With regard to the resonance in a profile study the maxima are in certain structure Pt Pt Zn Pt Pt. Even if we increase the number of repetitions these are preserved, that means that they are related to effects of segments isolated inside the multilayer.

  17. Diamond Turned High Precision PIAA Optics and Four Mirror PIAA System for High Contrast Imaging of Exo-planets

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan

    2011-01-01

    Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.

  18. Adjustable dispersion reduction in low-coherent techniques by a system of tilted metallic mirrors with dielectric coating

    NASA Astrophysics Data System (ADS)

    Tomczewski, S.; Salbut, L.

    2015-05-01

    In this paper a new method for adjustable reduction of a dispersive drop in axial resolution during low-coherent measurements is presented. This method is based on multiple reflections of a light beam from dielectric coated metallic mirrors and is intended for reducing dispersion in full-field systems. The tilted metallic mirror with a dielectric coating works like an adjustable Gires-Tournois interferometer. The concept of adjustability is based on a polarization dependent phase shift upon reflection from metallic surfaces at incidence angles different from θi = 0 °. The dispersion compensation was simulated numerically with the use of Fresnel equations for a silver mirror based compensator. The possibility of dispersion reduction was then verified experimentally in a Twyman-Green interferometer showing over 40% improvement in the axial resolution.

  19. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.

    PubMed

    Frenkel-Toledo, Silvi; Liebermann, Dario G; Bentin, Shlomo; Soroker, Nachum

    2016-06-01

    Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible

  20. How mirror-touch informs theories of synesthesia.

    PubMed

    Meier, Beat; Lunke, Katrin; Rothen, Nicolas

    2015-01-01

    Ward and Banissy provide an excellent overview of the state of mirror-touch research in order to advance this field. They present a comparison of two prominent theoretical approaches for understanding mirror-touch phenomena. According to the threshold theory, the phenomena arise as a result of a hyperactive mirror neuron system. According to the Self-Other Theory, they are due to disturbances in the ability to distinguish the self from others. Here, we explore how these two theories can inform theories of synesthesia more generally. We conclude that both theories are not suited as general models of synesthesia.

  1. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    ERIC Educational Resources Information Center

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  2. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  3. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design

    PubMed Central

    Li, Changqing; Mitchell, Gregory S.; Dutta, Joyita; Ahn, Sangtae; Leahy, Richard M.; Cherry, Simon R.

    2010-01-01

    We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse. PMID:19399136

  4. Differential interferometric measurement of mirror shape parameters

    NASA Astrophysics Data System (ADS)

    Robinson, Brian

    This project was inspired by the need for a remote method to accurately measure radius of curvature of mirrors tested under the NASA Advanced Mirror System Demonstrator program. Under this program, off axis parabolas (subscale candidates for James Webb Space Telescope optical elements) were tested under cryo-vac conditions. A remote, differential interferometric method is presented for measuring the shape parameters of general aspheric mirrors. The result of measurement is the assignment of best-fit values to a set of parameters that characterize the shape of the surface. If the mirror is nominally a conic of rotation, for example, the measurement yields the radius of curvature and conic constant. The method involves testing the optic in an interferometric center-of-curvature null configuration but can easily be extended to include conjugate null tests. During the measurement, known translational misalignments are introduced and the effects on the optical path length function are measured using a phase-shifting interferometer. Based on the nominal mirror shape, a model function is defined, up to a set of free shape parameters. The mirror shape parameters are regressed, based on the interferometric data, from this model. This differential measurement method works for on- and off-axis mirrors of all shapes and can be applied remotely as long as the mirror is mounted on an actuated stage. Hence, this measurement method would work well in a cryogenic testing situation. We have successfully applied the method to the case of an off-axis parabola with a nominal radius of curvature of 304.8 mm, a diameter of 76.17 mm, and a pupil offset of -89.40 mm.

  5. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  6. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  7. Automation and control system for the PUPR Mirror/Cusp plasma machine

    NASA Astrophysics Data System (ADS)

    Molina, O.; Morales, E.; Gonzalez-Lizardo, A.; Leal-Quirós, E.

    2008-10-01

    The automation of the PUPR Mirror/Cusp (M/C) plasma machine is the result of a collaboration between the Polytechnic University of Puerto Rico, NASA and Johns Hopkins University's Applied Physics Laboratory for the NASA Solar Probe mission. The PUPR M/C plasma machine is the only machine of its type in the Caribbean that has been set up for automatic operation. It valves and pumps together with a current source and microwave generator to create plasma. This process requires the operator to do a series of strict steps while constantly monitoring the pressure and temperature. This process was automated using a programmable logic controller (PLC). The PLC manages all the equipment used to make plasma, and communicates with the vacuum-measuring system and the cooling temperature control system to acquire the state of the system and determine the next step in the process of making plasma. The machine operation can be switched between manual and automatic mode, allowing the operator to take control of the operation at any moment. The system has improved the speed and precision of the operations at the Plasma Engineering Laboratory of the Polytechnic University of Puerto Rico, by eliminating most of the possible human errors in the operation of the plasma device.

