Science.gov

Sample records for advanced mission concept

  1. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  2. Advance Approach to Concept and Design Studies for Space Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, M.; Nichols, J.

    1999-01-01

    Recent automated and advanced techniques developed at JPL have created a streamlined and fast-track approach to initial mission conceptualization and system architecture design, answering the need for rapid turnaround of trade studies for potential proposers, as well as mission and instrument study groups.

  3. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  4. Advanced fuel cell concepts for future NASA missions

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    1987-09-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  5. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  6. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  7. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  8. Applications of advanced V/STOL aircraft concepts to civil utility missions, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability of advanced V/STOL aircraft to civil utility applications was assessed for offshore oil support, forest fire support, transport, and humanitarian missions. The aircraft concepts considered were a lift fan aircraft, a tilt rotor aircraft, and an advanced helicopter. All the aircraft had a design payload of 2,268 kg. (5,000 lb.) with the maximum range varying from 2,224 km. (1,800 nm) for the lift fan STOL to 1,482 km (800 nm) for the advanced helicopter. The analysis of these missions considered such factors as aircraft performance, annual utilization, initial cost, and operating cost. It is concluded that all the advanced V/STOL aircraft concepts generally performed these missions better than contemporary aircraft. The lift fan aircraft and the tilt rotor aircraft were found to be effective for the offshore oil and the forest fire support missions. The lift fan aircraft in the VTOL mode was also found to be very attractive for the executive transport mission where the passenger time value was $30/hr. or more.

  9. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  10. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  11. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  12. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  13. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  14. Manned Mars Mission program concepts

    NASA Technical Reports Server (NTRS)

    Hamilton, E. C.; Johnson, P.; Pearson, J.; Tucker, W.

    1988-01-01

    This paper describes the SRS Manned Mars Mission and Program Analysis study designed to support a manned expedition to Mars contemplated by NASA for the purposes of initiating human exploration and eventual habitation of this planet. The capabilities of the interactive software package being presently developed by the SRS for the mission/program analysis are described, and it is shown that the interactive package can be used to investigate the impact of various mission concepts on the sensitivity of mass required in LEO, schedules, relative costs, and risk. The results, to date, indicate the need for an earth-to-orbit transportation system much larger than the present STS, reliable long-life support systems, and either advanced propulsion or aerobraking technology.

  15. Post LANDSAT D Advanced Concept Evaluation (PLACE). [with emphasis on mission planning, technological forecasting, and user requirements

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.

  16. Space Mission Concept Development Using Concept Maturity Levels

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny

    2013-01-01

    Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.

  17. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  18. The Lunar Occultation Observer (LOCO) mission concept

    NASA Astrophysics Data System (ADS)

    Miller, Richard S.

    2007-09-01

    The hard X-ray sky has tremendous potential for future discoveries and is one of the last electromagnetic regimes without a sensitive all-sky survey. A new approach to such a survey is to utilize the Moon as an occulting disk. The Lunar Occultation Observer (LOCO) mission concept, based on this Lunar Occultation Technique (LOT) and incorporating advanced inorganic scintillators as a detection medium, represents a sensitive and cost effective option for NASA's Beyond Einstein Black Hole Finder Probe or a future Explorer-class mission. We present the motivating factors for the LOT, outline developmental details and simulation results, as well as give preliminary estimates for source detection sensitivity.

  19. X-Ray Surveyor Mission Concept

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica

    2015-10-01

    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  20. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  1. Asteroid Redirect Mission: Boulder Collection Concept

    NASA Video Gallery

    This animation illustrates one of two robotic mission concepts under consideration for NASA's Asteroid Redirect Mission. In this concept, the Asteroid Redirect Vehicle descends to the surface of a ...

  2. Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2002-01-01

    A general overview of the Advanced Airspace Concept (AAC) is presented. The topics include: 1) Limitations of the existing system; 2) The Advanced Airspace Concept; 3) Candidate architecture for the AAC; 4) Separation assurance and conflict avoidance system (TSAFE); and 5) Ground-Air Interactions. This paper is in viewgraph form.

  3. The bering small vehicle asteroid mission concept.

    PubMed

    Michelsen, Rene; Andersen, Anja; Haack, Henning; Jørgensen, John L; Betto, Maurizio; Jørgensen, Peter S

    2004-05-01

    The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target. Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus is on main belt objects, but the mission profile will enable mapping of objects inside the Earth orbit as well. PMID:15220154

  4. The Europa Clipper mission concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  5. The EXIST Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  6. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  7. Overview of NASA’s Asteroid Redirect Mission Concept

    NASA Astrophysics Data System (ADS)

    Chodas, Paul W.; Muirhead, Brian; Gates, Michele

    2015-08-01

    The Asteroid Redirect Mission (ARM) is a proposed mission to develop an advanced Solar Electric Propulsion spacecraft, and test it by capturing a large mass of asteroidal material in interplanetary space and returning it to a Lunar Distant Retrograde Orbit where it can be explored by a crew of astronauts visiting in an Orion spacecraft. This paper provides a summary of the ARM concept development, including the mission architecture, flight system concepts, the advanced solar electric propulsion system, and the asteroid capture system concepts. Extensibility to future human exploration of the Solar System will also be discussed.

  8. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  9. TianQin mission concept

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Mei, Jianwei; Shao, Chenggang; Wang, Yan; Yeh, Hsien-Chi; Zhou, Ze-Bing; Milyukov, Vadim; Sazhin, Michail

    We introduce the mission concept of TianQin, a spaceborne gravitational waves detector. TianQin will be consisted of three drag-free satellites, forming an equilateral-triangle constellation and orbiting Earth with an altitude of about 105 km. The major scientific goal of TianQin is to detect possible gravitational radiation from Hm Cnc (RX J0806.3+1527), a candidate ultracompact white dwarf binary with a putative orbital period of about 321.5 s. Based on current best models of the binary system, we expect SNR ≥10 after 3 month of observation, given that the noise is dominated by 1 pm Hz-1/2 in position noise and 3×10-15 m s-2 Hz-1/2 in residual acceleration. The progress of preliminary study will be presented in the conference.

  10. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  11. Advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    Freitas, R. A., Jr.; Healy, T. J.; Long, J. E.

    1982-01-01

    A NASA/ASEE Summer Study conducted at the University of Santa Clara in 1980 examined the feasibility of using advanced artificial intelligence and automation technologies in future NASA space missions. Four candidate applications missions were considered: (1) An intelligent earth-sensing information system, (2) an autonomous space exploration system, (3) an automated space manufacturing facility, and (4) a self-replicating, growing lunar factory. The study assessed the various artificial intelligence and machine technologies which must be developed if such sophisticated missions are to become feasible by century's end.

  12. Mars mission concepts and opportunities

    NASA Technical Reports Server (NTRS)

    Young, Archie C.

    1986-01-01

    Trajectory and mission requirement data are presented for Earth Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available between 1997 and 2045. The opposition class flyby mission uses direct transfer trajectories to and on return from Mars. The opposition class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition class mission. The conjunction class mission minimizes propulsion requirements by optimizing the stopover time at Mars.

  13. Generic mission planning concepts for space astronomy missions

    NASA Technical Reports Server (NTRS)

    Guffin, O. T.; Onken, J. F.

    1993-01-01

    The past two decades have seen the rapid development of space astronomy, both manned and unmanned, and the concurrent proliferation of the operational concepts and software that have been produced to support each individual project. Having been involved in four of these missions since the '70's and three yet to fly in the present decade, the authors believe it is time to step back and evaluate this body of experience from a macro-systems point of view to determine the potential for generic mission planning concepts that could be applied to future missions. This paper presents an organized evaluation of astronomy mission planning functions, functional flows, iteration cycles, replanning activities, and the requirements that drive individual concepts to specific solutions. The conclusions drawn from this exercise are then used to propose a generic concept that could support multiple missions.

  14. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  15. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  16. Mission Concepts to 4015 Wilson-Harrington

    NASA Astrophysics Data System (ADS)

    Sollitt, L. S.; Kroening, K.; Malmstrom, R.; Segura, T.; Spittler, C.

    2009-03-01

    We present a number of different architectures for mission concepts to 4015 Wilson-Harrington, a body which exhibits features of both comets and asteroids. We examine orbiter/lander missions as well as sample return missions, in different size classes.

  17. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  18. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  19. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  20. Advanced SCADA concepts

    SciTech Connect

    Sciacca, S.C. ); Block, W.R. )

    1995-01-01

    The typical utility system planner faces a wide variety of concepts and applications to consider when procuring a supervisory control and data acquisition (SCADA) system. The system's performance requirements are influenced by an arena of rapidly advancing technologies and a highly competitive business environment. Unlike other elements of the electric utility industry, these changes are not evolving specifically for the SCADA industry; they are being driven by other technology forums, with a profound impact on the SCADA system of the future. This article explores some of these concepts and suggests technology and business issues to consider when planning for the SCADA system of tomorrow.

  1. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  2. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; Fabinski, L.; Hornsby, L.; Thompson, K.; Miernik, J. H.; Percy, T.

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  3. Concepts For An EO Land Convoy Mission

    NASA Astrophysics Data System (ADS)

    Cutter, M. A.; Eves, S.; Remedios, J.; Humpage, N.; Hall, D.; Regan, A.

    2013-12-01

    ESA are undertaking three studies investigating possible synergistic satellite missions flying in formation with the operational Copernicus Sentinel missions and/or the METOP satellites. These three studies are focussed on:- a) ocean and ice b) land c) atmosphere Surrey Satellite Technology Ltd (SSTL), the University of Leicester and Astrium Ltd are undertaking the second of these studies into the synergetic observation by missions flying in formation with European operational missions, focusing on the land theme. The aim of the study is to identify and develop, (through systematic analysis), potential innovative Earth science objectives and novel applications and services that could be made possible by flying additional satellites, (possibly of small-class type), in constellation or formation with one or more already deployed or firmly planned European operational missions, with an emphasis on the Sentinel missions, but without excluding other possibilities. In the long-term, the project aims at stimulating the development of novel, (smaller), mission concepts in Europe that may exploit new and existing European operational capacity in order to address in a cost effective manner new scientific objectives and applications. One possible route of exploitation would be via the proposed Small Mission Initiative (SMI) that may be initiated under the ESA Earth Explorer Observation Programme (EOEP). The following ESA science priority areas have been highlighted during the study [1]:- - The water cycle - The carbon cycle - Terrestrial ecosystems - Biodiversity - Land use and land use cover - Human population dynamics The study team have identified the science gaps that might be addressed by a "convoy" mission flying with the Copernicus Sentinel satellites, identified the candidate mission concepts and provided recommendations regarding the most promising concepts from a list of candidates. These recommendations provided the basis of a selection process performed by ESA

  4. Advanced Sensor Concepts

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Howard, D. E.; Smith, D. A.

    2005-01-01

    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.

  5. Manned Mars flyby mission and configuration concept

    NASA Technical Reports Server (NTRS)

    Young, Archie; Meredith, Ollie; Brothers, Bobby

    1986-01-01

    A concept is presented for a flyby mission of the planet. The mission was sized for the 2001 time period, has a crew of three, uses all propulsive maneuvers, and requires 442 days. Such a flyby mission results in significantly smaller vehicles than would a landing mission, but of course loses the value of the landing and the associated knowledge and prestige. Stay time in the planet vicinity is limited to the swingby trajectory but considerable time still exists for enroute science and research experiments. All propulsive braking was used in the concept due to unacceptable g-levels associated with aerobraking on this trajectory. LEO departure weight for the concept is approximately 594,000 pounds.

  6. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  7. Mars Pathfinder mission operations concepts

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr.; Dias, William C.; Nakata, Albert Y.; Tai, Wallace S.

    1994-01-01

    The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day.

  8. NASA's Gravitational-Wave Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-07-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  9. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  10. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  11. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  12. HIAD Advancements and Extension of Mission Applications

    NASA Technical Reports Server (NTRS)

    Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.

    2016-01-01

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate

  13. Space transfer concepts and analyses for exploration missions, phase 3

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  14. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  15. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  16. Training Concept for Long Duration Space Mission

    NASA Technical Reports Server (NTRS)

    O'Keefe, William

    2008-01-01

    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  17. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  18. Aerodynamic mission concepts for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Cruz, M. I.

    1981-01-01

    Future plans for the continued exploration of Mars call for a sample return mission. This plan proposes bringing a distributed, selected sample of Mars material from several locales on Mars back to earth. The mission options studied to date utilize an extensive number of aerodynamic concepts not previously planned in past planetary exploration programs. These include various modes of orbit modification using atmospheric braking, aeromaneuvering to effect precision surface landing, very low ballistic entry for a network of surface penetrators, low flying hydrazine powered airplanes, balloons, ascent vehicles and direct entry of the samples on return to earth. This paper will discuss the concepts and their feasibility along with technology problems associated with them as surveyed from the reference material. The paper focuses primarily on the aerocapture technique as it relates to Mars orbit modification. Remaining orbit modification techniques are also discussed briefly for comparison.

  19. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    The space industry is based on an antiquated concept of disposable rockets, earth construction, and non-repairable satellites. Current space vehicle concepts hearken from a time of Cold War animosity and expeditiousness. Space systems are put together in small, single-purpose chunks that are launched with mighty, single-use rockets. Spacecraft need to change to a more versatile, capable, reusable, and mission efficient design. The Crew Exploration Vehicle (CEV) that President Bush put forward in his space initiative on Jan. 14, 2004 is a small first step. But like all first steps, the risk of eventual failure is great without a complementary set of steps, a reliable handhold, and a goal, which are outlined in this paper. The system for space access and development needs to be overhauled to allow for the access to space to complement the building in space, which promotes the production of goods in space, which enhances the exploitation of space resources… and the list goes on. Without supplemental and complementary infrastructure, all political, scientific, and idealistic endeavors to explore and exploit the near solar system will result in quagmires of failures and indecision. Renewed focus on fundamentals, integration, total-system consideration, and solid engineering can avoid catastrophe. Mission success, simple solutions, mission efficiency, and proper testing all seem to have been lost in the chase for the nickels and dimes. These items will increase capabilities available from a system or combination of systems. New propulsion options and materials will enable vehicles previously unachievable. Future spacecraft should exploit modular designs for repeatability and reduced cost. Space construction should use these modular systems on major components built in orbit. All vehicles should apply smart designs and monitoring systems for increased reliability and system awareness. Crew safety systems must use this awareness in alerting the crew, aiding collision

  20. The Alfvén mission concept

    NASA Astrophysics Data System (ADS)

    Berthomier, M.; Fazakerley, A. N.

    2014-12-01

    The Alfvén mission is a candidate to the 2014 ESA Call for M-class science missions. Its main scientific objective is to elucidate the universal physical processes at work in the Auroral Acceleration Region (AAR). The AAR is a unique laboratory for investigating strongly magnetized plasmas at an interface where ideal magneto-hydrodynamics does not apply. The Alfvén mission will investigate fundamental and multi-scale physical processes that govern what Nobel Prize laureate Hannes Alfvén named the Plasma Universe. The mission concept is designed to teach us where and how the particles that create the aurorae are accelerated, how they emit radiation, and to elucidate the ion heating and outflow processes which are slowly removing the Earth's atmosphere. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere (MI) coupling is to combine high-time resolution in situ measurements (as pioneered by the FAST mission), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Taking advantage of the existing dense network of ground based observatories the Alfvén mission will also allow a major breakthrough in our understanding of solar terrestrial relationships by providing key experimental measurements to large scale models of MI electrodynamics.

  1. A Multi-Mission Testbed for Advanced Technologies

    NASA Technical Reports Server (NTRS)

    Chau, S. N.; Lang, M.

    2001-01-01

    The mission of the Center for Space Integrated Microsystem (CSIM) at the Jet Propulsion Laboratory is to develop advanced avionics systems for future deep space missions. The Advanced Micro Spacecraft (AMS) task is building a multi-mission testbed facility to enable the infusion of CSIM technologies into future missions. The testbed facility will also perform experimentation for advanced avionics technologies and architectures to meet challenging power, performance, mass, volume, reliability, and fault tolerance of future missions. The testbed facility has two levels of testbeds: (1) a Proof-of-Concept (POC) Testbed and (2) an Engineering Model Testbed. The methodology of the testbed development and the process of technology infusion are presented in a separate paper in this conference. This paper focuses only on the design, implementation, and application of the POC testbed. Additional information is contained in the original extended abstract.

  2. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, Michael; Clifford, S.; Lawrence, S.; Klaus, K.; Smith, D.

    2013-10-01

    Introduction: The time has come to leverage technology advances to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes. Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Mission Concept: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Our concept involves using a Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power 5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both

  3. Astrobiology explorer mission concepts (ABE/ASPIRE)

    NASA Astrophysics Data System (ADS)

    Ennico, K. A.; Sandford, S. A.; ABE/ASPIRE Science Teams

    The AstroBiology Explorer (ABE) and the Astrobiology SPace InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) "Where do we come from?" and (2) "Are we alone?" as outlined in NASA's Origins Program. Both concepts use infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission's observational program is focused on investigating the evolution of ice and organics in all phases of the lifecycle of carbon in the universe, from stellar birth through stellar death and exogenous delivery of these compounds to planetary systems. The ASPIRE mission's observational program expands upon ABE's core mission and also addresses the role of silicates and gas-phase materials in interstellar organic chemistry. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20 (40) micron spectral region at moderate spectral resolution ( R > 2000). ASPIRE's spectrometer complement also includes a high-resolution ( R > 25,000) module over the 4-8 micron spectral region. Both missions' target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in support of the tasks outlined above. The ABE and ASPIRE mission lifetimes are designed to be 14 months and 3 years, respectively, both with significant cryogen and propellant lifetime margins to support an extended observing campaign. The ABE/ASPIRE Science Operations will be carried out at NASA's Ames Research Center, and the ABE/ASPIRE database will be archived at Caltech/IPAC.

  4. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to establish the feasibility of propulsion technologies for vastly expanded space activity. The technical objective is a revolutionary performance sought, such as: (1) about 1 kg/kW specific mass; (2) specific impulse tailored to mission requirements; (3) ability to use in-situ resources; (4) round-trips to Mars in months; (5) round-trips to outer planets in 1 to 2 years; and (6) the capability for robotic mission beyond the solar system.

  5. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  6. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  7. The Magnetosphere Imager Mission Concept Definition Study

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Herrmann, M.; Alexander, Reggie; Beabout, Brent; Blevins, Harold; Bridge, Scott; Burruss, Glenda; Buzbee, Tom; Carrington, Connie; Chandler, Holly; Chu, Phillip; Chubb, Steve; Cushman, Paul; DeSanctis, Carmine; Edge, Ted; Freestone, Todd; French, Ray; Gallagher, Dennis; Hajos, Greg; Herr, Joel

    1997-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing us with a clear picture of this region of space. The George C. Marshall Space Flight Center (MSFC) is responsible for defining the Magnetosphere Imager mission which will study this region of space. A core instrument complement of three imagers (with the potential addition of one or more mission enhancing instrument) will fly in an elliptical polar Earth orbit with an apogee of 44,600 kilometers and a perigee of 4,800 km. This report will address the mission objectives, spacecraft design concepts, and the results of the MSFC concept definition study.

  8. The Stellar Imager (SI) Mission Concept

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  9. SLS Launched Missions Concept Studies for LUVOIR Mission

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-01-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-meter class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-meter class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  10. SLS launched missions concept studies for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  11. Long duration mission support operations concepts

    NASA Technical Reports Server (NTRS)

    Eggleston, T. W.

    1990-01-01

    It is suggested that the system operations will be one of the most expensive parts of the Mars mission, and that, in order to reduce their cost, they should be considered during the conceptual phase of the Space Exploration Initiative (SEI) program. System operations of Space Station Freedom, Lunar outpost, and Mars Rover Sample Return are examined in order to develop a similar concept for the manned Mars mission. Factors that have to be taken into account include: (1) psychological stresses caused by long periods of isolation; (2) the effects of boredom; (3) the necessity of onboard training to maintain a high level of crew skills; and (4) the 40-min time delays between issuing and receiving a command, which make real-time flight control inoperative and require long-term decisions to be made by the ground support.

  12. Space interferometer mission (SIM) instrument design concepts.

    NASA Astrophysics Data System (ADS)

    Duncan, A. L.

    SIM is a 12 meter baseline interferometer to be built as part of the NASA Origins program, designed to fly in space and provide high precision astrometry measurements of astronomical objects. SIM will provide angular measurements three orders of magnitude more precise than current space or ground based sensors, allowing the indirect detection of Earth-like planets around neighboring stars. The SIM mission will also include the ability to synthesize images by varying the interferometer baseline lengths and will demonstrate a nulling beam combiner as a technology pathfinder for future missions. A team at Lockheed Martin Missiles and Space (LMMS) in Sunnyvale, CA has been chosen by JPL to enter a partnership to design and build the SIM instrument. This paper describes the overall LMMS SIM instrument concept and its unique features, including the full aperture laser metrology approach for high precision metrology.

  13. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  14. Progress in advanced accelerator concepts

    SciTech Connect

    Sessler, A.M.

    1994-08-01

    A review is given of recent progress in this field, drawing heavily upon material presented at the Workshop on Advanced Accelerator Concepts, The Abbey, June 12--18, 1994. Attention is addressed to (1) plasma based concepts, (2) photo-cathodes, (3) radio frequency sources and Two-Beam Accelerators, (4) near and far-field schemes (including collective accelerators), (5) beam handling and conditioning, and (6) exotic collider concepts (such as photon colliders and muon colliders).

  15. AXSIO and the NASA X-ray Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) focuses on the IXO science objectives ranked highly by the Decadal Survey: tracing orbits near 5MBH event horizons, measuring BH spin, characterizing outflows and the environment of AGN, observing 5MBH to z=6, mapping gas motion in clusters, finding the missing baryons, and observing cosmic feedback. AXSIO's streamlining of IXO includes reduction in the instrument complement to a calorimeter and a grating spectrometer, and relaxation of the angular resolution to 10". With 0.9 m2 effective area at 1.25 keV, AXSIO delivers a 30-fold performance increase over current missions for high-resolution spectroscopy and spectroscopic timing. NASA has also undertaken a study of notional missions to determine lower cost approaches to accomplishing IXO objectives over the next decade. Three concepts were studied; which as a group encompass the full range of IXO science. The capabilities and architecture of these missions are summarized.

  16. Advanced nuclear rocket engine mission analysis

    SciTech Connect

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  17. Enceladus Environmental Explorer (EVE): A Mission Concept

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Amador, E. S.; Carrier, B. L.; Albuja, A.; Bapst, J.; Cahill, K. R. S.; Ebersohn, F.; Gainey, S.; Gartrelle, G.; Greenberger, R. N.; Hale, J. M.; Johnston, S.; Olivares, J.; Parcheta, C. E.; Sheehan, J. P.; Thorpe, A. K.; Zareh, S. K.

    2014-12-01

    Enceladus is an intriguing planetary body, which possibly has the ingredients needed for life. Further, it has numerous (over 100) continuously erupting geysers that eject material into the atmosphere which provide a unique opportunity to sample the body's internal chemistry from orbit. At JPL's Planetary Science Summer School, Team X and a group of students developed a mission concept to directly sample Enceladus' plumes. The mission, named Enceladus Environmental Explorer (EVE), follows NASA's Planetary Science Decadal survey and would assess the potential habitability of Saturn's icy satellite through analysis of the chemistry of the subsurface ocean and the nature of the organic chemistry in the plume. EVE would look at geological and geophysical surface processes of Enceladus by investigating the heat output of Enceladus, plumes' mechanics, the extent of the liquid subsurface reservoir(s), and gravitational variation. The EVE mission concept aimed for a January 2023 launch on an Atlas 551 class launch vehicle and would arrive at Saturn July 2031. A two-year-long Saturn moon tour would allow sufficient deceleration to permit a polar orbital insertion around Enceladus in March 2035, remaining stable for 54 weeks of observation. The proposed instrument payload includes: 1) SUb MilliMeter Enceladus Radiometer (SUMMER; equivalent to Rosetta MIRO), 2) Enceladus Dust and Gas Experiment (EDGE; an enhanced version of Rosetta COSIMA), 3) MAGnetometer for Ionic Concentration (MAGIC; equivalent to MMS/ InSIGHT magnetometer), 4) Visual Imaging Camera with Topographic Observational Resolution (VICTOR) and 5) Enceladus Radio Gravity Science (ERGS). Our suggested orbital timeline would allow the most comprehensive dataset yet collected of a moon in the outer solar system, mapping the entire surface twice with SUMMER and VICTOR, while sampling the plume directly 232 times with EDGE. MAGIC would also provide over a year of sampling of the magnetic field variations from orbit

  18. Advanced Turbulence Modeling Concepts

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    2005-01-01

    The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and

  19. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  20. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  1. Advanced missions to primitive bodies

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1985-01-01

    Six interplanetary spacecraft, three earth orbital experiments, and one spacecraft orbiting Venus will observe comets Halley and Giacobini-Zinner in 1985-86. At comet Halley, attempts will be made to image the nucleus, remote sensing will be made by spectrometers in wavelength ranges from the IR to the UV, and in-situ observations will be made with neutral, ion and dust mass spectrometers. Plasma measurements will be made at both comets and at comet Halley the upstream solar wind flux will be simultaneously monitored by nearby spacecraft. In the post-Halley era, there are several missions being planned for the continued exploration of the solar system's most primitive bodies - comets and asteroids.

  2. Solar lens mission concept for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Turyshev, Slava; Shao, Michael; Zhang, Qicheng

    2015-09-01

    The long standing approach to space travel has been to incorporate massive on-board electronics, probes and propellants to achieve space exploration. This approach has led to many great achievements in science, but will never help to explore the interstellar medium. Fortunately, a paradigm shift is upon us in how a spacecraft is constructed and propelled. This paper describes a mission concept to get to our Sun's Gravity Lens at 550AU in less than 10 years. It will be done by using DE-STAR, a scalable solar-powered phased-array laser in Earth Orbit, as a directed energy photon drive of low-mass wafersats. [1] [2] [3] [4] [5] With recent technologies a complete mission can be placed on a wafer including, power from an embedded radio nuclear thermal generator (RTG), PV, laser communications, imaging, photon thrusters for attitude control and other sensors. As one example, a futuristic 200 MW laser array consisting of 1 - 10 kw meter scale sub elements with a 100m baseline can propel a 10 gram wafer scale spacecraft with a 3m laser sail to 60AU/Year. Directed energy propulsion of low-mass spacecraft gives us an opportunity to capture images of Alpha Centauri and its planets, detailed imaging of the cosmic microwave background, set up interstellar communications by using gravity lenses around nearby stars to boost signals from interstellar probes, and much more. This system offers a very large range of missions allowing hundreds of wafer scale payload launches per day to reach this cosmological data reservoir. Directed Energy Propulsion is the only current technology that can provide a near-term path to utilize our Sun's Gravity Lens.

