Sample records for advanced model based

  1. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  2. Traffic model for advanced satellite designs and experiments for ISDN services

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program.

  3. Influence of Methylenetetrahydrofolate Reductase C677T Polymorphism on the Risk of Lung Cancer and the Clinical Response to Platinum-Based Chemotherapy for Advanced Non-Small Cell Lung Cancer: An Updated Meta-Analysis

    PubMed Central

    Zhu, Ning; Gong, Yi; He, Jian; Xia, Jingwen

    2013-01-01

    Purpose Methylenetetrahydrofolate reductase (MTHFR) has been implicated in lung cancer risk and response to platinum-based chemotherapy in advanced non-small cell lung cancer (NSCLC). However, the results are controversial. We performed meta-analysis to investigate the effect of MTHFR C677T polymorphism on lung cancer risk and response to platinum-based chemotherapy in advanced NSCLC. Materials and Methods The databases of PubMed, Ovid, Wanfang and Chinese Biomedicine were searched for eligible studies. Nineteen studies on MTHFR C677T polymorphism and lung cancer risk and three articles on C677T polymorphism and response to platinum-based chemotherapy in advanced NSCLC, were identified. Results The results indicated that the allelic contrast, homozygous contrast and recessive model of the MTHFR C677T polymorphism were associated significantly with increased lung cancer risk. In the subgroup analysis, the C677T polymorphism was significantly correlated with an increased risk of NSCLC, with the exception of the recessive model. The dominant model and the variant T allele showed a significant association with lung cancer susceptibility of ever smokers. Male TT homozygote carriers had a higher susceptibility, but the allelic contrast and homozygote model had a protective effect in females. No relationship was observed for SCLC in any comparison model. In addition, MTHFR 677TT homozygote carriers had a better response to platinum-based chemotherapy in advanced NSCLC in the recessive model. Conclusion The MTHFR C677T polymorphism might be a genetic marker for lung cancer risk or response to platinum-based chemotherapy in advanced NSCLC. However, our results require further verification. PMID:24142642

  4. The Tuition Advance Fund: An Analysis Prepared for Boston University.

    ERIC Educational Resources Information Center

    Botsford, Keith

    Three models for anlayzing the Tuition Advance Fund (TAF) are examined. The three models are: projections by the Institute for Demographic and Economic Studies (IDES), projections by Data Resources, Inc. (DRI), and the Tuition Advance Fund Simulation (TAFSIM) models from Boston University. Analysis of the TAF is based on enrollment, price, and…

  5. Logic-Based Models for the Analysis of Cell Signaling Networks†

    PubMed Central

    2010-01-01

    Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868

  6. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  7. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  8. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  9. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  10. Example-based learning: effects of model expertise in relation to student expertise.

    PubMed

    Boekhout, Paul; van Gog, Tamara; van de Wiel, Margje W J; Gerards-Last, Dorien; Geraets, Jacques

    2010-12-01

    Worked examples are very effective for novice learners. They typically present a written-out ideal (didactical) solution for learners to study. This study used worked examples of patient history taking in physiotherapy that presented a non-didactical solution (i.e., based on actual performance). The effects of model expertise (i.e., worked example based on advanced, third-year student model or expert physiotherapist model) in relation to students' expertise (i.e., first- or second-year) were investigated. One hundred and thirty-four physiotherapy students (61 first-year and 73 second-year). Design was 2 × 2 factorial with factors 'Student Expertise' (first-year vs. second-year) and 'Model Expertise' (expert vs. advanced student). Within expertise levels, students were randomly assigned to the Expert Example or the Advanced Student Example condition. All students studied two examples (content depending on their assigned condition) and then completed a retention and test task. They rated their invested mental effort after each example and test task. Second-year students invested less mental effort in studying the examples, and in performing the retention and transfer tasks than first-year students. They also performed better on the retention test, but not on the transfer test. In contrast to our hypothesis, there was no interaction between student expertise and model expertise: all students who had studied the Expert examples performed better on the transfer test than students who had studied Advanced Student Examples. This study suggests that when worked examples are based on actual performance, rather than an ideal procedure, expert models are to be preferred over advanced student models.

  11. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  12. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  13. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  14. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  15. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature.

    PubMed

    Kim, Jihyun; Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification.

  16. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature

    PubMed Central

    Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification. PMID:29118809

  17. Online Statistical Modeling (Regression Analysis) for Independent Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  18. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    PubMed

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  20. Synergy between scientific advancement and technological innovation, illustrated by a mechanism-based model characterizing sodium-glucose cotransporter-2 inhibition.

    PubMed

    Zhang, Liping; Ng, Chee M; List, James F; Pfister, Marc

    2010-09-01

    Advances in experimental medicine and technological innovation during the past century have brought tremendous progress in modern medicine and generated an ever-increasing amount of data from bench and bedside. The desire to extend scientific knowledge motivates effective data integration. Technological innovation makes this possible, which in turn accelerates the advancement in science. This mutually beneficial interaction is illustrated by the development of an expanded mechanism-based model for understanding a novel mechanism, sodium-glucose cotransporter-2 SGLT2 inhibition for potential treatment of type 2 diabetes mellitus.

  1. Radiogenomics and radiotherapy response modeling

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Kerns, Sarah L.; Coates, James; Luo, Yi; Speers, Corey; West, Catharine M. L.; Rosenstein, Barry S.; Ten Haken, Randall K.

    2017-08-01

    Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.

  2. A Simulink Library of cryogenic components to automatically generate control schemes for large Cryorefrigerators

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel

    2015-12-01

    In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.

  3. Neonatal physical therapy. Part I: clinical competencies and neonatal intensive care unit clinical training models.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette

    2009-01-01

    To describe clinical training models, delineate clinical competencies, and outline a clinical decision-making algorithm for neonatal physical therapy. In these updated practice guidelines, advanced clinical training models, including precepted practicum and residency or fellowship training, are presented to guide practitioners in organizing mentored, competency-based preparation for neonatal care. Clinical competencies in neonatal physical therapy are outlined with advanced clinical proficiencies and knowledge areas specific to each role. An algorithm for decision making on examination, evaluation, intervention, and re-examination processes provides a framework for clinical reasoning. Because of advanced-level competency requirements and the continuous examination, evaluation, and modification of procedures during each patient contact, the intensive care unit is a restricted practice area for physical therapist assistants, physical therapist generalists, and physical therapy students. Accountable, ethical physical therapy for neonates requires advanced, competency-based training with a preceptor in the pediatric subspecialty of neonatology.

  4. Promoting advance directives among African Americans: a faith-based model.

    PubMed

    Bullock, Karen

    2006-02-01

    Studies show that African Americans are less likely than other ethnic groups to complete advance directives. However, what influences African Americans' decisions to complete or not complete advance directives is unclear. Using a faith-based promotion model, 102 African Americans aged 55 years or older were recruited from local churches and community-based agencies to participate in a pilot study to promote advance care planning. Focus groups were used to collect data on participants' preferences for care, desire to make personal choices, values and attitudes, beliefs about death and dying, and advance directives. A standardized interview was used in the focus groups, and the data were organized and analyzed using NUDIST 4 software (QRS Software, Victoria, Australia). Three fourths of the participants refused to complete advance directives. The following factors influenced the participants' decisions about end-of-life care and completion of an advance directive: spirituality; view of suffering, death, and dying; social support networks; barriers to utilization; and mistrust of the health care system. The dissemination of information apprises individuals of their right to self-determine about their care, but educational efforts may not produce a significant change in behavior toward completion of advance care planning. Thus, ongoing efforts are needed to improve the trust that African Americans have in medical and health care providers.

  5. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  6. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    PubMed

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  7. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer.

    PubMed

    Petersen, Japke F; Stuiver, Martijn M; Timmermans, Adriana J; Chen, Amy; Zhang, Hongzhen; O'Neill, James P; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T; Koch, Wayne; van den Brekel, Michiel W M

    2018-05-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442 patients with T3T4N0N+M0 larynx cancer. The model was internally validated using bootstrapping samples and externally validated on patient data from five external centers (n = 770). The main outcome was performance of the model as tested by discrimination, calibration, and the ability to distinguish risk groups based on tertiles from the derivation dataset. The model performance was compared to a model based on T and N classification only. We included age, gender, T and N classification, and subsite as prognostic variables in the standard model. After external validation, the standard model had a significantly better fit than a model based on T and N classification alone (C statistic, 0.59 vs. 0.55, P < .001). The model was able to distinguish well among three risk groups based on tertiles of the risk score. Adding treatment modality to the model did not decrease the predictive power. As a post hoc analysis, we tested the added value of comorbidity as scored by American Society of Anesthesiologists score in a subsample, which increased the C statistic to 0.68. A risk prediction model for patients with advanced larynx cancer, consisting of readily available clinical variables, gives more accurate estimations of the estimated 5-year survival rate when compared to a model based on T and N classification alone. 2c. Laryngoscope, 128:1140-1145, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. 42 CFR § 414.1415 - Advanced APM criteria.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1415 Advanced APM criteria. (a) Use... is responsible under an APM. For episode payment models, expected expenditures mean the episode...

  9. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  10. State of the art of sonic boom modeling

    NASA Astrophysics Data System (ADS)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  11. State of the art of sonic boom modeling.

    PubMed

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  12. Value-Based Payment Reform and the Medicare Access and Children's Health Insurance Program Reauthorization Act of 2015: A Primer for Plastic Surgeons.

    PubMed

    Squitieri, Lee; Chung, Kevin C

    2017-07-01

    In 2015, the U.S. Congress passed the Medicare Access and Children's Health Insurance Program Reauthorization Act, which effectively repealed the Centers for Medicare and Medicaid Services sustainable growth rate formula and established the Centers for Medicare and Medicaid Services Quality Payment Program. The Medicare Access and Children's Health Insurance Program Reauthorization Act represents an unparalleled acceleration toward value-based payment models and a departure from traditional volume-driven fee-for-service reimbursement. The Quality Payment Program includes two paths for provider participation: the Merit-Based Incentive Payment System and Advanced Alternative Payment Models. The Merit-Based Incentive Payment System pathway replaces existing quality reporting programs and adds several new measures to create a composite performance score for each provider (or provider group) that will be used to adjust reimbursed payment. The advanced alternative payment model pathway is available to providers who participate in qualifying Advanced Alternative Payment Models and is associated with an initial 5 percent payment incentive. The first performance period for the Merit-Based Incentive Payment System opens January 1, 2017, and closes on December 31, 2017, and is associated with payment adjustments in January of 2019. The Centers for Medicare and Medicaid Services estimates that the majority of providers will begin participation in 2017 through the Merit-Based Incentive Payment System pathway, but aims to have 50 percent of payments tied to quality or value through Advanced Alternative Payment Models by 2018. In this article, the authors describe key components of the Medicare Access and Children's Health Insurance Program Reauthorization Act to providers navigating through the Quality Payment Program and discuss how plastic surgeons may optimize their performance in this new value-based payment program.

  13. Designing an Advanced Instructional Design Advisor: Principles of Instructional Design. Volume 2

    DTIC Science & Technology

    1991-05-01

    ones contained in this paper would comprise a substantial part of the knowledge base for the AIDA . 14. SUBJECT TERMS IS.NUMBER OF PAGES ucigoirlive...the classroom (e.g., computer simulations models can be used to enhance CBI). The Advanced Instructional Design Advisor is a project aimed at providing... model shares with its variations. Tennyson then identifies research- based prescriptions from the cognitive sciences which should become part of ISD in

  14. Promoting Psychological Well-Being in an Urban School Using the Participatory Culture-Specific Intervention Model

    ERIC Educational Resources Information Center

    Bell, Patrick B.; Summerville, Meredith A.; Nastasi, Bonnie K.; Patterson, Julie; Earnshaw, Elizabeth

    2015-01-01

    School psychology has recently reconceptualized its service provision model to include multitiered systems of academic and psychosocial promotion, prevention, and intervention. The availability of evidence-based programs and advances in school consultation theory accompany the paradigm shift of the field. Despite these advances, implementing…

  15. Hezbollah: A Charitable Revolution

    DTIC Science & Technology

    2008-10-01

    SCHOOL OF ADVANCED MILITARY STUDIES MONOGRAPH APPROVAL Major James B. Love Title of Monograph: The Hezbollah Model : A Social Service Revolution...providing social services. This monograph addresses how Hezbollah’s social service model , by which it gained popular support and became a significant bloc...popular support base. Hezbollah’s social service heavy model has proven to be successful in advancing the party’s political/military goals and

  16. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  17. Validation of the USAWC Student War Gaming Model.

    DTIC Science & Technology

    1983-05-18

    from EREZ clogged with traffic; brigade, and SHARON division Egyptian artillery advance command post, follow harassing; fired on RESHEF brigade along...according to ADAN, "The advance of the Egyptian’s 25th Independent Tank Brigade along the Lexicon axis was incredibly slow; they seemed to be doing...in advance of play which artillery units would be played in each of the two legitimate modes described above. The model unit data base was then

  18. Current State of Animal (Mouse) Modeling in Melanoma Research.

    PubMed

    Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  19. Research Advances on Radiation Transfer Modeling and Inversion for Multi-Scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2011-09-01

    At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  20. I Use the Computer to ADVANCE Advances in Comprehension-Strategy Research.

    ERIC Educational Resources Information Center

    Blohm, Paul J.

    Merging the instructional implications drawn from theory and research in the interactive reading model, schemata, and metacognition with computer based instruction seems a natural approach for actively involving students' participation in reading and learning from text. Computer based graphic organizers guide students' preview or review of lengthy…

  1. Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications

    NASA Technical Reports Server (NTRS)

    Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.

    2017-01-01

    Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.

  2. Conditionally prepared photon and quantum imaging

    NASA Astrophysics Data System (ADS)

    Lvovsky, Alexander I.; Aichele, Thomas

    2004-10-01

    We discuss a classical model allowing one to visualize and characterize the optical mode of the single photon generated by means of a conditional measurement on a biphoton produced in parametric down-conversion. The model is based on Klyshko's advanced wave interpretation, but extends beyond it, providing a precise mathematical description of the advanced wave. The optical mode of the conditional photon is shown to be identical to the mode of the classical difference-frequency field generated due to nonlinear interaction of the partially coherent advanced wave with the pump pulse. With this "nonlinear advanced wave model" most coherence properties of the conditional photon become manifest, which permits one to intuitively understand many recent results, in particular, in quantum imaging.

  3. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  5. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  6. 42 CFR § 414.1410 - Advanced APM determination.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1410 Advanced APM determination. (a) General. An APM is an Advanced APM for a payment year if CMS determines that it meets the...

  7. Variations in Consumer Self-Determination within US Psychiatric Advance Directives

    ERIC Educational Resources Information Center

    Zeman, Laura Dreuth; Swanke, Jayme

    2008-01-01

    Advance directives are legal documents that formalize consumer psychiatric care preferences. This article examines the statutes and goals of US psychiatric advance directives within the framework of consumer self-determination, a priority in national mental health reform. It seeks to distinguish between state models based on the degree that…

  8. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  9. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anh Bui; Nam Dinh; Brian Williams

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less

  10. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  11. Research Advances on Radiation Transfer Modeling and Inversion for Multi-scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.

    2011-12-01

    As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  12. Advancing complementary and alternative medicine through social network analysis and agent-based modeling.

    PubMed

    Frantz, Terrill L

    2012-01-01

    This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities. Copyright © 2012 S. Karger AG, Basel.

  13. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  14. The Design of Model-Based Training Programs

    NASA Technical Reports Server (NTRS)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  15. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  16. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  17. Advanced propulsion for LEO-Moon transport. 3: Transportation model. M.S. Thesis - California Univ.

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.

    1992-01-01

    A simplified computational model of low Earth orbit-Moon transportation system has been developed to provide insight into the benefits of new transportation technologies. A reference transportation infrastructure, based upon near-term technology developments, is used as a departure point for assessing other, more advanced alternatives. Comparison of the benefits of technology application, measured in terms of a mass payback ratio, suggests that several of the advanced technology alternatives could substantially improve the efficiency of low Earth orbit-Moon transportation.

  18. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  19. Health System Advance Care Planning Culture Change for High-Risk Patients: The Promise and Challenges of Engaging Providers, Patients, and Families in Systematic Advance Care Planning.

    PubMed

    Reidy, Jennifer; Halvorson, Jennifer; Makowski, Suzana; Katz, Delila; Weinstein, Barbara; McCluskey, Christine; Doering, Alex; DeCarli, Kathryn; Tjia, Jennifer

    2017-04-01

    The success of a facilitator-based model for advance care planning (ACP) in LaCrosse, Wisconsin, has inspired health systems to aim for widespread documentation of advance directives, but limited resources impair efforts to replicate this model. One promising strategy is the development of interactive, Internet-based tools that might increase access to individualized ACP at minimal cost. However, widespread adoption and implementation of Internet-based ACP efforts has yet to be described. We describe our early experiences in building a systematic, population-based ACP initiative focused on health system-wide deployment of an Internet-based tool as an adjunct to a facilitator-based model. With the sponsorship of our healthcare system's population health leadership, we engaged a diverse group of clinical stakeholders as champions to design an Internet-based ACP tool and facilitate local practice change. We describe how we simultaneously began to train clinicians in ACP conversations, engage patients and health system employees in thinking about ACP, redesign clinic workflows to accommodate ACP discussions, and integrate the Internet-based tool into the electronic medical record (EMR). Over 18 months, our project engaged two subspecialty clinics in a systematic ACP process and began work with a large primary care practice with a large Medicare Accountable Care Organization at-risk population. Overall, 807 people registered at the Internet site and 85% completed ACPs. We learned that changing culture and systems to promote ACP requires a comprehensive vision with simultaneous, interconnected strategies targeting patient education, clinician training, EMR documentation, and community awareness.

  20. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  1. Source Physics Experiments at the Nevada Test Site

    DTIC Science & Technology

    2010-09-01

    not display a currently valid OMB control number. 1. REPORT DATE SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND...seismograms through three-dimensional models of the earth will move monitoring science into a physics- based era. This capability should enable...the advanced ability to model synthetic seismograms in three-dimensional earth models should also lead to advances in the ability to locate and

  2. Social and private benefits of assisted reproductive technology: a national survey-based evaluation in Israel.

    PubMed

    Gonen, Limor Dina

    2016-01-01

    The objective of this paper was to measure the private and social benefits resulting from technological advances in fertility treatment. An empirical model investigates the willingness-to-pay (WTP) for advances in the medical technology of in vitro fertilization (IVF) among the general public and among IVF patients in Israel. The empirical model's findings demonstrate that IVF patients and the general public value medical technology advances and have a positive WTP for it. The average WTP for IVF technology advances, among IVF patients, is US $3116.9 whereas for the general public it is US$2284.4. Available evidence suggests that advances in medical technology have delivered substantial benefits and appear to have contributed to improved wellbeing.

  3. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  4. A Risk and Maintenance Model for Bulimia Nervosa: From Impulsive Action to Compulsive Behavior

    PubMed Central

    Pearson, Carolyn M.; Wonderlich, Stephen A.; Smith, Gregory T.

    2015-01-01

    This paper offers a new model for bulimia nervosa (BN) that explains both the initial impulsive nature of binge eating and purging as well as the compulsive quality of the fully developed disorder. The model is based on a review of advances in research on BN and advances in relevant basic psychological science. It integrates transdiagnostic personality risk, eating disorder specific risk, reinforcement theory, cognitive neuroscience, and theory drawn from the drug addiction literature. We identify both a state-based and a trait-based risk pathway, and we then propose possible state-by-trait interaction risk processes. The state-based pathway emphasizes depletion of self-control. The trait-based pathway emphasizes transactions between the trait of negative urgency (the tendency to act rashly when distressed) and high-risk psychosocial learning. We then describe a process by which initially impulsive BN behaviors become compulsive over time, and we consider the clinical implications of our model. PMID:25961467

  5. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individualmore » component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.« less

  6. Switching moving boundary models for two-phase flow evaporators and condensers

    NASA Astrophysics Data System (ADS)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  7. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to estimate stability and ultimately high volume manufacturing tests to monitor OPO by densely measured OVL data.

  8. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  9. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2014-09-30

    scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The

  10. Response to Intervention in Canada: Definitions, the Evidence Base, and Future Directions

    ERIC Educational Resources Information Center

    McIntosh, Kent; MacKay, Leslie D.; Andreou, Theresa; Brown, Jacqueline A.; Mathews, Susanna; Gietz, Carmen; Bennett, Joanna L.