  8. MEMS scanner mirror based system for retina scanning and in eye projection

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  9. Design and implementation of a beam-waveguide mirror control system for vernier pointing of the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.

    1994-01-01

    The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.

  10. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  11. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  12. Einstein's Mirror

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  13. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  14. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  15. Advanced, Energy Efficient Shelter Systems

    DTIC Science & Technology

    2012-03-02

    Development Analysis, M&S Thermal Barriers Large Shelter Efficiency System Integration Follow-On Demonstrations Lessons Learned from Initial...UNCLASSIFIED 13 Technology Development: Thermal Barriers Objective: Address the enduring challenge of developing a thermal insulation for shelter systems

  16. Multifunctional Nanotherapeutic System for Advanced Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    therapy for drug resistant prostate cancer cells. In addition the findings from this study can be extended to the combinatorial therapy involving...AD_________________ Award Number: W81XWH-11-1-0571 TITLE: “Multifunctional Nanotherapeutic System for Advanced Prostate Cancer ...29September2013 4. TITLE AND SUBTITLE Multifunctional Nanotherapeutic System for Advanced Prostate Cancer 5a. CONTRACT NUMBER W81XWH-11-1-0571 5b

  17. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  18. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  19. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  20. The design for off-axis multimirror optical system with large field and small F number using coaxial assembly of two mirrors

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Yan, Shi-qiang; Pei, Yun-tian; Hu, Lei; Xu, Song

    2012-09-01

    The reflection optical system gets more and more attention nowadays owing to without chromatic aberration and small volume. The manufacturing and assembly/calibration technology for the coaxial reflection optical system is more mature relative to the other reflection optical systems. But the coaxial reflection optical system will obstruct the incidence ray especially when the field is large, which will reduce the energy entering the optical system and reduce the resolution. The off-axis Three-Mirror Optical Systems can conquer those disadvantages of the coaxial reflection optical system, however the manufacturing and assembly/calibration for the off-axis Optical Systems is very difficult which must use computer-aided technology. The manufacturing and assembly/calibration technology is the main bottleneck for the off-axis Optical Systems to the engineering application. The Author of this thesis researched the design theory of the Three-Mirror Optical System, and then schemed out off-axis Three-Mirror and Multi-Mirror Optical System smartly using coaxial two-mirror optical structure which conquers the disadvantage of small field and possesses of the all advantages of the coaxial reflection optical system. This new optical system has two mirrors, one of which is a parabolic mirror with high-order aspheric term and the other is a hyperboloid mirror with high-order aspheric term. The characteristics of this new optical system are as follows: the F Number is 1.25, the field of view is 2°×2° and the total length is only 115mm with coaxial assembly of the two mirrors.

  1. Advances in uncooled systems applications

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Gonzalez, H.; Hegg, Ronald G.; Kostrzewa, K.; Le Pere, C.; Ton, S.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Miller, James E.; Newsome, Gwendolyn W.

    2003-09-01

    The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 x 480 format focal plane array (FPA) engine. The 640 x 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort was to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging. In addition, the Advanced Uncooled Thermal Imaging Sensors (AUTIS) Program extended this development to light-weight, compact unmanned aerial vehicle (UAV) applications.

  2. Autism, emotion recognition and the mirror neuron system: the case of music.

    PubMed

    Molnar-Szakacs, Istvan; Wang, Martha J; Laugeson, Elizabeth A; Overy, Katie; Wu, Wai-Ling; Piggot, Judith

    2009-11-16

    Understanding emotions is fundamental to our ability to navigate and thrive in a complex world of human social interaction. Individuals with Autism Spectrum Disorders (ASD) are known to experience difficulties with the communication and understanding of emotion, such as the nonverbal expression of emotion and the interpretation of emotions of others from facial expressions and body language. These deficits often lead to loneliness and isolation from peers, and social withdrawal from the environment in general. In the case of music however, there is evidence to suggest that individuals with ASD do not have difficulties recognizing simple emotions. In addition, individuals with ASD have been found to show normal and even superior abilities with specific aspects of music processing, and often show strong preferences towards music. It is possible these varying abilities with different types of expressive communication may be related to a neural system referred to as the mirror neuron system (MNS), which has been proposed as deficient in individuals with autism. Music's power to stimulate emotions and intensify our social experiences might activate the MNS in individuals with ASD, and thus provide a neural foundation for music as an effective therapeutic tool. In this review, we present literature on the ontogeny of emotion processing in typical development and in individuals with ASD, with a focus on the case of music.

  3. Slit-mounted LED fiducial system for rotating mirror streak cameras

    SciTech Connect

    Shaw, L.L.; Muelder, S.A.; Rivera, A.T.