  3. Pointing and Tracking Concepts for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. W.; Lee, S.; Chen, C.

    2000-01-01

    This paper summarizes part of a FY1998 effort on the design and development of an optical communications (Opcomm) subsystem for the Advanced Deep Space System Development (ADSSD) Project. This study was funded by the JPL X2000 program to develop an optical communications (Opcomm) subsystem for use in future planetary missions. The goal of this development effort was aimed at providing prototype hardware with the capability of performing uplink, downlink, and ranging functions from deep space distances. Such a system was envisioned to support future deep space missions in the Outer Planets/Solar Probe (OPSP) mission set such as the Pluto express and Europa orbiter by providing a significant enhancement of data return capability. A study effort was initiated to develop a flyable engineering model optical terminal to support the proposed Europa Orbiter mission - as either the prime telecom subsystem or for mission augmentation. The design concept was to extend the prototype lasercom terminal development effort currently conducted by JPL's Optical Communications Group. The subsystem would track the sun illuminated Earth at Europa and farther distances for pointing reference. During the course of the study, a number of challenging issues were found. These included thermo-mechanical distortion, straylight control, and pointing. This paper focuses on the pointing aspects required to locate and direct a laser beam from a spacecraft (S/C) near Jupiter to a receiving station on Earth.

  4. The ODINUS Mission Concept: a Mission to the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe

    2014-05-01

    We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  5. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  6. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  7. CELSS for advanced manned mission

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Oleson, M. W.; Slavin, T. J.

    1988-01-01

    An overview of the major concepts of Controlled Ecological Life Support System (CELSS) includes an identification of environmental factors, such as gravity levels, light levels, and growth volume, that influence the type of CELSS system that can be developed. Various plant growth systems are described together with their possible space applications. Life support functions performed by plants include food production, atmosphere regeneration, and water purification. Selected relationships between biological and physical-chemical life support techniques are considered as a part of these functions. Consumers in a CELSS may be humans, animals, or microorganisms, but nutritional, water, and atmosphere requirements of humans are emphasized in this report, as they are the primary requirement drivers for a CELSS design. The human role in waste generation is discussed as it affects plant nutrient availability. The role of waste management systems in recovering nutrients for plant growth and requirements for CELSS are defined for air, water, and food. Both physical and a biological nutrient recovery/waste disposal systems are examined. The separate subsystems of a CELSS are identified and discussed. Nutrient recovery, plant irradiation, automation, and facilities equipment and applications are reviewed with special attention to direct solar irradiation using fiber optics. These subsystems, along with other environmental control systems, such as thermal, humidity, and ventilation, are essential to plant growth in the space environment.

  8. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  9. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  10. Advanced Chemical Propulsion for Science Missions

    NASA Technical Reports Server (NTRS)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  11. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.

  12. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2012-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.

  13. Advanced missions safety. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Three separate studies were performed under the general category of advanced missions safety. Each dealt with a separate issue, was a self-contained effort, and was independent of the other two studies. The studies are titled: (1) space shuttle rescue capability, (2) experiment safety, and (3) emergency crew transfer. A separate discussion of each study is presented.

  14. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  15. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also

  16. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; Murray, S.; Plucinsky, P.; Ramsey, B.; Remillard, R.; Wilson-Hodge, C.; Daelemans, G.; Karpati, G.; Nicoletti, A.; Reid, P.

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  17. Expert systems and advanced automation for space missions operations

    NASA Technical Reports Server (NTRS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  18. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  19. Advanced thermal-sensor-system development via shuttle sortie missions

    SciTech Connect

    Angelo, J.A. Jr.; Ginsberg, I.W.

    1981-01-01

    The use of the Space Shuttle in various sortie mission modes to evaluate advanced thermal sensor system concepts, prior to a design commitment for automated spacecraft application, is described. Selected terrestrial energy sources of civilian and/or military interest are examined with respect to: (1) thermal source location and characterization and (2) temperature and emissivity measurements. Of particular interest is the application of on-orbit sensor testing to demonstrate the location and characterization of potential geothermal energy resources. The role of the payload specialist in thermal source location, sensor operation and real time evaluation of mission performance is discussed.

  20. Advanced radioisotope power sources for future deep space missions

    NASA Astrophysics Data System (ADS)

    Nilsen, Erik N.

    2001-02-01

    The use of Radioisotope Thermoelectric Generators (RTGs) has been well established for deep space mission applications. The success of the Voyager, Galileo, Cassini and numerous other missions proved the efficacy of these technologies in deep space. Future deep space missions may also require Advanced Radioisotope Power System (ARPS) technologies to accomplish their goals. In the Exploration of the Solar System (ESS) theme, several missions are in the planning stages or under study that would be enabled by ARPS technology. Two ESS missions in the planning stage may employ ARPS. Currently planned for launch in 2006, the Europa Orbiter mission (EO) will perform a detailed orbital exploration of Jupiter's moon Europa to determine the presence of liquid water under the icy surface. An ARPS based upon Stirling engine technology is currently baselined for this mission. The Pluto Kuiper Express mission (PKE), planned for launch in 2004 to study Pluto, its moon Charon, and the Kuiper belt, is baselined to use a new RTG (F-8) assembled from parts remaining from the Cassini spare RTG. However, if this unit is unavailable, the Cassini spare RTG (F-5) or ARPS technologies would be required. Future missions under study may also require ARPS technologies. Mission studies are now underway for a detailed exploration program for Europa, with multiple mission concepts for landers and future surface and subsurface explorers. For the orbital phase of these missions, ARPS technologies may provide the necessary power for the spacecraft and orbital telecommunications relay capability for landed assets. For extended surface and subsurface operations, ARPS may provide the power for lander operations and for drilling. Saturn Ring Observer (SRO) will perform a detailed study of Saturn's rings and ring dynamics. The Neptune Orbiter (NO) mission will perform a detailed multi disciplinary study of Neptune. Titan Explorer (TE) will perform in-situ exploration of Saturn's moon Titan, with both

  1. An advanced neutron spectrometer for future manned exploration missions

    NASA Astrophysics Data System (ADS)

    Christl, Mark

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with lithium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators.

  2. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  3. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  4. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  5. Cooperative Mission Concepts Using Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Miralles, C.; Martin, T.; Kahn, R.; Zurek, R.

    2000-01-01

    Inspired by the immense variety of naturally curious explorers (insects, animals, and birds), their wellintegrated biological sensor-processor suites, efficiently packaged in compact but highly dexterous forms, and their complex, intriguing, cooperative behavior, this paper focuses on "Biomorphic Explorers", their defination/classification, their designs, and presents planetary exploration scenarios based on the designs. Judicious blend of bio-inspired concepts and recent advances in micro-air vehicles, microsensors, microinstruments, MEMS, and microprocessors clearly suggests that the time of small, dedicated, low cost explorers that capture some of the key features of biological systems has arrived. Just as even small insects like ants, termites, honey bees etc working cooperatively in colonies can achieve big tasks, the biomorphic explorers hold the potential for obtaining science in-accessible by current large singular exploration platforms.

  6. Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, David

    2012-01-01

    By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  7. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  8. The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  9. ESA's advanced relay and technology mission

    NASA Astrophysics Data System (ADS)

    Lechte, H.; Bird, A. G.; van Holtz, L.; Oppenhauser, G.

    1990-05-01

    The Advanced Relay and Technology Mission is discussed. The objective of the mission is to develop, launch, and operate a single geostationary satellite. The proposed satellite includes advanced communications payloads with data-relay, mobile, and fixed-service applications. The semiconductor laser intersatellite link experiment (Silex), which is aimed at developing an optical communications data-relay system, is described. The Silex configuration is designed for LEO or GEO applications and has a 65 Mbit/s data rate over the optical return link. Consideration is given to the phased-array technology utilized in the S-band data-relay payload; the L-band land mobile payload; diagnostics and propagation packages; and technology experiments for improving the platform.

  10. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  11. Titan Explorer: A NASA Flagship Mission Concept

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Leary, James C.; Lockwood, Mary Kae; Waite, J. Hunter

    2008-01-01

    We summarize the scientific potential and mission and system design for a Flagship-class mission to Titan. A broad range of science objectives are addressed by an architecture that is uniquely enabled by the Titan atmosphere which permits aerocapture of an orbiter and delivery of a lander and balloon, with all three elements packaged on a single launch vehicle. This multi-element architecture provides a portfolio of mission options adaptable to budget scope and partnering opportunities.

  12. A manned Mars mission concept with artificial gravity

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.

    1986-01-01

    A series of simulated manned Mars missions was analyzed by a computer model. Numerous mission opportunities and mission modes were investigated. Sensitivity trade studies were performed of the vehicle all-up mass and propulsion stage sizes as a function of various levels of conservatism in mission velocity increment margins, payload mass and propulsive stage characteristics. The longer duration but less energetic type of conjunction class mission is emphasized. The specific mission opportunity reviewed was for a 1997 departure. From the trade study results, a three and one-half stage vehicle concept evolved, utilizing a Trans-Mars Injection (TMI) first stage derived from the Space Shuttle External Tank (ET).

  13. Mission Middle College (The Middle College Concept).

    ERIC Educational Resources Information Center

    Lang-Jolliff, Jennifer

    Fashioned after the LaGuardia model, Mission Middle College Program began in the fall of 2001. It is an educational collaboration between the Santa Clara Unified School District (SCUSD) and Mission Community College in Santa Clara, California. It is a program for students who are highly intellectual and capable but uninspired and outside the high…

  14. Mars Telecom Orbiter mission operations concepts

    NASA Technical Reports Server (NTRS)

    Deutsch, Marie-Jose; Komarek, Tom; Lopez, Saturnino; Townes, Steve; Synnott, Steve; Austin, Richard; Guinn, Joe; Varghese, Phil; Edwards, Bernard; Bondurant, Roy; De Paula, Ramon

    2004-01-01

    The Mars Telecom Orbiter (MTO) relay capability enables next decadal missions at Mars, collecting gigabits of data a day to be relayed back at speeds exceeding 4 Mbps and it facilitates small missions whose limited resources do not permit them to have a direct link to Earth.

  15. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  16. Simulation Studies of Satellite Laser CO2 Mission Concepts

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.

    2011-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.

  17. New Approach to Concept Feasibility and Design Studies for Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, M. J.; McLaughlin, W.; Nichols, J.

    1998-01-01

    JPL has assembled a team of multidisciplinary experts with corporate knowledge of space mission and instrument development. The advanced Concept Design Team, known as Team X, provides interactive design trades including cost as a design parameter, and advanced visualization for pre-Phase A Studies.

  18. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  19. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  20. Design Concepts for the Generation-X Mission

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Dailey, D.; Danner, R.; Pearson, D.; Shropshire, D.

    2010-03-01

    The Generation-X mission, proposed by Roger Brissenden at SAO, is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 time period. As currently conceived Gen-X would be a follow-on to the International X-ray Observatory (IXO), with a collecting area ≥ 50 m2, 60-m focal length and 0.1 arc-second spatial resolution, which would be launched in 2030 with an Ares V Cargo Launch Vehicle to an L2 orbit. Our design concept assumes an Ares V with a 10-m diameter, 1,400 m3 volume fairing (or an equivalent launch vehicle) will be developed for NASA's exploration program. The key features of this design include a 16-m diameter deployable x-ray mirror provides a collecting area of 136 m2 a 60-m deployable optical bench which utilizes a Tensegrity structure to achieve high stiffness with low mass; and adaptive grazing incidence optics. Gen-X's combination of large collecting area and high spatial resolution will provide 4 to 5 orders of magnitude greater sensitivity than IXO, enabling scientists to study the formation and growth of the first black holes at z ≈ 8-15 with 0.1 to 10 keV fluxes of ≈ 10-20 erg cm-2s-1.

  1. Design Concepts for the Generation-X Mission

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Dailey, D.; Danner, R.; Shropshire, D.; Pearson, D.

    2009-09-01

    The Generation-X mission, proposed by Roger Brissenden at SAO, is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 time period. As currently conceived Gen-X would be a follow-on to the International X-ray Observatory (IXO), with a collecting area ≥ 50 m^2, 60-m focal length and 0.1 arc-second spatial resolution, which would be launched in ˜2030 with an Ares V Cargo Launch Vehicle to an L2 orbit. Our design concept assumes an Ares V with a 10-m diameter, 1,400 m^3 volume fairing (or an equivalent launch vehicle) will be developed for NASA's exploration program. The key features of this design include a 16-m diameter deployable x-ray mirror provides a collecting area of 136 m^2; a 60-m deployable optical bench which utilizes a Tensegrity structure to achieve high stiffness with low mass; and adaptive grazing incidence optics. Gen-X's combination of large collecting area and high spatial resolution will provide 4 to 5 orders of magnitude greater sensitivity than IXO, enabling scientists to study the formation and growth of the first black holes at z ≈ 8-15 with 0.1 to 10 keV fluxes of ≈ 10-20 erg cm^{-2}s^{-1}.

  2. Concepts for a Titan Lake Probe Mission

    NASA Astrophysics Data System (ADS)

    Elliott, John; Waite, Hunter

    2010-05-01

    The lakes of Titan represent an increasingly tantalizing target for future exploration. As Cassini continues to reveal more details the lakes appear to offer a particularly rich reservoir of knowledge that could provide insights to Titan's formation and evolution, as well as an ideal location to explore Titan's potential for pre-biotic chemistry. This talk will discuss the status and preliminary results of a study to evaluate options for missions to investigate Titan's lakes (one of several dozen studies commissioned by the NRC's Planetary Decadal Survey to explore the technical readiness, feasibility and affordability of scientifically promising mission scenarios). In this study a range of potential mission architectures were considered, including in-situ vehicle delivery by a future Titan flagship mission, as well as options for lower cost, standalone missions that could be performed in the next decade. Detailed point designs have been developed for in-situ elements including both floating platforms and submersibles, instrumented to meet varying ranges of science objectives. In this talk we will present an overview of the science objectives of the missions, the mission architecture and surface element trades, and the detailed point designs chosen for more in-depth analysis.

  3. Spacelab 2 Mission-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This illustration depicts the configuration of the Spacelab-2 in the cargo bay of the orbiter. Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for scientific research flights. Each Spacelab mission had a unique design appropriate to the mission's goals. A number of Spacelab configurations could be assembled from pressurized habitation modules and exposed platforms called pallets. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the Instrument Pointing System, which was being tested on its first flight. The second Spacelab pallet held a large double x-ray telescope and three plasma physics detectors. The last pallet supported an infrared telescope, a superfluid helium technology experiment, and a small plasma diagnostics satellite. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities, to launch and retrieve satellites, and to point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched aboard Space Shuttle Orbiter Challenger on July 29, 1985. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.

  4. Analysis of selected VTOL concepts for a civil transportation mission

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III; Bowles, J. V.; Foster, J. D.

    1981-01-01

    As part of defining the needs and technology requirements for VTOL aircraft research and development, the objective of this paper is to study the application of two tilt propulsion concept VTOL aircraft to the business/executive transport mission. The two concepts selected for study are the tilt jet concept utilizing rotating turbofan engines for both vertical lift and cruise thrust, and the tilt rotor concept using relatively low disc loading propellers for hover and cruise. Overall mission costs, including the time-value cost of the executives, was computed for a selected range of mission distances, up to the design mission range of 750 nm (1400 km). The total trip cost was also compared to that of a conventional helicopter/business jet combination for a typical executive transport mission.

  5. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  6. A hybrid airship concept for Naval missions

    NASA Technical Reports Server (NTRS)

    Harper, M.

    1976-01-01

    A preliminary analysis of a hybrid semibuoyant delta-planform airship was performed using a computer synthesis program. The delta-planform hull shape was studied parametrically to determine the effects on vehicle performance for two Navy antisubmarine missions. The effects of buoyancy ratio, design speed, and altitude were also studied. The results suggest that long-range mission vehicles require a near buoyant or fully buoyant design and that there is no special advantage to the use of a lifting-body hull shape. For shorter-range missions, hybrid vehicles may have merit, and optimum vehicle buoyancy varies depending on whether a minimum-weight or minimum-fuel-consumption design is desired. As compared with conventionally shaped airships, the benefits, if any, from a lifting-body configuration will be limited to missions requiring relatively higher flight speeds.

  7. Advanced launch vehicle system concepts: An historical overview

    SciTech Connect

    Ehrlich, C.F. Jr.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the {open_quotes}real{close_quotes} mission, or missions, have been identified. Future studies have this database available from which to depart once the {open_quotes}real{close_quotes} next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture{emdash}what does the system look like and what is its makeup?, technologies{emdash}what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission{emdash}what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along. {copyright} {ital 1997 American Institute of Physics.}

  8. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  9. The Operations Security Concept for Future ESA Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bargellini, P.; Merri, M.

    2008-08-01

    Next-generation European earth observation missions will play a critical role in public safety and security infrastructures. This makes it necessary for ESA to protect the communication infrastructure of these missions in order to guarantee their service availability. In this paper, we discuss the development process for a generic earth observation security concept. This concept has been developed as part of a GMES Flight Operation Segment security study with the objective to analyse and select a number of high level security requirements for the missions. Further, we studied the impact of an implementation for these requirements on the operational infrastructure of current earth observation missions.

  10. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  11. Resource envelope concepts for mission planning

    NASA Technical Reports Server (NTRS)

    Ibrahim, K. Y.; Weiler, J. D.; Tokaz, J. C.

    1991-01-01

    Seven proposed methods for creating resource envelopes for Space Station Freedom mission planning are detailed. Four reference science activity models are used to illustrate the effect of adding operational flexibility to mission timelines. For each method, a brief explanation is given along with graphs to illustrate the application of the envelopes to the power and crew resources. The benefits and costs of each method are analyzed in terms of resource utilization. In addition to the effect on individual activities, resource envelopes are analyzed at the experiment level.

  12. Advanced automatic target recognition for police helicopter missions

    NASA Astrophysics Data System (ADS)

    Stahl, Christoph; Schoppmann, Paul

    2000-08-01

    The results of a case study about the application of an advanced method for automatic target recognition to infrared imagery taken from police helicopter missions are presented. The method consists of the following steps: preprocessing, classification, fusion, postprocessing and tracking, and combines the three paradigms image pyramids, neural networks and bayesian nets. The technology has been developed using a variety of different scenes typical for military aircraft missions. Infrared cameras have been in use for several years at the Bavarian police helicopter forces and are highly valuable for night missions. Several object classes like 'persons' or 'vehicles' are tested and the possible discrimination between persons and animals is shown. The analysis of complex scenes with hidden objects and clutter shows the potentials and limitations of automatic target recognition for real-world tasks. Several display concepts illustrate the achievable improvement of the situation awareness. The similarities and differences between various mission types concerning object variability, time constraints, consequences of false alarms, etc. are discussed. Typical police actions like searching for missing persons or runaway criminals illustrate the advantages of automatic target recognition. The results demonstrate the possible operational benefits for the helicopter crew. Future work will include performance evaluation issues and a system integration concept for the target platform.

  13. The Reconnaissance of Apophis (RA) Picosatellite Mission Concept

    NASA Astrophysics Data System (ADS)

    Noviello, J. L.; Ying, X. Y.; Wren, P. F.; Stinnett, B. L.; Akshay, R. T.; Karjigi, S.; Ridge, M. G.; Koganti, P.; Castillo, J. C.

    2015-01-01

    Here we present a mission concept design for a picosatellite that will travel via mothership to 99942 Apophis, launch itself, and land on the surface to conduct experiments on dust accumulation rates and mobility in a microgravity environment.

  14. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A broad scoped and systematic study was made of space transfer concepts for human Lunar and Mars missions. Relevant space transportation studies were initiated to lead to further detailed activities in the following study period.

  15. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  16. Advanced launch vehicle system concepts: An historical overview

    NASA Astrophysics Data System (ADS)

    Ehrlich, Carl F.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the "real" mission, or missions, have been identified. Future studies have this database available from which to depart once the "real" next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture—what does the system look like and what is its makeup?, technologies—what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission—what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along.

  17. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

  18. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.

    2015-08-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970’s and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  19. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This poster will discuss a possible mission concept, Space-based Gravitational-wave Observatory (SGO-Mid) developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  20. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  1. A Tethered Formation Flying Concept for the SPECS Mission

    NASA Technical Reports Server (NTRS)

    Quinn, David A.; Folta, David C.

    2000-01-01

    The Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS) is a bold new mission concept designed to address fundamental questions about the Universe, including how the first stars formed from primordial material, and the first galaxies from pre-galactic structures, how the galaxies evolve over time, and what the cosmic history of energy release, heavy element synthesis, and dust formation is. Half of the luminosity and 98% of the post Big-Bang photons exit in the sub-millimeter range. The spectrum of our own Milky Way Galaxy shows this, and many galaxies have even more pronounced long-wavelength emissions. There can be no doubt that revolutionary science will be enabled when we have tools to study the sub-millimeter sky with Hubble- Space-Telescope-class resolution and sensitivity. Ideally, a very large telescope with an effective aperture approaching one kilometer in diameter would be needed to obtain such high quality angular resolution at these long wavelengths. However, a single aperture one kilometer in diameter would not only be very difficult to build and maintain at the cryogenic temperatures required for good seeing, but could actually turn out to be serious overkill. Because cosmic sub-millimeter photons are plentiful and the new detectors will be sensitive, the observations needed to address the questions posed above can be made with an interferometer using well established aperture synthesis techniques. Possibly as few as three 3-4 meter diameter mirrors flying in precision formation could be used to collect the light. To mitigate the need for a great deal of propellant, tethers may be needed as well. A spin-stabilized, tethered formation is a possible configuration requiring a more advanced form of formation flying controller, where dynamics are coupled due to the existence of the tethers between nodes in the formation network. The paper presents one such concept, a proposed configuration for a mission concept which combines the best

  2. Development of a NASA 2018 Mars Landed Mission Concept

    NASA Technical Reports Server (NTRS)

    Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.

    2010-01-01

    Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.

  3. Operations concepts for Mars missions with multiple mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.

    1993-01-01

    Missions are being proposed which involve landing a varying number (anywhere from one to 24) of small mobile spacecraft on Mars. Mission proposals include sample returns, in situ geochemistry and geology, and instrument deployment functions. This paper discusses changes needed in traditional space operations methods for support of rover operations. Relevant differences include more frequent commanding, higher risk acceptance, streamlined procedures, and reliance on additional spacecraft autonomy, advanced fault protection, and prenegotiated decisions. New methods are especially important for missions with several Mars rovers operating concurrently against time limits. This paper also discusses likely mission design limits imposed by operations constraints .

  4. A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Evans, Michael; Shirley, James H.; Abelson, Robert Dean

    2006-01-01

    This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

  5. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  6. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other

  7. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; Drake, B. G.; Earle, K. D.; Graham, L. D.; Hembree, R. M.; Hoffman, S. J.; Jefferies, S. A.; Lupisella, M. L.; Reeves, David M.

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  8. The new worlds observer: The astrophysics strategic mission concept study

    NASA Astrophysics Data System (ADS)

    Cash, W.

    2011-07-01

    We present some results of the Astrophysics Strategic Mission Concept Study for the New Worlds Observer (NWO). We show that the use of starshades is the most effective and affordable path to mapping and understanding our neighboring planetary systems, to opening the search for life outside our solar system, while serving the needs of the greater astronomy community. A starshade-based mission can be implemented immediately with a near term program of technology demonstration.

  9. Unconventional missile concepts from consideration of varied mission requirements

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    Missile concepts for volumetric efficiency, minimum carriage constraints, and aerodynamic performance to achieve mission requirements. The mission requirements considered include air to surface roles such as defense suppression or antishipping where payload and range may have priority over high maneuver capability, and air to air and surface to air roles paying attention to good maneuvering capability. The concepts are intended to provide for ease of storage or carriage. The concepts include monoplanes with highly swept, thick delta wings, highly swept delta wings mounted either high or low on a semicircular body, some ring wing and semiring wing arrangements, parasol wing, and elliptical lifting bodies. The missile configurations indicate possible approaches toward resolving problems of carriage and storage while retaining good volumetric and aerodynamic efficiency. The configurations can accomplish a variety of possible missions with relatively simple vehicle shapes.

  10. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other

  11. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  12. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  13. Science Objectives of the FOXSI Small Explorer Mission Concept

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Alaoui, Meriem; Allred, Joel C.; Antiochos, Spiro K.; Battaglia, Marina; Camilo Buitrago-Casas, Juan; Caspi, Amir; Dennis, Brian R.; Drake, James; Fleishman, Gregory D.; Gary, Dale E.; Glesener, Lindsay; Grefenstette, Brian; Hannah, Iain; Holman, Gordon D.; Hudson, Hugh S.; Inglis, Andrew R.; Ireland, Jack; Ishikawa, Shin-Nosuke; Jeffrey, Natasha; Klimchuk, James A.; Kontar, Eduard; Krucker, Sam; Longcope, Dana; Musset, Sophie; Nita, Gelu M.; Ramsey, Brian; Ryan, Daniel; Saint-Hilaire, Pascal; Schwartz, Richard A.; Vilmer, Nicole; White, Stephen M.; Wilson-Hodge, Colleen

    2016-05-01

    Impulsive particle acceleration and plasma heating at the Sun, from the largest solar eruptive events to the smallest flares, are related to fundamental processes throughout the Universe. While there have been significant advances in our understanding of impulsive energy release since the advent of RHESSI observations, there is a clear need for new X-ray observations that can capture the full range of emission in flares (e.g., faint coronal sources near bright chromospheric sources), follow the intricate evolution of energy release and changes in morphology, and search for the signatures of impulsive energy release in even the quiescent Sun. The FOXSI Small Explorer (SMEX) mission concept combines state-of-the-art grazing-incidence focusing optics with pixelated solid-state detectors to provide direct imaging of hard X-rays for the first time on a solar observatory. We present the science objectives of FOXSI and how its capabilities will address and resolve open questions regarding impulsive energy release at the Sun. These questions include: What are the time scales of the processes that accelerate electrons? How do flare-accelerated electrons escape into the heliosphere? What is the energy input of accelerated electrons into the chromosphere, and how is super-heated coronal plasma produced?

  14. Architecture concepts for a next generation gravity mission

    NASA Astrophysics Data System (ADS)

    Aguirre, Miguel; Anselmi, Alberto; Cesare, Stefano; Massotti, Luca; Silvestrin, Pierluigi

    2010-05-01

    The current generation of missions, culminating in GOCE, has established gravity as a new probe of the whole Earth system, including the water cycle. Preparatory studies, notably those promoted by ESA since 2003, have concluded that a future gravity mission focused on gravity variations, ought to be based on low-low Satellite-to-Satellite Tracking (SST) and possess improved instrument sensitivity/accuracy, 100 to 1000 times better than GRACE, such as can be provided by laser metrology. Further desired characteristics include higher time resolution than GRACE, high spatial resolution, comparable to GOCE, and mission duration of the order of 10 years. An affordable mission concept is being defined by trade-off of scientific mission requirements and implementation constraints, including cost constraints. Designing for time resolution (e.g., a repeat orbit with a short repeat rate) automatically leads to poor spatial resolution. Optimizing for spatial resolution, as GOCE does, leads to poor time sampling. High resolution in both space and time may be achieved by a multiple satellite configuration such as a number of SST pairs in different orbits. Such a concept, however, will at some point exceed the available level of resources. Payload costs, in turn, are driven by the sensitivity and accuracy requirements and mission operations costs are driven by mission duration. Establishing the design requirements and the optimal implementation concept of a new generation gravity mission and its measurement instruments is the objective of a new study, performed for ESA by a team led by Thales Alenia Space Italia (TAS-I). The paper will describe the methodological approach and the current results of the new study.