    2011-01-01

    Based on challenges with the traditional model of school psychology, response to intervention (RTI) has been advanced as a model of special education eligibility decision making and service delivery that may address the drawbacks of the traditional models of assessment and result in improved outcomes for students. In this article, the RTI model is…

  11. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  12. ACCLAIM: A Model for Leading the Community.

    ERIC Educational Resources Information Center

    Vaughan, George B.; Gillett-Karam, Rosemary

    1993-01-01

    Advocates an approach to community college leadership based on community-based programming. Describes North Carolina State University's Academy for Community College Leadership Advancement, Innovation, and Modeling (ACCLAIM) and its components (i.e., continuing education, fellows program, information development/dissemination, and university…

  13. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  14. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  15. Online model-based diagnosis to support autonomous operation of an advanced life support system.

    PubMed

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  16. Online model-based diagnosis to support autonomous operation of an advanced life support system

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  17. Advances in Reprogramming-Based Study of Neurologic Disorders

    PubMed Central

    Baldwin, Kristin K.

    2015-01-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing. PMID:25749371

  18. New V and V Tools for Diagnostic Modeling Environment (DME)

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Nelson, Stacy; Merriam, Marshall (Technical Monitor)

    2002-01-01

    The purpose of this report is to provide correctness and reliability criteria for verification and validation (V&V) of Second Generation Reusable Launch Vehicle (RLV) Diagnostic Modeling Environment, describe current NASA Ames Research Center tools for V&V of Model Based Reasoning systems, and discuss the applicability of Advanced V&V to DME. This report is divided into the following three sections: (1) correctness and reliability criteria; (2) tools for V&V of Model Based Reasoning; and (3) advanced V&V applicable to DME. The Executive Summary includes an overview of the main points from each section. Supporting details, diagrams, figures, and other information are included in subsequent sections. A glossary, acronym list, appendices, and references are included at the end of this report.

  19. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening

    PubMed Central

    Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho

    2016-01-01

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615

  20. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  1. Advances and new directions in crystallization control.

    PubMed

    Nagy, Zoltan K; Braatz, Richard D

    2012-01-01

    The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.

  2. A Simulation Study Comparing Incineration and Composting in a Mars-Based Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Hogan, John; Kang, Sukwon; Cavazzoni, Jim; Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).

  3. Nanoparticle surface characterization and clustering through concentration-dependent surface adsorption modeling.

    PubMed

    Chen, Ran; Zhang, Yuntao; Sahneh, Faryad Darabi; Scoglio, Caterina M; Wohlleben, Wendel; Haase, Andrea; Monteiro-Riviere, Nancy A; Riviere, Jim E

    2014-09-23

    Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  4. Bearing capacity analysis and design of highway base materials reinforced with geofabrics.

    DOT National Transportation Integrated Search

    2005-06-01

    The primary objective of this study was to develop and implement mathematical bearing capacity models originally proposed by Hopkins (1988, 1991) and Slepak and Hopkins (1993; 1995). These advanced models, which are based on limit equilibrium and are...

  5. Influenza forecasting with Google Flu Trends.

    PubMed

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by individual medical centers to provide advanced warning of future influenza cases.

  6. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  7. Teacher Advancement Program (TAP) at Wilburn Elementary School: Year 3 Evaluation Report. Eye on Evaluation. D&A Report No. 11.02

    ERIC Educational Resources Information Center

    Baenen, Nancy

    2011-01-01

    The Teacher Advancement Program (TAP) is a model for training, teacher advancement, and instructional strategies. Based on interviews and observations, the four TAP principles were implemented with fidelity during the 2010-11 school year, with one exception--teacher evaluations. Feedback was slow, and teachers had concerns about the reliability of…

  8. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  9. Proceedings of the Conference on Toxicology: Applications of Advances in Toxicology to Risk Assessment. Held at Wright-Patterson AFB, Ohio on 19-21 May 1992

    DTIC Science & Technology

    1993-01-01

    animals in toxicology research, the application of pharmacokinetics and physiologically based pharmacokinetic mdels in chemical risk assessment, selected...metaplasia Neurotoxicity Nonmutagenic carcinogens Ozone P450 PBPK modeling Perfluorohexane Peroxisome proliferators Pharmacokinetics Pharmacokinetic models...Physiological modeling Physiologically based pharmacokinetic modeling Polycyclic organic matter Quantitative risk assessment RAIRM model Rats

  10. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  11. Agent-Based Multicellular Modeling for Predictive Toxicology

    EPA Science Inventory

    Biological modeling is a rapidly growing field that has benefited significantly from recent technological advances, expanding traditional methods with greater computing power, parameter-determination algorithms, and the development of novel computational approaches to modeling bi...

  12. An Anticipatory Model of Cavitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O.

    1999-04-05

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the modelmore » execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.« less

  13. Health behavior change in advance care planning: an agent-based model.

    PubMed

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  14. Community-Based Participatory Evaluation: The Healthy Start Approach

    PubMed Central

    Braithwaite, Ronald L.; McKenzie, Robetta D.; Pruitt, Vikki; Holden, Kisha B.; Aaron, Katrina; Hollimon, Chavone

    2013-01-01

    The use of community-based participatory research has gained momentum as a viable approach to academic and community engagement for research over the past 20 years. This article discusses an approach for extending the process with an emphasis on evaluation of a community partnership–driven initiative and thus advances the concept of conducting community-based participatory evaluation (CBPE) through a model used by the Healthy Start project of the Augusta Partnership for Children, Inc., in Augusta, Georgia. Application of the CBPE approach advances the importance of bilateral engagements with consumers and academic evaluators. The CBPE model shows promise as a reliable and credible evaluation approach for community-level assessment of health promotion programs. PMID:22461687

  15. Community-based participatory evaluation: the healthy start approach.

    PubMed

    Braithwaite, Ronald L; McKenzie, Robetta D; Pruitt, Vikki; Holden, Kisha B; Aaron, Katrina; Hollimon, Chavone

    2013-03-01

    The use of community-based participatory research has gained momentum as a viable approach to academic and community engagement for research over the past 20 years. This article discusses an approach for extending the process with an emphasis on evaluation of a community partnership-driven initiative and thus advances the concept of conducting community-based participatory evaluation (CBPE) through a model used by the Healthy Start project of the Augusta Partnership for Children, Inc., in Augusta, Georgia. Application of the CBPE approach advances the importance of bilateral engagements with consumers and academic evaluators. The CBPE model shows promise as a reliable and credible evaluation approach for community-level assessment of health promotion programs.

  16. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  17. Advanced process control framework initiative

    NASA Astrophysics Data System (ADS)

    Hill, Tom; Nettles, Steve

    1997-01-01

    The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user with 'real customer requirements', and SEMATECH provides a consensus-building organization that widely disseminates technology to suppliers and users in the semiconductor industry that face similar equipment and factory control systems challenges.

  18. Modular, Semantics-Based Composition of Biosimulation Models

    ERIC Educational Resources Information Center

    Neal, Maxwell Lewis

    2010-01-01

    Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…

  19. Invention and Innovation: A Standards-Based Middle School Model Course Guide. Advancing Technological Literacy: ITEA Professional Series

    ERIC Educational Resources Information Center

    International Technology Education Association (ITEA), 2005

    2005-01-01

    This guide presents a model for a standards-based contemporary technology education course for the middle school. This model course guide features an exploratory curriculum thrust for a cornerstone middle level course. It provides teachers with an overview of the concept, suggestions for planning the course, and ideas for developing…

  20. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.

    PubMed

    O'Malley, Lauren; Korniss, G; Caraco, Thomas

    2009-07-01

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

  1. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.

  2. Using a web-based application to define the accuracy of diagnostic tests when the gold standard is imperfect.

    PubMed

    Lim, Cherry; Wannapinij, Prapass; White, Lisa; Day, Nicholas P J; Cooper, Ben S; Peacock, Sharon J; Limmathurotsakul, Direk

    2013-01-01

    Estimates of the sensitivity and specificity for new diagnostic tests based on evaluation against a known gold standard are imprecise when the accuracy of the gold standard is imperfect. Bayesian latent class models (LCMs) can be helpful under these circumstances, but the necessary analysis requires expertise in computational programming. Here, we describe open-access web-based applications that allow non-experts to apply Bayesian LCMs to their own data sets via a user-friendly interface. Applications for Bayesian LCMs were constructed on a web server using R and WinBUGS programs. The models provided (http://mice.tropmedres.ac) include two Bayesian LCMs: the two-tests in two-population model (Hui and Walter model) and the three-tests in one-population model (Walter and Irwig model). Both models are available with simplified and advanced interfaces. In the former, all settings for Bayesian statistics are fixed as defaults. Users input their data set into a table provided on the webpage. Disease prevalence and accuracy of diagnostic tests are then estimated using the Bayesian LCM, and provided on the web page within a few minutes. With the advanced interfaces, experienced researchers can modify all settings in the models as needed. These settings include correlation among diagnostic test results and prior distributions for all unknown parameters. The web pages provide worked examples with both models using the original data sets presented by Hui and Walter in 1980, and by Walter and Irwig in 1988. We also illustrate the utility of the advanced interface using the Walter and Irwig model on a data set from a recent melioidosis study. The results obtained from the web-based applications were comparable to those published previously. The newly developed web-based applications are open-access and provide an important new resource for researchers worldwide to evaluate new diagnostic tests.

  3. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    DOT National Transportation Integrated Search

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  4. IASM: Individualized activity space modeler

    NASA Astrophysics Data System (ADS)

    Hasanzadeh, Kamyar

    2018-01-01

    Researchers from various disciplines have long been interested in analyzing and describing human mobility patterns. Activity space (AS), defined as an area encapsulating daily human mobility and activities, has been at the center of this interest. However, given the applied nature of research in this field and the complexity that advanced geographical modeling can pose to its users, the proposed models remain simplistic and inaccurate in many cases. Individualized Activity Space Modeler (IASM) is a geographic information system (GIS) toolbox, written in Python programming language using ESRI's Arcpy module, comprising four tools aiming to facilitate the use of advanced activity space models in empirical research. IASM provides individual-based and context-sensitive tools to estimate home range distances, delineate activity spaces, and model place exposures using individualized geographical data. In this paper, we describe the design and functionality of IASM, and provide an example of how it performs on a spatial dataset collected through an online map-based survey.

  5. Advancing Consumer Product Composition and Chemical Use Information to Facilitate Risk-Based Decision Making

    EPA Science Inventory

    This presentation describes EPA efforts to collect, model, and measure publically available consumer product data for use in exposure assessment. The development of the ORD Chemicals and Products database will be described, as will machine-learning based models for predicting ch...

  6. Adaptive User Model for Web-Based Learning Environment.

    ERIC Educational Resources Information Center

    Garofalakis, John; Sirmakessis, Spiros; Sakkopoulos, Evangelos; Tsakalidis, Athanasios

    This paper describes the design of an adaptive user model and its implementation in an advanced Web-based Virtual University environment that encompasses combined and synchronized adaptation between educational material and well-known communication facilities. The Virtual University environment has been implemented to support a postgraduate…

  7. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  8. Context-based virtual metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  9. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  10. Image-Based Predictive Modeling of Heart Mechanics.

    PubMed

    Wang, V Y; Nielsen, P M F; Nash, M P

    2015-01-01

    Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.

  11. Flipped Classrooms for Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  12. Simulated Students and Classroom Use of Model-Based Intelligent Tutoring

    NASA Technical Reports Server (NTRS)

    Koedinger, Kenneth R.

    2008-01-01

    Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.

  13. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  14. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  15. Research on a Frame-Based Model of Reading Comprehension. Final Report.

    ERIC Educational Resources Information Center

    Goldstein, Ira

    This report summarizes computational investigations of language comprehension based on Marvin Minsky's theory of frames, a recent advance in artifical intelligence theories about the representation of knowledge. The investigations discussed explored frame theory as a basis for text comprehension by implementing models of the theory and developing…

  16. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  17. Battery Calendar Life Estimator Manual Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  18. Battery Life Estimator Manual Linear Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon P. Christophersen; Ira Bloom; Ed Thomas

    2009-08-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  19. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    PubMed

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  20. Republished review: Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-07-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  1. Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  2. Cost-utility of transcatheter aortic valve implantation for inoperable patients with severe aortic stenosis treated by medical management: a UK cost-utility analysis based on patient-level data from the ADVANCE study

    PubMed Central

    Brecker, Stephen; Mealing, Stuart; Padhiar, Amie; Eaton, James; Sculpher, Mark; Busca, Rachele; Bosmans, Johan; Gerckens, Ulrich J; Wenaweser, Peter; Tamburino, Corrado; Bleiziffer, Sabine; Piazza, Nicolo; Moat, Neil; Linke, Axel

    2014-01-01

    Objective To use patient-level data from the ADVANCE study to evaluate the cost-effectiveness of transcatheter aortic valve implantation (TAVI) compared to medical management (MM) in patients with severe aortic stenosis from the perspective of the UK NHS. Methods A published decision-analytic model was adapted to include information on TAVI from the ADVANCE study. Patient-level data informed the choice as well as the form of mathematical functions that were used to model all-cause mortality, health-related quality of life and hospitalisations. TAVI-related resource use protocols were based on the ADVANCE study. MM was modelled on publicly available information from the PARTNER-B study. The outcome measures were incremental cost-effectiveness ratios (ICERs) estimated at a range of time horizons with benefits expressed as quality-adjusted life-years (QALY). Extensive sensitivity/subgroup analyses were undertaken to explore the impact of uncertainty in key clinical areas. Results Using a 5-year time horizon, the ICER for the comparison of all ADVANCE to all PARTNER-B patients was £13 943 per QALY gained. For the subset of ADVANCE patients classified as high risk (Logistic EuroSCORE >20%) the ICER was £17 718 per QALY gained). The ICER was below £30 000 per QALY gained in all sensitivity analyses relating to choice of MM data source and alternative modelling approaches for key parameters. When the time horizon was extended to 10 years, all ICERs generated in all analyses were below £20 000 per QALY gained. Conclusion TAVI is highly likely to be a cost-effective treatment for patients with severe aortic stenosis. PMID:25349700

  3. Cost-utility of transcatheter aortic valve implantation for inoperable patients with severe aortic stenosis treated by medical management: a UK cost-utility analysis based on patient-level data from the ADVANCE study.

    PubMed

    Brecker, Stephen; Mealing, Stuart; Padhiar, Amie; Eaton, James; Sculpher, Mark; Busca, Rachele; Bosmans, Johan; Gerckens, Ulrich J; Wenaweser, Peter; Tamburino, Corrado; Bleiziffer, Sabine; Piazza, Nicolo; Moat, Neil; Linke, Axel

    2014-01-01

    To use patient-level data from the ADVANCE study to evaluate the cost-effectiveness of transcatheter aortic valve implantation (TAVI) compared to medical management (MM) in patients with severe aortic stenosis from the perspective of the UK NHS. A published decision-analytic model was adapted to include information on TAVI from the ADVANCE study. Patient-level data informed the choice as well as the form of mathematical functions that were used to model all-cause mortality, health-related quality of life and hospitalisations. TAVI-related resource use protocols were based on the ADVANCE study. MM was modelled on publicly available information from the PARTNER-B study. The outcome measures were incremental cost-effectiveness ratios (ICERs) estimated at a range of time horizons with benefits expressed as quality-adjusted life-years (QALY). Extensive sensitivity/subgroup analyses were undertaken to explore the impact of uncertainty in key clinical areas. Using a 5-year time horizon, the ICER for the comparison of all ADVANCE to all PARTNER-B patients was £13 943 per QALY gained. For the subset of ADVANCE patients classified as high risk (Logistic EuroSCORE >20%) the ICER was £17 718 per QALY gained). The ICER was below £30 000 per QALY gained in all sensitivity analyses relating to choice of MM data source and alternative modelling approaches for key parameters. When the time horizon was extended to 10 years, all ICERs generated in all analyses were below £20 000 per QALY gained. TAVI is highly likely to be a cost-effective treatment for patients with severe aortic stenosis.

  4. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions.

    PubMed

    Smith, Tony; Harris, Jillian; Woznitza, Nick; Maresse, Sharon; Sale, Charlotte

    2015-09-01

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as 'a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care'. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities.

  5. Proteomics and plant disease: advances in combating a major threat to the global food supply.

    PubMed

    Rampitsch, Christof; Bykova, Natalia V

    2012-02-01

    The study of plant disease and immunity is benefiting tremendously from proteomics. Parallel streams of research from model systems, from pathogens in vitro and from the relevant pathogen-crop interactions themselves have begun to reveal a model of how plants succumb to invading pathogens and how they defend themselves without the benefit of a circulating immune system. In this review, we discuss the contribution of proteomics to these advances, drawing mainly on examples from crop-fungus interactions, from Arabidopsis-bacteria interactions, from elicitor-based model systems and from pathogen studies, to highlight also the important contribution of non-crop systems to advancing crop protection. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Predictive models in urology.

    PubMed

    Cestari, Andrea

    2013-01-01

    Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.

  7. Advanced scatter search approach and its application in a sequencing problem of mixed-model assembly lines in a case company

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Wang, Wen-xi; Zhu, Ke-ren; Zhang, Chao-yong; Rao, Yun-qing

    2014-11-01

    Mixed-model assembly line sequencing is significant in reducing the production time and overall cost of production. To improve production efficiency, a mathematical model aiming simultaneously to minimize overtime, idle time and total set-up costs is developed. To obtain high-quality and stable solutions, an advanced scatter search approach is proposed. In the proposed algorithm, a new diversification generation method based on a genetic algorithm is presented to generate a set of potentially diverse and high-quality initial solutions. Many methods, including reference set update, subset generation, solution combination and improvement methods, are designed to maintain the diversification of populations and to obtain high-quality ideal solutions. The proposed model and algorithm are applied and validated in a case company. The results indicate that the proposed advanced scatter search approach is significant for mixed-model assembly line sequencing in this company.

  8. The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.

  9. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  10. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  11. Weaving Authenticity and Legitimacy: Latina Faculty Peer Mentoring

    ERIC Educational Resources Information Center

    Núñez, Anne-Marie; Murakami, Elizabeth T.; Gonzales, Leslie D.

    2015-01-01

    As an alternative to typical top-down mentoring models, the authors advance a conception of peer mentoring that is based on research about collectivist strategies that Latina faculty employ to navigate the academy. The authors advance recommendations for institutional agents to support mentoring for faculty who are members of historically…

  12. Advances in In Vitro and In Silico Tools for Toxicokinetic Dose Modeling and Predictive Toxicology (WC10)

    EPA Science Inventory

    Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical lan...

  13. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments

    PubMed Central

    Collignon, Bertrand; Séguret, Axel; Halloy, José

    2016-01-01

    Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences. PMID:26909173

  14. Trust models for efficient communication in Mobile Cloud Computing and their applications to e-Commerce

    NASA Astrophysics Data System (ADS)

    Pop, Florin; Dobre, Ciprian; Mocanu, Bogdan-Costel; Citoteanu, Oana-Maria; Xhafa, Fatos

    2016-11-01

    Managing the large dimensions of data processed in distributed systems that are formed by datacentres and mobile devices has become a challenging issue with an important impact on the end-user. Therefore, the management process of such systems can be achieved efficiently by using uniform overlay networks, interconnected through secure and efficient routing protocols. The aim of this article is to advance our previous work with a novel trust model based on a reputation metric that actively uses the social links between users and the model of interaction between them. We present and evaluate an adaptive model for the trust management in structured overlay networks, based on a Mobile Cloud architecture and considering a honeycomb overlay. Such a model can be useful for supporting advanced mobile market-share e-Commerce platforms, where users collaborate and exchange reliable information about, for example, products of interest and supporting ad-hoc business campaigns

  15. Simplified and advanced modelling of traction control systems of heavy-haul locomotives

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin

    2015-05-01

    Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.

  16. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  17. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  18. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  19. A new model for graduate education and innovation in medical technology.