    1991-01-01

    We have developed a fiducial system for rotating mirror streak cameras that utilizes light emitting diodes mounted at the slit position of the camera. The diodes are driven to the required high brightness by a unique pulse power circuit designed to provide high voltage, high current pulses 18 nanoseconds in length at a frequency of up to 2.5 megahertz. The availability of super bright light emitting diodes with a wavelength of 630 to 640 nanometers allows us to record fiducial pulses, at streaking speeds in excess of 20mm per microsecond, on all the black and white films commonly used in high speed photography. The time marks on the film record are referenced to the real time of the experiment from a clock-driver that controls the start and frequency of the fiducial pulse train and by three adjustable and discreet blanked fiducials. This paper discusses the development of this system and describes the full setup as used at LLNL. 6 refs., 4 figs.

  4. From music making to speaking: engaging the mirror neuron system in autism.

    PubMed

    Wan, Catherine Y; Demaine, Krystal; Zipse, Lauryn; Norton, Andrea; Schlaug, Gottfried

    2010-05-31

    Individuals with autism show impairments in emotional tuning, social interactions and communication. These are functions that have been attributed to the putative human mirror neuron system (MNS), which contains neurons that respond to the actions of self and others. It has been proposed that a dysfunction of that system underlies some of the characteristics of autism. Here, we review behavioral and imaging studies that implicate the MNS (or a brain network with similar functions) in sensory-motor integration and speech representation, and review data supporting the hypothesis that MNS activity could be abnormal in autism. In addition, we propose that an intervention designed to engage brain regions that overlap with the MNS may have significant clinical potential. We argue that this engagement could be achieved through forms of music making. Music making with others (e.g., playing instruments or singing) is a multi-modal activity that has been shown to engage brain regions that largely overlap with the human MNS. Furthermore, many children with autism thoroughly enjoy participating in musical activities. Such activities may enhance their ability to focus and interact with others, thereby fostering the development of communication and social skills. Thus, interventions incorporating methods of music making may offer a promising approach for facilitating expressive language in otherwise nonverbal children with autism.

  5. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  6. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  7. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  8. Numerical study of superradiant instability for charged stringy black hole-mirror system

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Junkun

    2015-01-01

    We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various values of black hole charge Q, scalar field charge q, and mirror radius rm. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge q rapidly.

  9. Advancing pharmacometrics and systems pharmacology.

    PubMed

    Waldman, S A; Terzic, A

    2012-11-01

    Pharmacometrics and systems pharmacology are emerging as principal quantitative sciences within drug development and experimental therapeutics. In recognition of the importance of pharmacometrics and systems pharmacology to the discipline of clinical pharmacology, the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in collaboration with Nature Publishing Group and Clinical Pharmacology & Therapeutics, has established CPT: Pharmacometrics & Systems Pharmacology to inform the field and shape the discipline.

  10. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  11. Optical design for off-axis three-mirror two-channel imaging system with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Lei, Chenglong; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2016-10-01

    This paper presents an optical design for the all-reflective dual-channel imaging system based on freeform surfaces. This system may be useful in remote sensing where coarse searching and fine observation are both needed. For this system, an off-axis three-mirror system with a middle image is chosen to design and the uniform stop is placed before the first optical surface. Meanwhile, beam splitter can be placed between secondary mirror and the location of the middle image to obtain multiple paths and the different curvatures of the tertiary mirrors can be used to differentiate the focal lengths of two channels and then get a zoom ratio of this system. One channel with a wide FOV of 3×1.5° but a small focal length of 700 mm can be used for searching, while the other one with a long focal length of 1480 mm but a narrow FOV of 0.5×0.5° can be used for fine reconnaissance. Furthermore, An XY polynomial, established as an even function of x, was employed to improve imaging quality, so we obtained a system of the symmetry about the YOZ plane, which can bring considerable convenience to alignment and testing for the system. The modulation transfer function curves of both channels are above 0.3 at 50 line pairs per millimeter, which indicates a good imaging quality.

  12. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  13. Granularity within the mirror system is not informative on action perception. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Cattaneo, Luigi

    2015-03-01

    The present work [1] reviews a part of the now vast literature on visuomotor stimulus-response associations in the domain of action observation, commonly referred to as mirror mechanism or mirror system. The aim of the study is to propose a solution to a currently debated problem, namely in what frame of reference are mirror neurons coding movement. The solution proposed here is that, if the mirror system is part of the motor system, then the motor responses to action observation must be in the same frames of reference as that generally observed in the production of voluntary actions. This idea is part of the very first conceptualizations of the mirror system ("Each time an individual sees an action done by another individual, neurons that represent that action are activated in the observer's premotor cortex. This automatically induced, motor representation of the observed action corresponds to that which is spontaneously generated during active action and whose outcome is known to the acting individual" [2]) and has been explicitly proposed earlier [3] in the attempt of reconciling the very different findings in the literature on the mirror system's frames of reference. The novelty of the present approach is the explicit reference to the 'motor synergy' theory of voluntary hand movements. This theory states that the high number of degrees of freedom intrinsic to hand anatomy is reduced by the motor system to few principal components named motor synergies that are the building blocks of voluntary behavior [4]. I am enthusiastic about two points proposed by D'Ausilio in the present review and I am skeptical about some other points.