  15. Asteroid Redirect Mission concept: A bold approach for utilizing space resources

    NASA Astrophysics Data System (ADS)

    Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.

    2015-12-01

    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavor from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid-2020s using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.

  16. Asteroid Redirect Mission Concept: A Bold Approach for Utilizing Space Resources

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.

    2014-01-01

    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavour from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid 2020's using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.

  17. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  18. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  19. LEOMAC: A Future 'Global Atmospheric Composition Mission' (CACM) Concept

    NASA Technical Reports Server (NTRS)

    Livesey, Nathaniel; Santee, Michelle; Stek, Paul; Waters, Joe; Levelt, Pieternel; Veefkind, Pepijn; Kumer, Jack; Roche, Aidan

    2008-01-01

    Resolution of important outstanding questions in air quality, climate change and ozone layer stability demands global observations of multiple chemical species with high horizontal and vertical resolution from the boundary layer to the stratopause. We present a mission concept that delivers the needed atmospheric composition observations, along with cloud ice and water vapor data needed for improvements in climate and weather forecasting models. The mission comprises ultraviolet and infrared nadir and microwave limb viewing instruments observing wide swaths each orbit. We review the scientific goals of the mission and the measurement capabilities this concept will deliver. We describe how precessing orbits offer significant improvements in temporal resolution and diurnal coverage compared to sun-synchronous orbits. Such improvements are needed to quantify the impact of critical 'fast processes' such as deep convection on the composition and radiative properties of the upper troposphere, a region where water vapor and ozone are strong but poorly understood greenhouse gases. This concept can serve as the 'Global Atmospheric Composition Mission' (GACM) recently recommended by the National Academy of Sciences decadal survey as one of 17 priority earth science missions for the coming decade.

  20. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  1. Space transfer concepts and analyses for exploration missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis in the structure, power, life support system, and radiation environment.

  2. Space transfer concepts and analyses for exploration missions

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The current technical effort is part of the fourth phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addresses the costs of the First Lunar Outpost habitat and alternatives to this habitat.

  3. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  4. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  5. The Ganymede Interior Structure, and Magnetosphere Observer (GISMO) Mission Concept

    NASA Technical Reports Server (NTRS)

    Lynch, K. L.; Smith, I. B.; Singer, K. N.; Vogt, M. F.; Blackburn, D. G.; Chaffin, M.; Choukroun, M.; Ehsan, N.; DiBraccio, G. A.; Gibbons, L. J.; Gleeson, D.; Jones, B. A.; LeGall, A.; McEnulty, T.; Rampe, E.; Schrader, C.; Seward, L.; Tsang, C. C. C.; Williamson, P.; Castillo, J.; Budney, C.

    2011-01-01

    The NASA Planetary Science Summer School (PSSS) at JPL offers graduate students and young professionals a unique opportunity to learn about the mission design process. Program participants select and design a mission based on a recent NASA Science Mission Directorate Announcement of Opportunity (AO). Starting with the AO, in this case the 2009 New Frontiers AO, participants generate a set of science goals and develop a early mission concept to accomplish those goals within the constraints provided. As part of the 2010 NASA PSSS, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede. The science goals for this design focused on studying the icy moon's magnetosphere, internal structure, surface composition, geological processes, and atmosphere. By the completion of the summer school an instrument payload was selected and the necessary mission requirements were developed to deliver a spacecraft to Ganymede that would accomplish the defined science goals. This poster will discuss those science goals, the proposed spacecraft and the proposed mission design of this New Frontiers class Ganymede observer.

  6. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  7. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.

    2012-04-01

    Coauthors: R. T. Pappalardo (1), F. Bagenal (2), A. C. Barr (3), B. G. Bills (1), D. L. Blaney (1), D. D. Blankenship (4), W. Brinckerhoff (5), J. E. P. Connerney (5), K. Hand (1), T. Hoehler (6), W. Kurth (7), M. McGrath (8), M. Mellon (9), J. M. Moore (6), D. A. Senske (1), E. Shock (10), D. E. Smith (11), T. Gavin (1), G. Garner (1), T. Magner (12), B. C. Cooke (1), R. Crum (1), V. Mallder (12), L. Adams (12), K. Klaasen (1), G. W. Patterson (12), and S. D. Vance (1); 1: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; 2: University of Colorado, Boulder, CO, USA; 3: Brown University, Providence, RI, USA; 4: University of Texas Institute for Geophysics, Austin, TX, USA; 5: NASA Goddard Space Flight Center, Greenbelt, MD, USA; 6: NASA Ames Research Center, Mountain View, CA, USA; 7: University of Iowa, Iowa City, IA, USA; 8: NASA Marshall Space Flight Center, Huntsville, AL, USA; 9: Southwest Research Institute, Boulder, CO, USA; 10: Arizona State University, Tempe, AZ, USA; 11: Massachusetts Institute of Technology, Cambridge, MA, USA; 12: Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. Introduction: Assessment of Europa's habitability requires understanding whether the satellite possesses the three "ingredients" for life: water, chemistry, and energy. The National Research Council's Planetary Decadal Survey [1] placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept [2] is incompatible with NASA's projected planetary science budget. Thus, in April 2011, NASA enlisted a small Europa Science Definition Team (ESDT) to consider Europa mission options that might be more feasible over the next decade from a programmatic perspective. The ESDT has studied three Europa mission concepts: a Europa orbiter, a Europa multiple-flyby mission, and a Europa lander. These share an overarching goal: Explore Europa to investigate its habitability

  8. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  9. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  10. Managing the Perception of Advanced Technology Risks in Mission Proposals

    NASA Technical Reports Server (NTRS)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  11. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  12. Comparison of advanced propulsion capabilities for future planetary missions

    NASA Technical Reports Server (NTRS)

    Niehoff, J. C.; Friedlander, A. L.

    1974-01-01

    This paper summarizes unmanned planetary performance (payload and trip time) of Shuttle-based advanced propulsion systems for 1980-90 missions analyzed as part of the recent NASA/AEC Advanced Propulsion Comparisons Studies. Propulsion system designs and condensed results from over 300 propulsion/mission combinations are discussed. Chemical rocket (CRP), solar electric (SEP), nuclear rocket (NRP), and nuclear electric (NEP) propulsion systems are all considered. In terms of missions flown, total flight time, and number of Shuttle launches required, NEP provides the best performance. Relative to NEP, it is shown that NRP, SEP, and CRP degrade mission performance by 20%, 40%, and 50%, respectively, at nominal payloads.

  13. Advanced Mass Memory Concept Development

    NASA Astrophysics Data System (ADS)

    Sanchez, A. V.; Furano, G.; Ciccone, M.; Taylor, C.; Tejedor, N. G.; Knoblauch, M.; Parra Espada, P.; PrietoMateo, M.

    2008-08-01

    Current Solid State Mass Memory (SSMM) developments for space borne data handling systems are ad-hoc designs tailored f or a specific mission or mission class. This is mainly due to the technological constraints given b y the use of specific memory chips (SRAM, DRAM, DDRAM and in future FLASH), b y the interfaces towards other DHS units (packetwire, spacewire, custom) and, by the services that are needed in the SSMM unit (file store, mailbox, compression). Those designs n ormally lack of re-usability, and involve significant customization once ported to different systems. Within this work we will demonstrate that existing space technologies (including, hardware, interfaces and SW) already cover the building blocks required for an implementation of a scalable and modular SSMM, providing also a greater level of redundancy a nd greater capabilities with respect to existing designs. Providing that standard interfaces agreed for each building block, complex subsystems may be constructed from relatively simple individual blocks. By applying this approach the SSMM will be developed from already existing satellite technology a dapted to provide standard interfaces. This design a pproach also allows any block within the SSMM to be replaced without affecting the remaining blocks, thus decreasing development times and increasing the re-usability and adaptability between different missions, not mentioning the inherent redundancy. A nother key aspect in the SSMM design is the number of services implemented within the unit and their purpose. Several trade-off can be performed for example: should the SSMM provide a file system? If so, which kind of file system should be implemented? S hall the file system wrap up and enhance the functionality of another storage systems (e.g. packet store)? W hich kind of technology should be implemented to increase the resilience to failure? And many more. T his paper is intended to present the current conceptual view of a SSMM using a building

  14. Trajectory Design for the Europa Clipper Mission Concept

    NASA Technical Reports Server (NTRS)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  15. New Concepts for Space-Based Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.; Baker, J. G.; Cooley, D. S.; Gallagher, R. J.; Hughes, S. P.; Livas, J. C.; Simpson, J. E.; Thorpe, J. I.; Welter, G. L.

    2011-01-01

    The most astrophysically interesting sources in the gravitational wave spectrum lie in the low-frequency band (0.0001 - 1 Hz), which is only accessible from space. For two decades, the LISA concept has been the leading contender for a detector in this band. Despite a strong recommendation from Astro2010, there is strong motivation to find a less expensive concept, even at the loss of some science. We are searching for a lower cost mission concept by examining alternate orbits, less-capable measurement concepts, radically different implementations of the measurement concept and other cost-saving ideas. We report the results of our searches to date, and summarize the analyses behind them.

  16. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  17. Manned orbital systems concepts study. Book 3: Configurations for extended duration missions. [mission planning and project planning for space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.

  18. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  19. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.

    2003-01-01

    This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.

  20. Advanced concepts in knee arthrodesis

    PubMed Central

    Wood, Jennifer H; Conway, Janet D

    2015-01-01

    The aim is to describe advanced strategies that can be used to diagnose and treat complications after knee arthrodesis and to describe temporary knee arthrodesis to treat infected knee arthroplasty. Potential difficult complications include nonunited knee arthrodesis, limb length discrepancy after knee arthrodesis, and united but infected knee arthrodesis. If a nonunited knee arthrodesis shows evidence of implant loosening or failure, then bone grafting the nonunion site as well as exchange intramedullary nailing and/or supplemental plate fixation are recommended. If symptomatic limb length discrepancy cannot be satisfactorily treated with a shoe lift, then the patient should undergo tibial lengthening over nail with a monolateral fixator or exchange nailing with a femoral internal lengthening device. If a united knee arthrodesis is infected, the nail must be removed. Then the surgeon has the option of replacing it with a long, antibiotic cement-coated nail. The authors also describe temporary knee arthrodesis for infected knee arthroplasty in patients who have the potential to undergo insertion of a new implant. The procedure has two goals: eradication of infection and stabilization of the knee. A temporary knee fusion can be accomplished by inserting both an antibiotic cement-coated knee fusion nail and a static antibiotic cement-coated spacer. These advanced techniques can be helpful when treating difficult complications after knee arthrodesis and treating cases of infected knee arthroplasty. PMID:25793160

  1. H-IIA: Concept, missions, program status, and future prospects

    SciTech Connect

    Watanabe, A.

    1997-01-01

    In addition to earth orbiting satellite missions, cargo supply to the International Space Station/Japanese Experiment Module (ISS/JEM), lunar and planetary probes, technology verifications for the H-II Orbiting Plane (HOPE), and other missions are under study for early in the new century. The National Space Development Agency of Japan (NASDA) is developing the H-IIA rocket to meet these diversifying missions and to conduct them efficiently and economically. This paper presents the purposes, concept, and philosophy of system planning of the H-IIA rocket, the combinations of the H-IIA and a transfer vehicle to the ISS/JEM and an experimental winged re-entry vehicle, HOPE-X. {copyright} {ital 1997 American Institute of Physics.}

  2. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Beauchamp, P.; Elliott, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of

  3. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses

  4. Europa Clipper Mission Concept Preliminary Planetary Protection Approach

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Schubert, Wayne; Newlin, Laura; Cooper, Moogega; Chen, Fei; Kazarians, Gayane; Ellyin, Raymond; Vaishampayan, Parag; Crum, Ray

    2016-07-01

    The science objectives of the proposed Europa Clipper mission consist of remotely characterizing any water within and beneath Europa's ice shell, investigating the chemistry of the surface and ocean, and evaluating geological processes that may permit Europa's ocean to possess the chemical energy necessary for life. The selected payload supporting the science objectives includes: Plasma Instrument for Magnetic Sounding (PIMS), Interior Characterization of Europa using Magnetometry (ICEMAG), Mapping Imaging Spectrometer for Europa (MISE), Europa Imaging System (EIS), Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON), Europa Thermal Emission Imaging System (E-THEMIS), MAss SPectrometer for Planetary EXploration/Europa (MASPEX), Ultraviolet Spectrograph/Europa (UVS), and SUrface DUst Mass Analyzer (SUDA). Launch is currently baselined as 2022. Pending the yet to be selected launch vehicle, the spacecraft would either arrive to the Jovian system on a direct trajectory in 2025 or an Earth-Venus-Earth-Earth gravity assist interplanetary trajectory arriving in 2030. The operational concept consists of multiple low-altitude flybys of Europa to obtain globally distributed regional coverage of the Europan surface. According to COSPAR Policy, it is currently anticipated that the Europa Clipper mission would be classified as a Category III mission. That is, the mission is to a body "of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment." Therefore, the expected driving planetary protection requirement for the mission is that the probability of inadvertent contamination of an ocean or other liquid water body shall be less than 1x10-4 per mission. This requirement applies until final disposition of the spacecraft, however in practice, would only apply until the spacecraft is

  5. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.

  6. Research into language concepts for the mission control center

    NASA Technical Reports Server (NTRS)

    Dellenback, Steven W.; Barton, Timothy J.; Ratner, Jeremiah M.

    1990-01-01

    A final report is given on research into language concepts for the Mission Control Center (MCC). The Specification Driven Language research is described. The state of the image processing field and how image processing techniques could be applied toward automating the generation of the language known as COmputation Development Environment (CODE or Comp Builder) are discussed. Also described is the development of a flight certified compiler for Comps.

  7. An Overview of NASA's Asteroid Redirect Mission (ARM) Concept

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). NASA established the Formulation Assessment and Support Team (FAST), comprised of scientists, engineers, and technologists, which supported ARRM mission requirements formulation, answered specific questions concerning potential target asteroid physical properties, and produced a publically available report. The ARM Investigation Team is being organized to support ARM implementation and execution. NASA is also open to collaboration with its international partners and welcomes further discussions. An overview of the ARM robotic and crewed segments, including mission requirements, NEA targets, and mission operations, and a discussion

  8. Voyage to Troy: A mission concept for the exploration of the Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Saikia, S.; Das, A.; Laipert, F.; Dapkus, C.; Kendall, J.; Bowling, T.; Steckloff, J.; Holbert, S.; Graves, K.; Anthony, T.; Bobick, R.; Huang, Y.; Stuart, J.; Longuski, J.; Minton, D.

    2014-07-01

    The Trojan asteroids, located at Jupiter's L4 and L5 Lagrange points, are a potential source of insights into long-standing questions on the origin and early history of the Solar System. The 2013 Planetary Science Decadal Survey recommends a Trojan Tour and Rendezvous mission as high-priority among medium-class missions. A dedicated mission to the Trojan asteroids could confirm or refute multiple theories to correctly explain the Trojan asteroids' current location, characteristics, and behavior. In-depth and conclusive evidence for the Trojan asteroids' internal and external make-up as well as dynamical behavior hav been challenging due to limitations of ground- and space-based observations. Notwithstanding these limitations, it has been inferred that there are two distinct sub- populations that are distinguishable in visible and near-infrared spectra (redder and less red) within the swarms. These spectral groupings have not yet been conclusively linked to physical characteristics (e.g. size) or other observed parameters (e.g. albedo) of the primordial bodies. NASA's Jet Propulsion Laboratory's concept studies for Decadal Survey evaluated three concepts for missions to Trojan asteroids: each utilizing chemical- solar-electric, and radioisotope-electric for propulsion. Both Solar and Advanced Stirling Radioisotope Generators were considered for power [2]. We present a new conceptual mission to explore the Trojan asteroids that achieves the science goals prioritized in the 2013 Planetary Science Decadal Survey. The proposed mission aims to study both a redder and less red asteroid for the surface mineralogical and elemental composition, state of surface regolith, evidence and consequences of external modification processes such as collisional evolution, space weathering, and irradiation. Some potential targets in the L4 Greek camp currently under consideration for this mission include Achilles, Hektor and Agamemnon (redder) and Eurybates, Deipylos and Kalchas (less

  9. Imaging spectrometer concepts for next-generation planetary missions

    NASA Technical Reports Server (NTRS)

    Herring, M.; Juergens, D. W.; Kupferman, P. N.; Vane, G.

    1984-01-01

    In recent years there has been an increasing interest in the imaging spectrometer concept, in which imaging is accomplished in multiple, contiguous spectral bands at typical intervals of 5 to 20 nm. There are two implementations of this concept under consideration for upcoming planetary missions. One is the scanning, or 'whisk-broom' approach, in which each picture element (pixel) of the scene is spectrally dispersed onto a linear array of detectors; the spatial information is provided by a scan mirror in combination with the vehicle motion. The second approach is the 'push-broom' imager, in which a line of pixels from the scene is spectrally dispersed onto a two-dimensional (area-array) detector. In this approach, the scan mirror is eliminated, but the optics and focal plane are more complex. This paper discusses the application of these emerging instrument concepts to the planetary program. Key issues are the trade-off between the two types of imaging spectrometer, the available data rate from a typical planetary mission, and the focal-plane cooling requirements. Specific straw-man conceptual designs for the Mars Geoscience/Climatology Orbiter (MGCO) and the Mariner Mark II Comet Rendezvous/Asteroid Flyby (CRAF) missions are discussed.

  10. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  11. AstroBiology Explorer Mission Concepts (ABE/ASPIRE)

    NASA Astrophysics Data System (ADS)

    Sandford, S.; Ennico, K.; Abe/Aspire Science Team

    The AstroBiology Explorer ABE and the Astrobiology SPace InfraRed Explorer ASPIRE Mission Concepts are two missions designed to address the questions 1 Where do we come from and 2 Are we alone as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity abundance and distribution of molecules of astrobiological importance throughout the Universe The ABE mission s observational program is focused on six tasks to 1 Investigate the evolution of ice and organics in dense clouds and star formation regions and the young stellar planetary systems that form in them 2 Measure the evolution of complex organic molecules in stellar outflows 3 Study the organic composition of a wide variety of solar system objects including asteroids comets and the planets and their satellites 4 Identify organic compounds in the diffuse interstellar medium and determine their distribution abundance and change with environment 5 Detect and identify organic compounds in other galaxies and determine their dependence on galactic type and 6 Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes The ASPIRE mission s observational program expands upon ABE s core mission and adds tasks that 7 Address the role of silicates in interstellar organic chemistry and 8 Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials ABE ASPIRE achieves these goals using a highly sensitive cryogenically-cooled telescope in an

  12. European Space Agency's Fluorescence Explorer Mission: Concept and Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, G.; Moreno, J. F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M.

    2012-12-01

    gross primary production — an important topic of research. An overview of the FLEX mission concept, applications of SIF, scientific challenges and opportunities will be presented.

  13. AstroBiology Explorer Mission Concepts (ABE/ASPIRE)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Ennico, Kimberly A.

    2006-01-01

    The AstroBiology Explorer (ABE) and the Astrobiology Space InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) Where do we come from? and (2) Are we alone? as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission s observational program is focused on six tasks to: (1) Investigate the evolution of ice and organics in dense clouds and star formation regions, and the young stellar/planetary systems that form in them; (2) Measure the evolution of complex organic molecules in stellar outflows; (3) Study the organic composition of a wide variety of solar system objects including asteroids, comets, and the planets and their satellites; (4) Identify organic compounds in the diffuse interstellar medium and determine their distribution , abundance, and change with environment; (5) Detect and identify organic compounds in other galaxies and determine their dependence on galactic type; and (6) Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes. The ASPIRE mission s observational program expands upon ABE's core mission and adds tasks that (7) Address the role of silicates in interstellar organic chemistry; and (8) Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20(40) micron spectral region at moderate spectral resolution (R>2000). ASPIRE's spectrometer complement also includes a high-resolution (R>25,000) module over the 4-8 micron spectral region. Both missions target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in

  14. Astrometric Gravitation Probe: a space mission concept for fundamental physics

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Fienga, Agnes; Gai, Mario; Lattanzi, Mario G.; Riva, Alberto; Busonero, Deborah

    2015-08-01

    Modern technological developments have pushed the accuracy of astrometric measurements in the visible band down to the micro-arcsec level. This allows to test theories of gravity in the weak field limit to unprecedented level, with possible consequences spanning from the validity of fundamental physics principles, to tests of theories describing cosmological and galactic dynamics without resorting to Dark Matter and Dark Energy.This is the main goal of Astrometric Gravitation Probe (AGP) mission, which will be achieved by highly accurate astrometric determination of light deflection (as a modern rendition of the Dyson, Eddington, and Robertson eclipse experiment of 1919), aberration, and of the orbits of selected Solar System objects, with specific reference to the excess shift of the pericentre effect.The AGP concept was recently proposed for the recent call for ESA M4 missions as a collaboration among several scientists coming from many different European and US institutions. Its payload is based on a 1.15 m diameter telescope fed through a coronagraphic system by four fields, two set in symmetric positions around the Sun, and two in the opposite direction, all imaged on a CCD detector. Large parts of the instrument are common mode to all fields. The baseline operation mode is the scan of the ±1.13 deg Ecliptic strip, repeated for a minimum of 3 years and up to an optimal duration of 5 years. Operations and calibrations are simultaneous, defined in order to ensure common mode instrumental effects, identified and removed in data reduction. The astrometric and coronagraphic technologies build on the heritage of Gaia and Solar Orbiter.We review the mission concept and its science case, and discuss how this measurement concepts can be scaled to different mission implementations.

  15. Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Snyder, Christopher A.

    2012-01-01

    The Large Civil Tiltrotor (LCTR) was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing. This paper examines the impact of advanced propulsion system concepts on LCTR2 sizing. Two concepts were studied: an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE), and a variable-speed power turbine engine (VSPT). The ACE is the lighter engine, but requires a multi-speed (shifting) gearbox, whereas the VSPT uses a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and range; the effect of different One Engine Inoperative (OEI) criteria are also examined. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. The two propulsion concepts had nearly identical vehicle weights and mission fuel consumption, and their relative advantages varied little with cruise altitude, mission range, or OEI criteria; high cruise altitude and low cruise tip speed were beneficial for both concepts.

  16. Advanced Accelerator Concepts Final Report

    SciTech Connect

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  17. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  18. 94 GHz doppler wind radar satellite mission concept

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Schüttemeyer, Dirk

    2015-10-01

    Extreme weather such as storms, hurricanes and typhoons, also called `high impact weather', is a high priority area of research for the atmospheric dynamics and meteorological science communities. 94 GHz Doppler wind radar satellite mission concepts have been elaborated, which use cloud and precipitation droplets/particles as tracers to measure 3-D wind fields. The so-called polarisation-diversity pulse-pair (PDPP) technique enables to derive line-of-sight wind speed with good accuracy (< 2-3 m/s) and large unambiguous dynamic range (e.g. 75 m/s). Two distinct system concepts have been elaborated: (1) a conically scanning radar concept with large coverage (> 800 km) and ˜50 km along-track sampling, and; (2) a stereo viewing concept with high sampling resolution (< 4 km) within an inclined cut through the atmosphere. The former concept is adequate for studying large-scale severe/extreme weather systems, whereas the latter would be more suitable for understanding of small-scale convective phenomena. For demonstrating the potential of the FDPP technique for deriving accurate Doppler observations, ground-based and airborne Doppler radar campaigns are in preparation. The Galileo 94 GHz radar, upgraded recently to include a FDPP capability, at Chilbolton in the UK, will be used for an extended ground-based campaign (6 months). For the airborne campaign, the dual-frequency (9.4 + 94 GHz) NAWX radar on board a Convair-580 aircraft of the National Science Council of Canada will be upgraded and flown. This paper describes the observation requirements, preliminary satellite mission concepts, associated wind retrieval aspects and the planned demonstration campaigns.

  19. Following Sungrazing Comets Exploration of a Mission Concept

    NASA Astrophysics Data System (ADS)

    Shutts, Adam Ryan

    This thesis presents a space mission concept that consists of a spacecraft following a sungrazing comet along its orbit while consistently remaining within the shadow of the object. By locating the spacecraft within the shadow of the comet at the comet-Sun L2 equilibrium point, the spacecraft can be shielded from the immense radiation of the Sun. This concept provides a new vantage point to observe comet/Sun interactions while investigating the effects of comet outgassing, exploring the physical consequences of close perihelion passage, and probing the composition of the Sun's corona. A rigorous search is performed to select a sample comet to design a mission about. The Elliptic Hill Three Body Problem dynamical model is introduced to model the interactions of the spacecraft, comet, and Sun and the L2 libration point location is calculated. Environmental modeling is conducted to estimate the size of the comet's shadow and the thermal conditions the comet and spacecraft will encounter. The consequences of this analysis introduce the possibility of a two-stage mission design due to extreme fluctuations in the thermal environment. A linear controller is derived to station-keep the spacecraft at the comet-Sun L2 point. The feasibility of moving the spacecraft closer to the comet is examined and inverse dynamics theory is applied to create various transfers that bring the spacecraft closer to the comet's surface for improved image and data collection.

  20. The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis; Gautier, Nick; Greene, Thomas; McCreight, Craig; Mills, Gary; Purcell, William; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R = 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x 1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approximately 8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approximate 1-2 year mission lifetime.

  1. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  2. Advanced Materials and Cell Components for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  3. The Neptune/Triton Explorer Mission: A Concept Feasibility Study

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2003-01-01

    Technological advances over the next 10 to 15 years promise to enable a number of smaller, more capable science missions to the outer planets. With the inception of miniaturized spacecraft for a wide range of applications, both in large clusters around Earth, and for deep space missions, NASA is currently in the process of redefining the way science is being gathered. Technologies such as 3-Dimensional Multi-Chip Modules, Micro-machined Electromechanical Devices, Multi Functional Structures, miniaturized transponders, miniaturized propulsion systems, variable emissivity thermal coatings, and artificial intelligence systems are currently in research and development, and are scheduled to fly (or have flown) in a number of missions. This study will leverage on these and other technologies in the design of a lightweight Neptune orbiter unlike any other that has been proposed to date. The Neptune/Triton Explorer (NExTEP) spacecraft uses solar electric earth gravity assist and aero capture maneuvers to achieve its intended target orbit. Either a Taurus or Delta-class launch vehicle may be used to accomplish the mission.