    PubMed

    Yazdi, Youseph; Acharya, Soumyadipta

    2013-09-01

    We describe a new model of graduate education in bioengineering innovation and design- a year long Master's degree program that educates engineers in the process of healthcare technology innovation for both advanced and low-resource global markets. Students are trained in an iterative "Spiral Innovation" approach that ensures early, staged, and repeated examination of all key elements of a successful medical device. This includes clinical immersion based problem identification and assessment (at Johns Hopkins Medicine and abroad), team based concept and business model development, and project planning based on iterative technical and business plan de-risking. The experiential, project based learning process is closely supported by several core courses in business, design, and engineering. Students in the program work on two team based projects, one focused on addressing healthcare needs in advanced markets and a second focused on low-resource settings. The program recently completed its fourth year of existence, and has graduated 61 students, who have continued on to industry or startups (one half), additional graduate education, or medical school (one third), or our own Global Health Innovation Fellowships. Over the 4 years, the program has sponsored 10 global health teams and 14 domestic/advanced market medtech teams, and launched 5 startups, of which 4 are still active. Projects have attracted over US$2.5M in follow-on awards and grants, that are supporting the continued development of over a dozen projects.

  20. Real Time Data Management for Estimating Probabilities of Incidents and Near Misses

    NASA Astrophysics Data System (ADS)

    Stanitsas, P. D.; Stephanedes, Y. J.

    2011-08-01

    Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, and incident-prone conditions based on real-time data. The models support integration of anticipatory information and fee-based road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, neural networks, and vector autoregressions tested via machine vision at EU and US sites.

  1. A standard telemental health evaluation model: the time is now.

    PubMed

    Kramer, Greg M; Shore, Jay H; Mishkind, Matt C; Friedl, Karl E; Poropatich, Ronald K; Gahm, Gregory A

    2012-05-01

    The telehealth field has advanced historic promises to improve access, cost, and quality of care. However, the extent to which it is delivering on its promises is unclear as the scientific evidence needed to justify success is still emerging. Many have identified the need to advance the scientific knowledge base to better quantify success. One method for advancing that knowledge base is a standard telemental health evaluation model. Telemental health is defined here as the provision of mental health services using live, interactive video-teleconferencing technology. Evaluation in the telemental health field largely consists of descriptive and small pilot studies, is often defined by the individual goals of the specific programs, and is typically focused on only one outcome. The field should adopt new evaluation methods that consider the co-adaptive interaction between users (patients and providers), healthcare costs and savings, and the rapid evolution in communication technologies. Acceptance of a standard evaluation model will improve perceptions of telemental health as an established field, promote development of a sounder empirical base, promote interagency collaboration, and provide a framework for more multidisciplinary research that integrates measuring the impact of the technology and the overall healthcare aspect. We suggest that consideration of a standard model is timely given where telemental health is at in terms of its stage of scientific progress. We will broadly recommend some elements of what such a standard evaluation model might include for telemental health and suggest a way forward for adopting such a model.

  2. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  3. 'Shovel-Ready' applications of stem cell advances for pediatric heart disease.

    PubMed

    Files, Matthew D; Boucek, Robert J

    2012-10-01

    The past decade has seen remarkable advances in the field of stem cell biology. Many new technologies and applications are passing the translational phase and likely will soon be relevant for the clinical pediatric cardiologist. This review will focus on two advances in basic science that are now translating into clinical trials. The first advance is the recognition, characterization, and recent therapeutic application of resident cardiac progenitor cells (CPCs). Early results of adult trials and scattered case reports in pediatric patients support expanding CPC-based trials for end-stage heart failure in pediatric patients. The relative abundance of CPCs in the neonate and young child offers greater potential benefits in heart failure treatment than has been realized to date. The second advance is the technology of induced pluripotent stem cells (iPSCs), which reprograms differentiated somatic cells to an undifferentiated embryonic-like state. When iPSCs are differentiated into cardiomyocytes, they model a patient's specific disease, test pharmaceuticals, and potentially provide an autologous source for cell-based therapy. The therapeutic recruitment and/or replacement of CPCs has potential for enhancing cardiac repair and regeneration in children with heart failure. Use of iPSCs to model heart disease holds great potential to gain new insights into diagnosis, pathophysiology, and disease-specific management for genetic-based cardiovascular diseases that are prevalent in pediatric patients.

  4. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  5. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  6. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    PubMed

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  7. An Intelligent Model for Pairs Trading Using Genetic Algorithms

    PubMed Central

    Hsu, Chi-Jen; Chen, Chi-Chung; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  8. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  9. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  10. Electronic health records (EHRs): supporting ASCO's vision of cancer care.

    PubMed

    Yu, Peter; Artz, David; Warner, Jeremy

    2014-01-01

    ASCO's vision for cancer care in 2030 is built on the expanding importance of panomics and big data, and envisions enabling better health for patients with cancer by the rapid transformation of systems biology knowledge into cancer care advances. This vision will be heavily dependent on the use of health information technology for computational biology and clinical decision support systems (CDSS). Computational biology will allow us to construct models of cancer biology that encompass the complexity of cancer panomics data and provide us with better understanding of the mechanisms governing cancer behavior. The Agency for Healthcare Research and Quality promotes CDSS based on clinical practice guidelines, which are knowledge bases that grow too slowly to match the rate of panomic-derived knowledge. CDSS that are based on systems biology models will be more easily adaptable to rapid advancements and translational medicine. We describe the characteristics of health data representation, a model for representing molecular data that supports data extraction and use for panomic-based clinical research, and argue for CDSS that are based on systems biology and are algorithm-based.

  11. Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma.

    PubMed

    Yamamoto, Yoshiaki; Tsunedomi, Ryouichi; Fujita, Yusuke; Otori, Toru; Ohba, Mitsuyoshi; Kawai, Yoshihisa; Hirata, Hiroshi; Matsumoto, Hiroaki; Haginaka, Jun; Suzuki, Shigeo; Dahiya, Rajvir; Hamamoto, Yoshihiko; Matsuyama, Kenji; Hazama, Shoichi; Nagano, Hiroaki; Matsuyama, Hideyasu

    2018-03-30

    We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration-time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters ( ABCB1 and ABCG2 ), UGT1A , and OR2B11 were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate ( P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual AUC ( P < 0.0001), and correctly predicted objective response rate ( P = 0.0044) as well as adverse events ( P = 0.0191 and 0.0082, respectively). In the validation study, calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib treatment ( P = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC.

  12. Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma

    PubMed Central

    Yamamoto, Yoshiaki; Tsunedomi, Ryouichi; Fujita, Yusuke; Otori, Toru; Ohba, Mitsuyoshi; Kawai, Yoshihisa; Hirata, Hiroshi; Matsumoto, Hiroaki; Haginaka, Jun; Suzuki, Shigeo; Dahiya, Rajvir; Hamamoto, Yoshihiko; Matsuyama, Kenji; Hazama, Shoichi; Nagano, Hiroaki; Matsuyama, Hideyasu

    2018-01-01

    We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration–time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters (ABCB1 and ABCG2), UGT1A, and OR2B11 were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate (P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual AUC (P < 0.0001), and correctly predicted objective response rate (P = 0.0044) as well as adverse events (P = 0.0191 and 0.0082, respectively). In the validation study, calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib treatment (P = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC. PMID:29682213

  13. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.

  14. Aspects of intelligent electronic device based switchgear control training model application

    NASA Astrophysics Data System (ADS)

    Bogdanov, Dimitar; Popov, Ivaylo

    2018-02-01

    The design of the protection and control equipment for electrical power sector application was object of extensive advance in the last several decades. The modern technologies offer a wide range of multifunctional flexible applications, making the protection and control of facilities more sophisticated. In the same time, the advance of technology imposes the necessity of simulators, training models and tutorial laboratory equipment to be used for adequate training of students and field specialists

  15. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat K; Palmintier, Bryan S; Hodge, Brian S

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present themore » goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.« less

  16. Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment...wounds might be treatable using advanced biotechnologies to control haemorrhaging and reduce blood-loss until medical evacuation can be completed. This...APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application

  17. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease.

    PubMed

    Wardell, Suzanne E; Nelson, Erik R; Chao, Christina A; McDonnell, Donald P

    2013-05-01

    There is compelling evidence to suggest that drugs that function as pure estrogen receptor (ER-α) antagonists, or that downregulate the expression of ER-α, would have clinical use in the treatment of advanced tamoxifen- and aromatase-resistant breast cancer. Although such compounds are currently in development, we reasoned, based on our understanding of ER-α pharmacology, that there may already exist among the most recently developed selective estrogen receptor modulators (SERM) compounds that would have usage as breast cancer therapeutics. Thus, our objective was to identify among available SERMs those with unique pharmacologic activities and to evaluate their potential clinical use with predictive models of advanced breast cancer. A validated molecular profiling technology was used to classify clinically relevant SERMs based on their impact on ER-α conformation. The functional consequences of these observed mechanistic differences on (i) gene expression, (ii) receptor stability, and (iii) activity in cellular and animal models of advanced endocrine-resistant breast cancer were assessed. The high-affinity SERM bazedoxifene was shown to function as a pure ER-α antagonist in cellular models of breast cancer and effectively inhibited the growth of both tamoxifen-sensitive and -resistant breast tumor xenografts. Interestingly, bazedoxifene induced a unique conformational change in ER-α that resulted in its proteasomal degradation, although the latter activity was dispensable for its antagonist efficacy. Bazedoxifene was recently approved for use in the European Union for the treatment of osteoporosis and thus may represent a near-term therapeutic option for patients with advanced breast cancer. ©2013 AACR.

  19. Arranging ISO 13606 archetypes into a knowledge base.

    PubMed

    Kopanitsa, Georgy

    2014-01-01

    To enable the efficient reuse of standard based medical data we propose to develop a higher level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analyzed for their ability to be applied in the implementation of a higher level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.

  20. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  1. Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.

    1994-07-01

    Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.

  2. TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed

    NASA Technical Reports Server (NTRS)

    Bull, John

    1990-01-01

    The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.

  3. Design Specifications for the Advanced Instructional Design Advisor (AIDA). Volume 1

    DTIC Science & Technology

    1992-01-01

    research; (3) Describe the knowledge base sufficient to support the varieties of knowledge to be represented in the AIDA model ; (4) Document the...feasibility of continuing the development of the AIDA model . 2.3 Background In Phase I of the AIDA project (Task 0006), (1) the AIDA concept was defined...the AIDA Model A paper-based demonstration of the AIDA instructional design model was performed by using the model to develop a minimal application

  4. Human pluripotent stem cell models of autism spectrum disorder: emerging frontiers, opportunities, and challenges towards neuronal networks in a dish.

    PubMed

    Aigner, Stefan; Heckel, Tobias; Zhang, Jitao D; Andreae, Laura C; Jagasia, Ravi

    2014-03-01

    Autism spectrum disorder (ASD) is characterized by deficits in language development and social cognition and the manifestation of repetitive and restrictive behaviors. Despite recent major advances, our understanding of the pathophysiological mechanisms leading to ASD is limited. Although most ASD cases have unknown genetic underpinnings, animal and human cellular models of several rare, genetically defined syndromic forms of ASD have provided evidence for shared pathophysiological mechanisms that may extend to idiopathic cases. Here, we review our current knowledge of the genetic basis and molecular etiology of ASD and highlight how human pluripotent stem cell-based disease models have the potential to advance our understanding of molecular dysfunction. We summarize landmark studies in which neuronal cell populations generated from human embryonic stem cells and patient-derived induced pluripotent stem cells have served to model disease mechanisms, and we discuss recent technological advances that may ultimately allow in vitro modeling of specific human neuronal circuitry dysfunction in ASD. We propose that these advances now offer an unprecedented opportunity to help better understand ASD pathophysiology. This should ultimately enable the development of cellular models for ASD, allowing drug screening and the identification of molecular biomarkers for patient stratification.

  5. Shock-loading response of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less

  6. Career advancement and professional development in nursing.

    PubMed

    Adeniran, Rita K; Smith-Glasgow, Mary Ellen; Bhattacharya, Anand; Xu, Yu

    2013-01-01

    Excellence underscores the need for nurses to keep their skills and competencies current through participation in professional development and career advancement. Evidence suggests that internationally educated nurses (IENs) progress relatively slowly through the career ladder and participate less in professional development compared with nurses educated in the United States (UENs). Mentorship and self-efficacy are considered major determinants of career advancement. The aim of the study was to understand the differences in levels of mentorship function and self-efficacy as well as the differences in participation in professional development and career advancement between UENs and IENs. A descriptive survey design was implemented using a Web-based survey. Significant disparities were noted in the role model function of mentoring and some professional development and career advancement measures between UENs and IENs. Mentorship is essential for professional growth. Sociodemographic characteristics of mentors are important because mentors are role models. Standardized career advancement structures are needed to promote professional growth. Published by Mosby, Inc.

  7. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  8. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    ERIC Educational Resources Information Center

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  9. Risk assessment model for development of advanced age-related macular degeneration.

    PubMed

    Klein, Michael L; Francis, Peter J; Ferris, Frederick L; Hamon, Sara C; Clemons, Traci E

    2011-12-01

    To design a risk assessment model for development of advanced age-related macular degeneration (AMD) incorporating phenotypic, demographic, environmental, and genetic risk factors. We evaluated longitudinal data from 2846 participants in the Age-Related Eye Disease Study. At baseline, these individuals had all levels of AMD, ranging from none to unilateral advanced AMD (neovascular or geographic atrophy). Follow-up averaged 9.3 years. We performed a Cox proportional hazards analysis with demographic, environmental, phenotypic, and genetic covariates and constructed a risk assessment model for development of advanced AMD. Performance of the model was evaluated using the C statistic and the Brier score and externally validated in participants in the Complications of Age-Related Macular Degeneration Prevention Trial. The final model included the following independent variables: age, smoking history, family history of AMD (first-degree member), phenotype based on a modified Age-Related Eye Disease Study simple scale score, and genetic variants CFH Y402H and ARMS2 A69S. The model did well on performance measures, with very good discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at 5 years = 0.08). Successful external validation was performed, and a risk assessment tool was designed for use with or without the genetic component. We constructed a risk assessment model for development of advanced AMD. The model performed well on measures of discrimination, calibration, and overall performance and was successfully externally validated. This risk assessment tool is available for online use.

  10. Urban tree growth modeling

    Treesearch

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  11. Advanced Computational Framework for Environmental Management ZEM, Version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin

    2016-11-04

    Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less

  12. A Quantitative Comparative Study of Blended and Traditional Models in the Secondary Advanced Placement Statistics Classroom

    ERIC Educational Resources Information Center

    Owens, Susan T.

    2017-01-01

    Technology is becoming an integral tool in the classroom and can make a positive impact on how the students learn. This quantitative comparative research study examined gender-based differences among secondary Advanced Placement (AP) Statistic students comparing Educational Testing Service (ETS) College Board AP Statistic examination scores…

  13. Nonlinearity in Social Service Evaluation: A Primer on Agent-Based Modeling

    ERIC Educational Resources Information Center

    Israel, Nathaniel; Wolf-Branigin, Michael

    2011-01-01

    Measurement of nonlinearity in social service research and evaluation relies primarily on spatial analysis and, to a lesser extent, social network analysis. Recent advances in geographic methods and computing power, however, allow for the greater use of simulation methods. These advances now enable evaluators and researchers to simulate complex…

  14. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  15. Targeted parallel sequencing of the Musa species: searching for an alternative model system for polyploidy studies

    USDA-ARS?s Scientific Manuscript database

    Modern day genomics holds the promise of solving the complexities of basic plant sciences, and of catalyzing practical advances in plant breeding. While contiguous, "base perfect" deep sequencing is a key module of any genome project, recent advances in parallel next generation sequencing technologi...

  16. Strategic Leadership: A Model for Promoting, Sustaining, and Advancing Institutional Significance

    ERIC Educational Resources Information Center

    Scott, Kenneth E.; Johnson, Mimi

    2011-01-01

    This article presents the methods, materials, and manpower required to create a strategic leadership program for promoting, sustaining, and advancing institutional significance. The functionality of the program is based on the Original Case Study Design (OCSD) methodology, in which participants are given actual college issues to investigate from a…

  17. A Qualitative Analysis of an Advanced Practice Nurse-Directed Transitional Care Model Intervention

    ERIC Educational Resources Information Center

    Bradway, Christine; Trotta, Rebecca; Bixby, M. Brian; McPartland, Ellen; Wollman, M. Catherine; Kapustka, Heidi; McCauley, Kathleen; Naylor, Mary D.

    2012-01-01

    Purpose: The purpose of this study was to describe barriers and facilitators to implementing a transitional care intervention for cognitively impaired older adults and their caregivers lead by advanced practice nurses (APNs). Design and Methods: APNs implemented an evidence-based protocol to optimize transitions from hospital to home. An…

  18. Workshop on challenges, insights, and future directions for mouse and humanized models in cancer immunology and immunotherapy: a report from the associated programs of the 2016 annual meeting for the Society for Immunotherapy of cancer.

    PubMed

    Zloza, Andrew; Karolina Palucka, A; Coussens, Lisa M; Gotwals, Philip J; Headley, Mark B; Jaffee, Elizabeth M; Lund, Amanda W; Sharpe, Arlene H; Sznol, Mario; Wainwright, Derek A; Wong, Kwok-Kin; Bosenberg, Marcus W

    2017-09-19

    Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, "Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy" as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.

  19. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions

    PubMed Central

    Smith, Tony; Harris, Jillian; Woznitza, Nick; Maresse, Sharon; Sale, Charlotte

    2015-01-01

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities. PMID:26451243

  20. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tony; Harris, Jillian; Woznitza, Nick

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiencesmore » in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities.« less

  1. Advance Care Planning Meets Group Medical Visits: The Feasibility of Promoting Conversations

    PubMed Central

    Lum, Hillary D.; Jones, Jacqueline; Matlock, Daniel D.; Glasgow, Russell E.; Lobo, Ingrid; Levy, Cari R.; Schwartz, Robert S.; Sudore, Rebecca L.; Kutner, Jean S.

    2016-01-01

    PURPOSE Primary care needs new models to facilitate advance care planning conversations. These conversations focus on preferences regarding serious illness and may involve patients, decision makers, and health care providers. We describe the feasibility of the first primary care–based group visit model focused on advance care planning. METHODS We conducted a pilot demonstration of an advance care planning group visit in a geriatrics clinic. Patients were aged at least 65 years. Groups of patients met in 2 sessions of 2 hours each facilitated by a geriatrician and a social worker. Activities included considering personal values, discussing advance care planning, choosing surrogate decision-makers, and completing advance directives. We used the RE-AIM framework to evaluate the project. RESULTS Ten of 11 clinicians referred patients for participation. Of 80 patients approached, 32 participated in 5 group visit cohorts (a 40% participation rate) and 27 participated in both sessions (an 84% retention rate). Mean age was 79 years; 59% of participants were female and 72% white. Most evaluated the group visit as better than usual clinic visits for discussing advance care planning. Patients reported increases in detailed advance care planning conversations after participating (19% to 41%, P = .02). Qualitative analysis found that older adults were willing to share personal values and challenges related to advance care planning and that they initiated discussions about a broad range of relevant topics. CONCLUSION A group visit to facilitate discussions about advance care planning and increase patient engagement is feasible. This model warrants further evaluation for effectiveness in improving advance care planning outcomes for patients, clinicians, and the system. PMID:26951587

  2. An ethnographic study exploring the role of ward-based Advanced Nurse Practitioners in an acute medical setting.

    PubMed

    Williamson, Susan; Twelvetree, Timothy; Thompson, Jacqueline; Beaver, Kinta

    2012-07-01

    This article is a report of a study that aimed to examine the role of ward-based Advanced Nurse Practitioners and their impact on patient care and nursing practice. Revised doctor/nurse skill mix combined with a focus on improving quality of care while reducing costs has had an impact on healthcare delivery in the western world. Diverse advanced nursing practice roles have developed and their function has varied globally over the last decade. However, roles and expectations for ward-based Advanced Nurse Practitioners lack clarity, which may hinder effective contribution to practice. An ethnographic approach was used to explore the advanced nurse practitioner role. Participant observation and interviews of five ward-based Advanced Nurse Practitioners working in a large teaching hospital in the North West of England during 2009 were complemented by formal and informal interviews with staff and patients. Data were descriptive and broken down into themes, patterns and processes to enable interpretation and explanation. The overarching concept that ran through data analysis was that of Advanced Nurse Practitioners as a lynchpin, using their considerable expertise, networks and insider knowledge of health care not only to facilitate patient care but to develop a pivotal role facilitating nursing and medical practice. Sub-themes included enhancing communication and practice, acting as a role model, facilitating the patients' journey and pioneering the role. Ward-based Advanced Nurse Practitioners are pivotal and necessary for providing quality holistic patient care and their role can be defined as more than junior doctor substitutes. © 2012 Blackwell Publishing Ltd.