  14. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  15. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  16. Torque-while-turnaround scan mirror assembly

    NASA Technical Reports Server (NTRS)

    Starkus, C. J.

    1977-01-01

    A scan mirror assembly which is part of a thematic mapper system is described with emphasis on mechanical aspects of the design. Features of the oscillating scan mirror mechanism include: a low level of structural vibration for the impact energies involved in mirror oscillation and return of energy lost during impact to the mirror by applying torque during the instant of impact.

  17. Multichannel analog-to-digital converters based on current mirrors for the optical systems

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, A. I.; Nikolska, M. A.; Lobodzinska, R. F.

    2011-12-01

    The paper considers results of designing and modeling analogue-digital converters (ADC) based on current mirrors for the optical systems and neural networks with parallel inputs-outputs. Such ADC, named us multichannel analog-todigital converters based on current mirrors (M ADC CM). Compared with usual converters, for example, reading, a bitby- bit equilibration, and so forth, have a number of advantages: high speed and reliability, simplicity, small power consumption, the big degree of integration in linear and matrix structures. The considered aspects of designing of M_ADC CM in binary codes. Base digit cells (ABC) of such M_ADC CM, series-pipelined are connected in structures, consist from 20-30 CMOS the transistors, one photodiode, have low (1,5-3,5) supply voltage, work in current modes with the maximum values of currents (10-40)μA. Therefore such new principles of realization high-speed low-discharge M_ADC CM have allowed, as have shown modeling experiments, to reach time of transformation less than 20-30 nS at 5-6 bits of a binary code and the general power 1-5 mW. The quantity easily cascadable ABC depends on wordlength ADC, and makes n, and provides quantity of levels of quantization equal N=2n. Such simple enough on structure M ADC CM, having low power consumption <= 3 ÷ 5mW, supply voltage (3-7)V, is provided at the same time with good dynamic characteristics (frequency of digitization even for 1,5μm or 0,35 μm- CMOS-technologies has made 40 MHz, and can be increased 10 times) and accuracy (Δquantization 156,25nA for I max10μA) characteristics is show. The range can be transformed optical signals, taking into account sensitivity of modern photodetectors makes 20-200 μW in such ADC. M_ADC CM open new prospects for realization linear and matrix (with picture operands) micro photoelectronic structures which are necessary for neural networks, digital optoelectronic processors, neurofuzzy controllers, and so forth.

  18. Mu suppression - A good measure of the human mirror neuron system?

    PubMed

    Hobson, Hannah M; Bishop, Dorothy V M

    2016-09-01

    Mu suppression has been proposed as a signature of the activity of the human mirror neuron system (MNS). However the mu frequency band (8-13 Hz) overlaps with the alpha frequency band, which is sensitive to attentional fluctuation, and thus mu suppression could potentially be confounded by changes in attentional engagement. The specific baseline against which mu suppression is assessed may be crucial, yet there is little consistency in how this is defined. We examined mu suppression in 61 typical adults, the largest mu suppression study so far conducted. We compared different methods of baselining, and examined activity at central and occipital electrodes, to both biological (hands) and non-biological (kaleidoscope) moving stimuli, to investigate the involvement of attention and alpha activity in mu suppression. We also examined changes in beta power, another candidate index of MNS engagement. We observed strong mu suppression restricted to central electrodes when participants performed hand movements, demonstrating that mu is indeed responsive to the activity of the motor cortex. However, when we looked for a similar signature of mu suppression to passively observed stimuli, the baselining method proved to be crucial. Selective suppression for biological versus non-biological stimuli was seen at central electrodes only when we used a within-trial baseline based on a static stimulus: this method greatly reduced trial-by-trial variation in the suppression measure compared with baselines based on blank trials presented in separate blocks. Even in this optimal condition, 16-21% of participants showed no mu suppression. Changes in beta power also did not match our predicted pattern for MNS engagement, and did not seem to offer a better measure than mu. Our conclusions are in contrast to those of a recent meta-analysis, which concluded that mu suppression is a valid means to examine mirror neuron activity. We argue that mu suppression can be used to index the human MNS

  19. Advanced Studies of Integrable Systems.

    DTIC Science & Technology

    1986-12-18

    Fluctuations in Magnetized Plasmas (Phys. Fluids 27, 1169-75 (1984)] (coauthored with S.N. Antani) The nonlinear interactions of whistler waves with density... Dynamica Problems in Soliton Systems, pp 12-22. ed. S. Takeno, Springer-Verlag, NY (1985)]. S 11. Forced Integrable Systems - An Overview, D. J. Kaup...Kaup, P.J. Hansen, S. Roy Choudhury and Gary E. Thomas (accepted for publication in Phys. Fluids ). A singular perturbation method is used to solve this

  20. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    SciTech Connect

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-11-30

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added.