  4. Ultraviolet Spectrograph Concepts for the Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Stern, A.; Slater, D. C.; Gladstone, R.; Davis, M. W.; Parker, J. W.; Steffl, A. J.; Greathouse, T. K.; Cunningham, N. J.; Spencer, J. R.

    2008-09-01

    SwRI's Alice line of ultraviolet spectrographs (UVS) is founded on a lightweight, low power, and highly capable and versatile instrument design. With generally small changes in detector photocathode, detector pixel size, slit size and shape, optical coatings, pinhole aperture implementations, and other minor tweaks we've found a wide variety of applications for the Alice design, to date, at comets (Rosetta/Alice), Pluto (New Horizons/Alice), Luna (LRO/LAMP), and Jupiter (Juno/UVS). The SwRI UVS heritage includes very broad experience and strong performance to date on the Rosetta (Phase E; successful Mars flyby), New Horizons (Phase E; successful Jupiter flyby), LRO (Phase D; mated to the spacecraft), and Juno (Phase C) missions. Alice's high capability, low resource requirements, and our experience with Juno-based radiation environment and NH-based outer solar system environment requirements make this UVS a good choice for the Outer Planet Flagship mission concepts.

  5. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  6. Los Alamos RAGE Simulations of the HAIV Mission Concept

    NASA Technical Reports Server (NTRS)

    Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben

    2015-01-01

    The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.

  7. Getting the GeoSTAR Instrument Concept Ready for a Space Mission

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, B.; Gaier, T.; Kangaslahti, P.; Lim, B.; Tanner, A.; Ruf, C.

    2011-01-01

    The Geostationary Synthetic Thinned Array Radiometer - GeoSTAR - is a microwave sounder intended for geostationary satellites. First proposed for the EO-3 New Millennium mission in 1999, the technology has since been developed under the Instrument Incubator Program. Under IIP-03 a proof-of-concept demonstrator operating in the temperature sounding 50 GHz band was developed to show that the aperture synthesis concept results in a realizable, stable and accurate imaging-sounding radiometer. Some of the most challenging technology, such as miniature low-power 183- GHz receivers used for water vapor sounding, was developed under IIP-07. The first such receiver has recently been adapted for use in the High Altitude MMIC Sounding Radiometer (HAMSR), which was previously developed under IIP-98. This receiver represents a new state of the art and outperforms the previous benchmark by an order of magnitude in radiometric sensitivity. It was first used in the GRIP hurricane field campaign in 2010, where HAMSR became the first microwave sounder to fly on the Global Hawk UAV. Now, under IIP-10, we will develop flight-like subsystems and a brassboard testing system, which will facilitate rapid implementation of a space mission. GeoSTAR is the baseline payload for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of NASA's 15 "decadal-survey" missions. Although PATH is currently in the third tier of those missions, the IIP efforts have advanced the required technology to a point where a space mission can be initiated in a time frame commensurate with second-tier missions. An even earlier Venture mission is also being considered.

  8. Advanced Microwave Radiometer (AMR) for SWOT mission

    NASA Astrophysics Data System (ADS)

    Chae, C. S.

    2015-12-01

    The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.

  9. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  10. Deep Space Habitat Concept of Operations for Extended Duration Transit Missions

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Toups, Larry

    2012-01-01

    NASA's Capability-Driven Framework (CDF) describes an approach for progressively extending human exploration missions farther into the Solar System for longer periods of time as allowed by developments in technology and spacecraft systems. Within this framework design reference missions (DRMs) targeted for several specific destinations are being used to assess different combinations of vehicles, operations, and advanced technologies to help understand which combination will best support expanded human exploration both efficiently and sustainably. Several of the identified destinations have been found to require missions with a round trip duration exceeding one year. These mission durations exceed the capabilities of current human-rated spacecraft if resupply from Earth is not possible. This makes the design of an efficient and reliable Deep Space Habitat (DSH) critical for reaching these destinations. The paper will describe the current understanding of DSH capabilities and functions that must be exhibited by any future habitat design for these missions. This description of the DSH is presented in the form of a concept of operation, which focuses on the functions that any DSH must provide, as opposed to a specific DSH design concept. Development of a concept of operations, based on DRM features, provides a common basis for assessing the viability of design concepts incorporating differing configurations and technologies. A study team with representation from several NASA Centers and relevant engineering and scientific disciplines collaborated to develop this DSH concept of operations for the transit phases of these missions. The transit phase of a mission is defined as the time after leaving Earth but before arrival at the destination and the time after leaving the destination but before arriving back at Earth. These transit phases were found to have many common features across all of the destinations being assessed for the CDF and thus arguing for a common concept

  11. Saturn Ring Observer Mission Concept: Closer Than We Thought

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Nicholson, P.; Tiscareno, M. S.; Spilker, L. J.; Sro Study Team

    2010-12-01

    The Saturn Ring Observer (SRO) mission concept would have a spacecraft hover directly over the rings, performing the first high-resolution studies of microphysical interactions between particles in Saturn's rings, at a scale of 1-10 centimeters. A new study suggests such a mission might be feasible sooner than previously thought. As part of the 2012 Planetary Science Decadal Survey (PSDS) deliberations, NASA-appointed teams conducted several dozen mission studies requested by PSDS Panels. A study requested by the PSDS Giant Planets Panel and performed in April 2010 addressed the SRO concept and technologies that could enable it. The Panel specified two study objectives: 1) Investigate the method(s) by which such a spacecraft might be placed in a tight circular orbit around Saturn, using chemical or nuclear-electric propulsion or aerocapture in Saturn’s atmosphere; and 2) Identify technological developments for the next decade that would enable such a mission in the post-2023 time frame (after the next saturnian equinox), with a particular focus on power and propulsion technologies. The “tight circular orbit” is a non-Keplerian orbit displaced 2-3 km perpendicular to the mean ring plane. A spacecraft in such an orbit would appear to “hover” over the ring particles orbiting Saturn directly “beneath” it, so this was dubbed the “hover orbit”. Operations technologies were found to be important drivers so they were examined also. Such a mission, with narrow-angle optical remote sensing instrumentation allowing resolution in the 1 to 10 cm range, would observe individual ring particles and their motions, and aggregate motions, measuring such fundamental quantities as relative velocities, spin states, and coefficients of restitution. A wider-angle instrument would observe aggregate behavior such as waves, self-gravity wakes, and ring edges. The study’s science team found that the kronocentric radial range covered during the mission is a useful metric

  12. The Alfvén Mission for the ESA M5 Call: Mission Concept

    NASA Astrophysics Data System (ADS)

    Fazakerley, Andrew; Berthomier, Matthieu; Pottelette, Raymond; Forsyth, Colin

    2016-04-01

    This poster will present the proposed Alfvén mission concept and is complemented by a presentation of the mission scientific goals planned for the ST1.5 session. The Alfvén mission has the scientific objective of studying particle acceleration and other forms of electromagnetic energy conversion in a collisionless low beta plasma. The mission is proposed to operate in the Earth's Auroral Acceleration Region (AAR), the most accessible laboratory for investigating plasmas at an interface where ideal magneto-hydrodynamics does not apply. Alfvén is designed to answer questions about where and how the particles that create the aurorae are accelerated, how and why they emit auroral kilometric radiation, what creates and maintains large scale electric fields aligned with the magnetic field, and to elucidate the ion outflow processes which are slowly removing the Earth's atmosphere. The mission will provide the required coordinated two-spacecraft observations within the AAR several times a day. From well designed separations along or across the magnetic field lines, using a comprehensive suite of inter-calibrated particles and field instruments, it will measure the parallel electric fields, variations in particle flux, and wave energy that will answer open questions on energy conversion. It will use onboard auroral imagers to determine how this energy conversion occurs in the regional context and, together with its orbit design, this makes the mission ideally suited to resolving spatio-temporal ambiguities that have plagued previous auroral satellite studies. The spacecraft observations will be complemented by coordinated observations with the existing dense network of ground based observatories, for more detailed ionospheric and auroral information when Alfvén overflights occur.

  13. Advanced Sensors for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra B.; Clinton, R. G.; Frazier, Donald

    2005-01-01

    This paper presents a variety of advanced sensors needed for NASA's space exploration. The topics include: 1) The vision of the President of the United States of America for Space Exploration; 2) The report of the President's Commission on Implementation of United States Space Exploration Policy; 3) Exploration Systems Interim Report; 4) Major areas of sensor needs; 5) Classes of material; and 6) Variety of Sensors for Space Exploration.

  14. The X-ray Surveyor Mission: a concept study

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-08-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  15. Problems and conception of ensuring radiation safety during Mars missions.

    PubMed

    Petrov, V M

    2004-01-01

    The Mars mission differs from near-Earth manned space flights by radiation environment and duration. The importance of effective using the weight of the spacecraft increases greatly because all the necessary things for the mission must be included in its starting weight. For this reason the development of optimal systems of radiation safety ensuring (RSES) acquires especial importance. It is the result of sharp change of radiation environment in the interplanetary space as compared to the one in the near-Earth orbits and significant increase of the interplanetary flight duration. The demand of a harder limitation of unfavorable factors effects should lead to radiation safety (RS) standards hardening. The main principles of ensuring the RS of the Mars mission (optimizing, radiation risk, ALARA) and the conception of RSES, developed on the basis of the described approach and the experience obtained during orbital flights are presented in the report. The problems that can impede the ensuring of the crew members' RS are also given here. PMID:15881790

  16. The X-Ray Surveyor Mission: A Concept Study

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  17. Mars Deep Drill - A Mission Concept for the Next Decade

    NASA Technical Reports Server (NTRS)

    Miller, Sylvia L.; Essmiller, John C.; Beaty, David W.

    2004-01-01

    In the not too distant future, NASA may consider sending a robotic mission to Mars to drill tens of meters below the surface to search for evidence of life. Mars science groups, including NASA's Mars Exploration Program Analysis Group (MEPAG), have repeatedly concluded that in situ scientific analyses of samples from significant depths below the surface are important for understanding Mars in general and for searching for evidence of past or present life in particular. Furthermore, there are several ongoing technology developments for relevant drills, the readiness of which seem promising for use by the second decade of this century. By accessing and analyzing material from tens of meters below the surface, in situ science investigations may help answer some important questions about Mars, in particular about whether life ever existed there. Drilling is a proven technique for terrestrial applications that appears viable for accessing Martian subsurface samples and bringing them to the surface for analysis by a variety of instruments. An end-to-end mission concept for a Deep Drill mission has been developed and appears feasible for launch in the next decade.

  18. A scientific case study of an advanced LISA mission

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Xu, Shengnian; Bai, Shan; Cao, Zhoujian; Chen, Gerui; Chen, Yanbei; He, Xiaokai; Heinzel, Gerhard; Lau, Yun-Kau; Liu, Chenzhou; Luo, Jun; Luo, Ziren; Pulido Patón, Antonio; Rüdiger, Albrecht; Shao, Mingxue; Spurzem, Rainer; Wang, Yan; Xu, Peng; Yeh, Hsien-Chi; Yuan, Yefei; Zhou, Zebing

    2011-05-01

    A brief status report of an ongoing scientific case study of the Advanced Laser Interferometer Antenna (ALIA) mission is presented. Key technology requirements and primary science objectives of the mission are covered in the study. Possible descope options for the mission and the corresponding compromise in science are also considered and compared. Our preliminary study indicates that ALIA holds promise in mapping out the mass and spin distribution of intermediate mass black holes possibly present in dense star clusters at low redshift as well as in shedding important light on the structure formation in the early Universe.

  19. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  20. Mission and instrumentation concept for the baryonic structure probe

    NASA Astrophysics Data System (ADS)

    Ebbets, Dennis; DeCino, James; Turner-Valle, Jennifer; Sembach, Kenneth

    2006-06-01

    There is a growing consensus that a substantial fraction of the matter in the universe, especially what we think of as normal baryonic matter, exists in a tenuous, hot filamentary intergalactic medium often referred to as the Cosmic Web. Improving our understanding of the web has been a high priority scientific goal in NASA's planning and roadmapping activities. NASA recently supported an Origins Probe study that explored the observable phenomenology of the web in detail and developed concepts for the instrumentation and mission. The Baryonic Structure Probe operates in the ultraviolet spectral region, using primarily O VI (λλ 1032, 1038 angstrom) and HI Ly α (λ 1216 angstrom) as tracers of the web. A productive investigation requires both moderate resolution (R = λ/Δλ ~ 30000) absorption line spectroscopy using faint background quasars as continuum sources, and imaging of the diffuse filaments in emission lines of the same ions. Spectroscopic sensitivity to quasars as faint as V ~ 19 will probe a large number of sight lines to derive physical diagnostics over the redshift range 0 < z < 1. Spectral imaging with a wide field of view and sensitivity to a redshift range 0 < z < 0.3 will map the filaments in a large volume of the universe after the web had evolved to near its modern structure. This paper summarizes the scientific goals, identifies the measurement requirements derived from them, and describes the instrument concepts and overall mission architecture developed by the BSP study team.

  1. Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.

    NASA Technical Reports Server (NTRS)

    Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.

    1972-01-01

    Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.

  2. Boeing EX Concept, Advanced Surveillance Aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The photograph shows a model of the Boeing EX Concept installed in the NASA Langley 16 foot Transonic Tunnel. The Boeing EX is an advanced surveillance aircraft proposed by Boeing to replace the Grumman E-2C Hawkeye. The concept employs the diamond-shape 'joined-wing'planform and active aperture radar arrays in each wing segment to create a more aerodynamic effective surveillance aircraft. Wind tunnel testing was conducted to evaulate longitudinal and lateral aerodynamic charcteristics and the effectiveness of control surface deflections. Measurements were made to determine the effects of the wings and fuselage on the inlet fan face total pressure distortions at angle of attack and sideslip.

  3. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  4. Aerosol Monitoring Mission using an Advanced Nanosatellite

    NASA Astrophysics Data System (ADS)

    Pranajaya, Freddy; Zee, Robert E.

    The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) is currently developing a nanosatellite for the purpose of monitoring aerosol content in the atmosphere. The NEMO-AM (Nanosatellite for Earth Monitoring and Observation -Aerosol Monitoring) spacecraft is designed to perform multi-angle, dual-polarization observa-tions in three visible bands. The satellite is designed to detect aerosol content in the atmosphere over a specific region with a nominal ground resolution of up to 200 m and a minimum swath of 120 km. NEMO-AM is being built under a collaborative agreement between SFL and the Indian Space Research Organization (ISRO). SFL is responsible for the design, manufacturing and qualification of the spacecraft and the optical instrument. The NEMO-AM is based on the NEMO bus, which is the next evolution to the SFL Generic Nanosatellite Bus (GNB) technology. The NEMO bus has a primary structure measuring 20 cm by 20 cm by 40 cm and is capable of peak power generation up to 80W. A minimum of 30W is available to the payload. The high peak power generation enables the NEMO bus to support a dedicated state-of-the-art high speed transmitter. The NEMO bus is designed with a total mass of 15 kg, 9 kg of which is dedicated to the payload. It can be configured for full three-axis control with up to 1 arcmin pointing stability. NEMO spacecraft will be secured to launch vehicles using the XPOD Duo separation system. This paper will summarize the NEMO-AM mission and the innovative aspects of the NEMO bus.

  5. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  6. Science Rationale for the Io Volcano Observer (IVO) Mission Concept

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred; Turtle, Elizabeth

    2012-07-01

    to meet key Io measurement requirements, and the failed high-gain antennae resulted in severely limited data return for a world that is highly variable in space, time, and wavelength. IVO will be designed specifically to address Io science as currently understood and will return, on every orbit, ˜100x the total Io data return of GLL over 8 years. The Jupiter Icy Moon Explorer (JUICE) mission concept from ESA could provide complementary monitoring but does not include close encounters with Io.

  7. Mission demonstration concept for the long-duration storage and transfer of cryogenic propellants

    NASA Astrophysics Data System (ADS)

    McLean, C.; Deininger, W.; Ingram, K.; Schweickart, R.; Unruh, B.

    This paper describes an experimental platform that will demonstrate the major technologies required for the handling and storage of cryogenic propellants in a low-to-zero-g environment. In order to develop a cost-effective, high value-added demonstration mission, a review of the complete mission concept of operations (CONOPS) was performed. The overall cost of such a mission is driven not only by the spacecraft platform and on-orbit experiments themselves, but also by the complexities of handling cryogenic propellants during ground-processing operations. On-orbit storage methodologies were looked at for both passive and active systems. Passive systems rely purely on isolation of the stored propellant from environmental thermal loads, while active cooling employs cryocooler technologies. The benefit trade between active and passive systems is mission-dependent due to the mass, power, and system-level penalties associated with active cooling systems. The experimental platform described in this paper is capable of demonstrating multiple advanced micro-g cryogenic propellant management technologies. In addition to the requirements of demonstrating these technologies, the methodology of propellant transfer must be evaluated. The handling of multiphase liquids in micro-g is discussed using flight-heritage micro-g propellant management device technologies as well as accelerated tank stratification for access to vapor-free or liquid-free propellants. The mission concept presented shows the extensibility of the experimental platform to demonstrate advanced cryogenic components and technologies, propellant transfer methodologies, as well as the validation of thermal and fluidic models, from subscale tankage to an operational architecture.

  8. A Conceptual Titan Orbiter Mission Using Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.; Spilker, Thomas R.

    2006-01-01

    This study details a conceptual follow-on Titan orbiter mission that would provide full global topographic coverage. surface imaging, and meteorological characterization of the atmosphere over a nominal 5-year science mission duration. The baseline power requirement is approx.1 kWe at EOM and is driven by a high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography. While this power level is moderately higher than that of the Cassini spacecraft. higher efficiency advanced RPSs could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini spacecraft. The Titan Orbiter mission is assumed to launch in 2015. It would utilize advanced RPSs to provide all on-board power.

  9. A Potential Operational CryoSat Follow-on Mission Concept and Design

    NASA Astrophysics Data System (ADS)

    Cullen, R.

    2015-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost follow-on to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of the instrument timing and

  10. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; Reh, K. R.; Lunine, J.; Coustenis, A.; Erd, C.; Matson, D.; Lebreton, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2003 NRC report on New Frontiers in the Solar System (Decadal Survey). As anticipated by the NRC subcommittee, recent Cassini-Huygens discoveries have revolutionized our understanding of Titan and its potential for harbouring "ingredients” necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life. The TSSM concept would consist of a NASA provided orbiter with ESA provided Lander and Montgolfiere Balloon. The mission would launch on an Atlas 551 in 2018-2020, and travel to Saturn on a gravity assist trajectory, reaching Saturn 8.5 years later. The SEP stage would be released and the main engine would place the flight system into orbit around Saturn for a 2 year tour. During the first Titan flyby the in situ elements would be released to target a polar lake and mid-latitude region respectively. During the tour phase, TSSM would accomplish Saturn system and Enceladus science. Following the tour, the spacecraft would enter into an elliptical Titan orbit and perform extensive aerosampling while aerobraking in Titan's atmosphere. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar orbit. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  11. Innovative Mission Concepts and Ground Segment Software Based on Existing SFL Spacecraft

    NASA Astrophysics Data System (ADS)

    Hakima, Houman

    Recent science and technology advancements of micro and nanosatellites have opened possibilities for new space missions that would otherwise be impossible to be carried out by small spacecraft. The Space Flight Laboratory, located at the University of Toronto Institute for Aerospace Studies, is one of the worldwide leaders in small satellite development. The Space Flight Laboratory's capabilities and technology are considered in two concept studies addressed in this thesis. In one study, the adaptation of the Generic Nanosatellite Bus for a high-precision astronomical calibration mission is explored. The bus expands the capabilities of low-cost nanosatellites by accommodating large and complex payloads. In another study, the NEMO-AM platform is adapted to a mission intended for quantum physics experiments from space, based on the demanding payload requirements. These two studies confirm the capabilities of the Space Fight Lab in undertaking innovative space missions at a fraction of the cost. Lastly, the design and development of a multi-mission telemetry data management system is described. This system is designed and built from the ground up, and has been put into operational use at the Space Flight Laboratory.

  12. PIAA coronagraph design for the Exo-C Mission concept

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Krist, John; Stapelfeldt, Karl

    2015-09-01

    The Exoplanet Coronagraph (Exo-C) mission concept consists of a 1.4m space telescope equipped with a high performance coronagraph to directly image exoplanets and disks around many nearby stars. One of the coronagraphs under consideration to be used for this mission is the highly efficient Phase-Induced Amplitude Apodization (PIAA) coronagraph. This paper presents and describes: (a) the PIAA design for Exo-C; (b) an end-to-end performance analysis including sensitivity to jitter, and (c) the expected science yield of Exo-C with PIAA. The design is a "classic" PIAA, which is made possible by the unobstructed aperture. It consists of a pair of forward and inverse PIAA optics and a simple hard-edge focal plane mask. A mild binary pre-apodizer relaxes the radius of curvature on the PIAA mirrors to be easier than typical PIAA mirrors manufactured to date. This design has been optimized for high performance while being relatively insensitive to low order aberrations. The throughput is 90% relative to telescope PSF, while the inner working angle is 2.1 l/D and the contrast is ~1e-9 in a full 360-degree field of view (after wavefront control with two DMs), all for a 20% spectral band centered around 550nm. The design also has good tolerance to jitter: contrast at 1.6mas jitter is still within a factor of a few of 1e-9.

  13. The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2004-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study by a team of partners: NASA's Ames Research Center, Ball Aerospace and Technologies Corporation, and the Jet Propulsion Laboratory. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) The evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) The chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) The distribution of organics in the diffuse ISM, (4) The nature of organics in the Solar System (in comets, asteroids, satellites), and (5) The nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  14. Hybrid nuclear light bulb-nuclear-pumped laser propulsion for advanced missions

    NASA Astrophysics Data System (ADS)

    Miley, G. H.

    1999-01-01

    A hybrid ``nuclear light bulb'' gaseous core reactor that can radiantly transfer energy to a propellant or alternately activate laser action is proposed for advanced space missions. The propellant mode would be employed in the phases of the mission requiring a higher thrust. However, for the bulk of the travel, the propellant would be turned off and the ultrahigh specific impulse laser mode of operation would be employed. The concept is reviewed, research and development issues are identified, and steps necessary for a feasibility demonstration are discussed.

  15. The Fourier-Kelvin Stellar Interferometer Mission Concept

    NASA Technical Reports Server (NTRS)

    Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)

    2002-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral

  16. New Human-Computer Interface Concepts for Mission Operations

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey A.; Hoxie, Mary Sue; Gillen, Dave; Parkinson, Christopher; Breed, Julie; Nickens, Stephanie; Baitinger, Mick

    2000-01-01

    The current climate of budget cuts has forced the space mission operations community to reconsider how it does business. Gone are the days of building one-of-kind control centers with teams of controllers working in shifts 24 hours per day, 7 days per week. Increasingly, automation is used to significantly reduce staffing needs. In some cases, missions are moving towards lights-out operations where the ground system is run semi-autonomously. On-call operators are brought in only to resolve anomalies. Some operations concepts also call for smaller operations teams to manage an entire family of spacecraft. In the not too distant future, a skeleton crew of full-time general knowledge operators will oversee the operations of large constellations of small spacecraft, while geographically distributed specialists will be assigned to emergency response teams based on their expertise. As the operations paradigms change, so too must the tools to support the mission operations team's tasks. Tools need to be built not only to automate routine tasks, but also to communicate varying types of information to the part-time, generalist, or on-call operators and specialists more effectively. Thus, the proper design of a system's user-system interface (USI) becomes even more importance than before. Also, because the users will be accessing these systems from various locations (e.g., control center, home, on the road) via different devices with varying display capabilities (e.g., workstations, home PCs, PDAS, pagers) over connections with various bandwidths (e.g., dial-up 56k, wireless 9.6k), the same software must have different USIs to support the different types of users, their equipment, and their environments. In other words, the software must now adapt to the needs of the users! This paper will focus on the needs and the challenges of designing USIs for mission operations. After providing a general discussion of these challenges, the paper will focus on the current efforts of

  17. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  18. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  19. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  20. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  1. Manned orbital systems concepts study. Book 2: Requirements for extended-duration missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    In order to provide essential data needed in long-range program planning, the Manned Orbital Systems Concepts (MOSC) study attempted to define, evaluate, and compare concepts for manned orbital systems that provide extended experiment mission capabilities in space, flexibility of operation, and growth potential. Specific areas discussed include roles and requirements for man in future space missions, requirements for extended capability, mission/payload concepts, and preliminary design and operational requirements.

  2. Virtual Mission First Results Supporting the WATER HM Satellite Concept

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Andreadis, K.; Lettenmaier, D.; Moller, D.; Rodriguez, E.; Bates, P.; Mognard, N.; Participants, W.