  3. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  4. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease.

    PubMed

    Loomba, Rohit; Seguritan, Victor; Li, Weizhong; Long, Tao; Klitgord, Niels; Bhatt, Archana; Dulai, Parambir Singh; Caussy, Cyrielle; Bettencourt, Richele; Highlander, Sarah K; Jones, Marcus B; Sirlin, Claude B; Schnabl, Bernd; Brinkac, Lauren; Schork, Nicholas; Chen, Chi-Hua; Brenner, David A; Biggs, William; Yooseph, Shibu; Venter, J Craig; Nelson, Karen E

    2017-05-02

    The presence of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is the most important predictor of liver mortality. There are limited data on the diagnostic accuracy of gut microbiota-derived signature for predicting the presence of advanced fibrosis. In this prospective study, we characterized the gut microbiome compositions using whole-genome shotgun sequencing of DNA extracted from stool samples. This study included 86 uniquely well-characterized patients with biopsy-proven NAFLD, of which 72 had mild/moderate (stage 0-2 fibrosis) NAFLD, and 14 had advanced fibrosis (stage 3 or 4 fibrosis). We identified a set of 40 features (p < 0.006), which included 37 bacterial species that were used to construct a Random Forest classifier model to distinguish mild/moderate NAFLD from advanced fibrosis. The model had a robust diagnostic accuracy (AUC 0.936) for detecting advanced fibrosis. This study provides preliminary evidence for a fecal-microbiome-derived metagenomic signature to detect advanced fibrosis in NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Promoting Effective Advance Care for Elders (PEACE) randomized pilot study: theoretical framework and study design.

    PubMed

    Allen, Kyle R; Hazelett, Susan E; Radwany, Steven; Ertle, Denise; Fosnight, Susan M; Moore, Pamela S

    2012-04-01

    Practice guidelines are available for hospice and palliative medicine specialists and geriatricians. However, these guidelines do not adequately address the needs of patients who straddle the 2 specialties: homebound chronically ill patients. The purpose of this article is to describe the theoretical basis for the Promoting Effective Advance Care for Elders (PEACE) randomized pilot study. PEACE is an ongoing 2-group randomized pilot study (n=80) to test an in-home interdisciplinary care management intervention that combines palliative care approaches to symptom management, psychosocial and emotional support, and advance care planning with geriatric medicine approaches to optimizing function and addressing polypharmacy. The population comprises new enrollees into PASSPORT, Ohio's community-based, long-term care Medicaid waiver program. All PASSPORT enrollees have geriatric/palliative care crossover needs because they are nursing home eligible. The intervention is based on Wagner's Chronic Care Model and includes comprehensive interdisciplinary care management for these low-income frail elders with chronic illnesses, uses evidence-based protocols, emphasizes patient activation, and integrates with community-based long-term care and other community agencies. Our model, with its standardized, evidence-based medical and psychosocial intervention protocols, will transport easily to other sites that are interested in optimizing outcomes for community-based, chronically ill older adults. © Mary Ann Liebert, Inc.

  6. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 9. System and Subsystem Performance Models.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume presents the models used to analyze basic features of the system, establish feasibility of techniques, and evaluate system performance. The models use analytical expressions and computer simulations to represent the relationship between sy...

  7. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  8. Image understanding and the man-machine interface II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Technical Reports Server (NTRS)

    Barrett, Eamon B. (Editor); Pearson, James J. (Editor)

    1989-01-01

    Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.

  9. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  10. Measuring Provider Performance for Physicians Participating in the Merit-Based Incentive Payment System.

    PubMed

    Squitieri, Lee; Chung, Kevin C

    2017-07-01

    In 2017, the Centers for Medicare and Medicaid Services began requiring all eligible providers to participate in the Quality Payment Program or face financial reimbursement penalty. The Quality Payment Program outlines two paths for provider participation: the Merit-Based Incentive Payment System and Advanced Alternative Payment Models. For the first performance period beginning in January of 2017, the Centers for Medicare and Medicaid Services estimates that approximately 83 to 90 percent of eligible providers will not qualify for participation in an Advanced Alternative Payment Model and therefore must participate in the Merit-Based Incentive Payment System program. The Merit-Based Incentive Payment System path replaces existing quality-reporting programs and adds several new measures to evaluate providers using four categories of data: (1) quality, (2) cost/resource use, (3) improvement activities, and (4) advancing care information. These categories will be combined to calculate a weighted composite score for each provider or provider group. Composite Merit-Based Incentive Payment System scores based on 2017 performance data will be used to adjust reimbursed payment in 2019. In this article, the authors provide relevant background for understanding value-based provider performance measurement. The authors also discuss Merit-Based Incentive Payment System reporting requirements and scoring methodology to provide plastic surgeons with the necessary information to critically evaluate their own practice capabilities in the context of current performance metrics under the Quality Payment Program.

  11. Cost-effectiveness of continuation maintenance pemetrexed after cisplatin and pemetrexed chemotherapy for advanced nonsquamous non-small-cell lung cancer: estimates from the perspective of the Chinese health care system.

    PubMed

    Zeng, Xiaohui; Peng, Liubao; Li, Jianhe; Chen, Gannong; Tan, Chongqing; Wang, Siying; Wan, Xiaomin; Ouyang, Lihui; Zhao, Ziying

    2013-01-01

    Continuation maintenance treatment with pemetrexed is approved by current clinical guidelines as a category 2A recommendation after induction therapy with cisplatin and pemetrexed chemotherapy (CP strategy) for patients with advanced nonsquamous non-small-cell lung cancer (NSCLC). However, the cost-effectiveness of the treatment remains unclear. We completed a trial-based assessment, from the perspective of the Chinese health care system, of the cost-effectiveness of maintenance pemetrexed treatment after a CP strategy for patients with advanced nonsquamous NSCLC. A Markov model was developed to estimate costs and benefits. It was based on a clinical trial that compared continuation maintenance pemetrexed therapy plus best supportive care (BSC) versus placebo plus BSC after a CP strategy for advanced nonsquamous NSCLC. Sensitivity analyses were conducted to assess the stability of the model. The model base case analysis suggested that continuation maintenance pemetrexed therapy after a CP strategy would increase benefits in a 1-, 2-, 5-, or 10-year time horizon, with incremental costs of $183,589.06, $126,353.16, $124,766.68, and $124,793.12 per quality-adjusted life-year gained, respectively. The most sensitive influential variable in the cost-effectiveness analysis was the utility of the progression-free survival state, followed by proportion of patients with postdiscontinuation therapy in both arms, proportion of BSC costs for PFS versus progressed survival state, and cost of pemetrexed. Probabilistic sensitivity analysis indicated that the cost-effective probability of adding continuation maintenance pemetrexed therapy to BSC was zero. One-way and probabilistic sensitivity analyses revealed that the Markov model was robust. Continuation maintenance of pemetrexed after a CP strategy for patients with advanced nonsquamous NSCLC is not cost-effective based on a recent clinical trial. Decreasing the price or adjusting the dosage of pemetrexed may be a better option for meeting the treatment demands of Chinese patients. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  12. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  13. Advanced Small Modular Reactor Economics Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less

  14. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy

    PubMed Central

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-01-01

    Objective This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. Design We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Results Advanced colorectal neoplasia was detected in 2544 of the 35 918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7–8. Conclusions Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. PMID:24385598

  15. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy.

    PubMed

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-07-01

    This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Advanced colorectal neoplasia was detected in 2544 of the 35,918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7-8. Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Advanced Control Considerations for Turbofan Engine Design

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  17. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts

    Treesearch

    M. T. Kiefer; S. Zhong; W. E. Heilman; J. J. Charney; X. Bian

    2013-01-01

    Efforts to develop a canopy flow modeling system based on the Advanced Regional Prediction System (ARPS) model are discussed. The standard version of ARPS is modified to account for the effect of drag forces on mean and turbulent flow through a vegetation canopy, via production and sink terms in the momentum and subgrid-scale turbulent kinetic energy (TKE) equations....

  18. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  19. Advance Preparation in Task-Switching: Converging Evidence from Behavioral, Brain Activation, and Model-Based Approaches

    PubMed Central

    Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.

    2010-01-01

    Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196

  20. Advances in modeling soil erosion after disturbance on rangelands

    USDA-ARS?s Scientific Manuscript database

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  1. Leveraging Small Aquarium Fishes to Advance Understanding of Environmentally Influenced Human Disorders and Diseases

    EPA Science Inventory

    Small aquarium fishes provide a model organism that recapitulates the development, physiology and specific disease processes present in humans without the many limitations of rodent-based models currently in use. Fish models offer advantages in cost, rapid life-cycles, and extern...

  2. Adaptive Modeling Language and Its Derivatives

    NASA Technical Reports Server (NTRS)

    Chemaly, Adel

    2006-01-01

    Adaptive Modeling Language (AML) is the underlying language of an object-oriented, multidisciplinary, knowledge-based engineering framework. AML offers an advanced modeling paradigm with an open architecture, enabling the automation of the entire product development cycle, integrating product configuration, design, analysis, visualization, production planning, inspection, and cost estimation.

  3. Test Platforms for Model-Based Flight Research

    NASA Astrophysics Data System (ADS)

    Dorobantu, Andrei

    Demonstrating the reliability of flight control algorithms is critical to integrating unmanned aircraft systems into the civilian airspace. For many potential applications, design and certification of these algorithms will rely heavily on mathematical models of the aircraft dynamics. Therefore, the aerospace community must develop flight test platforms to support the advancement of model-based techniques. The University of Minnesota has developed a test platform dedicated to model-based flight research for unmanned aircraft systems. This thesis provides an overview of the test platform and its research activities in the areas of system identification, model validation, and closed-loop control for small unmanned aircraft.

  4. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  5. Recent advances in mathematical modeling of developmental abnormalities using mechanistic information.

    PubMed

    Kavlock, R J

    1997-01-01

    During the last several years, significant changes in the risk assessment process for developmental toxicity of environmental contaminants have begun to emerge. The first of these changes is the development and beginning use of statistically based dose-response models [the benchmark dose (BMD) approach] that better utilize data derived from existing testing approaches. Accompanying this change is the greater emphasis placed on understanding and using mechanistic information to yield more accurate, reliable, and less uncertain risk assessments. The next stage in the evolution of risk assessment will be the use of biologically based dose-response (BBDR) models that begin to build into the statistically based models factors related to the underlying kinetic, biochemical, and/or physiologic processes perturbed by a toxicant. Such models are now emerging from several research laboratories. The introduction of quantitative models and the incorporation of biologic information into them has pointed to the need for even more sophisticated modifications for which we offer the term embryologically based dose-response (EBDR) models. Because these models would be based upon the understanding of normal morphogenesis, they represent a quantum leap in our thinking, but their complexity presents daunting challenges both to the developmental biologist and the developmental toxicologist. Implementation of these models will require extensive communication between developmental toxicologists, molecular embryologists, and biomathematicians. The remarkable progress in the understanding of mammalian embryonic development at the molecular level that has occurred over the last decade combined with advances in computing power and computational models should eventually enable these as yet hypothetical models to be brought into use.

  6. Aquatic models, genomics and chemical risk management.

    PubMed

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less

  8. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    ERIC Educational Resources Information Center

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  9. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    NASA Astrophysics Data System (ADS)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  10. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure themore » safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.« less

  11. On modelling the pressure-strain correlations in wall bounded flows

    NASA Technical Reports Server (NTRS)

    Peltier, L. J.; Biringen, S.

    1990-01-01

    Turbulence models for the pressure-strain term of the Reynolds-stress equations in the vicinity of a moving wall are evaluated for a high Reynolds number flow using decaying grid turbulence as a model problem. The data of Thomas and Hancock are used as a base for evaluating the different turbulence models. In particular, the Rotta model for return-to-isotropy is evaluated both in its inclusion into the Reynolds-stress equation model and in comparison to a nonlinear model advanced by Sarkar and Speziale. Further, models for the wall correction to the transfer term advanced by Launder et al., Shir, and Shih and Lumley are compared. Initial data using the decaying grid turbulence experiment as a base suggests that the coefficients proposed for these models are high perhaps by as much as an order of magnitude. The Shih and Lumley model which satisfies realizability constraints, in particular, seems to hold promise in adequately modeling the Reynolds stress components of this flow. Extensions of this work are to include testing the homogeneous transfer model by Shih and Lumley and the testing of the wall transfer models using their proposed coefficients and the coefficients chosen from this work in a flow with mean shear component.

  12. Arranging ISO 13606 archetypes into a knowledge base using UML connectors.

    PubMed

    Kopanitsa, Georgy

    2014-01-01

    To enable the efficient reuse of standard based medical data we propose to develop a higher-level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analysed for their ability to be applied in the implementation of a higher-level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.

  13. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  14. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

    NASA Astrophysics Data System (ADS)

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-11-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  15. Model-based design of experiments for cellular processes.

    PubMed

    Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E

    2013-01-01

    Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.

  16. An Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based Behavioral Model: Phase 2

    DTIC Science & Technology

    2013-11-18

    for each valid interface between the systems. The factor is proportional to the count of feasible interfaces in the meta-architecture framework... proportional to the square root of the sector area being covered by each type of system, plus some time for transmitting data to, and double checking by, the...22] J.-H. Ahn, "An Archietcture Description method for Acknowledged System of Systems based on Federated Architeture ," in Advanced Science and

  17. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of decision making versus advance science, are noted. It is argued that, just as no point forecast is complete without an estimate of its accuracy, no model-based probability forecast is complete without an estimate of its own irrelevance. The same nonlinearities that made the electronic computer so valuable links the selection and assimilation of observations, the formation of ensembles, the evolution of models, the casting of model simulations back into observables, and the presentation of this information to those who use it to take action or to advance science. Timescales of interest exceed the lifetime of a climate model and the career of a climate scientist, disarming the trichotomy that lead to swift advances in weather forecasting. Providing credible, informative climate services is a more difficult task. In this context, the value of comparing the forecasts of simulation models not only with each other but also with the performance of simple empirical models, whenever possible, is stressed. The credibility of meteorology is based on its ability to forecast and explain the weather. The credibility of climatology will always be based on flimsier stuff. Solid insights of climate science may be obscured if the severe limits on our ability to see the details of the future even probabilistically are not communicated clearly.

  18. Application of dynamic traffic assignment to advanced managed lane modeling.

    DOT National Transportation Integrated Search

    2013-11-01

    In this study, a demand estimation framework is developed for assessing the managed lane (ML) : strategies by utilizing dynamic traffic assignment (DTA) modeling, instead of the traditional : approaches that are based on the static traffic assignment...

  19. Reassessing the Economic Value of Advanced Level Mathematics

    ERIC Educational Resources Information Center

    Adkins, Michael; Noyes, Andrew

    2016-01-01

    In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium…

  20. The "medication interest model": an integrative clinical interviewing approach for improving medication adherence-part 2: implications for teaching and research.

    PubMed

    Shea, Shawn Christopher

    2009-01-01

    Over the past several decades, exciting advances have been made in the art and science of teaching clinical interviewing, which are supported by an ever-growing evidence base documenting their effectiveness. In this second article in a 2-part series, the training and research implications of an innovative approach to improving medication adherence based on these educational advances--the medication interest model (MIM)--are described. The objective is to provide an "insider's view" of how to creatively teach the MIM to case managers, as well as design state-of-the-art courses and research platforms dedicated to improving medication adherence through improved clinical interviewing skills in both nursing and medical student education. The teaching and research design concepts are applicable to all primary care settings as well as specialty areas from endocrinology and cardiology to psychiatry. Evidence-based advances in the teaching of clinical interviewing skills such as response-mode research, facilic supervision, microtraining, and macrotraining lend a distinctive quality and integrative power to the MIM. The model delineates several new platforms for training and research regarding the enhancement of medication adherence including an approach for collecting individual interviewing techniques into manageable "learning modules" amenable to competency evaluation and potential certification.

  1. Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications

    NASA Astrophysics Data System (ADS)

    Clements, Isaac P.; Millard, Daniel C.; Nicolini, Anthony M.; Preyer, Amanda J.; Grier, Robert; Heckerling, Andrew; Blum, Richard A.; Tyler, Phillip; McSweeney, K. M.; Lu, Yi-Fan; Hall, Diana; Ross, James D.

    2016-03-01

    Microelectrode array (MEA) technology enables advanced drug screening and "disease-in-a-dish" modeling by measuring the electrical activity of cultured networks of neural or cardiac cells. Recent developments in human stem cell technologies, advancements in genetic models, and regulatory initiatives for drug screening have increased the demand for MEA-based assays. In response, Axion Biosystems previously developed a multiwell MEA platform, providing up to 96 MEA culture wells arrayed into a standard microplate format. Multiwell MEA-based assays would be further enhanced by optogenetic stimulation, which enables selective excitation and inhibition of targeted cell types. This capability for selective control over cell culture states would allow finer pacing and probing of cell networks for more reliable and complete characterization of complex network dynamics. Here we describe a system for independent optogenetic stimulation of each well of a 48-well MEA plate. The system enables finely graded control of light delivery during simultaneous recording of network activity in each well. Using human induced pluripotent stem cell (hiPSC) derived cardiomyocytes and rodent primary neuronal cultures, we demonstrate high channel-count light-based excitation and suppression in several proof-of-concept experimental models. Our findings demonstrate advantages of combining multiwell optical stimulation and MEA recording for applications including cardiac safety screening, neural toxicity assessment, and advanced characterization of complex neuronal diseases.

  2. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  3. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, François; Bonnay, Patrick; Alamir, Mazen

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less

  4. Testing and Implementation of Advanced Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1997-01-01

    A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.

  5. Bridging the divide: a model-data approach to Polar and Alpine microbiology.

    PubMed

    Bradley, James A; Anesio, Alexandre M; Arndt, Sandra

    2016-03-01

    Advances in microbial ecology in the cryosphere continue to be driven by empirical approaches including field sampling and laboratory-based analyses. Although mathematical models are commonly used to investigate the physical dynamics of Polar and Alpine regions, they are rarely applied in microbial studies. Yet integrating modelling approaches with ongoing observational and laboratory-based work is ideally suited to Polar and Alpine microbial ecosystems given their harsh environmental and biogeochemical characteristics, simple trophic structures, distinct seasonality, often difficult accessibility, geographical expansiveness and susceptibility to accelerated climate changes. In this opinion paper, we explain how mathematical modelling ideally complements field and laboratory-based analyses. We thus argue that mathematical modelling is a powerful tool for the investigation of these extreme environments and that fully integrated, interdisciplinary model-data approaches could help the Polar and Alpine microbiology community address some of the great research challenges of the 21st century (e.g. assessing global significance and response to climate change). However, a better integration of field and laboratory work with model design and calibration/validation, as well as a stronger focus on quantitative information is required to advance models that can be used to make predictions and upscale processes and fluxes beyond what can be captured by observations alone. © FEMS 2016.

  6. Bridging the divide: a model-data approach to Polar and Alpine microbiology

    PubMed Central

    Bradley, James A.; Anesio, Alexandre M.; Arndt, Sandra

    2016-01-01

    Advances in microbial ecology in the cryosphere continue to be driven by empirical approaches including field sampling and laboratory-based analyses. Although mathematical models are commonly used to investigate the physical dynamics of Polar and Alpine regions, they are rarely applied in microbial studies. Yet integrating modelling approaches with ongoing observational and laboratory-based work is ideally suited to Polar and Alpine microbial ecosystems given their harsh environmental and biogeochemical characteristics, simple trophic structures, distinct seasonality, often difficult accessibility, geographical expansiveness and susceptibility to accelerated climate changes. In this opinion paper, we explain how mathematical modelling ideally complements field and laboratory-based analyses. We thus argue that mathematical modelling is a powerful tool for the investigation of these extreme environments and that fully integrated, interdisciplinary model-data approaches could help the Polar and Alpine microbiology community address some of the great research challenges of the 21st century (e.g. assessing global significance and response to climate change). However, a better integration of field and laboratory work with model design and calibration/validation, as well as a stronger focus on quantitative information is required to advance models that can be used to make predictions and upscale processes and fluxes beyond what can be captured by observations alone. PMID:26832206

  7. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  8. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    USGS Publications Warehouse

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  9. An interdisciplinary, team-based design for an oral and maxillofacial radiology course for postdoctoral dental students.