  1. A fiber Bragg grating demodulation system using high-birefringence fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Hu, Shuyang; He, Chuan; Bai, Dong-mei

    2014-12-01

    In this paper, a fiber Bragg grating (FBG) demodulation system based on high-birefringence fiber loop mirror (Hi-Bi FLM) is proposed and demonstrated. The approximate linear edge of the transmittance of the Hi-Bi FLM, which is a sinusoidal function of wavelength, is used to interrogate the sensing FBGs. The relationship between the wavelength period of the transmittance of the Hi-Bi FLM and the length of Hi-Bi fiber is studied and the results shows that the linear range of Hi-Bi FLM is in Inverse proportion to the length of the Hi-Bi fiber. To get wider linear range, the length of the Hi-Bi fiber must be shorter and it is limited by the fiber fusing technic. Two sections of Hi-Bi fiber is orthogonal fused and its effect is equal to one segment of fiber whose length is equal to the difference of that of the two section of fibers. Using this method, a Hi-Bi FLM with a wide linear range of 20nm is made and used to demodulate FBG sensing signal. The demodulator has advantages of all-fiber design, low price and high speed.

  2. The Mirror Neuron System in Relapsing Remitting Multiple Sclerosis Patients with Low Disability.

    PubMed

    Plata-Bello, Julio; Pérez-Martín, Yaiza; Castañón-Pérez, Abril; Modroño, Cristián; Fariña, Helga; Hernández-Martín, Estefanía; González-Platas, Montserrat; Marcano, Francisco; González-Mora, José Luis

    2017-03-17

    To study the visuospatial/visuoperceptive function using a mirror neuron system (MNS) based approach in multiple sclerosis (MS) patients and a healthy control group. Two task-based fMRIs (an execution task and an observation task) and one resting-fMRI were performed in a group of MS patients (n = 24) and a group of healthy controls (n = 15). The execution and observation tasks consisted of the performance or observation of the index-thumb opposition task. Statistical parametric mapping approaches were used to identify differences in the brain activity and functional connectivity (FC) of the MNS between MS patients and healthy controls. Furthermore, visuospatial and visuoperceptive evaluation was performed by a neuropsychologist on all the participants. No global differences between groups were identified when the activity during both the execution and the observation conditions was tested. Nevertheless, differences in FC maps were identified: healthy controls showed higher connectivity between the MNS regions (between the inferior parietal lobule and the inferior frontal gyrus bilaterally) than MS patients. The absence of differences between the studied groups may be the consequence of the selection of a cohort of MS patients with low disability and with no recent relapse. However, the presence of a decrease in functional connectivity within the MNS in MS patients could indicate the presence of subclinical disability in MNS functioning, not measurable by neuropsychological tests.

  3. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  4. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  5. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  6. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  7. Advanced Optical Fiber Communications Systems

    DTIC Science & Technology

    1994-08-31

    oscillator saser 0 !4Iiga B f Figure 1-2. Block diagram of the homodyne AM-WIRNA link. 1.3.2 System EvaluationI Table 1-1 contains the definitions of the...1.6). However, as a result of the spectral broadening due to the phase noise, the selection of the IF bandwidth is critical to the system...node’s intermediate frequency (IF) using a portion of the transmitter light for the laser LO. The desired channel (in this case, node 1) is then selected

  8. Advanced Languages for Systems Software

    DTIC Science & Technology

    1994-01-01

    these are too numerous to list here. Edoardo Biagioni . Post-doctoral researcher. System networking and kernel design and imple- mentation. Kenneth Cline...John Backus, John H. Williams, and Edward L. Wimmers. The programming language FL. In Turner [131], pages 219-247. [12] Edoardo Biagioni , Nicholas

  9. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  10. Advanced thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  11. Speech-associated gestures, Broca’s area, and the human mirror system

    PubMed Central

    Skipper, Jeremy I.; Goldin-Meadow, Susan; Nusbaum, Howard C.; Small, Steven L

    2009-01-01

    Speech-associated gestures are hand and arm movements that not only convey semantic information to listeners but are themselves actions. Broca’s area has been assumed to play an important role both in semantic retrieval or selection (as part of a language comprehension system) and in action recognition (as part of a “mirror” or “observation–execution matching” system). We asked whether the role that Broca’s area plays in processing speech-associated gestures is consistent with the semantic retrieval/selection account (predicting relatively weak interactions between Broca’s area and other cortical areas because the meaningful information that speech-associated gestures convey reduces semantic ambiguity and thus reduces the need for semantic retrieval/selection) or the action recognition account (predicting strong interactions between Broca’s area and other cortical areas because speech-associated gestures are goal-direct actions that are “mirrored”). We compared the functional connectivity of Broca’s area with other cortical areas when participants listened to stories while watching meaningful speech-associated gestures, speech-irrelevant self-grooming hand movements, or no hand movements. A network analysis of neuroimaging data showed that interactions involving Broca’s area and other cortical areas were weakest when spoken language was accompanied by meaningful speech-associated gestures, and strongest when spoken language was accompanied by self-grooming hand movements or by no hand movements at all. Results are discussed with respect to the role that the human mirror system plays in processing speech-associated movements. PMID:17533001