    2007-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation and ocean-atmosphere interactions fundamentally drive weather and climate variability, yet the global ocean current and eddy field (e.g., the Gulf Stream) that affects ocean circulation is poorly known. The Water And Terrestrial Elevation Recovery Hydrosphere Mapper satellite mission concept (WATER HM or SWOT per the NRC Decadal Survey) is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. WATER HM will have tremendous implications for estimation of the global water cycle, water management, ocean and coastal circulation, and assessment of many water-related impacts from climate change (e.g., sea level rise, carbon evasion, etc.). We describe a hydrological "virtual mission" (VM) for WATER HM which consists of: (a) A hydrodynamic-instrument simulation model that maps variations in water levels along river channels and across floodplains. These are then assimilated to estimate discharge and to determine trade-offs between resolutions and mission costs. (b) Measurements from satellites to determine feasibility of existing platforms for measuring storage changes and estimating discharge. First results demonstrate that: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84- day simulation period, relative to a simulation without assimilation. The filter also shows that an 8-day overpass frequency produces discharge relative errors of 10.0%, while 16-day and 32-day frequencies result in errors of 12.1% and 16.9%, respectively. (2) SRTM measurements of water surfaces along the Mississippi, Missouri, Ohio, and Amazon rivers, as well as smaller tributaries, show height standard deviations of 5 meters or greater (SRTM is the

  3. Model Based Systems Engineering on the Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, Dave

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  4. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  5. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  6. Large Observatory For X-ray Timing (LOFT-P): A Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco

    2016-04-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA’s M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution,broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, >10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (~2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M-3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters), the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE (~2000 refereed publications.) In

  7. ACTS advanced system concepts and experimentation

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Theofylaktos, Noulie

    1993-01-01

    Over the course of the first two years of experimentation with the Advanced Communications Technology Satellite (ACTS), many different K/Ka-band applications-oriented experiments will be conducted and evaluated for their commercial viability. In addition, the technological developments and advanced systems concepts associated with the various terminals and the satellite itself will also be examined. Beyond these existing experiments and the current terminal developments, many other new and exciting experiment ideas and advanced system concepts exist. With the additional use of ACTS for the last two years of its lifetime, many of these ideas could be explored. In the mobile satellite communications arena, a particular applications-oriented concept that has yet to be developed is a maritime-mobile experiment. Applications of K/Ka-band mobile satcom technologies to the pleasure cruise industry could provide similar communications services as those that are being developed for the broadband aeronautical experiments. A second applications-oriented experiment that could be of interest is the development of a hybrid satellite-cellular system experiment. In such an experimental system, a mobile K/Ka-band satellite service would extend the coverage of the already existing cellular network. Many new system concepts and terminal developments could also be accomplished. The initial characterization of the K/Ka-band mobile satellite communications propagation channel and evaluation of the currently existing rain compensation algorithms (RCA's) could lead to a second generation RCA development that would improve the overall ACTS Mobile Terminal (AMT) performance. In addition, the development of an enhanced modem to be used with the AMT that utilizes CDMA spread spectrum would also improve the overall terminal efficiency and provide a greater commercial potential for K/Ka-band applications. Other techniques worthy of further exploration and evaluation include the development of

  8. G3E - Geostationary Emission Explorer for Europe: mission concept

    NASA Astrophysics Data System (ADS)

    Butz, Andre; Orphal, Johannes; Bovensmann, Heinrich; von Clarmann, Thomas; Friedl-Vallon, Felix; Knigge, Thiemo; Muenzenmayer, Ralf; Schmuelling, Frank

    2015-04-01

    Anthropogenic activities release various gaseous and particulate substances into the Earth's atmosphere affecting air quality and climate. The greenhouse gases carbon dioxide (CO2) and methane (CH4) are particularly important drivers of man-made climate change while ozone (O3), carbon monoxide (CO) and aerosols are major players in tropospheric photochemistry controlling air quality. Once released to the atmosphere the fate of man-made pollutants and climate forcers is controlled by natural removal processes. We present the mission concept of the Geostationary Emission Explorer for Europe (G3E). G3E primarily aims at accurately measuring CO2 and CH4 column-average concentrations across Europe with spatial and temporal resolution of a few kilometers and a few hours, respectively. Such spatiotemporally dense imaging of the greenhouse gas concentration fields above Europe is expected to boost our ability to disentangle anthropogenic emissions from natural source and sink processes and to impose unprecedented observational constraints on surface flux quantification. In support of the retrieval and interpretation of greenhouse gas concentrations, G3E's grating spectrometers cover a wide spectral range from the near infrared into the shortwave infrared. This facilitates estimates of column-average CO and aerosol abundances providing extra information on air-quality from a geostationary view. A flexible pointing design further allows for selecting focus regions beyond the European continent in order to address the surface flux budgets of other regions of interest such as tropical Africa. We demonstrate G3E's capabilities in terms of prospective instrument design, observation concept, and retrieval performance.

  9. G3E - Geostationary Emission Explorer for Europe: mission concept

    NASA Astrophysics Data System (ADS)

    Butz, A.; Orphal, J.; Bovensmann, H.; von Clarmann, T.; Friedl-Vallon, F.; Hase, F.; Checa-Garcia, R.; Hechenblaikner, G.; Knigge, T.; Schmuelling, F.

    2014-12-01

    Anthropogenic activities release various gaseous and particulate substances into the Earth's atmosphere affecting air quality and climate. The greenhouse gases carbon dioxide (CO2) and methane (CH4) are particularly important drivers of man-made climate change while ozone (O3), carbon monoxide (CO) and aerosols are major players in tropospheric photochemistry controlling air quality. Once released to the atmosphere the fate of man-made pollutants and climate forcers is controlled by natural removal processes. We present the mission concept of the Geostationary Emission Explorer for Europe (G3E). G3E primarily aims at accurately measuring CO2 and CH4 column-average concentrations across Europe with spatial and temporal resolution of a few kilometers and a few hours, respectively. Such spatiotemporally dense imaging of the greenhouse gas concentration fields above Europe is expected to boost our ability to disentangle anthropogenic emissions from natural source and sink processes and to impose unprecedented observational constraints on surface flux quantification. In support of the retrieval and interpretation of greenhouse gas concentrations, G3E's grating spectrometers cover a wide spectral range from the visible into the shortwave infrared. This facilitates estimates of column-average O3, CO, and aerosol abundances providing extra information on air-quality from a geostationary view. A flexible pointing design further allows for selecting focus regions beyond the European continent in order to address the surface flux budgets of other regions of interest such as tropical Africa. We demonstrate G3E's capabilities in terms of prospective instrument design, observation concept, and retrieval performance.

  10. The Staring OBservations of the Atmosphere (SOBA) Mission Concept

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Johnson, Matthew S.; Chen, Rick; Quincy, Allison; Fladeland, Matthew

    2016-01-01

    The Staring OBservations of the Atmosphere (SOBA) Mission is a concept that was developed and matured under the guidance of the NASA Ames Project EXellence (APEX) program. If funded, it will provide an unprecedented opportunity to improve ash transport forecasts and climate model simulations associated with volcanic eruptions. NASA and National science objectives require a better understanding of volcanic aerosol and trace gas emissions, transport, chemical transformation, and deposition, since they impact Earth's climate and atmospheric composition, human health, and aviation safety. Natural hazards such as the 2010 eruption of the Eyjafjallajökull volcano in Iceland demonstrated how existing remote-sensing assets were inadequate for individual volcanic event monitoring. During this eruption, available instruments were unable to provide data necessary to initialize volcanic plume transport models so that they could accurately predict the quantity and location of volcanic ash. As a result, thousands of flights around the world were grounded unnecessarily, at great expense. Volcanoes can also play a large role in regulation of the Earth's climate, so SOBA observations will also be used to evaluate and improve volcanic aerosol and trace gas simulation in chemical transport models (CTMs) and global climate models (GCMs). We propose the development of an airborne remote sensing concept and field campaign that will respond to an eruption and provide near real time observations of a volcanic plume, specifically ash injection height, transport, aerosol microphysical physical properties, and the location and concentration of sulfur dioxide (SO2) (sulfate (SO42-) aerosol precursor). This airborne system will utilize a depolarization sensitive, downward looking Light Detection And Ranging (lidar) instrument and an ultraviolet (UV) imaging spectrometer, and will provide data to be ingested by volcanic ash advisory models. Furthermore, the lessons learned in the development

  11. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  12. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  13. The NPOESS Preparatory Project: Mission Concept and Status

    NASA Technical Reports Server (NTRS)

    Murphy, Robert E.; Taylor, Raynor; DeVito, Daniel S.; Smith, Janice K.; Henegar, Joy; Dodge, James C.; Wilczynski, Peter; Kelly, Michael; Schneider, Stanley; Welsch, Carol; Smith, James E. (Technical Monitor)

    2001-01-01

    National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project is a joint NASA/IPO (Integrated Program Office) mission to extend selected systematic measurements initiated by the Terra and Aqua missions and to provide risk reduction for NPOESS. The key sensor properties and mission features are summarized.

  14. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  15. The NTER: A Proposed Innovative Propulsion Concept for Manned Interplanetary Missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2012-06-01

    The paper adresses a proposed high thrust, high specific impulse innovative propulsion concept for the interplanetary transfer engine for a manned Mars mission. The concept is offered for common conceptual design investigation by ESA and NASA.

  16. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  17. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  18. Experimental assessment of advanced Stirling component concepts

    NASA Technical Reports Server (NTRS)

    Ziph, B.

    1985-01-01

    The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

  19. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  20. Report on New Mission Concept Study: Stereo X-Ray Corona Imager Mission

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Davis, John M.; DeJong, E. M.; Gary, G. Allen; Klimchuk, James A.; Reinert, R. P.

    1998-01-01

    Studies of the three-dimensional structure and dynamics of the solar corona have been severely limited by the constraint of single viewpoint observations. The Stereo X-Ray Coronal Imager (SXCI) mission will send a single instrument, an X-ray telescope, into deep space expressly to record stereoscopic images of the solar corona. The SXCI spacecraft will be inserted into a approximately 1 AU heliocentric orbit leading Earth by approximately 25 deg at the end of nine months. The SXCI X-ray telescope forms one element of a stereo pair, the second element being an identical X-ray telescope in Earth orbit placed there as part of the NOAA GOES program. X-ray emission is a powerful diagnostic of the corona and its magnetic fields, and three dimensional information on the coronal magnetic structure would be obtained by combining the data from the two X-ray telescopes. This information can be used to address the major solar physics questions of (1) what causes explosive coronal events such as coronal mass ejections (CMEs), eruptive flares and prominence eruptions and (2) what causes the transient heating of coronal loops. Stereoscopic views of the optically thin corona will resolve some ambiguities inherent in single line-of-sight observations. Triangulation gives 3D solar coordinates of features which can be seen in the simultaneous images from both telescopes. As part of this study, tools were developed for determining the 3D geometry of coronal features using triangulation. Advanced technologies for visualization and analysis of stereo images were tested. Results of mission and spacecraft studies are also reported.

  1. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  2. THEO concept mission: Testing the Habitability of Enceladus's Ocean

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon M.; Caswell, Tess E.; Phillips-Lander, Charity M.; Stavros, E. Natasha; Hofgartner, Jason D.; Sun, Vivian Z.; Powell, Kathryn E.; Steuer, Casey J.; O'Rourke, Joseph G.; Dhaliwal, Jasmeet K.; Leung, Cecilia W. S.; Petro, Elaine M.; Wynne, J. Judson; Phan, Samson; Crismani, Matteo; Krishnamurthy, Akshata; John, Kristen K.; DeBruin, Kevin; Budney, Charles J.; Mitchell, Karl L.

    2016-09-01

    Saturn's moon Enceladus offers a unique opportunity in the search for life and habitable environments beyond Earth, a key theme of the National Research Council's 2013-2022 Decadal Survey. A plume of water vapor and ice spews from Enceladus's south polar region. Cassini data suggest that this plume, sourced by a liquid reservoir beneath the moon's icy crust, contain organics, salts, and water-rock interaction derivatives. Thus, the ingredients for life as we know it - liquid water, chemistry, and energy sources - are available in Enceladus's subsurface ocean. We have only to sample the plumes to investigate this hidden ocean environment. We present a New Frontiers class, solar-powered Enceladus orbiter that would take advantage of this opportunity, Testing the Habitability of Enceladus's Ocean (THEO). Developed by the 2015 Jet Propulsion Laboratory Planetary Science Summer School student participants under the guidance of TeamX, this mission concept includes remote sensing and in situ analyses with a mass spectrometer, a sub-mm radiometer-spectrometer, a camera, and two magnetometers. These instruments were selected to address four key questions for ascertaining the habitability of Enceladus's ocean within the context of the moon's geological activity: (1) how are the plumes and ocean connected? (2) are the abiotic conditions of the ocean suitable for habitability? (3) how stable is the ocean environment? (4) is there evidence of biological processes? By taking advantage of the opportunity Enceladus's plumes offer, THEO represents a viable, solar-powered option for exploring a potentially habitable ocean world of the outer solar system.

  3. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  4. The Surface Water and Ocean Topography Mission: a mission concept to study the world's oceans and fresh water

    NASA Astrophysics Data System (ADS)

    Vaze, Parag; Albuys, Vincent; Esteban-Fernandez, Daniel; Lafon, Thierry; Lambin, Juliette; Mallet, Alain; Rodriguez, Ernesto

    2010-10-01

    The Surface Water and Ocean Topography (SWOT) is a planned satellite mission to study the world's oceans and terrestrial surface water bodies. The SWOT mission concept has been proposed jointly by the global Hydrology and Oceanography science communities to make the first global survey of the Earth's surface water, observe the fine details of the ocean's surface topography, and measure how water bodies change over time. SWOT was one of 15 missions listed in the 2007 National Research Council's Decadal Survey for Earth science as a mission that NASA should implement in the incoming decade. This mission concept builds upon the heritage of prior missions and technologies such as Topex/Poseidon, Jason-1/ 2, the Shuttle Radar Topography Mission (SRTM), and the initial development of the Wide Swatch Ocean Altimeter intended for the Ocean Surface Topography Mission/Jason-2. The key measurement capability for SWOT is provided by a Ka-band synthetic aperture radar interferometer (KaRIn). With an orbit altitude of 970 km, the KaRIn instrument provides a high-resolution swath width of 120 km enabling global coverage (~90%) of the world's ocean's and fresh water bodies. The KaRIn measurement is being designed to provide a spatial resolution of 1 km for the oceans (after on-board processing), and 100 m for land water, both at centimetric accuracy. An additional instrument suite similar to the Jason series will complement KaRIn: a Ku-band nadir altimeter, a Microwave Radiometer and Precision Orbit Determination (POD) systems. To enable this challenging measurement performance, the SWOT mission concept is designed to overcome several challenges, such as very high raw data rate (320 Mbps), large on-board data volumes, high power demand, stringent pointing and stability requirements, and ground data processing systems, to produce meaningful science data products to our user community. The SWOT mission concept is being developed as a cooperative effort between NASA and CNES. This

  5. Exploring Mission Concepts with the JPL Innovation Foundry A-Team

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Ervin, Joan; Lang, Jared

    2013-01-01

    The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.

  6. Application of a Novel Long-Reach Manipulator Concept to Asteroid Redirect Missions

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Doggett, William R.; Jones, Thomas C.; King, Bruce D.

    2015-01-01

    A high priority mission currently being formulated by NASA is to capture all or part of an asteroid and return it to cis-lunar space for examination by an astronaut crew. Two major mission architectures are currently being considered: in the first (Mission Concept A), a spacecraft would rendezvous and capture an entire free flying asteroid (up to 14 meters in diameter), and in the second (Mission Concept B), a spacecraft would rendezvous with a large asteroid (which could include one of the Martian moons) and retrieve a boulder (up to 4 meters in diameter). A critical element of the mission is the system that will capture the asteroid or boulder material, enclose it and secure it for the return flight. This paper describes the design concepts, concept of operations, structural sizing and masses of capture systems that are based on a new and novel Tendon- Actuated Lightweight In-Space MANipulator (TALISMAN) general-purpose robotic system. Features of the TALISMAN system are described and the status of its technology development is summarized. TALISMAN-based asteroid material retrieval system concepts and concepts-of-operations are defined for each asteroid mission architecture. The TALISMAN-based capture systems are shown to dramatically increase operational versatility while reducing mission risk. Total masses of TALISMAN-based systems are presented, reinforcing the mission viability of using a manipulator-based approach for the asteroid redirect mission.

  7. Advanced Plasma Propulsion for Human Missions to Jupiter

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Pearson, J. Boise

    1999-01-01

    This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.

  8. Nuclear Polar VALOR: An ASRG-Enabled Venus Balloon Mission Concept

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Baines, K. H.

    2008-12-01

    In situ exploration of Venus is expected to answer high priority science questions about the planet's origin, evolution, chemistry, and dynamics as identified in the NRC Decadal Survey and in the VEXAG White Paper. Furthermore, exploration of the polar regions of Venus is key to understanding its climate and global circulation, as well as providing insight into the circulation, chemistry, and climatological processes on Earth. In this paper we discuss our proposed Nuclear Polar VALOR mission, which would target one of the polar regions of Venus, while building on design heritage from the Discovery class VALOR concept, proposed in 2004 and 2006. Riding the strong zonal winds at 55 km altitude and drifting poleward from mid-latitude this balloon-borne aerial science station (aerostat) would circumnavigate the planet multiple times over its one- month operation, extensively investigating polar dynamics, meteorology, and chemistry. Rising and descending over 1 km altitude in planetary waves - similar to the two VEGA balloons in 1985 - onboard instrumentation would accurately and constantly sample and measure other meteorological and chemical parameters, such as atmospheric temperature and pressure, cloud particle sizes and their local column abundances, the vertical wind component, and the chemical composition of cloud-forming trace gases. As well, when viewed with terrestrial radio telescopes on the Earth-facing side of Venus, both zonal and meridional winds would be measured to high accuracy (better than 10 cm/sec averaged over an hour). Due to three factors: the lack of sunlight near the poles; severe limitations on the floating mass-fraction available for a power source; and the science requirements for intensive and continuous measurements of the balloon's environment and movement, a long-duration polar balloon mission would require a long-lived internal power source in a relatively lightweight package. For our concept we assumed an Advanced Stirling Radioisotope

  9. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  10. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  11. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  12. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  13. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  14. A Probabilistic Risk Analysis (PRA) of Human Space Missions for the Advanced Integration Matrix (AIM)

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.

    2003-01-01

    The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.

  15. Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton

    2007-01-01

    Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

  16. Development Of FIAT-Based Thermal Protection System Mass Estimating Relationships For NASA's Multi-Mission Earth Entry Concept

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Trumble, Kerry A.; Maddock, Robert W.; Samareh, Jamshid

    2012-01-01

    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.

  17. The Ganymede Interior Structure, and Magnetosphere Observer (GISMO) Mission Concept

    NASA Astrophysics Data System (ADS)

    Lynch, K. L.; Smith, I. B.; Singer, K. N.; Vogt, M. F.; Blackburn, D. G.; Chaffin, M.; Choukroun, M.; Ehsan, N.; Dibraccio, G. A.; Gibbons, L. J.; Gleeson, D.; Jones, B. A.; Legall, A.; McEnulty, T.; Rampe, E.; Schrader, C.; Seward, L.; Tsang, C. C. C.; Williamson, P.; Castillo, J.; Budney, C.

    2011-03-01

    As part of the 2010 NASA Planetary Science Summer School, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede.

  18. Enabling Future Low-Cost Small Mission Concepts

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven; Cataldo, Robert

    2014-01-01

    A SmallSat using a small Radioisotope Power System for deep space destinations could potentially fit into a Discovery class mission cost cap and perform significant science with a timely return of data. Only applicable when the Discovery 12 guidelines were applied. Commonality of hardware and science instruments among identical spacecraft enabled to meet the Discovery Class mission cost cap. Multiple spacecraft shared the costs of the Launch Approval Engineering Process. Assumed a secondary science instrument was contributed. Small RPS could provide small spacecraft with a relatively high power (approx. 60 We) option for missions to deep space destinations (> 10 AU) with multiple science instruments. Study of Centaur mission demonstrated the ability to achieve New Frontiers level science. Multiple spacecraft possible with small RPS, allowing for multiple targets, science from multiple platforms, and/or redundancy.

  19. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  20. Large Observatory for X-ray Timing (LOFT-P): A Probe-Class Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Chakrabarty, D.; Feroci, M.; Jenke, Peter; Griffith, C.; Zane, S.; Winter, B.; Brandt, S.; Hernamdez, M.; Hickman, R.; Hopkins, R.; Garcia, J.; Chapman, J.; Schnell, A.; Becker, C.; Dominguez, A.; Ingram, L.; Gangl, B.; Carson, B.

    2016-01-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (less than $1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA's M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. Many of LOFTP's targets are bright, rapidly varying sources, so these measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P was presented as an example mission to the head of NASA's Astrophysics Division, to demonstrate the strong community support for creation of a probe-class, for missions costing between $500M and $1B. We submitted a white paper4 in response to NASA PhysPAG's call for white papers: Probe-class Mission Concepts, describing LOFT-P science and a simple extrapolation from the ESA study costs. The next step for probe-class missions will be input into the NASA Astrophysics Decadal Survey to encourage the creation of a probe-class opportunity. We report on a 2016 study by MSFC's Advanced Concepts Office of LOFT-P, a US-led probe-class LOFT concept.

  1. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm^-2) for shock generation.

  2. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm-2) for shock generation.

  3. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  4. Scientific Investigation of the Jovian System: the Jupiter System Observer Mission Concept

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; SDT, JSO

    2007-10-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." At abstract submission this JPL-led study is nearly complete, with final report submission in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. A rich set of science objectives that JSO can address quite well have been identified. The highly capable science payload (including 50-cm optic), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the Science Definition Team evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts. This work was performed at JPL, APL, and other institutions under contract to NASA.

  5. Evaluation of virtual cockpit concepts during simulated missions

    NASA Astrophysics Data System (ADS)

    Kaye, M. G.; Ineson, Judith; Jarett, D. N.; Wickham, G.

    1990-04-01

    The Virtual Environment Integration Laboratory (VEIL) of the Royal Aerospace Establishement (RAE) is described. The VEIL program is intended to provoke appropriate technological developments by exploring the human requirements of operating within a virtual cockpit whilst conducting demanding missions. Under construction is a lightweight binocular, color helmet mounted display with a wide field of view, driven by a versatile parallel architecture computer graphic system which accommodates simulated sensor images from a camera and terrain model. Prototypes of suitable display formats will be developed using a bench mounted stereoscopic viewing rig which will also facilitate investigation of critical psychophysical issues. The complete VEIL hardware will integrate eye and head position sensors, three dimensional sound, direct voice input, and tactile sensors with the binocular display system. When allied to the ground attack, helicopter and air combat simulator facilities of Mission Management Department, it will enable the practicality of operating virtual cockpit systems in a wide variety of missions and tasks to be addressed.

  6. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    NASA Technical Reports Server (NTRS)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  7. Soil moisture active/passive (SMAP) mission concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active/Passive (SMAP) Mission is one of the first satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. ...

  8. Geophysical Exploration of Asteroids: The Deep Interior Mission Concept

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Belton, M.; Kakuda, R. Y.

    2001-01-01

    We describe a possible international multiple-rendezvous mission to probe the interiors representative near-Earth objects. Features include SEP, autonomous navigation, stereo imaging, radio tomography, anchored seismology stations and explosive signal sources. Additional information is contained in the original extended abstract.

  9. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  10. The Lunar Occultation Observer (LOCO) -- A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2009-03-01

    The Lunar Occultation Observer (LOCO) is a new γ-ray astrophysics mission concept expected to have unprecedented sensitivity in the nuclear regime. Operating in lunar orbit, LOCO will utilize lunar occultation imaging to survey and probe the cosmos.

  11. Orbital transfer vehicle concept definition and system analysis study. Volume 10: Aerocapture for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Willcockson, W. H.

    1988-01-01

    A manned expedition to Mars has been under consideration as a potential mission for the early 21st century. The necessarily large vehicle requirements have sparked interest in aerocapture as a means of reducing propellant usage. This volume summarizes the work performed to establish concepts and feasibility of such a mission which makes maximum use of aeroassist maneuvers.

  12. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. The paper also provides a summary of calculations of the mass of the Habitat Propulsion System (HPS) needed to get the habitat from low-Mars orbit (LMO) to the surface and back to LMO, and an overview of trajectory and mission mass assessments related to use of a high specific impulse space-based propulsion system. Those calculations led to the conclusion that the SHM concept results in low total mass required and streamlines mission operations to explore Mars (or other exploration destinations).

  13. The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Studak, J. W.

    2013-01-01

    The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. A summary of calculations of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission mass assessments related to use of a high specific impulse space based propulsion system is provided. Those calculations lead to the conclusion that the SHM concept can significantly reduce the mass required and streamline mission operations to explore Mars (and thus all exploration destinations).

  14. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 6: Lunar systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.

  15. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  16. Advanced thermal management needs for Lunar and Mars missions

    SciTech Connect

    Klein, A.C. ); Webb, B.J. )

    1993-01-15

    Significant improvements in thermal management technologies will be required to support NASA's planned Lunar and Mars missions. The developments needed include the application of advanced materials to reduce radiator system masses, enhanced survivability, and the use of alternative working fluids. Current thermal management systems utilize one of two heat rejection alternatives; either single phase pumped loops, or two phase heat pipes constructed with thick walled metal casings. These two technologies have proven themselves to be reliable performers in the transport and rejection of waste heat from spacecraft. As thermal management needs increase with increased power consumption and activity required on spacecraft, these metal based thermal management systems will become mission limiting. Investigations into the use of light weight ceramic materials for high temperature thermal management systems have been conducted by NASA, the Department of Energy, and the Department of Defense since the early 1980s, with results showing that significant mass savings can be obtained by replacing some of the metallic functions with ceramic materials.

  17. Advanced tools, multiple missions, flexible organizations, and education

    NASA Astrophysics Data System (ADS)

    Lucas, Ray A.; Koratkar, Anuradha

    2000-07-01

    In this new era of modern astronomy, observations across multiple wavelengths are often required. This implies understanding many different costly and complex observatories. Yet, the process for translating ideas into proposals is very similar for all of these observatories If we had a new generation of uniform, common tools, writing proposals for the various observatories would be simpler for the observer because the learning curve would not be as steep. As observatory staffs struggle to meet the demands for higher scientific productivity with fewer resources, it is important to remember that another benefit of having such universal tools is that they enable much greater flexibility within an organization. The shifting manpower needs of multiple- instrument support or multiple-mission operations may be more readily met since the expertise is built into the tools. The flexibility of an organization is critical to its ability to change, to plan ahead, and respond to various new opportunities and operating conditions on shorter time scales, and to achieve the goal of maximizing scientific returns. In this paper we will discuss the role of a new generation of tools with relation to multiple missions and observatories. We will also discuss some of the impact of how uniform, consistently familiar software tools can enhance the individual's expertise and the organization's flexibility. Finally, we will discuss the relevance of advanced tools to higher education.

  18. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  19. Advanced sunflower antenna concept development. [stowable reflectors

    NASA Technical Reports Server (NTRS)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  20. Evaluation of virtual cockpit concepts during simulated missions

    NASA Astrophysics Data System (ADS)

    Kaye, Martin G.; Ineson, Judith; Jarrett, Donald N.; Wickham, G.

    1990-10-01

    This paper describes the Virtual Environment Integration Laboratory (VEIL) of the Royal Aerospace Establishment (RAE). The VEIL programme is intended to provoke appropriate technological developments by exploring the human requirements of operating within a virtual cockpit whilst conducting demanding missions. Under construction is a light-weight binocular, colour helmet-mounted display with a wide field of view, driven by a versatile parallelarchitecture computer graphic system which accommodates simulated sensor images from a camera and terrain model. Prototypes of suitable display formats will be developed using a bench-mounted stereoscopic viewing rig which will also facilitate investigation of critical psychophysical issues. The complete VEIL hardware will integrate eye and head position sensors, three dimensional sound, direct voice input, and tactile sensors with the binocular display system. When allied to the ground-attack, helicopter and air-combat simulator facilities of Mission Management Department, it will enable the practicality of operating virtual cockpit systems in a wide variety of missions and tasks to be addressed.

  1. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  2. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  3. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.

    2014-12-01

    Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active

  4. LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC Advanced Concept Office

    2016-01-01

    NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.

  5. A Discovery-Class Lunette Mission Concept for a Lunar Geophysical Network

    NASA Technical Reports Server (NTRS)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The Lunette mission concept for a network of small, inexpensive lunar landers has evolved over the last three years as the focus of space exploration activities in the US has changed. Originating in a concept for multiple landers launched as a secondary payload capable of regional science and site survey activities, Lunette has recently been developed into a Discovery-class mission concept that offers global lunar coverage enabling network science on a much broader scale. A particular mission concept has been refined by the Lunette team that would result in a low-cost global lunar geophysical network, comprised of two landers widely spaced on the near side of the moon. Each of the two identical landers would carry a suite of instruments that would make continuous measurements of seismic activity, heat flow, and the electromagnetic environment during the full lunar day/night cycle. Each lander would also deploy a next-generation laser retroreflector capable of improving on distance measurement accuracy by an order of magnitude over those emplaced by the previous Apollo and Lunokhod missions. This paper presents a comprehensive overview of the Lunette geophysical network mission concept, including mission and flight system design, as well as the key requirements and constraints that guided them.