    PubMed

    Ramesh, Aruna; Ganguly, Rumpa; Qualters, Donna M

    2014-09-01

    This article describes the transition of an oral and maxillofacial radiology course from a traditional lecture format to an interactive case-based, team-based, interdisciplinary, and intraprofessional learning model in advanced dental education. Forty-four postdoctoral dental students were enrolled in the course over a twelve-week period in the fall semester 2012. The class consisted of U.S.- and foreign-trained dentists enrolled in advanced education programs in various dental disciplines. The course faculty preassigned interdisciplinary teams with four or five students in each. The class met once a week for an hour. Ten of the twelve sessions consisted of a team presentation, individual quiz, team quiz, and case discussion. Each member of a team completed peer evaluation of other team members during weeks six and twelve of the course. The final course grade was a composite of individual and team quiz grades, team presentation, and peer evaluation grades. The overall class average was 90.43. Ninety-five percent of the class (42/44) had total team grades equal to or greater than total individual quiz grades. The objective of creating a new case-based, team-based, interdisciplinary, intraprofessional learning model in advanced dental education was achieved, and the initial student perception of the new format was positive.

  10. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.

    PubMed

    Hong, Siang-Jie; Chang, Feng-Ming; Chou, Tung-He; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2011-06-07

    Contact angle hysteresis of a sessile drop on a substrate consists of continuous invasion of liquid phase with the advancing angle (θ(a)) and contact line pinning of liquid phase retreat until the receding angle (θ(r)) is reached. Receding pinning is generally attributed to localized defects that are more wettable than the rest of the surface. However, the defect model cannot explain advancing pinning of liquid phase invasion driven by a deflating bubble and continuous retreat of liquid phase driven by the inflating bubble. A simple thermodynamic model based on adhesion hysteresis is proposed to explain anomalous contact angle hysteresis of a captive bubble quantitatively. The adhesion model involves two solid–liquid interfacial tensions (γ(sl) > γ(sl)′). Young’s equation with γ(sl) gives the advancing angle θ(a) while that with γ(sl)′ due to surface rearrangement yields the receding angle θ(r). Our analytical analysis indicates that contact line pinning represents frustration in surface free energy, and the equilibrium shape corresponds to a nondifferential minimum instead of a local minimum. On the basis of our thermodynamic model, Surface Evolver simulations are performed to reproduce both advancing and receding behavior associated with a captive bubble on the acrylic glass.

  11. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  12. Modeling and MBL: Software Tools for Science.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…

  13. A BBDR-HPT Axis Model for the Pregnant Rat and Fetus: Evaluation of Iodide Deficiency

    EPA Science Inventory

    A biologically based dose response (BBDR) model for the hypothalamic-pituitarythyroid (HPT) axis for the pregnant rat and fetus is being developed to advance understanding of thyroid hormone disruptions and developmental neurotoxicity (DNT). The model for the pregnant rat and fet...

  14. A BBDR-HPT Axis Model for the Lactating Rat and Nursing Pup: Evaluation of Iodide Deficiency

    EPA Science Inventory

    A biologically based dose response (BBDR) model for the lactating rat and pup hypothalamic-pituitary-thyroid (HPT) axis is being developed to advance understanding of thyroid hormone disruptions and developmental neurotoxicity (DNT). The model for the lactating rat and pup quanti...

  15. Program Assessment: Getting to a Practical How-To Model

    ERIC Educational Resources Information Center

    Gardiner, Lorraine R.; Corbitt, Gail; Adams, Steven J.

    2010-01-01

    The Association to Advance Collegiate Schools of Business (AACSB) International's assurance of learning (AoL) standards require that schools develop a sophisticated continuous-improvement process. The authors review various assessment models and develop a practical, 6-step AoL model based on the literature and the authors' AoL-implementation…

  16. Microgravity

    NASA Image and Video Library

    1998-10-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  17. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  18. Advanced instrumentation for aeronautical propulsion research

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1986-01-01

    The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.

  19. Using explanatory crop models to develop simple tools for Advanced Life Support system studies

    NASA Technical Reports Server (NTRS)

    Cavazzoni, J.

    2004-01-01

    System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Improving College and Career Readiness through Challenge-Based Learning

    ERIC Educational Resources Information Center

    Shuptrine, Carl

    2013-01-01

    High school students in an Advanced Video class addressed the challenge of increasing community awareness. Students followed a challenge-based learning model developing guiding questions and activities to determine solutions for implementation. Literature supported the use of project-based learning that fostered partnerships outside of the…

  1. Elements of Network-Based Assessment

    ERIC Educational Resources Information Center

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  2. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward

    2014-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and compared against each other. Results show both models can be tuned to achieve results within 7% of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  3. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2015-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  4. Advanced RF Sources Based on Novel Nonlinear Transmission Lines

    DTIC Science & Technology

    2015-01-26

    microwave (HPM) sources. It is also critical to thin film devices and integrated circuits, carbon nanotube based cathodes and interconnects, field emitters ... line model (TLM) in Fig. 6b. Our model is compared with TLM, shown in Fig. 7a. When the interface resistance rc is small, TLM becomes inaccurate...due to current crowding. Fig. 6. (a) Electrical contact including specific interfacial resistivity ρc, and (b) its transmission line model

  5. Evaluating a Teaching Module on Ethically Responsible Evidence-Based Practice Decision Making in an Advanced Micro Practice Course

    ERIC Educational Resources Information Center

    Wong, Rose

    2017-01-01

    This article adds to the growing body of literature on the use of evidence-based practice (EBP) in social work. Specifically, it examines a 9-hour EBP educational model designed to prepare MSW students for appropriate decision-making strategies in working with multicultural client populations. The model places emphasis on identification and…

  6. An Integrated Textbook, Video, and Software Environment for Novice and Expert Prolog Programmers. Technical Report No. 23.

    ERIC Educational Resources Information Center

    Eisenstadt, Marc; Brayshaw, Mike

    This paper describes a Prolog execution model which serves as the uniform basis of textbook material, video-based teaching material, and an advanced graphical user interface for Prolog programmers. The model, based upon an augmented AND/OR tree representation of Prolog programs, uses an enriched "status box" in place of the traditional…

  7. Latent component-based gear tooth fault detection filter using advanced parametric modeling

    NASA Astrophysics Data System (ADS)

    Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.

    2009-10-01

    In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.

  8. Healthcare professionals' response to cachexia in advanced cancer: a qualitative study.

    PubMed

    Millar, Claire; Reid, Joanne; Porter, Sam

    2013-11-01

    To explore healthcare professionals' experience, understanding, and perception of the needs of patients with cachexia in advanced cancer. A qualitative approach based on symbolic interactionism. A regional cancer center in a large teaching hospital in the United Kingdom. 34 healthcare professionals who had experience providing care to patients with cachexia in advanced cancer. Data collection consisted of two phases: focus group and semistructured interviews. Interviews were digitally recorded and transcribed verbatim for analysis. This article reports on findings from the second phase of data collection. Analysis revealed that professional approaches to cachexia were influenced by three overarching and interthinking themes: knowledge, culture, and resources. Healthcare professionals commonly recognized the impact of the syndrome; however, for nonpalliative healthcare professionals, a culture of avoidance and an overreliance on the biomedical model of care had considerable influence on the management of cachexia in patients with advanced cancer. Cachexia management in patients with advanced cancer can be difficult and is directed by a variable combination of the influence of knowledge, culture of the clinical area, and available resources. Distinct differences exist in the management of cachexia among palliative and nonpalliative care professionals. This study presented a multiprofessional perspective on the management of cachexia in patients with advanced cancer and revealed that cachexia is a complex and challenging syndrome that needs to be addressed from a holistic model of care. Cachexia management in patients with advanced cancer is complex and challenging and is directed by a combination of variables. An overreliance on the biomedical model of health and illness occurs in the management of cachexia in patients with advanced cancer. Cachexia needs to be addressed from a holistic model of care to reflect the multidimensional needs of patients and their families.

  9. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  10. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic.

    PubMed

    O'Bryant, Sid E; Mielke, Michelle M; Rissman, Robert A; Lista, Simone; Vanderstichele, Hugo; Zetterberg, Henrik; Lewczuk, Piotr; Posner, Holly; Hall, James; Johnson, Leigh; Fong, Yiu-Lian; Luthman, Johan; Jeromin, Andreas; Batrla-Utermann, Richard; Villarreal, Alcibiades; Britton, Gabrielle; Snyder, Peter J; Henriksen, Kim; Grammas, Paula; Gupta, Veer; Martins, Ralph; Hampel, Harald

    2017-01-01

    The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state of the art. In addition, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and toward clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional handoff model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Blood Based Biomarkers in Alzheimer Disease: Current State of the Science and a Novel Collaborative Paradigm for Advancing from Discovery to Clinic

    PubMed Central

    O’Bryant, Sid E.; Mielke, Michelle M.; Rissman, Robert A.; Lista, Simone; Vanderstichele, Hugo; Zetterberg, Henrik; Lewczuk, Piotr; Posner, Holly; Hall, James; Johnson, Leigh; Fong, Yiu-Lian; Luthman, Johan; Jeromin, Andreas; Batrla-Utermann, Richard; Villarreal, Alcibiades; Britton, Gabrielle; Snyder, Peter J.; Henriksen, Kim; Grammas, Paula; Gupta, Veer; Martins, Ralph; Hampel, Harald

    2016-01-01

    The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer’s disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility as well as an unclear path for moving basic discovery towards clinical utilization. Here we reviewed the recent literature on blood-based biomarkers in AD to provide a current state-of-the-art. Additionally, a collaborative model is proposed that leverages academic and industry strengths to facilitate the field in moving past discovery only work and towards clinical use. Key resources are provided. This new public-private partnership model is intended to circumvent the traditional hand-off model and provide a clear and useful paradigm for the advancement of biomarker science in AD and other neurodegenerative diseases. PMID:27870940

  12. Advances in the spatially distributed ages-w model: parallel computation, java connection framework (JCF) integration, and streamflow/nitrogen dynamics assessment

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...

  13. [The third dimension tomography versus cranial X-ray cephalometry to predict maxilla advance by distraction in hypoplastic maxilla].

    PubMed

    Rosas-Muñoz, Arturo; Soriano-Padilla, Fernando; Rendón-Macías, Mario Enrique

    2010-01-01

    the osteogenic distraction is the treatment for the correction of the hypoplastic maxilla secondary to the repair of a cleft lip-palate. Its planning is based on articulated models. Our objective was to describe the accuracy of three-dimensional Cephalometry (CT3D) for projecting jaw displacement. three patients with hypoplastic maxilla. Interventions estimation of the advance required of lateral maxilla through Cephalometry of skull (CLC), CT3D and an articulated model (gold standard). Two months after distraction finalized the advance predicted was compared. the error of the advance projection in each patient was smaller with the CT3D versus CLC (+1, +1 and +1 mm versus -10, -14 and -9mm). Corrections post-distraction were of +25 %, +26 % and +38.4 % on the programmed one. CT3D predicted better the correction (+19 %, +10.8 %, +33.4 % versus CLC: -50 %; -60.8 % and -34.6 %). Chewing alterations were not seen in any patient. the planning of the necessary advance for distraction in patients with hypoplastic maxilla by CT3D can shorten the time of studies and should be consider as next to the projection of articulated model.

  14. Cost-utility analysis of an advanced pressure ulcer management protocol followed by trained wound, ostomy, and continence nurses.

    PubMed

    Kaitani, Toshiko; Nakagami, Gojiro; Iizaka, Shinji; Fukuda, Takashi; Oe, Makoto; Igarashi, Ataru; Mori, Taketoshi; Takemura, Yukie; Mizokami, Yuko; Sugama, Junko; Sanada, Hiromi

    2015-01-01

    The high prevalence of severe pressure ulcers (PUs) is an important issue that requires to be highlighted in Japan. In a previous study, we devised an advanced PU management protocol to enable early detection of and intervention for deep tissue injury and critical colonization. This protocol was effective for preventing more severe PUs. The present study aimed to compare the cost-effectiveness of the care provided using an advanced PU management protocol, from a medical provider's perspective, implemented by trained wound, ostomy, and continence nurses (WOCNs), with that of conventional care provided by a control group of WOCNs. A Markov model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness ratio of advanced PU management compared with conventional care. The number of quality-adjusted life-years gained, and the cost in Japanese yen (¥) ($US1 = ¥120; 2015) was used as the outcome. Model inputs for clinical probabilities and related costs were based on our previous clinical trial results. Univariate sensitivity analyses were performed. Furthermore, a Bayesian multivariate probability sensitivity analysis was performed using Monte Carlo simulations with advanced PU management. Two different models were created for initial cohort distribution. For both models, the expected effectiveness for the intervention group using advanced PU management techniques was high, with a low expected cost value. The sensitivity analyses suggested that the results were robust. Intervention by WOCNs using advanced PU management techniques was more effective and cost-effective than conventional care. © 2015 by the Wound Healing Society.

  15. [Research advances in secondary development of Chinese patent medicines based on quality by design concept].

    PubMed

    Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin

    2017-03-01

    Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.

  16. MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Bierden, Paul; Cornelissen, S.; Ryan, P.

    2014-01-01

    In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.

  17. Introduction: Special issue on advances in topobathymetric mapping, models, and applications

    USGS Publications Warehouse

    Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne

    2016-01-01

    Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.

  18. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  19. A randomized, controlled trial of in situ pediatric advanced life support recertification ("pediatric advanced life support reconstructed") compared with standard pediatric advanced life support recertification for ICU frontline providers*.

    PubMed

    Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira

    2014-03-01

    Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support reconstructed (pre, 33.3 ± 4.5 vs post, 35.9 ± 5.0; p = 0.008) and standard Pediatric Advanced Life Support (pre, 30.5 ± 4.7 vs post, 33.6 ± 4.9; p = 0.02), with no significant difference of improvement between both groups (p = 0.49). For PICU-based nurses and respiratory therapists, simulation-based "Pediatric Advanced Life Support-reconstructed" in situ training is feasible and more effective than standard Pediatric Advanced Life Support recertification training for skill performance. Both Pediatric Advanced Life Support recertification training courses improved behavioral performance.

  20. Economic outcomes of maintenance gefitinib for locally advanced/metastatic non-small-cell lung cancer with unknown EGFR mutations: a semi-Markov model analysis.

    PubMed

    Zeng, Xiaohui; Li, Jianhe; Peng, Liubao; Wang, Yunhua; Tan, Chongqing; Chen, Gannong; Wan, Xiaomin; Lu, Qiong; Yi, Lidan

    2014-01-01

    Maintenance gefitinib significantly prolonged progression-free survival (PFS) compared with placebo in patients from eastern Asian with locally advanced/metastatic non-small-cell lung cancer (NSCLC) after four chemotherapeutic cycles (21 days per cycle) of first-line platinum-based combination chemotherapy without disease progression. The objective of the current study was to evaluate the cost-effectiveness of maintenance gefitinib therapy after four chemotherapeutic cycle's stand first-line platinum-based chemotherapy for patients with locally advanced or metastatic NSCLC with unknown EGFR mutations, from a Chinese health care system perspective. A semi-Markov model was designed to evaluate cost-effectiveness of the maintenance gefitinib treatment. Two-parametric Weibull and Log-logistic distribution were fitted to PFS and overall survival curves independently. One-way and probabilistic sensitivity analyses were conducted to assess the stability of the model designed. The model base-case analysis suggested that maintenance gefitinib would increase benefits in a 1, 3, 6 or 10-year time horizon, with incremental $184,829, $19,214, $19,328, and $21,308 per quality-adjusted life-year (QALY) gained, respectively. The most sensitive influential variable in the cost-effectiveness analysis was utility of PFS plus rash, followed by utility of PFS plus diarrhoea, utility of progressed disease, price of gefitinib, cost of follow-up treatment in progressed survival state, and utility of PFS on oral therapy. The price of gefitinib is the most significant parameter that could reduce the incremental cost per QALY. Probabilistic sensitivity analysis indicated that the cost-effective probability of maintenance gefitinib was zero under the willingness-to-pay (WTP) threshold of $16,349 (3 × per-capita gross domestic product of China). The sensitivity analyses all suggested that the model was robust. Maintenance gefitinib following first-line platinum-based chemotherapy for patients with locally advanced/metastatic NSCLC with unknown EGFR mutations is not cost-effective. Decreasing the price of gefitinib may be a preferential choice for meeting widely treatment demands in China.

  1. Advance directives: the clinical nurse specialist as a change agent.

    PubMed

    Meehan, Karen Anne

    2009-01-01

    The purpose of this article is to describe the impact the clinical nurse specialist (CNS) has on the advance directive process within the cardiac surgery patient population. As a change agent, the CNS needs to be able to increase the number of advance directives obtained and increase the provision of dignified, self-directed, quality patient care. With requirements from The Joint Commission and the Patient Self-determination Act, the change in process must take place to ensure that healthcare professionals are doing all they can do to carry out a patient's wishes. The 6-Source Influencer Model is applied to a case study to illustrate the role of the CNS as a change agent. Following this model, the CNS can facilitate lasting institutional change in the advance directive process. Based on the example, it is possible that a CNS can act as a change agent for other patient populations within the healthcare setting.

  2. Learning the Rhythm of the Seasons in the Face of Global Change: Phenological Research in the 21st Century

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey T.; Richardson, Andrew D.; Knapp, Alan K.; Fisher, Jeremy I.; Graham, Eric A.; Abatzoglou, John; Wilson, Bruce E.; Breshears, David D.; Hanebry, Geoffrey M.; Hanes, Jonathan M.; hide

    2008-01-01

    Phenology is the study of recurring life-cycle events, of which classic examples include flowering by plants as well as animal migration. Phenological responses are increasingly relevant for addressing applied environmental issues. Yet, challenges remain with respect to spanning scales of observation, integrating observations across taxa, and modeling phenological sequences to enable ecological forecasts in light of future climate change. Recent advances that are helping to address these challenges include refined landscape-scale phenology estimates from satellite data, advanced instrument-based approaches for field measurements, and new cyber-infrastructure for archiving and distribution of products. These advances are aiding in diverse areas including modeling land-surface exchange, evaluating climate-phenology relationships, and aiding land management decisions.

  3. Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources

    NASA Astrophysics Data System (ADS)

    Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.

    2015-12-01

    We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.

  4. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  5. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  6. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  7. The relevance of Newton's laws and selected principles of physics to dance techniques: Theory and application

    NASA Astrophysics Data System (ADS)

    Lei, Li

    1999-07-01

    In this study the researcher develops and presents a new model, founded on the laws of physics, for analyzing dance technique. Based on a pilot study of four advanced dance techniques, she creates a new model for diagnosing, analyzing and describing basic, intermediate and advanced dance techniques. The name for this model is ``PED,'' which stands for Physics of Expressive Dance. The research design consists of five phases: (1) Conduct a pilot study to analyze several advanced dance techniques chosen from Chinese dance, modem dance, and ballet; (2) Based on learning obtained from the pilot study, create the PED Model for analyzing dance technique; (3) Apply this model to eight categories of dance technique; (4) Select two advanced dance techniques from each category and analyze these sample techniques to demonstrate how the model works; (5) Develop an evaluation framework and use it to evaluate the effectiveness of the model, taking into account both scientific and artistic aspects of dance training. In this study the researcher presents new solutions to three problems highly relevant to dance education: (1) Dancers attempting to learn difficult movements often fail because they are unaware of physics laws; (2) Even those who do master difficult movements can suffer injury due to incorrect training methods; (3) Even the best dancers can waste time learning by trial and error, without scientific instruction. In addition, the researcher discusses how the application of the PED model can benefit dancers, allowing them to avoid inefficient and ineffective movements and freeing them to focus on the artistic expression of dance performance. This study is unique, presenting the first comprehensive system for analyzing dance techniques in terms of physics laws. The results of this study are useful, allowing a new level of awareness about dance techniques that dance professionals can utilize for more effective and efficient teaching and learning. The approach utilized in this study is universal, and can be applied to any dance movement and to any dance style.