  12. Remote counseling using HyperMirror quasi space-sharing system

    NASA Astrophysics Data System (ADS)

    Hashimoto, Sayuri; Morikawa, Osamu; Hashimoto, Nobuyuki; Maesako, Takanori

    2008-08-01

    In the modern information society, networks are getting faster, costs are getting lower, and displays are getting clearer. Today, just about anyone can easily use precise, dynamic, image distribution systems in their everyday life. Now, the question is how to give the benefits of network systems to the local community, as well as to each individual.This study was designed to use communication with realistic sensations to examine the effectiveness of remote individual counseling intervention in reducing depression, anxiety and stress in child-rearing mothers. Three child-rearing mothers residing in the city of Osaka each received one session of remote counseling intervention. The results showed an alleviation of stress related to child-rearing, i.e., the reduction in state anxiety, depression and subjective stress related to child-rearing. Moreover, an experimental demonstration employed a HyperMirror system capable of presenting visual and auditory images similar to reality, in order to provide the counselees with realistic sensations. While the voice communication environment was poor, the remote counseling allowed for the communication of sensory information, i.e., skinship that communicated information related to assurance/peace of mind, and auditory information, i.e., a whispering voices in which signals of affection were transmitted; the realistic sensation contributed to a reduction in stress levels. The positive effects of the intervention were confirmed through a pre and post intervention study. The results suggested the need to conduct future studies to confirm the mid- and long-term improvements caused by the intervention, as well as the need to improve the voice transmission environment.

  13. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  14. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  15. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  16. Coastal Modeling System Advanced Topics

    DTIC Science & Technology

    2012-06-18

    is the CMS? Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS). Why CMS? Operational at 10...Coupled with spectral wave model (CMS-Wave)  Wave-current interactions  Inline sediment transport and morphology change  Non-equilibrium...Easy to setup  Telescoping grid: Efficient and flexible  Solver options  Implicit: Tidal flow, long-term morphology change. ~10 min

  17. 3D phase-shifting fringe projection system on the basis of a tailored free-form mirror.

    PubMed

    Zwick, Susanne; Heist, Stefan; Steinkopf, Ralf; Huber, Sandra; Krause, Sylvio; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2013-05-10

    Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.

  18. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    PubMed

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  19. An improved Prandtl-Ishlinskii model for compensating rate-dependent hysteresis in fast steering mirror system

    NASA Astrophysics Data System (ADS)

    Wang, Wan-ting; Guo, Jin; Fang, Chu; Jiang, Zhen-hua; Wang, Ting-feng

    2016-11-01

    To solve the rate-dependent hysteresis compensation problem in fast steering mirror (FSM) systems, an improved Prandtl-Ishlinskii (P-I) model is proposed in this paper. The proposed model is formulated by employing a linear density function into the STOP operator. By this way, the proposed model has a relatively simple mathematic format, which can be applied to compensate the rate-dependent hysteresis directly. Adaptive differential evolution algorithm is utilized to obtain the accurate parameters of the proposed model. A fast steering mirror control system is established to demonstrate the validity and feasibility of the improved P-I model. Comparative experiments with different input signals are performed and analyzed, and the results show that the proposed model not only suppresses the rate-dependent hysteresis effectively, but also obtains high tracking precision.

  20. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  1. Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System

    DTIC Science & Technology

    2008-03-01

    steering mirror . . . . . . . . . . . . . . . . . . . . . . . . 11 LGS laser guidestar . . . . . . . . . . . . . . . . . . . . . . . . 11 SR Strehl...system is performing in its entirety, they are easily accessible metrics and are commonly used. 2.2.2.2 Strehl Ratio. The Strehl ratio ( SR ) is a measure...poorer resolution. The SR is given by SR = psf(xi = 0) psfdl(xi = 0) , (2.11) where xi is the spatial vector in the image plane. The SR can also be

  2. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  3. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  4. Improved boost mirror for low-concentration photovoltaic solar power systems

    NASA Astrophysics Data System (ADS)

    Wells, David N.

    2009-08-01

    A new reflector surface and geometry using low-concentration mirror boosting of flat-plate photo voltaic devices is described. The overheating effects that have previously been seen using non-uniform, high reflectivity side mirrors have been reduced. The new high-stability reflector material has lower UV reflectivity that reduces panel ageing and over heating. A moderate reflectivity in the violet wavelength further cuts the level of overheating while sacrificing only minimally in electrical power output efficiency. The new surface maintains high, uniform reflectivity at green, yellow, red, and IR wavelengths. Mass-produced panels are undergoing tests, and some preliminary results are presented. Surface self-cleaning of hydrophilic and hydrophobic coating over the reflecting surface is also discussed. Other applications of the same mirror in the solar thermal field are briefly discussed. Some improved tracking PV geometry versions using the new material are presented.