  6. Missions and vehicle concepts for modern, propelled, lighter-than-air vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1984-01-01

    The results of studies conducted over the last 15 years to assess missions and vehicle concepts for modern, propelled, lighter-than-air vehicles (airships) were surveyed. Rigid and non-rigid airship concepts are considered. The use of airships for ocean patrol and surveillance is discussed along with vertical heavy lift airships. Military and civilian needs for high altitude platforms are addressed.

  7. Exploring Asteroid Interiors: The Deep Interior Mission Concept

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.

    2003-01-01

    Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.

  8. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  9. Space transfer concepts and analyses for exploration missions, phase 4

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    Earlier studies carried out under this contract covered a wide range of lunar and Mars transportation options, and lunar rove concepts and technology needs. The current report discusses the activities conducted under Technical Directives 16 and 17. Mars transportation was addressed as well as a review and update of architectures and propulsion systems.

  10. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  11. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary

  12. ATOS: Integration of advanced technology software within distributed Spacecraft Mission Operations Systems

    NASA Technical Reports Server (NTRS)

    Jones, M.; Wheadon, J.; Omullane, W.; Whitgift, D.; Poulter, K.; Niezette, M.; Timmermans, R.; Rodriguez, Ivan; Romero, R.

    1994-01-01

    The Advanced Technology Operations System (ATOS) is a program of studies into the integration of advanced applications (including knowledge based systems (KBS)) with ground systems for the support of spacecraft mission operations.

  13. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  14. NASA's Living with a Star Program: The Geospace Mission Concept

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Giles, Barbara; Zanetti, Lawrence; Spann, James; Day, John H. (Technical Monitor)

    2002-01-01

    NASA has initiated the Living with a Star Program (LWS) to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. Three program elements are the Science Missions; a Theory, Modeling, and Data Analysis program; and a Space Environment Testbeds program. Because many of the effects of solar variability on humanity are observed in Geospace regions of space, the science research for all three elements of the LWS Program have significant components in Geospace regions.

  15. Penetrator mission concepts for exploration of the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Niehoff, J. C.; Davis, D. R.

    1976-01-01

    Penetrators are elongated missile-shaped objects designed to implant scientific instrumentation to depths of 1 to 15 meters in a wide variety of soil. A typical penetrator weighs 35 kg and impacts the surface at 150 m/sec oriented as close as possible to vertical. A spacecraft bus carries the penetrators to the target body, controls their deployment, and serves as a data communications relay. The analysis addresses the question of basic feasibility and covers such topics as trajectory requirements and delivered mass capability, deployment modes and penetrator retro sizing, impact site accessibility, guidance and control, and penetrator/bus communications. We conclude that such missions, while difficult in many respects, appear to be technically feasible in the context of Jovian system exploration in the post-1985 time period.

  16. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  17. A contrarotative aircraft lifting concept for a future Titan mission

    NASA Astrophysics Data System (ADS)

    Duquesnay, P.; Coustenis, A.; Lebreton, J.-P.; Tavel, J.

    2008-09-01

    Titan has a thick and cold atmosphere (surface pressure 1.5 bar and surface temperature 94 K) and the surface gravity is about 1/7 of Earth's. Surface wind velocities are low. These unique characteristics make Titan's atmosphere an ideal place for an helicopter type of aircraft with vertical lift capability. Here we present a conceptual idea of a Titan helicopter designed as a student project. Two cases have been considered: a 100-kg helicopter and a 2-kg one. The concept is based on a contra-rotating double rotor. The device would be powered by a combination of rechargeable batteries and a low-power radioisotope source. The double rotor and the body of the helicopter would be protected by a mesh structure. It would carry a science payload at its base that would allow surface sampling and analysis each time it would land. During landing, it would also recharge its batteries to allow flying to the next stop. The concept has been inspired by studying modelaircraft- making devices. Various concepts developed for industrial and military applications have also been a source of inspiration. The following web sites were consulted: • www.onera.fr/conferences/drones • www.aurora.aero • www.sikorsky.com/sik/index.asp • www.microdrones.com The poster will present a preliminary design of the device. Its capability to contribute to the exploration of Titan's surface will be illustrated.

  18. The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; Sdt, J.

    2007-12-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.

  19. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  20. Aircraft concepts for advanced short haul systems

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1975-01-01

    The results of recent NASA-sponsored high-density and medium-density short-haul (less than 500 miles) air transportation systems studies are summarized. Trends in vehicle characteristics, in particular of RTOL and STOL concepts, are noted, and their economic suitability and impact on the community are examined.

  1. Body weight of advanced concept hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Terjesen, Eric J.; Roberts, Cathy D.; Chambers, Mark C.

    1991-01-01

    In this paper, preliminary qualitative and quantitative comparisons of the body weight of five hypersonic aircraft configurations are conducted. The five configurations are briefly described as follows: (1) a wing-and-body arrangement with a power-law, circular cross-section body and a delta wing; (2) an all-body vehicle with delta planform and elliptical cross-sections; (3) a wingless wave rider configuration; (4) a winged wave rider configuration; and (5) the spacewing concept, an oblique flying wing at low speed that yaws to 90 deg sweep and flies end-on at hypersonic speeds. The vehicles are defined by their external moldline geometries and by the interior arrangement of their fuel tanks and other components. Intersecting, circular-lobed tankage is used in vehicles with noncircular bodies. The nonusable volume of such concepts is calculated. The structural concept, structural materials, Thermal Protection System, and heat load are allowed to vary with vehicle longitudinal station. Relative strengths and weaknesses of the various hypersonic aircraft concepts in terms of body weight are summarized.

  2. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    NASA Technical Reports Server (NTRS)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  3. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  4. Design and Analysis of a Formation Flying System for the Cross-Scale Mission Concept

    NASA Technical Reports Server (NTRS)

    Cornara, Stefania; Bastante, Juan C.; Jubineau, Franck

    2007-01-01

    The ESA-funded "Cross-Scale Technology Reference Study has been carried out with the primary aim to identify and analyse a mission concept for the investigation of fundamental space plasma processes that involve dynamical non-linear coupling across multiple length scales. To fulfill this scientific mission goal, a constellation of spacecraft is required, flying in loose formations around the Earth and sampling three characteristic plasma scale distances simultaneously, with at least two satellites per scale: electron kinetic (10 km), ion kinetic (100-2000 km), magnetospheric fluid (3000-15000 km). The key Cross-Scale mission drivers identified are the number of S/C, the space segment configuration, the reference orbit design, the transfer and deployment strategy, the inter-satellite localization and synchronization process and the mission operations. This paper presents a comprehensive overview of the mission design and analysis for the Cross-Scale concept and outlines a technically feasible mission architecture for a multi-dimensional investigation of space plasma phenomena. The main effort has been devoted to apply a thorough mission-level trade-off approach and to accomplish an exhaustive analysis, so as to allow the characterization of a wide range of mission requirements and design solutions.

  5. SCIM: Sample Collection for Investigation of Mars, A Low-Cost, Low-Risk Concept for the First Mars Sample Return Mission.

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.; Leshin, L.; Wiens, R.; Jurewicz, A. J. G.; Clark, B.

    2012-06-01

    SCIM is a revolutionary concept for a low-cost, low-risk sample return from Mars to fundamentally advance knowledge of the geology, climate and habitability of Mars. SCIM would be a pathfinder for future unmanned and manned missions to Mars.

  6. Possible concepts for an in situ Saturn probe mission

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Lebreton, Jean-Pierre; Mousis, Olivier; Atkinson, David H.; Lunine, Jonathan I.; Reh, Kim R.; Fletcher, Leigh N.; Simon-Miller, Amy A.; Atreya, Sushil; Brinckerhoff, William B.; Cavalie, Thibault; Colaprete, Anthony; Gautier, Daniel; Guillot, Tristan; Mahaffy, Paul R.; Marty, Bernard; Morse, Andy; Sims, Jon; Spilker, Tom; Spilker, Linda

    2014-05-01

    In situ exploration of Saturn's atmosphere would bring insights in two broad themes: the formation history of our solar system and the processes at play in planetary atmospheres. The science case for in situ measurements at Saturn are developed in [1] and two companion abstracts (see Mousis et al., and Atkinson et al.). They are summarized here. Measurements of Saturn's bulk chemical and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula and hence on the formation mechanisms. An in situ probe, penetrating from the upper atmosphere (μbar level) into the convective weather layer to a minimum depth of 10 bar, would also contribute to our knowledge of Saturn's atmospheric structure, dynamics, composition, chemistry and cloud-forming processes. Different mission architectures are envisaged, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars [1]. Future studies will focus on the trade-offs between science return and the added design complexity of a probe that could operate at pressures larger than 10 bars. Accelerometry measurements may also be performed during the entry phase in the higher part of the stratosphere prior to starting measurements under parachute. A carrier system would be required to deliver the probe along its interplanetary trajectory to the desired atmospheric entry point at Saturn. The entry site would be carefully selected. Three possible mission configurations are currently under study (with different risk/cost trades): • Configuration 1: Probe + Carrier. After probe delivery, the carrier would follow its path and be destroyed during atmospheric entry, but could perform pre-entry science. The carrier would not be used as a radio relay, but the probe would transmit its data to the ground system via a direct-to-Earth (DTE) RF link; • Configuration 2: Probe + Carrier/Relay. The probe would detach from the

  7. Advanced Interval Management (IM) Concepts of Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  8. Concept for a large multi-mission amphibian aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, J. C., III; Earl, T. D.

    1979-01-01

    A very large aircraft has been proposed for meeting both civil cargo and military transport needs for 1995 and beyond. The concept includes a wide noncircular fuselage cross section with a low wing, thick inner wing section, fuselage-mounted engines, and an air cushion landing gear. The civil freighter operates independently of congested passenger airports, using sheltered water as a runway and a waterfront land site for parking and ground operations. The military transport can operate from a wide variety of surfaces and temporary bases. The air cushion landing gear weighs substantially less than conventional gear and permits the use of extended takeoff distance resulting in improved payload/gross weight ratio.

  9. A Multifaceted Approach to Modernizing NASA's Advanced Multi-Mission Operations System (AMMOS) System Architecture

    NASA Technical Reports Server (NTRS)

    Estefan, Jeff A.; Giovannoni, Brian J.

    2014-01-01

    The Advanced Multi-Mission Operations Systems (AMMOS) is NASA's premier space mission operations product line offering for use in deep-space robotic and astrophysics missions. The general approach to AMMOS modernization over the course of its 29-year history exemplifies a continual, evolutionary approach with periods of sponsor investment peaks and valleys in between. Today, the Multimission Ground Systems and Services (MGSS) office-the program office that manages the AMMOS for NASA-actively pursues modernization initiatives and continues to evolve the AMMOS by incorporating enhanced capabilities and newer technologies into its end-user tool and service offerings. Despite the myriad of modernization investments that have been made over the evolutionary course of the AMMOS, pain points remain. These pain points, based on interviews with numerous flight project mission operations personnel, can be classified principally into two major categories: 1) information-related issues, and 2) process-related issues. By information-related issues, we mean pain points associated with the management and flow of MOS data across the various system interfaces. By process-related issues, we mean pain points associated with the MOS activities performed by mission operators (i.e., humans) and supporting software infrastructure used in support of those activities. In this paper, three foundational concepts-Timeline, Closed Loop Control, and Separation of Concerns-collectively form the basis for expressing a set of core architectural tenets that provides a multifaceted approach to AMMOS system architecture modernization intended to address the information- and process-related issues. Each of these architectural tenets will be further explored in this paper. Ultimately, we envision the application of these core tenets resulting in a unified vision of a future-state architecture for the AMMOS-one that is intended to result in a highly adaptable, highly efficient, and highly cost

  10. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  11. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  12. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  13. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  14. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  15. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  16. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  17. Red Teaming of Advanced Information Assurance Concepts

    SciTech Connect

    DUGGAN,RUTH A.; WOOD,BRADLEY

    1999-10-07

    Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.

  18. CLARREO Mission Requirements, Technological Readiness, and Calibration/Validation Concepts

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Anderson, J. G.; Best, F. A.; Tobin, D. C.; Knuteson, R. O.; Holz, R. E.; Taylor, J. K.; Dykema, J. A.; Adler, D.; Mulligan, M.; Nagle, F.; Dutcher, S.

    2007-12-01

    NASA has selected a new climate mission named CLARREO in the recent Decadal Survey from the National Research Council (NRC) as a promising new start in 2008. CLARREO stands for Climate Absolute Radiance and Refractivity Observatory, conveying that it will measure spectrally resolved radiance from the earth and atmospheric bending of GPS signals related to atmospheric structure (refractivity) to detect climate change. The CLARREO mission is based on some new paradigms for making climate benchmark observations. First, when defining the right radiation measurements to choose for a climate record, the goal should be to maximize the information content about atmospheric and surface properties, rather than to monitor the total radiative energy budget, the conventional calorimeter experiment. The idea is to use spectrally resolved radiances to gain sensitivity, because the spectrally integrated total energy budget can miss significant changes that cancel each other out, and at the same time to characterize the changes. For CLARREO, regional averages of nadir-viewing radiance spectra will reveal signatures of changes in climate forcing and response that can be related to changes in temperature and water vapor structure, atmospheric stability, cloudiness or aerosols, surface properties, and trace gases. The far infrared region of the spectrum, out to 200 wavenumber (50 microns), is required for sensitivity to thick ice clouds and upper level water vapor. Radiative signatures from climate models will be used for interpretation. Second, to reduce the time to unequivocally resolve climate trends, IR radiance spectra and GPS refractivity were selected as quantities with high information content that can be measured with high calibration accuracy referenced to international standards provided on orbit (SI measurements). For the infrared radiance spectra, a brightness temperature accuracy of 0.1 K confirmed on orbit is practical (with a 99% confidence that the limit is not

  19. Discovery Venera surface: Atmosphere geochemistry experiments mission concept

    NASA Technical Reports Server (NTRS)

    Surkov, Yuri A.; Head, James W.; Kremnev, Roald; Nock, K. T.

    1993-01-01

    The phenomenal increase in our understanding of Venus provided by the Magellan Mission has raised a series of focused, fundamental scientific questions about the geochemistry of the surface of Venus, the nature of the lower atmosphere, and the relationship of the lower atmosphere and surface. First, surface geochemical measurements from the Venera/Vega spacecraft showed that widely spaced regions of the venusian plains are made of basalts; thus basalts are significant and may be the only component of the venusian crust. But we lack information on the composition of several key elements of Venus geology: (1) Tessera terrain (which may be outcrops of continental-like non-basaltic crustal material) and steep-sided domes/festoons are promising candidates for non-basaltic geochemically evolved material. The composition of the lower part of the Venusian crust is unknown: however, ejecta from large venusian craters provides us with the possibility of sampling this material on the surface; (2) bulk chemistry (structure and dynamics) of the venusian atmosphere are known. The altitude profiles of water vapor content and minor admixtures relevant to redox conditions in the lower atmosphere (less than 20 km altitude) remain uncertain. Lack of that knowledge means that we do not understand the fine chemical structure of the main mass of the Venusian atmosphere; and (3) thermodynamic models predict that igneous materials on the surface of Venus should react with gases of the venusian atmosphere. But because the water vapor content and redox conditions in the lower atmosphere are not well known, we do not understand the nature of venusian weathering: oxidation, sulfatization, carbonatization, and hydration. The answers to these questions are critical to the understanding of Venus, the most Earth-like of the terrestrial planets.

  20. Rapid Cost Assessment of Space Mission Concepts through Application of Complexity Indices

    NASA Technical Reports Server (NTRS)

    Peterson, Craig; Cutts, James; Balint, Tibor; Hall, James B.

    2008-01-01

    In 2005, the Solar System Exploration Strategic Roadmap Conmrittee (chartered by NASA to develop the roadmap for Solar System Exploration Missions for the coming decades) found itself posed with the difficult problem of sorting through several mission concepts and determining their relative costs. While detailed mission studies are the normal approach to costing, neither the budget nor schedule allotted to the conmrittee could support such studies. Members of the Jet Propulsion Laboratory (JPL) supporting the conmrittee were given the challenge of developing a semi-quantitative approach that could provide the relative costs of these missions, without requiring an in depth study of the missions. In response to this challenge, a rapid cost assessment methodology based on a set of mission cost/complexity indexes was developed. This methodology also underwent two separate validations, one comparing its results when applied to historical missions, and another comparing its estimates against those of veteran space mission managers. Remarkably good agreement was achieved, suggesting that this approach provides an effective early indication of space mission costs.

  1. New Mission Concepts for Astrophysics Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, Harvey

    1999-01-01

    Work at SAO was performed under the overall direction of Dr. Harvey Tananbaum, the Principal Investigator for the program. Dr. Jay Bookbinder was responsible for day to day program coordination at SAO and liaison with GSFC. Dr. Nicholas E. White served as GSFC Technical Officer for the Grant. The effort was directed at formulating the general characteristics and scientific requirements of the contemplated mission. While funding and therefore effort was limited, nonetheless SAO was involved in a broad range of activities. These activities were defined by our SAO proposal to GSFC that were subsequently accepted and funded by this Grant. The main activities were: Support of mission studies. Support the development of science requirements. and Performance of selected engineering studies and trades. During this period, an integrated GSFC/SAO management team began to form and work together. Jean F. Grady was appointed Project Formulation Manager at GSFC and assumed the overall management direction of the project including coordination of work performed under the grant.

  2. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  3. An overview of the NASA Advanced Propulsion Concepts program

    SciTech Connect

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R. JPL, Pasadena, CA Sverdrup Technology, Inc., Brook Park, OH NASA, Lewis Research Center, Cleveland, OH )

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs.

  4. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  5. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  6. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    NASA Technical Reports Server (NTRS)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  7. Meteosat third generation: preliminary imagery and sounding mission concepts and performances

    NASA Astrophysics Data System (ADS)

    Aminou, Donny M.; Bézy, Jean-Loup; Bensi, Paolo; Stuhlmann, Rolf; Rodriguez, Antonio

    2005-10-01

    The operational deployment of MSG-1 at the beginning of 2004, the first of a series of four Meteosat Second Generation (MSG) satellites, marks the start of a new era in Europe for the meteorological observations from the geostationary orbit. This new system shall be the backbone of the European operational meteorological services up to at least 2015. The time required for the definition and the development of new space systems as well as the approval process of such complex programs implies anyhow to plan well ahead for the future missions. EUMETSAT have initiated in 2001, with ESA support, a User Consultation Process aiming at preparing for a future operational geostationary meteorological satellite system in the post-MSG era, named Meteosat Third Generation (MTG). The first phase of the User Consultation Process was devoted to the definition and consolidation of end user requirements and priorities in the field of Nowcasting and Very Short Term Weather Forecasting (NWC), Medium/Short Range global and regional Numerical Weather Prediction (NWP), Climate and Air Composition Monitoring and to the definition of the relevant observation techniques. The following missions have been analysed and preliminary concepts studied: High Resolution Fast Imagery Mission (successor to MSG SEVIRI HRV mission); Full Disk High Spectral Resolution Imagery Mission (successor to the mission of other MSG-SEVIRI channels); Lightning Imagery Mission; IR Sounding Mission; UV-VIS-NIR Sounding Mission. After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a pre-phase A study on MTG is on its final way for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame. This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto

  8. Advanced technology application for combustion chamber concepts

    NASA Technical Reports Server (NTRS)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  9. Plug cluster engine concept for in-space missions

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Aukerman, C. A.

    1979-01-01

    The development of a suitable orbital transfer vehicle (OTV) engine is discussed. The OTV's dimensions are limited by those of the Space Shuttle payload bay on which it will be carried. An approach to utilize the available diameter to achieve high area ratio and thus high engine performance, is presented. Unconventional nozzles, such as clusters of small thrusters around a large diameter contoured plug, are investigated to arrive at engine designs which feature lower chamber pressures, with attendant lower heat flux, lower wall temperature, longer fatigue life, and less critical turbomachinery. Attention is also given to plug nozzle technology, high area ratio module- and scarfed bell- Plug Cluster Engine (PCE) concepts, as well as PCE performance, weight, and assessment. A conceptual design of a PCE formed from a cluster of high area ratio, scarfed, bell nozzles proved to be competitive with bell and spike nozzle engines. PCE advantages cited include increased payload length due to shorter engine length, ability to increase or decrease the number of modules and thereby the thrust, and low cost due to utilization of off-the-shelf technology.

  10. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  11. Parametric Study of Radiator Concepts for a Stirling Radioisotope Power System Applicable to Deep Space Mission

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.

    2000-01-01

    The Department of Energy (DOE) and the NASA Glenn Research Center are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft onboard electric power for NASA deep space missions. This high-efficiency converter is being evaluated as an alternative to replace the much lower efficiency radioisotope thermoelectric generator (RTG). The current power requirement (six years after beginning of mission (BOM) for a mission to Jupiter) is 210 W(sub e) (watts electric) to be generated by two separate power systems, one on each side of the spacecraft. Both two-converter and four-converter system designs are being considered, depending on the amount of required redundancy.

  12. A Follow-On Titan Orbiter Mission Enabled by Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Abelson, R. D.; Durden, S.; Im, E.; Lorenz, R.; Shirley, J. H.; Spilker, T. R.

    2005-12-01

    The NRC Solar System Exploration Decadal Survey (2003) identified Titan as a high-priority target for future missions to the outer solar system. Cassini observations of Titan have only increased that level of interest. Despite these successes, we recognize that large gaps in our knowledge of Titan will inevitably remain at the end of the Cassini Mission. High resolution mapping will have been performed for only a small fraction of the surface of Titan, and we will have an improved but still limited knowledge of global surface topography. Titan, like the Earth, has a substantial atmosphere dominated by molecular nitrogen, and the similarities and differences of atmospheric processes on the Earth and Titan are of considerable interest. Thus it is likely that the next Orbiter Mission to Titan will carry instruments that address questions of atmospheric dynamics, atmospheric precipitation rates, and the density, thickness, and formation processes of clouds. Our study details a conceptual follow-on Titan Orbiter mission that would provide full global topographic coverage, nearly complete surface imaging at selected NIR wavelengths, and comprehensive meteorological characterization of the atmosphere over a nominal 5-year science mission. The baseline orbiter power requirement is approximately 1 kWe at end-of-mission (EOM) which would be provided by radioisotope power systems (RPSs). This power requirement is driven by a notional high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography (note that this strawman radar concept was developed under NASA's High Capability Instrument and Planetary Exploration Program for Prometheus-class missions using NEPP technologies). While this power level is moderately higher than that of the Cassini spacecraft, higher-efficiency advanced radioisotope power systems (RPSs) could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini

  13. Advanced Passive Microwave Radiometer Technology for GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)

    2002-01-01

    An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.

  14. Coma dust scattering concepts applied to the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Rinaldi, Giovanna

    2015-09-01

    This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the

  15. Mission and sensor concepts for coastal and ocean monitoring using spacecraft and aircraft

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1980-01-01

    A concept developed for a 1990 oceanic mission which places strong emphasis on coastal monitoring needs is described and analysed. The concept assumes that use of one active spacecraft in orbit and one on standby plus airplanes and data collection platforms which provide continuing complementary coverage and surface truth. The coastal measurement requirements and goals, the prospective oceanic and coastal sensors, the spacecraft and aircraft data platforms, and the prospective orbit designs are discussed.

  16. Parametric cost analysis for advanced energy concepts

    SciTech Connect

    Not Available

    1983-10-01

    This report presents results of an exploratory study to develop parametric cost estimating relationships for advanced fossil-fuel energy systems. The first of two tasks was to develop a standard Cost Chart of Accounts to serve as a basic organizing framework for energy systems cost analysis. The second task included development of selected parametric cost estimating relationships (CERs) for individual elements (or subsystems) of a fossil fuel plant, nominally for the Solvent-Refined Coal (SRC) process. Parametric CERs are presented for the following elements: coal preparation, coal slurry preparation, dissolver (reactor); gasification; oxygen production; acid gas/CO/sub 2/ removal; shift conversion; cryogenic hydrogen recovery; and sulfur removal. While the nominal focus of the study was on the SRC process, each of these elements is found in other fossil fuel processes. Thus, the results of this effort have broader potential application. However, it should also be noted that the CERs presented in this report are based upon a limited data base. Thus, they are applicable over a limited range of values (of the independent variables) and for a limited set of specific technologies (e.g., the gasifier CER is for the multi-train, Koppers-Totzek process). Additional work is required to extend the range of these CERs. 16 figures, 13 tables.

  17. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental

  18. Advanced progress concepts for direct coal liquefaction

    SciTech Connect

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  19. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  20. Space medicine innovation and telehealth concept implementation for medical care during exploration-class missions

    NASA Astrophysics Data System (ADS)

    Martin, Annie; Sullivan, Patrick; Beaudry, Catherine; Kuyumjian, Raffi; Comtois, Jean-Marc

    2012-12-01

    Medical care on the International Space Station (ISS) is provided using real-time communication with limited medical data transmission. In the occurrence of an off-nominal medical event, the medical care paradigm employed is 'stabilization and transportation', involving real-time management from ground and immediate return to Earth in the event that the medical contingency could not be resolved in due time in space. In preparation for future missions beyond Low-Earth orbit (LEO), medical concepts of operations are being developed to ensure adequate support for the new mission profiles: increased distance, duration and communication delays, as well as impossibility of emergency returns and limitations in terms of medical equipment availability. The current ISS paradigm of medical care would no longer be adequate due to these new constraints. The Operational Space Medicine group at the Canadian Space Agency (CSA) is looking towards synergies between terrestrial and space medicine concepts for the delivery of medical care to deal with the new challenges of human space exploration as well as to provide benefits to the Canadian population. Remote and rural communities on Earth are, in fact, facing similar problems such as isolation, remoteness to tertiary care centers, resource scarcity, difficult (and expensive) emergency transfers, limited access to physicians and specialists and limited training of medical and nursing staff. There are a number of researchers and organizations, outside the space communities, working in the area of telehealth. They are designing and implementing terrestrial telehealth programs using real-time and store-and-forward techniques to provide isolated populations access to medical care. The cross-fertilization of space-Earth research could provide support for increased spin-off and spin-in effects and stimulate telehealth and space medicine innovations to engage in the new era of human space exploration. This paper will discuss the benefits

  1. Enhanced Temporal Repeat Coverage at Landsat-like Resolution - a Low-cost, Small-sat Mission Concept

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Tucker, C. J.; Masek, J. G.; Brown, M. E.; Jarvis, C.