  8. Kantian Model of Moral Development.

    ERIC Educational Resources Information Center

    Yun, Hyun Sub

    A Kantian model of moral development already tested on adolescents was further tested on normal and delinquent Korean adults. The model, based on the philosophy of Kant, starts its causality from the self, moves from the self to parental images, advances from parental images to duty and legality, and moves from duty and legality to a moral…

  9. Towards a Semantic E-Learning Theory by Using a Modelling Approach

    ERIC Educational Resources Information Center

    Yli-Luoma, Pertti V. J.; Naeve, Ambjorn

    2006-01-01

    In the present study, a semantic perspective on e-learning theory is advanced and a modelling approach is used. This modelling approach towards the new learning theory is based on the four SECI phases of knowledge conversion: Socialisation, Externalisation, Combination and Internalisation, introduced by Nonaka in 1994, and involving two levels of…

  10. 42 CFR § 414.1420 - Other payer advanced APMs.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1420 Other payer... payment by the APM Entity to the payer. (2) Medicaid Medical Home Model financial risk standard. For an... APM benchmark, except for episode payment models, for which it is defined as the episode target price...

  11. PARADIGM: The Partnership for Advancing Interdisciplinary Global Modeling Annual Report - Year 2

    DTIC Science & Technology

    2004-02-01

    case (a) when bacteria are able to regenerate ammonium based upon the composition of the dissolved organic pool. The export is also slightly larger...for diazotrophs and detritus. The addition of diazotrophs and detritus in the model follow the method of Fennel et al. [2002]. Time series of model

  12. Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy

    PubMed Central

    Rose, Peter G.; Java, James; Whitney, Charles W.; Stehman, Frederick B.; Lanciano, Rachelle; Thomas, Gillian M.; DiSilvestro, Paul A.

    2015-01-01

    Purpose To evaluate the prognostic factors in locally advanced cervical cancer limited to the pelvis and develop nomograms for 2-year progression-free survival (PFS), 5-year overall survival (OS), and pelvic recurrence. Patients and Methods We retrospectively reviewed 2,042 patients with locally advanced cervical carcinoma enrolled onto Gynecologic Oncology Group clinical trials of concurrent cisplatin-based chemotherapy and radiotherapy. Nomograms for 2-year PFS, five-year OS, and pelvic recurrence were created as visualizations of Cox proportional hazards regression models. The models were validated by bootstrap-corrected, relatively unbiased estimates of discrimination and calibration. Results Multivariable analysis identified prognostic factors including histology, race/ethnicity, performance status, tumor size, International Federation of Gynecology and Obstetrics stage, tumor grade, pelvic node status, and treatment with concurrent cisplatin-based chemotherapy. PFS, OS, and pelvic recurrence nomograms had bootstrap-corrected concordance indices of 0.62, 0.64, and 0.73, respectively, and were well calibrated. Conclusion Prognostic factors were used to develop nomograms for 2-year PFS, 5-year OS, and pelvic recurrence for locally advanced cervical cancer clinically limited to the pelvis treated with concurrent cisplatin-based chemotherapy and radiotherapy. These nomograms can be used to better estimate individual and collective outcomes. PMID:25732170

  13. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  14. Real-time advanced spinal surgery via visible patient model and augmented reality system.

    PubMed

    Wu, Jing-Ren; Wang, Min-Liang; Liu, Kai-Che; Hu, Ming-Hsien; Lee, Pei-Yuan

    2014-03-01

    This paper presents an advanced augmented reality system for spinal surgery assistance, and develops entry-point guidance prior to vertebroplasty spinal surgery. Based on image-based marker detection and tracking, the proposed camera-projector system superimposes pre-operative 3-D images onto patients. The patients' preoperative 3-D image model is registered by projecting it onto the patient such that the synthetic 3-D model merges with the real patient image, enabling the surgeon to see through the patients' anatomy. The proposed method is much simpler than heavy and computationally challenging navigation systems, and also reduces radiation exposure. The system is experimentally tested on a preoperative 3D model, dummy patient model and animal cadaver model. The feasibility and accuracy of the proposed system is verified on three patients undergoing spinal surgery in the operating theater. The results of these clinical trials are extremely promising, with surgeons reporting favorably on the reduced time of finding a suitable entry point and reduced radiation dose to patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Joint Center for Satellite Data Assimilation Overview and Research Activities

    NASA Astrophysics Data System (ADS)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  16. Status Report on NEAMS System Analysis Module Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.; Fanning, T. H.; Sumner, T.

    2015-12-01

    Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This reportmore » provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.« less

  17. MDA-based EHR application security services.

    PubMed

    Blobel, Bernd; Pharow, Peter

    2004-01-01

    Component-oriented, distributed, virtual EHR systems have to meet enhanced security and privacy requirements. In the context of advanced architectural paradigms such as component-orientation, model-driven, and knowledge-based, standardised security services needed have to be specified and implemented in an integrated way following the same paradigm. This concerns the deployment of formal models, meta-languages, reference models such as the ISO RM-ODP, and development as well as implementation tools. International projects' results presented proceed on that streamline.

  18. Reduction of wafer-edge overlay errors using advanced correction models, optimized for minimal metrology requirements

    NASA Astrophysics Data System (ADS)

    Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon

    2016-03-01

    In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.

  19. Flexible data registration and automation in semiconductor production

    NASA Astrophysics Data System (ADS)

    Dudde, Ralf; Staudt-Fischbach, Peter; Kraemer, Benedict

    1997-08-01

    The need for cost reduction and flexibility in semiconductor production will result in a wider application of computer based automation systems. With the setup of a new and advanced CMOS semiconductor line in the Fraunhofer Institute for Silicon Technology [ISIT, Itzehoe (D)] a new line information system (LIS) was introduced based on an advanced model for the underlying data structure. This data model was implemented into an ORACLE-RDBMS. A cellworks based system (JOSIS) was used for the integration of the production equipment, communication and automated database bookings and information retrievals. During the ramp up of the production line this new system is used for the fab control. The data model and the cellworks based system integration is explained. This system enables an on-line overview of the work in progress in the fab, lot order history and equipment status and history. Based on this figures improved production and cost monitoring and optimization is possible. First examples of the information gained by this system are presented. The modular set-up of the LIS system will allow easy data exchange with additional software tools like scheduler, different fab control systems like PROMIS and accounting systems like SAP. Modifications necessary for the integration of PROMIS are described.

  20. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  2. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.

    PubMed

    Mittal, Rahul; Patel, Amit P; Jhaveri, Vasanti M; Kay, Sae-In S; Debs, Luca H; Parrish, James M; Pan, Debbie R; Nguyen, Desiree; Mittal, Jeenu; Jayant, Rahul Dev

    2018-03-01

    The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.

  3. The Johns Hopkins RTR Consortium: A Collaborative Approach to Advance Translational Science and Standardize Clinical Monitoring of Restorative Transplantation

    DTIC Science & Technology

    2016-10-01

    based Therapy, Large animal models, Allograft, Hand Transplantation ,Face Transplantation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Changes in Approach b. Problems/Delays and Plans for Resolution c. Changes that Impacted Expenditures d. Changes in use or care of vertebrate animals ...Vascularized Composite Allotransplantation Immunoregulation Tolerance Rejection Ischemia Reperfusion Cell based Therapy Large animal models

  4. Using an empirical and rule-based modeling approach to map cause of disturbance in U.S

    Treesearch

    Todd A. Schroeder; Gretchen G. Moisen; Karen Schleeweis; Chris Toney; Warren B. Cohen; Zhiqiang Yang; Elizabeth A. Freeman

    2015-01-01

    Recently completing over a decade of research, the NASA/NACP funded North American Forest Dynamics (NAFD) project has led to several important advancements in the way U.S. forest disturbance dynamics are mapped at regional and continental scales. One major contribution has been the development of an empirical and rule-based modeling approach which addresses two of the...

  5. Sustainability of transport structures - some aspects of the nonlinear reliability assessment

    NASA Astrophysics Data System (ADS)

    Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír

    2017-09-01

    Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.

  6. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  7. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  8. Overview of mechanics of materials branch activities in the computational structures area

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1992-01-01

    Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.

  9. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  10. Knowledge-Based Information Retrieval.

    ERIC Educational Resources Information Center

    Ford, Nigel

    1991-01-01

    Discussion of information retrieval focuses on theoretical and empirical advances in knowledge-based information retrieval. Topics discussed include the use of natural language for queries; the use of expert systems; intelligent tutoring systems; user modeling; the need for evaluation of system effectiveness; and examples of systems, including…

  11. Metal hydride hydrogen compression: recent advances and future prospects

    NASA Astrophysics Data System (ADS)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  12. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGES

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  13. Information Interaction Study for DER and DMS Interoperability

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Lu, Yiming; Lv, Guangxian; Liu, Peng; Chen, Yu; Zhang, Xinhui

    The Common Information Model (CIM) is an abstract data model that can be used to represent the major objects in Distribution Management System (DMS) applications. Because the Common Information Model (CIM) doesn't modeling the Distributed Energy Resources (DERs), it can't meet the requirements of DER operation and management for Distribution Management System (DMS) advanced applications. Modeling of DER were studied based on a system point of view, the article initially proposed a CIM extended information model. By analysis the basic structure of the message interaction between DMS and DER, a bidirectional messaging mapping method based on data exchange was proposed.

  14. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  15. Agent-Based Simulation of Learning Dissemination in a Project-Based Learning Context Considering the Human Aspects

    ERIC Educational Resources Information Center

    Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto

    2018-01-01

    Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…

  16. Global Modeling and Assimilation Office Annual Report and Research Highlights 2011-2012

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    2012-01-01

    Over the last year, the Global Modeling and Assimilation Office (GMAO) has continued to advance our GEOS-5-based systems, updating products for both weather and climate applications. We contributed hindcasts and forecasts to the National Multi-Model Ensemble (NMME) of seasonal forecasts and the suite of decadal predictions to the Coupled Model Intercomparison Project (CMIP5).

  17. Show me the data: advances in multi-model benchmarking, assimilation, and forecasting

    NASA Astrophysics Data System (ADS)

    Dietze, M.; Raiho, A.; Fer, I.; Cowdery, E.; Kooper, R.; Kelly, R.; Shiklomanov, A. N.; Desai, A. R.; Simkins, J.; Gardella, A.; Serbin, S.

    2016-12-01

    Researchers want their data to inform carbon cycle predictions, but there are considerable bottlenecks between data collection and the use of data to calibrate and validate earth system models and inform predictions. This talk highlights recent advancements in the PEcAn project aimed at it making it easier for individual researchers to confront models with their own data: (1) The development of an easily extensible site-scale benchmarking system aimed at ensuring that models capture process rather than just reproducing pattern; (2) Efficient emulator-based Bayesian parameter data assimilation to constrain model parameters; (3) A novel, generalized approach to ensemble data assimilation to estimate carbon pools and fluxes and quantify process error; (4) automated processing and downscaling of CMIP climate scenarios to support forecasts that include driver uncertainty; (5) a large expansion in the number of models supported, with new tools for conducting multi-model and multi-site analyses; and (6) a network-based architecture that allows analyses to be shared with model developers and other collaborators. Application of these methods is illustrated with data across a wide range of time scales, from eddy-covariance to forest inventories to tree rings to paleoecological pollen proxies.

  18. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  19. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruzic, Jamie J; Siegmund, Thomas; Tomar, Vikas

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially availablemore » finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.« less

  20. Progress towards an effective model for FeSe from high-accuracy first-principles quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Busemeyer, Brian; Wagner, Lucas K.

    While the origin of superconductivity in the iron-based materials is still controversial, the proximity of the superconductivity to magnetic order is suggestive that magnetism may be important. Our previous work has suggested that first-principles Diffusion Monte Carlo (FN-DMC) can capture magnetic properties of iron-based superconductors that density functional theory (DFT) misses, but which are consistent with experiment. We report on the progress of efforts to find simple effective models consistent with the FN-DMC description of the low-lying Hilbert space of the iron-based superconductor, FeSe. We utilize a procedure outlined by Changlani et al.[1], which both produces parameter values and indications of whether the model is a good description of the first-principles Hamiltonian. Using this procedure, we evaluate several models of the magnetic part of the Hilbert space found in the literature, as well as the Hubbard model, and a spin-fermion model. We discuss which interaction parameters are important for this material, and how the material-specific properties give rise to these interactions. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award No. FG02-12ER46875, as well as the NSF Graduate Research Fellowship Program.

  1. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  2. Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR

    NASA Technical Reports Server (NTRS)

    Lavalle, M.; Hensley, S.; Simard, M.

    2011-01-01

    We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.

  3. Advanced cogeneration research study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.

    1983-01-01

    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.

  4. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  5. Returning fire to Ozark Highland forest ecosystems: Effects on advance regeneration

    Treesearch

    Daniel C. Dey; George Hartman

    2005-01-01

    In mature forests of the Ozark Highlands, MO, USA, we evaluated fire effects on the survival and growth of tree seedlings and saplings (i.e., advance regeneration), and used this information to develop species-specific models that predict the probability of survival based on initial tree size and number of times burned. A 1000 ha forest area was divided into five units...

  6. Identifying Model-Based Reconfiguration Goals through Functional Deficiencies

    NASA Technical Reports Server (NTRS)

    Benazera, Emmanuel; Trave-Massuyes, Louise

    2004-01-01

    Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.

  7. Wafer plane inspection with soft resist thresholding

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just finishing beta testing with a customer developing advanced node designs.

  8. Advances in the Application of Decision Theory to Test-Based Decision Making.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…

  9. Thermal fatigue durability for advanced propulsion materials

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  10. Advancing adverse outcome pathways for integrated toxicology and regulatory applications

    EPA Science Inventory

    Recent regulatory efforts in many countries have focused on a toxicological pathway-based vision for human health assessments relying on in vitro systems and predictive models to generate the toxicological data needed to evaluate chemical hazard. A pathway-based vision is equally...

  11. A review of GPU-based medical image reconstruction.

    PubMed

    Després, Philippe; Jia, Xun

    2017-10-01

    Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Advanced Pavement Design: Finite Element Modeling for Rigid Pavement Joints, Report II: Model Development

    DOT National Transportation Integrated Search

    1998-03-01

    The contribution of a cement-stabilized base course to the strength of the rigid pavement structure is poorly understood. The objective of this research was to obtain data on the response of the rigid pavement slab-joint-foundation system by conducti...

  13. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  14. Extended Relation Metadata for SCORM-Based Learning Content Management Systems

    ERIC Educational Resources Information Center

    Lu, Eric Jui-Lin; Horng, Gwoboa; Yu, Chia-Ssu; Chou, Ling-Ying

    2010-01-01

    To increase the interoperability and reusability of learning objects, Advanced Distributed Learning Initiative developed a model called Content Aggregation Model (CAM) to describe learning objects and express relationships between learning objects. However, the suggested relations defined in the CAM can only describe structure-oriented…

  15. Advances in soil erosion research: processes, measurement, and modeling

    USDA-ARS?s Scientific Manuscript database

    Soil erosion by the environmental agents of water and wind is a continuing global menace that threatens the agricultural base that sustains our civilization. Members of ASABE have been at the forefront of research to understand erosion processes, measure erosion and related processes, and model very...

  16. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms.

    PubMed

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias; Kechagias, Stergios

    2016-01-01

    Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts.

  17. A smoothed residual based goodness-of-fit statistic for nest-survival models

    Treesearch

    Rodney X. Sturdivant; Jay J. Rotella; Robin E. Russell

    2008-01-01

    Estimating nest success and identifying important factors related to nest-survival rates is an essential goal for many wildlife researchers interested in understanding avian population dynamics. Advances in statistical methods have led to a number of estimation methods and approaches to modeling this problem. Recently developed models allow researchers to include a...

  18. Modeling the regeneration of oak stands in the Missouri Ozark Highlands

    Treesearch

    Daniel C. Dey; Paul S. Johnson; H.E. Garrett

    1996-01-01

    This paper describes a method for modeling the regeneration of even-aged oak stands in the Ozark Highlands of southern Missouri. The approach is based on (i) a growth model that is applicable to both oak sprouts and advance reproduction and (ii) a method for probabilistically estimating future size distributions of trees. The...

  19. Purpose, Processes, Partnerships, and Products: 4Ps to advance Participatory Socio-Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Gray, S. G.; Voinov, A. A.; Jordan, R.; Paolisso, M.

    2016-12-01

    Model-based reasoning is a basic part of human understanding, decision-making, and communication. Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding environmental change since stakeholders often hold valuable knowledge about socio-environmental dynamics and since collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four dimensional framework that includes reporting on dimensions of: (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of environmental changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of environmental policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  20. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  1. A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model

    NASA Astrophysics Data System (ADS)

    Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi

    Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.

  2. Parameter estimation of anisotropic Manning's n coefficient for advanced circulation (ADCIRC) modeling of estuarine river currents (lower St. Johns River)

    NASA Astrophysics Data System (ADS)

    Demissie, Henok K.; Bacopoulos, Peter

    2017-05-01

    A rich dataset of time- and space-varying velocity measurements for a macrotidal estuary was used in the development of a vector-based formulation of bottom roughness in the Advanced Circulation (ADCIRC) model. The updates to the parallel code of ADCIRC to include directionally based drag coefficient are briefly discussed in the paper, followed by an application of the data assimilation (nudging analysis) to the lower St. Johns River (northeastern Florida) for parameter estimation of anisotropic Manning's n coefficient. The method produced converging estimates of Manning's n values for ebb (0.0290) and flood (0.0219) when initialized with uniform and isotropic setting of 0.0200. Modeled currents, water levels and flows were improved at observation locations where data were assimilated as well as at monitoring locations where data were not assimilated, such that the method increases model skill locally and non-locally with regard to the data locations. The methodology is readily transferrable to other circulation/estuary models, given pre-developed quality mesh/grid and adequate data available for assimilation.

  3. Future projections of extreme precipitation using Advanced Weather Generator (AWE-GEN) over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Syafrina, A. H.; Zalina, M. D.; Juneng, L.

    2014-09-01

    A stochastic downscaling methodology known as the Advanced Weather Generator, AWE-GEN, has been tested at four stations in Peninsular Malaysia using observations available from 1975 to 2005. The methodology involves a stochastic downscaling procedure based on a Bayesian approach. Climate statistics from a multi-model ensemble of General Circulation Model (GCM) outputs were calculated and factors of change were derived to produce the probability distribution functions (PDF). New parameters were obtained to project future climate time series. A multi-model ensemble was used in this study. The projections of extreme precipitation were based on the RCP 6.0 scenario (2081-2100). The model was able to simulate both hourly and 24-h extreme precipitation, as well as wet spell durations quite well for almost all regions. However, the performance of GCM models varies significantly in all regions showing high variability of monthly precipitation for both observed and future periods. The extreme precipitation for both hourly and 24-h seems to increase in future, while extreme of wet spells remain unchanged, up to the return periods of 10-40 years.

  4. Advanced Boundary Electrode Modeling for tES and Parallel tES/EEG.

    PubMed

    Pursiainen, Sampsa; Agsten, Britte; Wagner, Sven; Wolters, Carsten H

    2018-01-01

    This paper explores advanced electrode modeling in the context of separate and parallel transcranial electrical stimulation (tES) and electroencephalography (EEG) measurements. We focus on boundary condition-based approaches that do not necessitate adding auxiliary elements, e.g., sponges, to the computational domain. In particular, we investigate the complete electrode model (CEM) which incorporates a detailed description of the skin-electrode interface including its contact surface, impedance, and normal current distribution. The CEM can be applied for both tES and EEG electrodes which are advantageous when a parallel system is used. In comparison to the CEM, we test two important reduced approaches: the gap model (GAP) and the point electrode model (PEM). We aim to find out the differences of these approaches for a realistic numerical setting based on the stimulation of the auditory cortex. The results obtained suggest, among other things, that GAP and GAP/PEM are sufficiently accurate for the practical application of tES and parallel tES/EEG, respectively. Differences between CEM and GAP were observed mainly in the skin compartment, where only CEM explains the heating effects characteristic to tES.

  5. Cost-effectiveness analysis of gemcitabine, S-1 and gemcitabine plus S-1 for treatment of advanced pancreatic cancer based on GEST study.