  5. Steps toward 8m honeycomb mirrors. VIII - Design and demonstration of a system of thermal control

    NASA Technical Reports Server (NTRS)

    Cheng, A. Y. S.; Angel, J. R. P.

    1986-01-01

    Directed jets of ambient temperature air are proposed for the maintenance of low internal temperature gradients and conformity with ambient temperatures in honeycomb-structure borosilicate glass telescope mirrors. The use of greater airflow on thicker sections, to match cooling rates, and the cooling or heating of the internal, back, and edge surfaces of the mirror at the same rate established by convection on the front surface, have been tested on a full scale glass thermal model of a single honeycomb cell from an 8-m diameter mirror. The internal thermal gradient (less than 0.1 C) and ambient-temperature-change lag (less than 0.24 C) ensure minimum image degradation.

  6. Light-weight glass mirror systems for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Winter, Anita; Breunig, Elias; Burwitz, Vadim; Friedrich, Peter; Hartner, Gisela; Menz, Benedikt; Proserpio, Laura

    2013-09-01

    Future X-ray telescopes need to combine large collecting area with good angular resolution. In order to achieve these aims within the mass limit, light-weight materials are needed for mirror production. We are developing a technology based on indirect hot slumping of thin glass segments; this method enables the production of the parabolic and hyperbolic part of the Wolter type I mirrors in one piece. Currently we use a combination of a porous ceramic for the slumping mould and the glass type D263 for the mirror material. In this study we use glasses that have been polished on one side to remove thickness variations in the glass, in order to investigate their influence on the results. We describe the experimental set-up, the slumping process and the metrology methods. Finally we present the results of an X-ray test of several integrated glass sheets, and give an outlook on future activities.

  7. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  8. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    SciTech Connect

    Kuznetsov, A. P. Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  9. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  10. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  11. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  12. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  13. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  14. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  15. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  16. Comparing mirror neuron system activity between sporadic and familial cases of schizophrenia.

    PubMed

    Mitra, Sayantanava; Nizamie, S Haque; Goyal, Nishant; Tikka, Sai Krishna; Kavoor, Anjana Rao

    2016-06-01

    Schizophrenia is a heterogenous disorder, and has often been subtyped on the basis of family history of psychotic disorders. Compared to those without, a positive family history is associated with an earlier age of onset, greater structural brain abnormalities and poorer clinical course. Given recent emphasis on mirror neuron system (MNS) in attempting to explain psychopathology in schizophrenia; present analysis tried to tease out differences in MNS functioning between these two groups. With ethical approval, 10 consenting right-handed patients with schizophrenia (ICD-10-DCR; M=8; Drug-naïve=2) were recruited and divided into two groups of five each (M=4, F=1): those with (age 29.40±5.85 years, duration of illness 50.80±30.84 months) and without (age 29.60±5.77 years, duration of illness 43.20±43.76 months) family history of schizophrenic illness (group difference p>0.05). MNS activity was assessed using event-related desynchronization of EEG Mu waves in response to biological motion on 192-channel EEG Neurofax EEG-1100K. On comparison, while patients had significantly lower mu suppression compared to controls (p<0.001); two schizophrenia groups did not differ between themselves, neither on MNS activity nor on psychopathology (p>0.05). Present study replicates finding of a dysfunctional MNS in schizophrenia patients, and represents a preliminary attempt at comparing two groups of symptomatic schizophrenia patients. In both these groups, MNS dysfunctions were comparable, and commensurate with respect to psychopathology. Thus, MNS dysfunction in schizophrenia might either be inherited or acquired. However, this abnormality forms a common base, and ultimate vulnerability marker, for development of psychopathology during active disease states.

  17. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: disruption of the mirror neuron system.

    PubMed

    Plata-Bello, Julio; Modroño, Cristián; Acosta-López, Silvia; Pérez-Martín, Yaiza; Marcano, Francisco; García-Marín, Víctor; González-Mora, José Luis

    2016-10-12

    Nearly 20 % of patients who suffer a subarachnoid hemorrhage (SAH) still display cognitive impairment even a year after follow-up. Visuospatial and visuoperceptive domains may be impaired in this cognitive impairment and may not have been fully studied in these patients. Furthermore, these cognitively impaired domains have been associated with activity in the so-called mirror neuron system (MNS). The aim of the study is to analyze the pattern of brain activity with an MNS task-based functional magnetic resonance imaging (fMRI) study in SAH patients. A complete neuropsychological assessment and fMRI study (with observation and execution conditions) were performed in patients with a history of SAH registered in the database of the Hospital Universitario de Canarias and a healthy control group. The patients had to meet all the following inclusion criteria for the study (less than 50 years old; SAH with a Fisher score 1-3; no vasospasm or ischemia; minimum follow-up of one year). Twelve SAH patients were studied. Three of which displayed visuospatial/visuoperceptive impairment. fMRI study showed the presence of higher activity in MNS regions in these patients than in patients with normal visuospatial/visuoperceptive functions. Furthermore, there was a negative correlation between the test scores and brain activity in premotor regions of the studied patients. SAH patients with visuospatial/visuoperceptive impairment have greater activity in the MNS regions. This finding may be associated with a subcortical dysfunction, leading to a disruption of neural activity and less efficient behavior of this brain network.