    2010-12-01

    imagery of sufficient quality and quantity to augment global Landsat coverage. The effort to develop and advance this mission concept has been named LOGICAL, for Land Observations Globally In a Cost-effective Augmentation of Landsat. The approach that is being used to develop the concept will be presented, along with preliminary findings that indicate that such a mission is doable at a cost that is as much as an order of magnitude less expensive than a typical “gold standard” Landsat mission in today’s aerospace environment. If such a mission concept could be realized, it would not only serve to dramatically enhance scientific applications, but it would also reduce the risk of a devastating gap in Landsat-like imaging capability.

  2. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  3. Brush seal numerical simulation: Concepts and advances

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-07-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  4. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  5. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  6. Athena mission operations concept with a special view on ToO

    NASA Astrophysics Data System (ADS)

    Kirsch, Marcus G. F.; Symonds, Kate

    2015-09-01

    The operations concept of the Athena X-ray observatory is currently in its Phase 0/A. It has to satisfy two opposing requirements: cost effective operations (i.e. preplanned and minimised coverage)on the one hand and quick reaction to Targets of Opportunity (ToO) on the other hand. We present a possible scenario of operations combining the mission requirements with the gained expertise from missions like Herschel/Planck with respect to L2 operations as well as XMM-Newton and Integral expertise evaluating the possibility and feasibility of special operations for ToO. In order to satisfy the reaction time for a ToO of 4 h the operations concept is a spacecraft High Gain Antenna always pointed to Earth and configured for TC reception. This enables the use of small ground stations for ToO communications. This and the general features of the mission operations ground segment will be presented in detail.

  7. Space transfer concepts and analyses for exploration missions: Technical directive 10

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during the previous phases but specifically on launch vehicle size trades and MEV options.

  8. Evolution of a Mars Airplane Concept for the ARES Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Guynn, Mark D.; Smith, Stephen C.; Parks, Robert W.; Gelhausen, Paul A.

    2004-01-01

    ARES (Aerial Regional-scale Environmental Survey of Mars) is a proposed Mars Scout mission using an airplane to provide high-value science measurements in the areas of atmospheric chemistry, surface geology and mineralogy, and crustal magnetism. The use of an airplane for robotic exploration of Mars has been studied for over 25 years. There are, however, significant challenges associated with getting an airplane to Mars and flying through the thin, carbon dioxide Martian atmosphere. The traditional wisdom for aircraft design does not always apply for this type of vehicle and geometric, aerodynamic, and mission constraints result in a limited feasible design space. The ARES airplane design is the result of a concept exploration and evolution involving a number of trade studies, downselects, and design refinements. Industry, university, and NASA partners initially proposed a number of different concepts, drawing heavily on past Mars airplane design experience. Concept downselects were conducted with qualitative evaluation and high level analyses, focused on the most important parameters for the ARES mission. Following a successful high altitude test flight of the basic configuration, additional design refinement led to the current design. The resulting Mars airplane concept enables the high-value science objectives of the ARES mission to be accomplished while also fulfilling the desire for a simple, low-risk design.

  9. The Lunar Occultation Observer (LOCO) - A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Harmon, B. A.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2008-07-01

    The Lunar Occultation Observer (LOCO) is a new lunar-based concept to probe the nuclear astrophysics regime. It will be a pioneering mission in high-energy astrophysics: the first to employ occultation as the principle detection and imaging method.

  10. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    NASA Technical Reports Server (NTRS)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    Asteroids have long held the attention of the planetary science community. In particular, asteroids that evolve into orbits near that of Earth, called near-Earth objects (NEO), are of high interest as potential targets for exploration due to the relative ease (in terms of delta V) to reach them. NASA's Flexible Path calls for missions and experiments to be conducted as intermediate steps towards the eventual goal of human exploration of Mars; piloted missions to NEOs are such example. A human NEO mission is a valuable exploratory step beyond the Earth-Moon system enhancing capabilities that surpass our current experience, while also developing infrastructure for future mars exploration capabilities. To prepare for a human rendezvous with an NEO, NASA is interested in pursuing a responsible program of robotic NEO precursor missions. Next Gen NEAR is such a mission, building on the NEAR Shoemaker mission experience at the JHU/APL Space Department, to provide an affordable, low risk solution with quick data return. Next Gen NEAR proposes to make measurements needed for human exploration to asteroids: to demonstrate proximity operations, to quantify hazards for human exploration and to characterize an environment at a near-Earth asteroid representative of those that may be future human destinations. The Johns Hopkins University Applied Physics Laboratory has demonstrated exploration-driven mission feasibility by developing a versatile spacecraft design concept using conventional technologies that satisfies a set of science, exploration and mission objectives defined by a concept development team in the summer of 2010. We will describe the mission concept and spacecraft architecture in detail. Configuration options were compared with the mission goals and objectives in order to select the spacecraft design concept that provides the lowest cost, lowest implementation risk, simplest operation and the most benefit for the mission implementation. The Next Gen NEAR

  11. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.

    2012-01-01

    NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch

  12. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  13. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  14. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  15. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  16. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  17. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    NASA Technical Reports Server (NTRS)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  18. NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell; Guynn, Mark; Hahn, Andrew; Lepsch, Roger; Mazanek, Dan; Dollyhigh, Sam

    2006-01-01

    Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD.

  19. Frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2002-01-01

    The Jet Propulsion Laboratory's Advanced Multi-Mission Operations System system processes data received from deep-space spacecraft, where error rates can be high, bit rates are low, and data is unique precious.

  20. Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.

  1. Comparative Planetology at Saturn: Mission Concept for a Flyby with Shallow Probes

    NASA Astrophysics Data System (ADS)

    Dawson, Olivia R.; Strong, S.; Likar, J.; Watson, A.; Balint, T.; Aubrey, A.; Bramall, N.; Chereck, A.; Dominguez, G.; Hultgren, E.; Levy, J.; Liu, T.; Elwood Madden, M.; Plesko, C.; Sigel, D.; Soderlund, K.; Takahashi, Y.; Thompson, S.; Thomson, B.; Wiese, D.

    2006-12-01

    As part of the 2006 NASA JPL Planetary Science Summer School, we conducted a trade study of an innovative New Frontiers class mission concept that would measure essential elemental abundances in Saturn’s atmosphere. Characterizing the abundance of heavy elements (mass > 4He) and dynamical processes at depth in the outer planets is vital to understanding the origin and evolution of the Solar System and, consequentially, extra-solar systems (Atreya, S.K. et al., 2006). Comparing the heavy element abundance ratios among the Sun and outer planets is required to refine Solar System formation scenarios. Since water was presumably the primary carrier of heavy elements to the outer planets, quantifying the O/H ratio is critical to determining the enrichment factor of the gas giants’ composition with respect to solar values. Elemental abundance information, including water content, will be available for Jupiter following Juno’s primary mission completion in 2017, but comparable data for Saturn is not, and cannot be provided by the Cassini mission. There are no in situ measurements of Saturn to date. Water (hence O/H) abundance may only be accurately ascertained deep in Saturn’s well-mixed atmosphere, where high temperatures and pressures make in situ data collection challenging. Our mission design, proposed for a 2015 launch, consists of a fly-by spacecraft that would release two identical instrument-carrying probes into different locations in Saturn’s atmosphere. The probes would gather in situ measurements down to at least 10 bars, to characterize the atmospheric composition and dynamics, and would also measure the water content down to 100 bars using the remote sensing technique of microwave radiometry. Here we discuss the detailed mission design of the fly-by carrier spacecraft and the probes, illustrating the feasibility of our mission concept and the ground-breaking science and engineering that would ensue from a successful mission.

  2. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  3. Advancing Your Career: Concepts of Professional Nursing. Second Edition.

    ERIC Educational Resources Information Center

    Kearney, Rose

    This textbook, intended for registered nurses (RN's) returning to school, is designed to provide practicing RN's with professional concepts to advance their careers. The book contains 22 chapters organized in five sections. Each chapter includes chapter objectives, key terms, key points, chapter exercises, references, and a bibliography. Section I…

  4. Advanced Power and Propulsion: Insuring Human Survival and Productivity in Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    2001-01-01

    Dr. Chang-Diaz gave an intriguing presentation of his research in advanced rocket propulsion and its relevance for planning and executing crewed deep space explorations. Though not necessarily exclusively Martian, his thrust looks critically at future Mars missions. Initially Dr. Chang-Diaz showed the time constraints of Mars missions due to orbital mechanics and our present chemically powered rocket technology. Since essentially all the energy required to place current generation spacecraft into a Martian trajectory must be expended in the early minutes of a flight, most of such a mission is spent in free-fall drift, captive to the gravitational forces among Earth, the Sun, and Mars. The simple physics of such chemically powered missions requires nearly a year in transit for each direction of a Mars mission. And the optimal orientations of Earth and Mars for rendezvous require further time on or around Mars to await return. These extensions of mission duration place any crew under a three-fold jeopardy: (1) physiological deconditioning (which in some aspects is still unknown and unpreventable), (2) psychological stress, and (3) ionizing radiation. This latter risk is due to exposure of crew members for extended time to the highly unpredictable and potentially lethal radiations of open space. Any gains in shortening mission duration would reap equivalent or greater benefits for these crew concerns. Dr. Chang-Diaz has applied his training and expertise (Ph.D. from Massachusetts Institute of Technology in applied plasma physics) toward development of continuous rocket propulsion which would offer great time advantages in travel, and also more launch options than are now available. He clearly explained the enormous gains from a relatively low thrust accelerative force applied essentially continuously versus the high, but short-lived propulsion of present chemical rockets. In fact, such spacecraft could be powered throughout the mission, accelerating to approximately

  5. Self Assembling Mars Transfer Vehicles: The Preferred Concept of the Space Transfer Concepts and Analysis for Explorations Missions Study

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin

    1994-01-01

    Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.

  6. Advanced laser sensing receiver concepts based on FPA technology.

    SciTech Connect

    Jacobson, P. L.; Petrin, R. R.; Jolin, J. L.; Foy, B. R.; Lowrance, J. L.; Renda, G.

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  7. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  8. A Framework for Managing Resources To Advance Mission.

    ERIC Educational Resources Information Center

    Salluzzo, Ronald E.; Prager, Frederic J.

    1999-01-01

    The principles of ratio analysis can help measure use of financial resources to achieve college mission by quantifying status, sources, and use of resources and the institution's relative ability to repay current and future debt. Business officers and boards can use these measures to measure institutional performance; ratios can also help focus…

  9. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  10. Technology assessment of advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  11. Technology tradeoffs related to advanced mission waste processing.

    PubMed

    Slavin, T J; Oleson, M W

    1991-10-01

    Manned missions to the Moon and Mars will produce waste, both in liquid and solid form, from the day-to-day life-support functions of the mission--even considering a "closed" physico-chemical life support approach. An "open" life support system configuration, even one reliant on in situ resources, would result in even more waste being produced. The solution for short term missions appears to be either to store these wastes on-site or to convert them to useful products needed by other systems such as methane, water and gases which could be used for propulsion. The solution for longer term missions appears to be to incorporate their use within the life support system itself by making them a part of a closed ecological life-support system where nearly all materials are recycled. This paper discusses briefly the extent and impact of the life-support system waste production problem for a lunar base for different life support system configurations, including the impact of using in situ resources to meet life support requirements. It then discusses in more detail trade-offs among six of the currently funded physico-chemical waste processing technologies being considered for use in space. PMID:11537692

  12. Advanced hybrid nuclear propulsion Mars mission performance enhancement

    SciTech Connect

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-02-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  13. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  14. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  15. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  16. A preliminary analysis of advanced life support systems for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Nishioka, Kenji

    1990-01-01

    This paper outlines the key parameters of the manned mission to Mars and presents some top-level requirements, issues, and constraints associated with a manned Mars mission that impact the life support system (LSS). Results are presented of a preliminary analysis for advanced LSSs based on physical/chemical reclamation processes, using as a baseline for the analysis the mission profile of a Split-Sprint class mission for an arrival date at Mars in the year 2009. Special attention is given to the potential cost savings as measured by reducing Mars spacecraft mass in LEO.

  17. Environmental control and life support system requirements and technology needs for advanced manned space missions

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  18. Development Challenges of Game-Changing Entry System Technologies from Concept to Mission Infusion

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2015-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies. Subsystem technologies for robotic and human missions?

  19. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  20. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  1. Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.

    2014-12-01

    Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet

  2. STS-41 mission charts, computer-generated and artist concept drawings, photos

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).

  3. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  4. The CYGNSS ground segment; innovative mission operations concepts to support a micro-satellite constellation

    NASA Astrophysics Data System (ADS)

    Rose, D.; Vincent, M.; Rose, R.; Ruf, C.

    Hurricane track forecasts have improved in accuracy by ~50% since 1990, while in that same period there has been essentially no improvement in the accuracy of intensity prediction. One of the main problems in addressing intensity occurs because the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address this deficiency by using a constellation of micro-satellite-class Observatories designed to provide improved sampling of the TC during its life cycle. Managing a constellation of Observatories has classically resulted in an increased load on the ground operations team as they work to create and maintain schedules and command loads for multiple Observatories. Using modern tools and technologies at the Mission Operations Center (MOC) in conjunction with key components implemented in the flight system and an innovative strategy for pass execution coordinated with the ground network operator, the CYGNSS mission reduces the burden of constellation operations to a level commensurate with the low-cost mission concept. This paper focuses on the concept of operations for the CYGNSS constellation as planned for implementation at the CYGNSS MOC in conjunction with the selected ground network operator.

  5. Manned orbital systems concept study. Book 4: Programmatics for extended-duration missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The cost estimates, schedule data, and funding distributions generated in the Manned Orbital Systems Concepts (MOSC) study are presented. The overall objectives were to examine the requirements for, and to describe, a cost-effective concept for an orbital facility capable of supporting manned operations in earth orbit beyond the 7-to-30-day mission duration provided by the Shuttle/Spacelab system. The cost, schedule, and other programmatic data were developed to provide information useful for their long-range planning activities. The major portion of the data documented and discussed consists of project- and system-level schedule and funding information and also project-, system-, and subsystem-level cost summaries.

  6. A Mission Concept to Study Multigenerational Mammalian Reproduction in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Rodgers, Erica M.; Simon, Matthew A.; Chai, Patrick R.; Neilan, James H.; Stillwagen, Fred H.; Williams, Phillip A.; Lewis, Weston

    2016-01-01

    A team at NASA Langley Research Center conducted a study during which a conceptual space mission was designed. In this study, rodents are used as human analogs to gather biological and systems data in a relevant environment applicable to future settlements on Mars. The mission concept uniquely addresses the combined effects of long-durations (one-year or greater), autonomous and robotic operations, and biological responses to partial gravity with an emphasis on reproduction. The objectives of this study were to 1) understand challenges associated with designing an artificial gravity habitat that supports the reproduction and maturation of a large animal colony, 2) identify mission architectures and operational concepts to transport and maintain such a facility, and 3) identify fundamental science considerations for mammalian reproduction studies to inform vehicle design. A model demonstration unit was developed to visualize and test certain design concepts that resulted from these considerations. Three versions of this demonstration unit were built over the course of the study, each taking into account lessons learned from the previous version. This paper presents the updated baseline mission and spacecraft design concepts to achieve these objectives, with a specific emphasis on updates since publication in previous works. Analyses of the integrated system trades among the elements which make up the conceptual vehicle are described to address overall feasibility and identify potential integrated design opportunities. The latest iteration of the habitat robotics design and a conceptual design example for autonomous care of crew and systems are also presented. Finally, the conclusion of this conceptual design study, necessary future analyses to enable such a facility, and comments upon other applications of a similar exploration-focused research facilities are addressed.

  7. Continuation of research into language concepts for the mission support environment: Source code

    NASA Technical Reports Server (NTRS)

    Barton, Timothy J.; Ratner, Jeremiah M.

    1991-01-01

    Research into language concepts for the Mission Control Center is presented. A computer code for source codes is presented. The file contains the routines which allow source code files to be created and compiled. The build process assumes that all elements and the COMP exist in the current directory. The build process places as much code generation as possible on the preprocessor as possible. A summary is given of the source files as used and/or manipulated by the build routine.

  8. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  9. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  10. Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

    SciTech Connect

    Foxall, W; Schultz, C A; Tralli, D M

    2004-09-21

    The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic

  11. FIR/THz Space Interferometry: Science Opportunities, Mission Concepts, and Technical Challenges

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2007-01-01

    Sensitive far-IR imaging and spectroscopic measurements of astronomical objects on sub-arcsecond angular scales are essential to our understanding of star and planet formation, the formation and evolution of galaxies, and to the detection and characterization of extrasolar planets. Cold single-aperture telescopes in space, such as the Spitzer Space Telescope and the Herschel Space Observatory, are very sensitive, but they lack the necessary angular resolution by two or more orders of magnitude. Far-IR space interferometers will address this need in the coming decades. Several mission concepts have already been studied, including in the US the Space Infrared Interferometric Telescope (SPIRIT) and the more ambitious Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). This talk will describe science goals and summarize alternative concepts for future FIR/THz space interferometry missions. Small arrays of sensitive, fast, direct detectors are a key enabling technology for SPIRIT and SPECS. I will describe the technology requirements for far-IR interferometry, including the detector requirements, and their derivation from the mission science goals and instrument concepts.

  12. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  13. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  14. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  15. A Smallsat Multi-pair GRACE-like Mission: Concept and Simulated Performance

    NASA Astrophysics Data System (ADS)

    Stephens, M.; Weimer, C. S.; Leitch, J. W.; Bennett, S. C.; Weinberg, J. D.; Rohrschneider, R.; Walther, R.; Landin, B.; Pierce, R.; Nerem, R. S.; Choe, J.

    2014-12-01

    The GRACE mission uses two spacecraft in near identical Earth orbits with a phase sensitive microwave ranging instrument that measures changes in spacecraft separation. High precision measurements of the spacecraft separation yield monthly Earth gravity field measurements. The GRACE FO mission adds the Laser Ranging Instrument (LRI) to demonstrate high resolution spacecraft separation measurements with phase-sensitive detection of a frequency-stabilized laser transponder. Previous studies show the improvements in mass change detection afforded by the higher sensitivity range change measurements. The sparse spatial/temporal sampling and single gravity field component detection of a polar orbiting satellite pair leads to aliasing and artifacts in the gravity field data. These effects limit the mass change detection capability of a GRACE-like mission. Adding a second pair of satellites improves overall system performance by filling in data gaps and sampling the gravity field in different directions. The added expense of a second satellite pair has made this option for improved performance untenable. A SmallSat GRACE-like mission addresses the cost concern for a multi-pair mission by reducing spacecraft expense and making common launch possible. Through use of a laser ranging sensor and other low-power subsystems and use of existing smallsat architectures, a complete spacecraft-instrument system is shown to meet measurement requirements and make the overall system expense comparable to existing single-pair missions. The resulting multi-pair space segment approach offers a viable option for a GRACE-like mission while improving the science through its better sampling of the gravity field. We show the system concept and simulated gravity field retrievals based on estimates of instrument and spacecraft performance.

  16. THE 13TH ADVANCED ACCELERATOR CONCEPTS WORKSHOP (AAC'8)

    SciTech Connect

    Leemans, Wim; Schroder, Carl B.; Esarey, Eric

    2008-07-15

    The Thirteenth Workshop on Advanced Accelerator Concepts (AAC) was held from July 27 to August 2, 2008 at the Chaminade Conference Center in Santa Cruz, California, USA, organized by the Lawrence Berkeley National Laboratory and the University of California at Berkeley. There were unprecedented levels of interest in the 2008 AAC Workshop, and participation was by invitation, with 215 workshop attendees, including 58 students. Reflecting the world-wide growth of the advanced accelerator community, there was significant international participation, with participants from twelve countries attending.

  17. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  18. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  19. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using approximately 55 kg of Xenon) and hydrazine (approximately 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025. The mission can be readily extended for another solar cycle to get a solar-cycle worth of data on Earth

  20. Advanced Planetary Protection Technologies for the Proposed Future Mission Set

    NASA Technical Reports Server (NTRS)

    Spry, J. Andy; Conley, Catharine A

    2013-01-01

    Planetary protection is the discipline of protecting solar system objects from harmful contamination resulting from the activities of interplanetary spacecraft, and of similarly protecting the Earth from uncontrolled release of a putative extra-terrestrial organism from returned extra-terrestrial samples. Planetary protection requirements for Mars are becoming further refined as more is understood about the nature of the Martian environment as a potential habitat. Likewise, increased understanding of the limits of life on Earth is informing planetary protection policy. This presentation will discuss recent technology developments, ongoing work and future challenges of implementing planetary protection for the proposed future mission set.

  1. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  2. LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life.

    PubMed

    Tsou, Peter; Brownlee, Donald E; McKay, Christopher P; Anbar, Ariel D; Yano, Hajime; Altwegg, Kathrin; Beegle, Luther W; Dissly, Richard; Strange, Nathan J; Kanik, Isik

    2012-08-01

    Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10 μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. PMID:22970863

  3. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  4. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  5. The ICESat-2 Mission: Concept, Pre-Launch Activities, and Opportunities

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Csatho, Beata M.

    2011-01-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPee and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICES at. In contrast to ICES at, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using approximately 532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  6. The ICESat-2 Mission: Concept, pre-launch activities, and opportunities

    NASA Astrophysics Data System (ADS)

    Markus, T.; Neumann, T.; Csatho, B. M.

    2011-12-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPCC and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICESat. In contrast to ICESat, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using ~532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  7. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  8. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  9. The FLECS expandable module concept for future space missions and an overall description on the material validation

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio

    2006-07-01

    The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly

  10. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  11. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  12. The Europa Clipper and Orbiter Mission Concepts: Innovative Approaches for Exploring Europa’s Habitability

    NASA Astrophysics Data System (ADS)

    Senske, David A.; Prockter, L.; Pappalardo, R.; Patterson, W.; Vance, S.; Science Definition, Europa; Technical Teams

    2012-10-01

    Europa is unique among the large icy satellites because it probably has a long-lived saltwater ocean beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Direct contact of the ocean with a rocky mantle and potential hydrothermal activity could provide energy and nutrients to support biological activity. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA’s projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby_call the “Clipper”) are undergoing continued study with the goal to “Explore Europa to investigate its habitability.” The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to geophysical science that requires being in orbit at Europa. This would include confirming the existence of and characterizing the ocean along with mapping of the global morphology and topography. This architecture provides for radiation-shielded instruments with low mass, power, and data rate. The Clipper concept focuses on remote sensing science that could be accomplished through multiple close flybys of Europa. This would include exploring the ice shell for evidence of liquid water within or beneath it along with exploring the composition of the surface and atmosphere. Morphologic and topographic mapping would also be done. This architecture can provide for radiation-shielded instruments with higher mass, power, and data rate. NASA has directed the Europa team to evaluate, within a cost constrained budget, the ability of the Orbiter concept to characterize the ice shell and surface composition, and for the Clipper concept to address investigations to characterize the ocean. The status of these updated concepts

  13. Concept study for a Venus Lander Mission to Analyze Atmospheric and Surface Composition

    NASA Astrophysics Data System (ADS)

    Kumar, K.; Banks, M. E.; Benecchi, S. D.; Bradley, B. K.; Budney, C. J.; Clark, G. B.; Corbin, B. A.; James, P. B.; O'Brien, R. C.; Rivera-Valentin, E. G.; Saltman, A.; Schmerr, N. C.; Seubert, C. R.; Siles, J. V.; Stickle, A. M.; Stockton, A. M.; Taylor, C.; Zanetti, M.; JPL Team X

    2011-12-01

    We present a concept-level study of a New Frontiers class, Venus lander mission that was developed during Session 1 of NASA's 2011 Planetary Science Summer School, hosted by Team X at JPL. Venus is often termed Earth's sister planet, yet they have evolved in strikingly different ways. Venus' surface and atmosphere dynamics, and their complex interaction are poorly constrained. A lander mission to Venus would enable us to address a multitude of outstanding questions regarding the geological evolution of the Venusian atmosphere and crust. Our proposed mission concept, VenUs Lander for Composition ANalysis (VULCAN), is a two-component mission, consisting of a lander and a carrier spacecraft functioning as relay to transmit data to Earth. The total mission duration is 150 days, with primary science obtained during a 1-hour descent through the atmosphere and a 2-hour residence on the Venusian surface. In the atmosphere, the lander will provide new data on atmospheric evolution by measuring dominant and trace gas abundances, light stable isotopes, and noble gas isotopes with a neutral mass spectrometer. It will make important meteorological observations of mid-lower atmospheric dynamics with pressure and temperature sensors and obtain unprecedented, detailed imagery of surface geomorphology and properties with a descent Near-IR/VIS camera. A nepholometer will provide new constraints on the sizes of suspended particulate matter within the lower atmosphere. On the surface, the lander will quantitatively investigate the chemical and mineralogical evolution of the Venusian crust with a LIBS-Raman spectrometer. Planetary differentiation processes recorded in heavy elements will be evaluated using a gamma-ray spectrometer. The lander will also provide the first stereo images for evaluating the geomorphologic/volcanic evolution of the Venusian surface, as well as panoramic views of the sample site using multiple filters, and detailed images of unconsolidated material and rock

  14. Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Amato, Michael J.; Mather, John C.; Moseley, S. Harvey, Jr.

    2004-01-01

    We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (< or = 4K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited performance down to at least the atmospheric cutoff, lambda > or approx. 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of the Spitzer Space Telescope (previously SIRTF) or the Herschel Space Observatory. Additionally, it would have an angular resolution 12 times finer than that of Spitzer and three times finer than Herschel. This sensitivity and angular resolution are necessary to perform imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology (optical design, materials, and packaging), detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays. SAFIR can take advantage of much of the technology under development for JWST, but with much less stringent requirements on optical accuracy.

  15. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  16. Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan R.; Baker, David Frank; Schuh, Andrew E.; Abshire, James Brice; Browell, Edward V.; Michalak, Anna M.

    2012-01-01

    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument.

  17. Development of advanced entry, descent, and landing technologies for future Mars Missions

    NASA Technical Reports Server (NTRS)

    Chu, Cheng-Chih (Chester)

    2006-01-01

    Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.

  18. Soil Analysis Micro-Mission Concepts Derived from the MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples

  19. Mission opportunities for the flight validation of the kinetic impactor concept for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Hernandez, Sonia; Barbee, Brent W.; Bhaskaran, Shyam; Getzandanner, Kenneth

    2014-10-01

    The kinetic impactor technique for deflecting near-Earth objects (NEOs), whereby a spacecraft is directed to collide with a NEO to alter its orbit via momentum transfer, is one of several proposed methods for defending Earth against hazardous NEOs (asteroids and comets). In this paper we present detailed mission design concepts for a feasible and affordable kinetic impactor flight validation mission deployed to a currently known near-Earth asteroid (NEA). Several filter steps are devised that utilize relevant criteria to optimally balance key parameters, such as approach phase angle, estimated NEA diameter, relative velocity at intercept, and current NEA orbit knowledge, and produce refined lists of the most promising candidate target NEAs.