    PubMed

    Zhou, Jing; Zhao, Rongce; Wen, Feng; Zhang, Pengfei; Tang, Ruilei; Du, Zedong; He, Xiaofeng; Zhang, Jian; Li, Qiu

    2015-04-01

    Gemcitabine (GEM) alone, S-1 alone and gemcitabine plus S-1 (GS) have shown a marginal clinical benefit for the treatment of advanced pancreatic cancer. However, there is no clearly defined optimal cost-effectiveness treatment. The objective of this study was to assess the cost-effectiveness of GEM alone, S-1 alone and GS for the treatment of advanced pancreatic cancer based on GEST study for public payers. A decision model compared GEM alone, S-1 alone and GS. Primary base case data were identified using the GEST study and the literatures. Costs were estimated from West China Hospital, Sichuan University, China, and incremental cost-effectiveness ratios (ICERs) were calculated. Survival benefits were reported in quality-adjusted life-months (QALMs). Sensitive analyses were performed by varying potentially modifiable parameters of the model. The base case analysis showed that the GEM cost $21,912 and yielded survival of 6.93 QALMs, S-1 cost $19,371 and yielded survival of 7.90 QALMs and GS cost $22,943 and yielded survival of 7.46 QALMs in the entire treatment. The one-way sensitivity analyses showed that the ICER of S-1 was driven mostly by the S-1 group utility score of stable state compared with GEM, and the GEM group utility score of progressed state played a key role on the ICER of GS compared with GEM. S-1 represents an attractive cost-effective treatment for advanced pancreatic cancer, given the favorable cost per QALM and improvement in clinical efficacy, especially the limited available treatment options.

  6. A Case Analysis of a Model Program for the Leadership Development of Women Faculty and Staff Seeking to Advance Their Careers in Higher Education

    ERIC Educational Resources Information Center

    Calizo, Lee Scherer Hawthorne

    2011-01-01

    The purpose of this case study was to explore a model of leadership development for women faculty and staff in higher education. This study is significant because it explored the only identified campus-based program open to both faculty and staff. The campus-based Women's Institute for Leadership Development (WILD) program at the University of…

  7. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  8. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased themore » base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.« less

  9. Ocean biogeochemistry modeled with emergent trait-based genomics.

    PubMed

    Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R

    2017-12-01

    Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Advances in Biotechnology and the Biosciences for Warfighter Performance and Protection: Anti-Aptamers for Revenom

    DTIC Science & Technology

    2006-10-01

    Development of a mouse model for poisonous snake envenomation. 4. Testing of aptamer cocktail in a mouse model to determine if DNA based aptamers...provide evidence to prove whether a synthetic, aptamer-based antivenin could be developed to treat snake envenomations in humans. Using PLA2 from Crotalus...kurdistanica) and to provide evidence for whether or not a synthetic, aptamer-based antivenin can be developed which could be used to treat snake envenomations

  11. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  12. A model structure for an EBM program in a multihospital system.

    PubMed

    Schumacher, Dale N; Stock, Joseph R; Richards, Joan K

    2003-01-01

    Evidence-based medicine (EBM) offers a great opportunity to translate advances in medical science into advances in clinical practice. We describe the structure of a comprehensive EBM program in a multihospital community teaching system. This EBM model is distinct and separate from the peer review process and has achieved substantial physician involvement. The program emanates from the Board of Directors Quality of Care Committee and has strong administrative support. The approach relies extensively on physician involvement and expert physician panels to enhance existing EBM practice guidelines, with an explicit strategy of performance reports and feedback.

  13. Advancing LGBT Elder Policy and Support Services: The Massachusetts Model.

    PubMed

    Krinsky, Lisa; Cahill, Sean R

    2017-12-01

    The Massachusetts-based LGBT Aging Project has trained elder service providers in affirming and culturally competent care for LGBT older adults, supported development of LGBT-friendly meal programs, and advanced LGBT equality under aging policy. Working across sectors, this innovative model launched the country's first statewide Legislative Commission on Lesbian, Gay, Bisexual, and Transgender Aging. Advocates are working with policymakers to implement key recommendations, including cultural competency training and data collection in statewide networks of elder services. The LGBT Aging Project's success provides a template for improving services and policy for LGBT older adults throughout the country.

  14. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  15. Experimental and Analytical Seismic Studies of a Four-Span Bridge System with Innovative Materials

    NASA Astrophysics Data System (ADS)

    Cruz Noguez, Carlos Alonso

    As part of a multi-university project utilizing the NSF Network for Earthquake Engineering Simulation (NEES), a quarter-scale model of a four-span bridge incorporating plastic hinges with different advanced materials was tested to failure on the three shake table system at the University of Nevada, Reno (UNR). The bridge was the second test model in a series of three 4-span bridges, with the first model being a conventional reinforced-concrete (RC) structure. The purpose of incorporating advanced materials was to improve the seismic performance of the bridge with respect to two damage indicators: (1) column damage and (2) permanent deformations. The goals of the study presented in this document were to (1) evaluate the seismic performance of a 4-span bridge system incorporating SMA/ECC and built-in rubber pad plastic hinges as well as post-tensioned piers, (2) quantify the relative merit of these advanced materials and details compared to each other and to conventional reinforced concrete plastic hinges, (3) determine the influence of abutment-superstructure interaction on the response, (4) examine the ability of available elaborate analytical modeling techniques to model the performance of advanced materials and details, and (5) conduct an extensive parametric study of different variations of the bridge model to study several important issues in bridge earthquake engineering. The bridge model included six columns, each pair of which utilized a different advanced detail at bottom plastic hinges: shape memory alloys (SMA), special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning tendons. The design of the columns, location of the bents, and selection of the loading protocol were based on pre-test analyses conducted using computer program OpenSees. The bridge model was subjected to two-horizontal components of simulated earthquake records of the 1994 Northridge earthquake. Over 340 channels of data were collected. The test results showed the effectiveness of the advanced materials in reducing damage and permanent displacements. The damage was minimal in plastic hinges with SMA/ECC and those with built-in elastomeric pads. Conventional RC plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse reinforcement. Extensive post-test analytical studies were conducted and it was determined that a computational model of the bridge that included bridge-abutment interaction using OpenSees was able to provide satisfactory estimations of key structural parameters such as superstructure displacements and base shears. The analytical model was also used to conduct parametric studies on single-column and bridge-system response under near-fault ground motions. The effects of vertical excitations and transverse shear-keys at the bridge abutments on the superstructure displacement and column drifts were also explored.

  16. Cultural hitchhiking on the wave of advance of beneficial technologies.

    PubMed

    Ackland, Graeme J; Signitzer, Markus; Stratford, Kevin; Cohen, Morrel H

    2007-05-22

    The wave-of-advance model was introduced to describe the spread of advantageous genes in a population. It can be adapted to model the uptake of any advantageous technology through a population, such as the arrival of neolithic farmers in Europe, the domestication of the horse, and the development of the wheel, iron tools, political organization, or advanced weaponry. Any trait that preexists alongside the advantageous one could be carried along with it, such as genetics or language, regardless of any intrinsic superiority. Decoupling of the advantageous trait from other "hitchhiking" traits depends on its adoption by the preexisting population. Here, we adopt a similar wave-of-advance model based on food production on a heterogeneous landscape with multiple populations. Two key results arise from geographic inhomogeneity: the "subsistence boundary," land so poor that the wave of advance is halted, and the temporary "diffusion boundary" where the wave cannot move into poorer areas until its gradient becomes sufficiently large. At diffusion boundaries, farming technology may pass to indigenous people already in those poorer lands, allowing their population to grow and resist encroachment by farmers. Ultimately, this adoption of technology leads to the halt in spread of the hitchhiking trait and establishment of a permanent "cultural boundary" between distinct cultures with equivalent technology.

  17. Cultural hitchhiking on the wave of advance of beneficial technologies

    PubMed Central

    Ackland, Graeme J.; Signitzer, Markus; Stratford, Kevin; Cohen, Morrel H.

    2007-01-01

    The wave-of-advance model was introduced to describe the spread of advantageous genes in a population. It can be adapted to model the uptake of any advantageous technology through a population, such as the arrival of neolithic farmers in Europe, the domestication of the horse, and the development of the wheel, iron tools, political organization, or advanced weaponry. Any trait that preexists alongside the advantageous one could be carried along with it, such as genetics or language, regardless of any intrinsic superiority. Decoupling of the advantageous trait from other “hitchhiking” traits depends on its adoption by the preexisting population. Here, we adopt a similar wave-of-advance model based on food production on a heterogeneous landscape with multiple populations. Two key results arise from geographic inhomogeneity: the “subsistence boundary,” land so poor that the wave of advance is halted, and the temporary “diffusion boundary” where the wave cannot move into poorer areas until its gradient becomes sufficiently large. At diffusion boundaries, farming technology may pass to indigenous people already in those poorer lands, allowing their population to grow and resist encroachment by farmers. Ultimately, this adoption of technology leads to the halt in spread of the hitchhiking trait and establishment of a permanent “cultural boundary” between distinct cultures with equivalent technology. PMID:17517663

  18. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  19. Cost Savings from Reduced Hospitalizations with Use of Home Noninvasive Ventilation for COPD.

    PubMed

    Coughlin, Steven; Peyerl, Fred W; Munson, Sibyl H; Ravindranath, Aditi J; Lee-Chiong, Teofilo L

    2017-03-01

    Although evidence suggests significant clinical benefits of home noninvasive ventilation (NIV) for management of severe chronic obstructive pulmonary disease (COPD), economic analyses supporting the use of this technology are lacking. To evaluate the economic impact of adopting home NIV, as part of a multifaceted intervention program, for severe COPD. An economic model was developed to calculate savings associated with the use of Advanced NIV (averaged volume assured pressure support with autoexpiratory positive airway pressure; Trilogy100, Philips Respironics, Inc., Murrysville, PA) versus either no NIV or a respiratory assist device with bilevel pressure capacity in patients with severe COPD from two distinct perspectives: the hospital and the payer. The model examined hospital savings over 90 days and payer savings over 3 years. The number of patients with severe COPD eligible for home Advanced NIV was user-defined. Clinical and cost data were obtained from a quality improvement program and published reports. Scenario analyses calculated savings for hospitals and payers covering different COPD patient cohort sizes. The hospital base case (250 patients) revealed cumulative savings of $402,981 and $449,101 over 30 and 90 days, respectively, for Advanced NIV versus both comparators. For the payer base case (100,000 patients), 3-year cumulative savings with Advanced NIV were $326 million versus no NIV and $1.04 billion versus respiratory assist device. This model concluded that adoption of home Advanced NIV with averaged volume assured pressure support with autoexpiratory positive airway pressure, as part of a multifaceted intervention program, presents an opportunity for hospitals to reduce COPD readmission-related costs and for payers to reduce costs associated with managing patients with severe COPD on the basis of reduced admissions. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  20. Development of a Community-Based Palliative Care Model for Advance Cancer Patients in Public Health Centers in Busan, Korea.

    PubMed

    Kim, Sook-Nam; Choi, Soon-Ock; Shin, Seong Hoon; Ryu, Ji-Sun; Baik, Jeong-Won

    2017-07-01

    A feasible palliative care model for advance cancer patients is needed in Korea with its rapidly aging population and corresponding increase in cancer prevalence. This study describes the process involved in the development of a community-based palliative care (CBPC) model implemented originally in a Busan pilot project. The model development included steps I and II of the pilot project, identification of the service types, a survey exploring the community demand for palliative care, construction of an operational infrastructure, and the establishment of a service delivery system. Public health centers (including Busan regional cancer centers, palliative care centers, and social welfare centers) served as the regional hubs in the development of a palliative care model. The palliative care project included the provision of palliative care, establishment of a support system for the operations, improvement of personnel capacity, development of an educational and promotional program, and the establishment of an assessment system to improve quality. The operational infrastructure included a service management team, provision teams, and a support team. The Busan Metropolitan City CBPC model was based on the principles of palliative care as well as the characteristics of public health centers that implemented the community health projects. The potential use of the Busan CBPC model in Korea should be explored further through service evaluations.

  1. Gryphon: A Hybrid Agent-Based Modeling and Simulation Platform for Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Wang, Jijun; McGowan, Michael; Vaidyanathan, Ganesh; Younger, Kristofer

    In this paper we present Gryphon, a hybrid agent-based stochastic modeling and simulation platform developed for characterizing the geographic spread of infectious diseases and the effects of interventions. We study both local and non-local transmission dynamics of stochastic simulations based on the published parameters and data for SARS. The results suggest that the expected numbers of infections and the timeline of control strategies predicted by our stochastic model are in reasonably good agreement with previous studies. These preliminary results indicate that Gryphon is able to characterize other future infectious diseases and identify endangered regions in advance.

  2. Agent-Based Modeling in Public Health: Current Applications and Future Directions.

    PubMed

    Tracy, Melissa; Cerdá, Magdalena; Keyes, Katherine M

    2018-04-01

    Agent-based modeling is a computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules. We review key areas in public health where agent-based modeling has been adopted, including both communicable and noncommunicable disease, health behaviors, and social epidemiology. We also describe the main strengths and limitations of this approach for questions with public health relevance. Finally, we describe both methodologic and substantive future directions that we believe will enhance the value of agent-based modeling for public health. In particular, advances in model validation, comparisons with other causal modeling procedures, and the expansion of the models to consider comorbidity and joint influences more systematically will improve the utility of this approach to inform public health research, practice, and policy.

  3. Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...

  4. An Active Learning Approach to Teach Advanced Multi-Predictor Modeling Concepts to Clinicians

    ERIC Educational Resources Information Center

    Samsa, Gregory P.; Thomas, Laine; Lee, Linda S.; Neal, Edward M.

    2012-01-01

    Clinicians have characteristics--high scientific maturity, low tolerance for symbol manipulation and programming, limited time outside of class--that limit the effectiveness of traditional methods for teaching multi-predictor modeling. We describe an active-learning based approach that shows particular promise for accommodating these…

  5. 42 CFR § 414.1445 - Identification of other payer advanced APMs.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1445... determination prior to the QP Performance Period to identify Medicaid Medical Home Models and Medicaid APMs. (b...

  6. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    USDA-ARS?s Scientific Manuscript database

    With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...

  7. Predicting the regeneration of Appalachian hardwoods: adapting the REGEN model for the Appalachian Plateau

    Treesearch

    Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani

    2013-01-01

    The difficulty of achieving reliable oak (Quercus spp.) regeneration is well documented. Application of silvicultural techniques to facilitate oak regeneration largely depends on current regeneration potential. A computer model to assess regeneration potential based on existing advanced reproduction in Appalachian hardwoods was developed by David...

  8. Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  9. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  10. Model-based economic evaluation in Alzheimer's disease: a review of the methods available to model Alzheimer's disease progression.

    PubMed

    Green, Colin; Shearer, James; Ritchie, Craig W; Zajicek, John P

    2011-01-01

    To consider the methods available to model Alzheimer's disease (AD) progression over time to inform on the structure and development of model-based evaluations, and the future direction of modelling methods in AD. A systematic search of the health care literature was undertaken to identify methods to model disease progression in AD. Modelling methods are presented in a descriptive review. The literature search identified 42 studies presenting methods or applications of methods to model AD progression over time. The review identified 10 general modelling frameworks available to empirically model the progression of AD as part of a model-based evaluation. Seven of these general models are statistical models predicting progression of AD using a measure of cognitive function. The main concerns with models are on model structure, around the limited characterization of disease progression, and on the use of a limited number of health states to capture events related to disease progression over time. None of the available models have been able to present a comprehensive model of the natural history of AD. Although helpful, there are serious limitations in the methods available to model progression of AD over time. Advances are needed to better model the progression of AD and the effects of the disease on peoples' lives. Recent evidence supports the need for a multivariable approach to the modelling of AD progression, and indicates that a latent variable analytic approach to characterising AD progression is a promising avenue for advances in the statistical development of modelling methods. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dress, W.B.

    After a Rip-van-Winkle nap of more than 20 years, the ideas of biologically motivated computing are re-emerging. Instrumental to this awakening have been the highly publicized contributions of John Hopfield and major advances in the neurosciences. In 1982, Hopfield showed how a system of maximally coupled neutron-like elements described by a Hamiltonian formalism (a linear, conservative system) could behave in a manner startlingly suggestive of the way humans might go about solving problems and retrieving memories. Continuing advances in the neurosciences are providing a coherent basis in suggesting how nature's neurons might function. A particular model is described for anmore » artificial neural system designed to interact with (learn from and manipulate) a simulated (or real) environment. The model is based on early work by Iben Browning. The Browning model, designed to investigate computer-based intelligence, contains a particular simplification based on observations of frequency coding of information in the brain and information flow from receptors to the brain and back to effectors. The ability to act on and react to the environment was seen as an important principle, leading to self-organization of the system.« less

  13. [The survival prediction model of advanced gallbladder cancer based on Bayesian network: a multi-institutional study].

    PubMed

    Tang, Z H; Geng, Z M; Chen, C; Si, S B; Cai, Z Q; Song, T Q; Gong, P; Jiang, L; Qiu, Y H; He, Y; Zhai, W L; Li, S P; Zhang, Y C; Yang, Y

    2018-05-01

    Objective: To investigate the clinical value of Bayesian network in predicting survival of patients with advanced gallbladder cancer(GBC)who underwent curative intent surgery. Methods: The clinical data of patients with advanced GBC who underwent curative intent surgery in 9 institutions from January 2010 to December 2015 were analyzed retrospectively.A median survival time model based on a tree augmented naïve Bayes algorithm was established by Bayesia Lab software.The survival time, number of metastatic lymph nodes(NMLN), T stage, pathological grade, margin, jaundice, liver invasion, age, sex and tumor morphology were included in this model.Confusion matrix, the receiver operating characteristic curve and area under the curve were used to evaluate the accuracy of the model.A priori statistical analysis of these 10 variables and a posterior analysis(survival time as the target variable, the remaining factors as the attribute variables)was performed.The importance rankings of each variable was calculated with the polymorphic Birnbaum importance calculation based on the posterior analysis results.The survival probability forecast table was constructed based on the top 4 prognosis factors. The survival curve was drawn by the Kaplan-Meier method, and differences in survival curves were compared using the Log-rank test. Results: A total of 316 patients were enrolled, including 109 males and 207 females.The ratio of male to female was 1.0∶1.9, the age was (62.0±10.8)years.There was 298 cases(94.3%) R0 resection and 18 cases(5.7%) R1 resection.T staging: 287 cases(90.8%) T3 and 29 cases(9.2%) T4.The median survival time(MST) was 23.77 months, and the 1, 3, 5-year survival rates were 67.4%, 40.8%, 32.0%, respectively.For the Bayesian model, the number of correctly predicted cases was 121(≤23.77 months) and 115(>23.77 months) respectively, leading to a 74.86% accuracy of this model.The prior probability of survival time was 0.503 2(≤23.77 months) and 0.496 8(>23.77 months), the importance ranking showed that NMLN(0.366 6), margin(0.350 1), T stage(0.319 2) and pathological grade(0.258 9) were the top 4 prognosis factors influencing the postoperative MST.These four factors were taken as observation variables to get the probability of patients in different survival periods.Basing on these results, a survival prediction score system including NMLN, margin, T stage and pathological grade was designed, the median survival time(month) of 4-9 points were 66.8, 42.4, 26.0, 9.0, 7.5 and 2.3, respectively, there was a statistically significant difference in the different points( P <0.01). Conclusions: The survival prediction model of GBC based on Bayesian network has high accuracy.NMLN, margin, T staging and pathological grade are the top 4 risk factors affecting the survival of patients with advanced GBC who underwent curative resection.The survival prediction score system based on these four factors could be used to predict the survival and to guide the decision making of patients with advanced GBC.

  14. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  15. Cost-effectiveness of everolimus vs sunitinib in treating patients with advanced, progressive pancreatic neuroendocrine tumors in the United States.