  18. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  19. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  20. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  1. Performance of the post-focusing mirror system at the reflectometry beamline BL-11D of the Photon Factory

    NASA Astrophysics Data System (ADS)

    Hatano, Tadashi; Aihara, Shogaku; Uchida, Kentaro; Tsuru, Toshihide

    2013-10-01

    Beamline BL-11D of the Photon Factory was recently opened for the characterization of extreme-ultraviolet and soft X-ray optical components. For reflectometry of multilayers for soft X-ray microscope optics, a small focus size on the sample surface matching the small acceptances of the curved multilayer samples is required. The post-focusing mirror system of BL-11D is composed of horizontally and vertically focusing elliptical mirrors. The performance was evaluated by microscopic beam profile observation, by a knife-edge scan test, and by the Ronchi test. The FWHM beam size was 120 μm (H) × 30 μm (V) with an insignificant spherical aberration, which is smaller than the requirement.

  2. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  3. A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system

    NASA Astrophysics Data System (ADS)

    Almeida, J.; Liang, D.; Guillot, E.; Abdel-Hadi, Y.

    2013-06-01

    Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing. Here, we report a significant improvement in solar laser collection efficiency by pumping the most widely used Nd:YAG single-crystal rod through a heliostat-parabolic mirror system. A conical-shaped fused silica light guide with 3D-CPC output end is used to both transmit and compress the concentrated solar radiation from the focal zone of a 2 m diameter parabolic mirror to a 5 mm diameter Nd:YAG rod within a conical pump cavity, which enables multi-pass pumping through the laser rod. 40 W cw laser power is measured, corresponding to 13.9 W m-2 record-high collection efficiency for the solar laser pumped through a heliostat-parabolic mirror system. 2.9% slope efficiency is fitted, corresponding to 132% enhancement over that of our previous pumping scheme. A 209% reduction in threshold pump power is also registered.

  4. Line-of-sight kinematics and corrections for fast-steering mirrors used in precision pointing and tracking systems

    NASA Astrophysics Data System (ADS)

    Hilkert, J. M.; Kanga, Gavin; Kinnear, K.

    2014-06-01

    Fast steering mirrors, or FSMs, have been used for several decades to enhance or augment the performance of electrooptical imaging and beam-steering systems in applications such as astronomy, laser communications and military targeting and surveillance systems. FSMs are high-precision, high-bandwidth electro-mechanical mechanisms used to deflect a mirror over a small angular displacement relative to the base it is mounted on which is typically a stabilized gimbal or other primary pointing device. Although the equations describing the line-of-sight kinematics derive entirely from the simple plane-mirror law of reflection, they are non-linear and axis-coupled and these effects increase as the FSM angular displacement increases. These inherent non-linearities and axis-coupling effects can contribute to pointing errors in certain modes of operation. The relevant kinematic equations presented in this paper can be used to assess the magnitude of the errors for a given application and make corrections as necessary.

  5. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  6. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  7. Control of micromachined deformable mirrors

    NASA Technical Reports Server (NTRS)

    Agronin, M. L.; Bartman, R.; Hadaegh, F. Y.; Kaiser, W.; Wang, P. K. C.

    1993-01-01

    A micromachined deformable mirror with pixelated electrostatic actuators is proposed. The paper begins with a physical description of the proposed mirror. Then a mathematical model in the form of a nonlinear partial differential equation describing the mirror surface deformations is derived. This model is used to derive the required voltages for the actuators to achieve a specified static deformation of the mirror surface. This is followed by the derivation of a static nonlinear feedback controller for achieving noninteracting actuation. Then the structure for a complete control system for wavefront correction is proposed. The paper concludes with a discussion of the physical implementation of the proposed control system.

  8. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  10. Measuring Advances in HVAC Distribution System Design

    SciTech Connect

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  11. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    for enhancing aircrew performance at high sustained +GZ accelerations. Finally, increasing attention has been paid over the last two decades to the...comprehensive published review of the design and performance of Advanced Oxygen Systems. It has been written principally by present and past members... performance required of Advanced Oxygen Systems and with the design and assessment of the first and later generations of these systems. The monograph

  12. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  13. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  14. Research study entitled advanced X-ray astrophysical observatory (AXAF). [system engineering for a total X-ray telescope assembly

    NASA Technical Reports Server (NTRS)

    Rasche, R. W.

    1979-01-01

    General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.

  15. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  16. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  17. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-12-31

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  18. Center for Advanced Gas Turbine Systems Research

    SciTech Connect

    Golan, L.P.

    1992-01-01

    An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

  19. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  20. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.