  20. LIFE: Enceladus Sample Return Mission Concept for Searching Evidence of Life

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; McKay, C. P.; Beegle, L. W.; Spilker, L.; Kanik, I.

    2011-01-01

    One of the most promising targets for the search for life other than Mars in our Solar System is the tiny Saturn moon Enceladus. The Cassini mission to the Saturian system detected an active region on Enceladus where small water particles and gas containing organic materials were being flung into space from a region near the south pole known as the tiger stripes. This discovery indicated that there is very likely a liquid subsurface ocean heated through tidal interactions as Enceladus orbits Saturn. On Earth, whenever there is an energy source, liquid water and organics, there is life; this makes Enceladus one of the prime candidates for a search for life missions. In this presentation, we describe LIFE (Life Investigation For Enceladus) sample return concept from Enceladus in the search for evidence of life.

  1. Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2016-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies.

  2. Mission Opportunities for the Flight Validation of the Kinetic Impactor Concept for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.; Bhaskaran, Shyam; Getzandanner, Kenneth

    2013-01-01

    The kinetic impactor technique for deflecting near-Earth objects (NEOs), whereby a spacecraft is directed to collide with a NEO to alter its orbit via momentum transfer, is one of several proposed methods for defendingEarth against hazardous NEOs (asteroids and comets). In this paper we present detailed mission design concepts for a notionally feasible and aff ordable kinetic impactor flight validation mission deployed to a currently known near-Earth asteroid (NEA). Several filter steps are devised that utilize relevant criteria to optimally balance keyparameters, such as approach phase angle, estimated NEA diameter, relative velocity at intercept, and current NEA orbit knowledge, and produce refined lists of the most promising candidate target NEAs.

  3. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES): Proposed Mission Concept

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Bailey, S. M.

    2015-12-01

    The goal of SOCRATES is to resolve the critical but underexplored role of the upper troposphere/lower stratosphere (UTLS) in climate change. The mission would provide the suite of measurements required to quantify UTLS transport pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of changes in UTLS composition forced by expected changes in these pathways as the climate evolves. The discrimination and quantification of UTLS transport pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosols and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of UTLS transport (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of < 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only of order 10% of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Earth Venture mission. The SOCRATES mission concept is a 6-element constellation of autonomous small satellites, each mated with a GLO sensor, and deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the

  4. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES) Mission Concept

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Bevilacqua, R. M.; Fish, C. S.; Gordley, L. L.; Fromm, M. D.

    2014-12-01

    The goal of SOCRATES is to quantify the critical role of the upper troposphere/lower stratosphere (UTLS) in the climate system. The mission would provide, for the first time, the suite of measurements required to quantify stratosphere/troposphere exchange (STE) pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of potential changes in STE pathways with climate change. The discrimination and quantification of STE pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosol and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of STE (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only a few percent of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Venture mission. The SOCRATES mission concept is an 8-element constellation of autonomous CubeSats, each mated with a GLO sensor, deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the SOCRATES mission and GLO instrument concepts.

  5. Ultra-long Duration Balloon Mission Concept Study: EXIST-LITE Hard X-ray Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We carried out a mission concept Study for an ultra-long duration balloon (ULDB) mission to conduct a high-sensitivity hard x-ray (approx. 20-600 keV) imaging sky survey. The EXIST-LITE concept has been developed, and critical detector technologies for realistic fabrication of very large area Cd-Zn-Te imaging detector arrays are now much better understood. A ULDB mission such as EXIST-LITE is now even more attractive as a testbed for the full Energetic X-ray Imaging Survey Telescope (EXIST) mission, recommended by the Decadal Survey, and now included in the NASA Roadmap and Strategic Plan as one of the 'Einstein Probes'. In this (overdue!) Final Report we provide a brief update for the science opportunities possible with a ULDB mission such as EXIST-LITE and relate these to upcoming missions (INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift) as well as the ultimate very high sensitivity sky survey mission EXIST. We then review the progress made over this investigation in Detector/Telescope design concept, Gondola and Mission design concept, and Data Handling/Analysis.

  6. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  7. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  8. X-RED: a satellite mission concept to detect early universe gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Coffey, Deirdre; Egger, Georg; Vilardell, Francesc; Lefever, Karolien; Liermann, Adriane; Hoffmann, Agnes I.; Steiper, Joerg; Cherix, Marc; Albrecht, Simon; Russo, Pedro; Strodl, Thomas; Wahlin, Rurik; Deroo, Pieter; Parmar, Arvind; Lund, Niels; Hasinger, Gunther

    2005-01-01

    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z ~ 10to30), but that current missions such as HETES and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from teh science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.

  9. X-RED: a satellite mission concept to detect early universe gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Coffey, Deirdre; Egger, Georg; Vilardell, Francesc; Lefever, Karolien; Liermann, Adriane; Hoffmann, Agnes I.; Steiper, Joerg; Cherix, Marc; Albrecht, Simon; Russo, Pedro; Strodl, Thomas; Wahlin, Rurik; Deroo, Pieter; Parmar, Arvind; Lund, Niels; Hasinger, Gunther

    2005-08-01

    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z ~ 10to30), but that current missions such as HETES and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from teh science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.

  10. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    NASA Astrophysics Data System (ADS)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  11. Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David

    2012-01-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  12. Airborne lidar for ocean-atmosphere studies and assessment of future satellite mission concepts

    NASA Astrophysics Data System (ADS)

    Hostetler, C. A.; Hair, J. W.; Hu, Y.; Behrenfeld, M. J.; Cetinic, I.; Butler, C. F.; Powell, K. A.; Ferrare, R. A.; Burton, S. P.; Cairns, B.; Chowdhary, J.; Hare, R. J.; Harper, D. B.; Cook, A. L.; Berkoff, T.; Mack, T. L.; Notari, A.; Woodell, G. A.

    2014-12-01

    Global estimates of phytoplankton biomass (Cphyto) and particulate organic carbon (POC) have traditionally been made using passive ocean color measurements. Recently, data from the CALIOP sensor on the CALIPSO satellite have provided the first measurements of these two key carbon cycle stocks from a space-based lidar. Although CALIOP was not designed for subsurface ocean retrievals, global distributions of Cphyto and POC retrieved with CALIOP compare well with independent assessments using MODIS passive ocean color data. This success suggests a potentially important future role for space lidar measurements in global ocean plankton research, particularly for a lidar system optimized for water column profiling. To this end, the NASA Langley airborne High Spectral Resolution Lidar (HSRL) was recently modified for ocean research to provide independent vertically-resolved retrievals of the diffuse attenuation coefficient (Kd) and particulate backscatter coefficient (bbp). The advanced HSRL has been deployed on three ocean-focused airborne field missions: a mission based in the Azores in October 2012, a CALIPSO validation mission based in Bermuda in June 2014, and the Ship-Aircraft Bio-Optical Research (SABOR) experiment based in Bermuda, New Hampshire, and Virginia in July-August of 2014. On the Azores and SABOR missions, the HSRL instrument acquired data coincident with ship-based optical measurements, and data were acquired along CALIOP tracks on all three missions. Results from the airborne HSRL and CALIOP studies will be described, along with a discussion of potential future aircraft campaigns, the scalability of the HSRL technique to space, and the value of simultaneously measuring plankton abundance, marine aerosol loading and optical properties, and cloud microphysical properties and albedo.

  13. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  14. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  15. A system concept for an advanced vehicle control system

    SciTech Connect

    Mackey, D.E.; Mackey, W.F. Jr.; Mackey, W.F.

    1996-12-01

    This paper explores a system concept for an Advanced Vehicle Control System (AVCS). The progression of highway design and construction has resulted from an evolution of technologies, inventions, organizational creations, and legislative acts supporting the development of a national interstate transportation system. Until now, highway design and construction has been the domain of civil engineers concerned with highway structures, materials loading, traffic patterns, and supporting facilities. However, the growing need for intelligent vehicle-highway systems (IVHS) requires that traditional civil engineering disciplines be integrated with computers, communications, and eventually fully automated vehicles. This paper`s thesis suggests that the complex highway transportation of the late 20th century and the 21st century can benefit from the collaboration of systems engineers and civil engineers. This paper identifies and prototypes an AVCS concept with roadside computers controlling the lateral and longitudinal movements of a vehicle.

  16. Advanced liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Suter, J. D.; Turner, S. G.

    1995-01-01

    Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts. Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

  17. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  18. Aeronautical technology 2000 - A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    Rosen, C. C., III; Burger, R. J.; Sigalla, A.

    1984-01-01

    At the request of NASA and under the aegis of the National Research Council, representatives from industry, academic institutions and government have participated in a workshop to consider opportunities for the exploitation of aircraft technology in such fields as aerodynamics, materials, structures, guidance, navigation and control, human factors, propulsion, computers and data processing, and systems integration. Attention is given to the advanced vehicle concepts that have emerged for possible year-2000 implementation, which encompass such diverse aircraft types as supersonic transports, hypersonic airliners, missiles, and interceptors, transatmospheric vehicles, next-generation space shuttles, subsonic transports and attack aircraft, advanced helicopter, tilt-rotor VTOL configurations, and solar- and microwave beam-powered extremely high altitude aircraft.

  19. Assessment of a 2016 Mission Concept: The Search for Trace Gases in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Chicarro, Augustin; Allen, Mark A.; Bertauz, Jean-Loup; Clancy, R. Todd; Daerden, Frank; Formisano, Vittorio; Garvin, James B.; neukum, Gerhard; Smith, Michael D.

    2011-01-01

    The reported detection of methane in the atmosphere of Mars as well as its potentially large seasonal spatial variations challenge our understanding of both the sources and sinks of atmospheric trace gases. The presence of methane suggests ongoing exchange between the subsurface and the atmosphere of potentially biogenic trace gases, while the spatial and temporal variations cannot be accounted for with current knowledge of martian photochemistry. A Joint Instrument Definition Team (JIDT) was asked to assess concepts for a mission that might follow up on these discoveries within the framework of a series of joint missions being considered by ESA and NASA for possible future exploration of Mars. The following is based on the report of the JIDT to the space agencies (Zurek et al., 2009); a synopsis of the report was presented at the Workshop on Mars Methane held in Frascati, Italy, in November 2009. To summarize, the JIDT believed that a scientifically exciting and credible mission could be conducted within the evolving capabilities of the science/telecommunications orbiter being considered by ESA and NASA for possible launch in the 2016 opportunity for Mars.

  20. Search for Evidence of Life in Icy Bodies - Enceladus Sample Return Mission Concept

    NASA Astrophysics Data System (ADS)

    Kanik, Isik

    2016-07-01

    Beyond Earth, are there modern habitats elsewhere in the Solar System with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now? Water dominates the composition of Icy Worlds. Since life follows water on Earth, life might exist in Icy Worlds. Enceladus, as an icy world, appears to satisfy the necessary conditions for life, based on detailed examination by the Cassini spacecraft. Careful chemical characterization of plume materials is the most direct way to determine if this habitable environment is inhabited, and, if not, why not. This characterization requires laboratory analysis of returned samples. Finding and confirming new found life require comprehensive sample analyses collected from icy bodies such as Enceladus. In this presentation, we argue that sample return is necessary because the search for biomarkers is too complex and too "path dependent" to be conducted in situ. The habitability of Icy worlds such as Enceladus and Europa the accessibility of samples in the plume make this types of missions a high priority for astrobiology. Our mission concept, called "LIFE", will follow up on recent discoveries by conducting a more detailed in situ investigation of the organics in the plume and by returning samples to Earth for a search for biomarkers as evidence of life - or perhaps only prebiotic evolution. Sample return missions from icy world can be very costly; however, given the existence of a plume (as for Enceladus), the cost of returning samples can be substantially reduced by a flyby sample return.

  1. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  2. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  3. Stellar statistics along the ecliptic and the impact on the K2 mission concept

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Robin, Annie; Barclay, Thomas

    2015-04-01

    K2 is the mission concept for a repurposed Kepler mission that uses two reaction wheels to maintain the satellite attitude and provide ~81 days of coverage for ten 105 deg2 fields along the ecliptic in the first 2.5 years of operation. We examine stellar populations based on the updated Besançon model of the Galaxy, comment on the general properties for the entire ecliptic plane, and provide stellar occurrence rates in the first six tentative K2 campaigns grouped by spectral type and luminosity class. For each campaign we distinguish between main the sequence stars and giants, and provide their density profile as a function of galactic latitude. We introduce the crowding metric that serves for optimized target selection across the campaigns. For all main sequence stars we compute the expected planetary occurrence rates for three planet sizes: 2-4, 4-8 and 8-32 R ⊕ with orbital periods up to 50 days. In conjunction with Gaia and the upcoming Transiting Exoplanet Survey Satellite and Plato missions, K2 will become a gold mine for stellar and planetary astrophysics.

  4. Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.

    2008-01-01

    NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.

  5. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  6. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the

  7. Advanced Coatings Enabling High Performance Instruments for Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh

    expanded to larger substrates to prove our technique s scalability to larger optical components. The durability of these coatings will also be verified by accelerated lifetime testing that exposes the samples to extremes of temperature, humidity, and reactive oxygen environments. By ensuring that these new coatings provide large reflectivity and polarization control from FUV to near- infrared wavelengths (NIR), we will demonstrate a critical technology path for incorporating ultraviolet instruments into future large UV/optical/NIR missions without compromising the science capability of other instruments or increasing cost and risk due to handling issues. We will leverage our working relationship with the University of Colorado rocket group to coat a large format, flight-tested mirror with space astrophysics heritage. This mirror then can be used on future suborbital flights. Our deposition techniques will also be used to develop metal/dielectric stacks for visible-blind filters; the atomic-level control of film thickness achievable with ALD is critical for fine-tuning pass-band behavior.

  8. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Massimiliano, Fratoni; Greenberg, Harris; Howard, Rob L

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated

  9. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  10. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  11. Development of Advanced Radioisotope Power Systems for NASA's Future Science Missions

    NASA Astrophysics Data System (ADS)

    Misra, A. K.

    2005-12-01

    This presentation will provide an overview of NASA's current efforts on development of advanced radioisotope power systems (RPS) for future science missions. The current efforts include development of flight qualified Multimission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG) systems with nominal 100 watts power level and capability to operate in both deep space and planetary environments. In addition, advanced technology development efforts are being conducted to increase the specific power of both RTG and SRG systems to enable future science missions. The efforts also include new technologies that have the potential to provide significant increases in specific power of RPS system. A notional RPS technology development roadmap will be presented and various potential mission opportunities identified.

  12. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  13. Precious bits: frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2001-01-01

    The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.

  14. Advanced missions safety. Volume 2: Technical discussion, Part 2: Experiment safety, guidelines

    NASA Technical Reports Server (NTRS)

    Hinton, M. G., Jr.

    1972-01-01

    A technical analysis of a portion of the advanced missions safety study is presented. The potential hazards introduced when experimental equipment is carried aboard the Earth Orbit Shuttle are identified. Safety guidelines and requirements for eliminating or reducing these hazards are recommended.

  15. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  16. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  17. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Adamkovics, Mate; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  18. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  19. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  20. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  1. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    NASA Technical Reports Server (NTRS)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  2. Analysis of the Touch-And-Go Surface Sampling Concept for Comet Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Bayard, David S.; Blackmore, Lars

    2012-01-01

    This paper studies the Touch-and-Go (TAG) concept for enabling a spacecraft to take a sample from the surface of a small primitive body, such as an asteroid or comet. The idea behind the TAG concept is to let the spacecraft descend to the surface, make contact with the surface for several seconds, and then ascend to a safe location. Sampling would be accomplished by an end-effector that is active during the few seconds of surface contact. The TAG event is one of the most critical events in a primitive body sample-return mission. The purpose of this study is to evaluate the dynamic behavior of a representative spacecraft during the TAG event, i.e., immediately prior, during, and after surface contact of the sampler. The study evaluates the sample-collection performance of the proposed sampling end-effector, in this case a brushwheel sampler, while acquiring material from the surface during the contact. A main result of the study is a guidance and control (G&C) validation of the overall TAG concept, in addition to specific contributions to demonstrating the effectiveness of using nonlinear clutch mechanisms in the sampling arm joints, and increasing the length of the sampling arms to improve robustness.

  3. Science goals and mission concept for the future exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin, F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.; Geppert, W. D.; Lebreton, J.-P.; Lefevre, A.; Livengood, T. A.; Mandt, K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo, R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom, J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.; Wagner, R. J.; West, R. A.; Westlake, J. H.

    2014-12-01

    over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies.

  4. The x-ray advanced concepts testbed (XACT) sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith; Arzoumanian, Zaven; Asami, Fumi; Baker, Robert; Balsamo, Erin; Black, Kevin; Duran-Aviles, Carlos; Enoto, Teruaki; Gregory, Kyle; Hahne, Devin; Hayato, Asami; Hill, Joe; Huegel, Fred; Iwahashi, Takanori; Iwakiri, Wataru; Jahoda, Keith; Jalota, Lalit; Kaaret, Philip; Kaneko, Kenta; Kenyon, Steven; Kitaguchi, Takao; Koenecke, Richard; Kohmura, Takayoshi; Okajima, Takashi; Olsen, Larry; Porter, F. Scott; Rush, Kurt; Serlemitsos, Peter; Soong, Yang; Takeuchi, Yoko; Tamagawa, Toru; Yamada, Shin'ya; Yoshikawa, Akifumi

    2012-09-01

    The scientific objective of the X-ray Advanced Concepts Testbed (XACT) is to measure the X-ray polarization properties of the Crab Nebula, the Crab pulsar, and the accreting binary Her X-1. Polarimetry is a powerful tool for astrophysical investigation that has yet to be exploited in the X-ray band, where it promises unique insights into neutron stars, black holes, and other extreme-physics environments. With powerful new enabling technologies, XACT will demonstrate X-ray polarimetry as a practical and flight-ready astronomical technique. Additional technologies that XACT will bring to flight readiness will also provide new X-ray optics and calibration capabilities for NASA missions that pursue space-based X-ray spectroscopy, timing, and photometry.

  5. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  6. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; Reynolds, Tom; Waitz, Ian; Hileman, James; Arunachalam, Sarav; Hedrick, Matt; Vempati, Lakshmi; Laroza, Ryan; denBraven, Wim; Henderson, Jeff

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  7. Advanced direct liquefaction concepts for PETC generic units

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  8. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  9. HADES : A Mission Concept for the Identification of New Saline Aquifer Sites Suitable for Carbon Capture & Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Pechorro, Ed; Lecuyot, Arnaud; Bacon, Andrew; Chalkley, Simon; Milnes, Martin; Williams, Ivan; Williams, Stuart; Muthu, Kavitha

    2014-05-01

    The Hidden Aquifer & Deep Earth Sounder (HADES) is a ground penetrating radar mission concept for identifying new saline aquifer sites suitable for Carbon Capture & Storage (CCS). HADES uses a newly proposed type of Earth Observation technique, previously deployed in Mars orbit to search for water. It has been proposed to globally map the sub-surface layers of Earth's land area down to a maximum depth of 3km to detect underground aquifers of suitable depth and geophysical conditions for CCS. We present the mission concept together with the approach and findings of the project from which the concept has arisen, a European Space Agency (ESA) study on "Future Earth Observation Missions & Techniques for the Energy Sector" performed by a consortium of partners comprising CGI and SEA. The study aims to improve and increase the current and future application of Earth Observation in provision of data and services to directly address long term energy sector needs for a de-carbonised economy. This is part of ESA's cross-agency "Space and Energy" initiative. The HADES mission concept is defined by our specification of (i) mission requirements, reflecting the challenges and opportunities with identifying CCS sites from space, (ii) the observation technique, derived from ground penetrating radar, and (iii) the preliminary system concept, including specification of the resulting satellite, ground and launch segments. Activities have also included a cost-benefit analysis of the mission, a defined route to technology maturation, and a preliminary strategic plan towards proposed implementation. Moreover, the mission concept maps to a stakeholder analysis forming the initial part of the study. Its method has been to first identify the user needs specific to the energy sector in the global transition towards a de-carbonised economy. This activity revealed the energy sector requirements geared to the identification of suitable CCS sites. Subsequently, a qualitative and quantitative

  10. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  11. Infrared Detection and Characterization of Debris Disks, Exozodiacal Dust, and Exoplanets: The FKSI Mission Concept

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Barry, R. K.; Lopez, B.; Rinehart, S. A.; Absil, O.; Augereau, J.; Beust, H.; Bonfils, X.; Bordé, P.; Defrère, D.; Kern, P.; Lawson, P. R.; Léger, A.; Monin, J.; Mourard, D.; Ollivier, M.; Petrov, R.; Traub, W. A.; Unwin, S. C.; Vakili, F.

    2010-10-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class mission. FKSI has been endorsed by the Exoplanet Community Forum 2008 as such a mission and has been costed to be within the expected budget. The current design of FKSI is a two-element nulling interferometer. The two telescopes, separated by 12.5m, are precisely pointed (by small steering mirrors) on the target star. The two path lengths are accurately controlled to be the same to within a few nanometers. A phase shifter/beam combiner (Mach-Zehnder interferometer) produces an output beam consisting of the nulled sum of the target planet’s light and the host star’s light. When properly oriented, the starlight is nulled by a factor of 10-4, and the planet light is undiminished. Accurate modeling of the signal is used to subtract the residual starlight, permitting the detection of planets much fainter than the host star. The current version of FKSI with 0.5-m apertures and waveband 3-8 μm has the following main capabilities: (1) detect exozodiacal emission levels to that of our own solar system (Solar System Zodi) around nearby F, G, and K stars; (2) characterize spectroscopically the atmospheres of a large number of known non-transiting planets; (3) survey and characterize nearby stars for planets down to 2 Rearth from just inside the habitable zone and inward. An enhanced version of FKSI with 1-m apertures separated by 20 m and cooled to 40 K, with science waveband 5-15 μm, allows for the detection and characterization of 2 Rearth super-Earths and smaller planets in the habitable zone around stars within about 30 pc.

  12. Advanced composite combustor structural concepts program. Final Report

    SciTech Connect

    Sattar, M.A.; Lohmann, R.P.

    1984-12-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  13. Evaluation of a Drag-Free Control Concept for Missions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Fleck, Melissa E.; Starin, Scott R.

    2003-01-01

    Atmospheric drag causes the greatest uncertainty in the equations of motion for spacecraft in Low Earth Orbit (LEO). If atmospheric drag eflects can be continuously and autonomously counteracted through the use of a drag-fee control system, drag may essentially be eliminated from the equations of motion for the spacecraft. The main perturbations on the spacecraft will then be those due to the gravitational field, which are much more easily predicted Through dynamical analysis and numerical simulation, this paper presents some potential costs and benefits associated with the fuel used during continuous drag compensation. In light of this cost-benefit analysis, simulation results are used to validate the concept of drag-free control for LEO spacecraft missions having certain characteristics.

  14. Design concept for an IR mapping spectrometer for the Pluto fast flyby mission

    NASA Technical Reports Server (NTRS)

    Fink, U.; Low, F.; Hubbard, B.; Rieke, M.; Rieke, G.; Mumma, M.; Nozette, S.; Neukum, G.; Hamel, H.; Disanti, M.

    1993-01-01

    The design of an IR mapping spectrometer that exceeds all the criteria of the Pluto Fast Flyby Mission will be presented. The instrument has a mass of approximately 1700 g and uses less than 4 W of power. The design concept is based on an f/3 spectrograph using an aberration-corrected concave holographic grating. Up to four spectral regions can be covered simultaneously by dividing the grating into two to four sections, each imaging the entrance slit on a different area of the array. The spectrography will be fed by a lightweight 5 in. f/3 telescope based on SDIO precepts. In order to provide spectroscopic access to the fundamental molecule frequencies, an extended-range NICMOS array to approximately 3.5 microns and an InSb array going to 5.8 microns will be considered.

  15. SCION: CubeSat Mission Concept to Observe Midlatitude Small-Scale Irregularities and Scintillation

    NASA Astrophysics Data System (ADS)

    Heine, T.; Moldwin, M.

    2014-12-01

    The SCintillation and Ionospheric Occultation NanoSats (SCION) mission concept is to deploy two low-cost CubeSat spacecraft that maintain a separation distance <1 km to measure scintillation and associated small-scale density irregularities in the midlatitude ionosphere. Each spacecraft is equipped with a dual frequency GPS receiver to measure total electron content (TEC) and the S4 scintillation index along raypaths from the receiver to the GPS constellation. Scintillation causing small-scale density irregularities are increasingly observed in the vicinity of large TEC gradients associated with storm enhanced density (SED) regions. Detection of irregularities of the scale that cause GPS and VHF scintillation has previously relied on assumptions about their structural stability and drift speed. Space-based, multipoint observations would provide broad, regional coverage and disambiguation of temporal and spatial density fluctuations in order to detect small-scale irregularities without these assumptions.

  16. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  17. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  18. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  19. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  20. Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment

    NASA Astrophysics Data System (ADS)

    Butz, A.; Orphal, J.; Checa-Garcia, R.; Friedl-Vallon, F.; von Clarmann, T.; Bovensmann, H.; Hasekamp, O.; Landgraf, J.; Knigge, T.; Weise, D.; Sqalli-Houssini, O.; Kemper, D.

    2015-11-01

    The Geostationary Emission Explorer for Europe (G3E) is a concept for a geostationary satellite sounder that aims to constrain the sources and sinks of greenhouse gases carbon dioxide (CO2) and methane (CH4) for continental-scale regions. Its primary focus is on central Europe. G3E carries a spectrometer system that collects sunlight backscattered from the Earth's surface and atmosphere in the near-infrared (NIR) and shortwave-infrared (SWIR) spectral range. Solar absorption spectra allow for spatiotemporally dense observations of the column-average concentrations of carbon dioxide (XCO2), methane (XCH4), and carbon monoxide (XCO). The mission concept in particular facilitates sampling of the diurnal variation with several measurements per day during summer. Here, we present the mission concept and carry out an initial performance assessment of the retrieval capabilities. The radiometric performance of the 4 grating spectrometers is tuned to reconcile small ground-pixel sizes (~2 km × 3 km at 50° latitude) with short single-shot exposures (~2.9 s) that allow for sampling continental regions such as central Europe within 2 h while providing a sufficient signal-to-noise ratio. The noise errors to be expected for XCO2, XCH4, and XCO are assessed through retrieval simulations for a European trial ensemble. Generally, single-shot precision for the targeted XCO2 and XCH4 is better than 0.5 % with some exception for scenes with low infrared surface albedo observed under low sun conditions in winter. For XCO, precision is generally better than 10 %. Performance for aerosol and cirrus loaded atmospheres is assessed by mimicking G3E's slant view on Europe for an ensemble of atmospheric scattering properties used previously for evaluating nadir-viewing low-Earth-orbit (LEO) satellites. While retrieval concepts developed for LEO configurations generally succeed in mitigating aerosol- and cirrus-induced retrieval errors for G3E's setup, residual errors are somewhat greater in