    PubMed

    Casciano, Roman; Chulikavit, Maruit; Perrin, Allison; Liu, Zhimei; Wang, Xufang; Garrison, Louis P

    2012-01-01

    Everolimus (Afinitor) and sunitinib (Sutent) were recently approved to treat patients with advanced, progressive pancreatic neuroendocrine tumors (pNETs). (Afinitor is a registered trademark of Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; Sutent is a registered trademark of Pfizer Inc., New York, NY, USA.) This analysis examined the projected cost-effectiveness of everolimus vs sunitinib in this setting from a US payer perspective. A semi-Markov model was developed to simulate a cohort of patients with advanced, progressive pNET and to estimate the cost per life-year gained (LYG) and per quality-adjusted life-year (QALY) gained when treating with everolimus vs sunitinib. Efficacy data were based on a weight-adjusted indirect comparison of the agents using phase 3 trial data. Model health states included: stable disease with no adverse events, stable disease with adverse events, disease progression, and death. Therapy costs were based on wholesale acquisition cost. Other costs such as physician visits, tests, hospitalizations, and adverse event costs were obtained from literature and/or primary research. Utility inputs were based on primary research. Sensitivity analyses were conducted to test the model's robustness. In the base-case analysis, everolimus was associated with an incremental 0.448 LYG (0.304 QALYs) at an incremental cost of $12,673, resulting in an incremental cost-effectiveness ratio (ICER) of $28,281/LYG ($41,702/QALY gained). The ICER fell within the cost per QALY range for many widely used oncology drugs. Sensitivity analyses demonstrated that, overall, there is a trend that everolimus is cost-effective compared to sunitinib in this setting. Results of the indirect analysis were not statistically significant (p > 0.05). Assumptions that treatment patterns are the same across therapies may not represent real-world practice. While the analysis is limited by its reliance on an indirect comparison of two phase 3 studies, everolimus is expected to be cost-effective relative to sunitinib in advanced, progressive pNET.

  16. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  17. Contribution of Morphological Awareness and Lexical Inferencing Ability to L2 Vocabulary Knowledge and Reading Comprehension among Advanced EFL Learners: Testing Direct and Indirect Effects

    ERIC Educational Resources Information Center

    Zhang, Dongbo; Koda, Keiko

    2012-01-01

    Within the Structural Equation Modeling framework, this study tested the direct and indirect effects of morphological awareness and lexical inferencing ability on L2 vocabulary knowledge and reading comprehension among advanced Chinese EFL readers in a university in China. Using both regular z-test and the bootstrapping (data-based resampling)…

  18. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    PubMed

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.

  19. Advanced soft computing diagnosis method for tumour grading.

    PubMed

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  20. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  1. A Model-Based Expert System for Space Power Distribution Diagnostics

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Schlegelmilch, Richard F.

    1994-01-01

    When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.

  2. Blending toward Competency. Early Patterns of Blended Learning and Competency-Based Education in New Hampshire

    ERIC Educational Resources Information Center

    Freeland, Julia

    2014-01-01

    As the education field strives to differentiate and personalize learning to cater to each student, two related movements are gaining attention: competency-based education and blended learning. In competency-based models, students advance on the basis of mastery, rather than according to the traditional methods of counting progress in terms of time…

  3. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  4. On constitutive functions for hindered settling velocity in 1-D settler models: Selection of appropriate model structure.

    PubMed

    Torfs, Elena; Balemans, Sophie; Locatelli, Florent; Diehl, Stefan; Bürger, Raimund; Laurent, Julien; François, Pierre; Nopens, Ingmar

    2017-03-01

    Advanced 1-D models for Secondary Settling Tanks (SSTs) explicitly account for several phenomena that influence the settling process (such as hindered settling and compression settling). For each of these phenomena a valid mathematical expression needs to be selected and its parameters calibrated to obtain a model that can be used for operation and control. This is, however, a challenging task as these phenomena may occur simultaneously. Therefore, the presented work evaluates several available expressions for hindered settling based on long-term batch settling data. Specific attention is paid to the behaviour of these hindered settling functions in the compression region in order to evaluate how the modelling of sludge compression is influenced by the choice of a certain hindered settling function. The analysis shows that the exponential hindered settling forms, which are most commonly used in traditional SST models, not only account for hindered settling but partly lump other phenomena (compression) as well. This makes them unsuitable for advanced 1-D models that explicitly include each phenomenon in a modular way. A power-law function is shown to be more appropriate to describe the hindered settling velocity in advanced 1-D SST models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  6. Advanced space program studies: Overall executive summary

    NASA Technical Reports Server (NTRS)

    Sitney, L. R.

    1974-01-01

    Studies were conducted to provide NASA with advanced planning analyses which relate integrated space program goals and options to credible technical capabilities, applications potential, and funding resources. The studies concentrated on the following subjects: (1) upper stage options for the space transportation system based on payload considerations, (2) space servicing and standardization of payloads, (3) payload operations, and (4) space transportation system economic analyses related to user charges and new space applications. A systems cost/performance model was developed to synthesize automated, unmanned spacecraft configurations based on the system requirements and a list of equipments at the assembly level.

  7. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  8. Testing of advanced technique for linear lattice and closed orbit correction by modeling its application for iota ring at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.

    Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based onmore » LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.« less

  9. The Public Health Community Platform, Electronic Case Reporting, and the Digital Bridge.

    PubMed

    Cooney, Mary Ann; Iademarco, Michael F; Huang, Monica; MacKenzie, William R; Davidson, Arthur J

    At the intersection of new technology advancements, ever-changing health policy, and fiscal constraints, public health agencies seek to leverage modern technical innovations and benefit from a more comprehensive and cooperative approach to transforming public health, health care, and other data into action. State health agencies recognized a way to advance population health was to integrate public health with clinical health data through electronic infectious disease case reporting. The Public Health Community Platform (PHCP) concept of bidirectional data flow and knowledge management became the foundation to build a cloud-based system connecting electronic health records to public health data for a select initial set of notifiable conditions. With challenges faced and lessons learned, significant progress was made and the PHCP grew into the Digital Bridge, a national governance model for systems change, bringing together software vendors, public health, and health care. As the model and technology advance together, opportunities to advance future connectivity solutions for both health care and public health will emerge.

  10. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  11. Re-Framing Inclusive Education through the Capability Approach: An Elaboration of the Model of Relational Inclusion

    ERIC Educational Resources Information Center

    Dalkilic, Maryam; Vadeboncoeur, Jennifer A.

    2016-01-01

    Scholars have called for the articulation of new frameworks in special education that are responsive to culture and context and that address the limitations of medical and social models of disability. In this article, we advance a theoretical and practical framework for inclusive education based on the integration of a model of relational…

  12. The changing global carbon cycle: linking local plant-soil carbon dynamics to global consequences

    Treesearch

    F. Stuart Chapin; Jack McFarland; A. David McGuire; Eugenie S. Euskirchen; Roger W. Ruess; Knut Kielland

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR,...

  13. Do Recognition and Priming Index a Unitary Knowledge Base? Comment on Shanks et al. (2003)

    ERIC Educational Resources Information Center

    Runger, Dennis; Nagy, Gabriel; Frensch, Peter A.

    2009-01-01

    Whether sequence learning entails a single or multiple memory systems is a moot issue. Recently, D. R. Shanks, L. Wilkinson, and S. Channon advanced a single-system model that predicts a perfect correlation between true (i.e., error free) response time priming and recognition. The Shanks model is contrasted with a dual-process model that…

  14. Modes of Power in Technical and Professional Visuals.

    ERIC Educational Resources Information Center

    Barton, Ben F.; Barton, Marthalee S.

    1993-01-01

    Treats visuals as sites of power inscription. Advances a Foucauldian design model based on the Panoptican--Jeremy Bentham's architectural figure for empowerment based on bimodal surveillance. Notes that numerous examples serve in demonstrating that maximum effectiveness results when visuals foster simultaneous viewing in the two panoptic modes,…

  15. Research on golden-winged warblers: recent progress and current needs

    Treesearch

    Henry M. Streby; Ronald W. Rohrbaugh; David A. Buehler; David E. Andersen; Rachel Vallender; David I. King; Tom Will

    2016-01-01

    Considerable advances have been made in knowledge about Golden-winged Warblers (Vermivora chrysoptera) in the past decade. Recent employment of molecular analysis, stable-isotope analysis, telemetry-based monitoring of survival and behavior, and spatially explicit modeling techniques have added to, and revised, an already broad base of published...

  16. Web-Based Training in Corporations: Organizational Considerations

    ERIC Educational Resources Information Center

    Chamers, Terri; Lee, Doris

    2004-01-01

    Advances in technology offer the possibility of new methods for delivering instruction. Learning via the Internet is being heralded by many as the new pedagogical model for training. Recent issues of training, computer, and management magazines all suggest that web-based training (WBT) is the best way to reach geographically dispersed employees…

  17. Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data

    DTIC Science & Technology

    2005-03-01

    xii ATTITUDE MODEL OF A REACTION WHEEL/ FIXED THRUSTER BASED SATELLITE USING TELEMETRY DATA I. Introduction As technology advances and spacecraft ...Earth’s horizon to determine spacecraft attitude . Sun sensors use the Sun to determine spacecraft attitude and are currently the attitude determination...wheels and the rate of rotation of the gimbal. Gravity gradient stabilization is a passive attitude control technique that is designed to use the

  18. Advanced Fluid Reduced Order Models for Compressible Flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezaur, Irina Kalashnikova; Fike, Jeffrey A.; Carlberg, Kevin Thomas

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly themore » POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carmack; L. Braase; F. Goldner

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less

  20. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  1. Advanced solar box and flat plate collector cookers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grupp, M.; Bergler, H.

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  2. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  3. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  4. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    PubMed

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  5. Multiple Criteria Decision Analysis (MCDA) for evaluating new medicines in Health Technology Assessment and beyond: The Advance Value Framework.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2017-09-01

    Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and become readily adaptable across different settings, the Advance Value Framework could be offered as a decision-support tool for evaluators and payers to aid coverage and reimbursement of new medicines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach.

    PubMed

    Karamintziou, Sofia D; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G; Tagaris, George A; Sakas, Damianos E; Polychronaki, Georgia E; Tsirogiannis, George L; David, Olivier; Nikita, Konstantina S

    2017-01-01

    Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson's disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  8. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil

    2014-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins. © 2014 Elsevier Inc. All rights reserved.

  9. Advances in a distributed approach for ocean model data interoperability

    USGS Publications Warehouse

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  10. Operational Real-time Forecast of MeV Electrons at Geosynchronous Orbit Based on ACE and GOES-10 Measurements

    NASA Astrophysics Data System (ADS)

    Li, X.; Temerin, M. A.; Monk, S.; Baker, D. N.; Reeves, G. D.

    2002-05-01

    The MeV electrons, also known as `killer electrons', have a deleterious impact on satellites through deep dielectric charging and the bodies of astronauts through radiation damage during extravehicular activity. Using a recently developed model based on the standard radial diffusion equation [Li et al., 2001], we show that the intensity of these MeV electrons at geosynchronous orbit can be quantitatively predicted 1-2 days in advance given knowledge of the solar wind. Our current model is operating in real-time, using real-time data from ACE and GOES-10, to make forecast of >2 MeV eletrons at geosynchronous orbit up to 48 hours in advance, the results are available on the web, currently updated every two hours (http://lasp.colorado.edu/~monk/xlf2.html).

  11. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  12. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  13. Technical tips and advancements in pediatric minimally invasive surgical training on porcine based simulations.

    PubMed

    Narayanan, Sarath Kumar; Cohen, Ralph Clinton; Shun, Albert

    2014-06-01

    Minimal access techniques have transformed the way pediatric surgery is practiced. Due to various constraints, surgical residency programs have not been able to tutor adequate training skills in the routine setting. The advent of new technology and methods in minimally invasive surgery (MIS), has similarly contributed to the need for systematic skills' training in a safe, simulated environment. To enable the training of the proper technique among pediatric surgery trainees, we have advanced a porcine non-survival model for endoscopic surgery. The technical advancements over the past 3 years and a subjective validation of the porcine model from 114 participating trainees using a standard questionnaire and a 5-point Likert scale have been described here. Mean attitude scores and analysis of variance (ANOVA) were used for statistical analysis of the data. Almost all trainees agreed or strongly agreed that the animal-based model was appropriate (98.35%) and also acknowledged that such workshops provided adequate practical experience before attempting on human subjects (96.6%). Mean attitude score for respondents was 19.08 (SD 3.4, range 4-20). Attitude scores showed no statistical association with years of experience or the level of seniority, indicating a positive attitude among all groups of respondents. Structured porcine-based MIS training should be an integral part of skill acquisition for pediatric surgery trainees and the experience gained can be transferred into clinical practice. We advocate that laparoscopic training should begin in a controlled workshop setting before procedures are attempted on human patients.

  14. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2016-01-01

    Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...

  15. VTI Driving Simulator: Mathematical Model of a Four-wheeled Vehicle for Simulation in Real Time. VTI Rapport 267A.

    ERIC Educational Resources Information Center

    Nordmark, Staffan

    1984-01-01

    This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…

  16. Integrative sensing and prediction of urban water for sustainable cities (iSPUW)

    NASA Astrophysics Data System (ADS)

    Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.

    2014-12-01

    We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.

  17. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  18. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  19. Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart

    PubMed Central

    Amr, Ali; Neumann, Dominik; Georgescu, Bogdan; Seegerer, Philipp; Kamen, Ali; Haas, Jan; Frese, Karen S.; Irawati, Maria; Wirsz, Emil; King, Vanessa; Buss, Sebastian; Mereles, Derliz; Zitron, Edgar; Keller, Andreas; Katus, Hugo A.; Comaniciu, Dorin; Meder, Benjamin

    2015-01-01

    Background Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. Methods and Results State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. Conclusion This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation. PMID:26230546

  20. Prognostic risk stratification derived from individual patient level data for men with advanced penile squamous cell carcinoma receiving first-line systemic therapy.

    PubMed

    Pond, Gregory R; Di Lorenzo, Giuseppe; Necchi, Andrea; Eigl, Bernhard J; Kolinsky, Michael P; Chacko, Raju T; Dorff, Tanya B; Harshman, Lauren C; Milowsky, Matthew I; Lee, Richard J; Galsky, Matthew D; Federico, Piera; Bolger, Graeme; DeShazo, Mollie; Mehta, Amitkumar; Goyal, Jatinder; Sonpavde, Guru

    2014-05-01

    Prognostic factors in men with penile squamous cell carcinoma (PSCC) receiving systemic therapy are unknown. A prognostic classification system in this disease may facilitate interpretation of outcomes and guide rational drug development. We performed a retrospective analysis to identify prognostic factors in men with PSCC receiving first-line systemic therapy for advanced disease. Individual patient level data were obtained from 13 institutions to study prognostic factors in the context of first-line systemic therapy for advanced PSCC. Cox proportional hazards regression analysis was conducted to examine the prognostic effect of these candidate factors on progression-free survival (PFS) and overall survival (OS): age, stage, hemoglobin, neutrophil count, lymphocyte count, albumin, site of metastasis (visceral or nonvisceral), smoking, circumcision, regimen, ECOG performance status (PS), lymphovascular invasion, precancerous lesion, and surgery following chemotherapy. The effect of different treatments was then evaluated adjusting for factors in the prognostic model. The study included 140 eligible men. Mean age across all men was 57.0 years. Among them, 8.6%, 21.4%, and 70.0% of patients had stage 2, 3, and 4 diseases, respectively; 40.7% had ECOG PS ≥ 1, 47.4% had visceral metastases, and 73.6% received cisplatin-based chemotherapy. The multivariate model of poor prognostic factors included visceral metastases (P<0.001) and ECOG PS ≥ 1 (P<0.001) for both PFS and OS. A risk stratification model constructed with 0, 1, and both poor prognostic factors was internally validated and demonstrated moderate discriminatory ability (c-statistic of 0.657 and 0.677 for OS and PFS, respectively). The median OS for the entire population was 9 months. Median OS was not reached, 8, and 7 months for those with 0, 1, and both risk factors, respectively. Cisplatin-based regimens were associated with better OS (P = 0.017) but not PFS (P = 0.37) compared with noncisplatin-based regimens after adjusting for the 2 prognostic factors. In men with advanced PSCC receiving first-line systemic therapy, visceral metastases and ECOG PS ≥ 1 were poor prognostic factors. A prognostic model including these factors exhibited moderate discriminatory ability for outcomes and warrants external validation. Patients receiving cisplatin-based regimens exhibited better outcomes compared with noncisplatin-based regimens after adjusting for prognostic factors. © 2013 Published by Elsevier Inc.

  1. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L Boring; David I Gertman; Tuan Q Tran

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and riskmore » associated with human performance in next generation control rooms.« less

  2. iPSC-based drug screening for Huntington's disease.

    PubMed

    Zhang, Ningzhe; Bailus, Barbara J; Ring, Karen L; Ellerby, Lisa M

    2016-05-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Iterative Research Cycle: Process-Based Model Evaluation

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2014-12-01

    The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex physics based models that simulate a myriad of processes at different spatial and temporal scales. Reconciling these high-order system models with perpetually larger volumes of field data is becoming more and more difficult, particularly because classical likelihood-based fitting methods lack the power to detect and pinpoint deficiencies in the model structure. In this talk I will give an overview of our latest research on process-based model calibration and evaluation. This approach, rooted in Bayesian theory, uses summary metrics of the calibration data rather than the data itself to help detect which component(s) of the model is (are) malfunctioning and in need of improvement. A few case studies involving hydrologic and geophysical models will be used to demonstrate the proposed methodology.

  4. Closing the Skills Gap: A Comprehensive Work-Based Learning Model Developed through Partnerships among Manufacturers, Community Colleges and High Schools in Northeast Ohio

    ERIC Educational Resources Information Center

    Robinson, Terrence S.

    2017-01-01

    Northeast Ohio is similar to the rest of the United States in that there is a rise in the need for the products that advanced manufacturers supply (Center for American Progress, 2013). However, advanced manufacturers in Northeast Ohio are unable to find the technically skilled workers to fill the jobs that are currently available in the workforce.…

  5. A Nonlinear Three-Dimensional Micromechanics Model for Fiber-Reinforced Laminated Composites

    DTIC Science & Technology

    1993-11-01

    Interfacial Properties Employed for the SCS6/Ti-15-3 Composite ......................... 150 11. Constants Employed for the LLFM Predictions of Quasi...Region m Matrix Property or Mean of the Interfacial Stress Distribution ml, m2, m3 Signifies Matrix Region n Normal to Interface r Signifies Equation...usage of the new class of titanium based com- posites in advanced aerospace structures and engines such as are targeted for the advanced tactical fighter

  6. Model-Based Control using Model and Mechanization Fusion Techniques for Image-Aided Navigation

    DTIC Science & Technology

    2009-03-01

    Magnet Motors . Magna Physics Publishing, Hillsboro, OH, 1994. 7. Houwu Bai, Xubo Song, Eric Wan and Andriy Myronenko. “Vision-only Navi- gation and...filter”. Proceedings of the Recent Advances in Space Technologies (RAST). Nov 2003. 6. Hendershot, J.R. and Tje Miller. Design of Brushless Permanent

  7. Collocational Processing in Light of the Phraseological Continuum Model: Does Semantic Transparency Matter?

    ERIC Educational Resources Information Center

    Gyllstad, Henrik; Wolter, Brent

    2016-01-01

    The present study investigates whether two types of word combinations (free combinations and collocations) differ in terms of processing by testing Howarth's Continuum Model based on word combination typologies from a phraseological tradition. A visual semantic judgment task was administered to advanced Swedish learners of English (n = 27) and…

  8. On the need for a theory of wildland fire spread

    Treesearch

    Mark A. Finney; Jack D. Cohen; Sara S. McAllister; W. Matt Jolly

    2012-01-01

    We explore the basis of understanding wildland fire behaviour with the intention of stimulating curiosity and promoting fundamental investigations of fire spread problems that persist even in the presence of tremendous modelling advances. Internationally, many fire models have been developed based on a variety of assumptions and expressions for the fundamental heat...

  9. Vatuximab(Trademark): Optimizing Therapeutic Strategies for Prostate Cancer Based on Dynamic MR Tumor Oximetry

    DTIC Science & Technology

    2007-01-01

    diverse subcutaneous models will be translated to human tumor xenografts in intraosseous models of advanced metastatic prostate cancer (18). Here, PSA...representative MAT-LU, HI and H tumors growing on anesthetized rats breathing air with isoflurane anesthesia . Voxel dimension 1.25 mm in plane with 10

  10. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    THIS IS A MODEL TEST OF THE 1ST STAGE RE-ENTRY. HEAT TESTING OF A 3% MODEL TO SUPPORT THE ARES/CLV FIRST STAGE RE-ENTRY. THIS OCCURRED AT ARNOLD AIR FORCE BASE, TENNESSEE IN SUPPORT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  11. A framework for the automated data-driven constitutive characterization of composites

    Treesearch

    J.G. Michopoulos; John Hermanson; T. Furukawa; A. Iliopoulos

    2010-01-01

    We present advances on the development of a mechatronically and algorithmically automated framework for the data-driven identification of constitutive material models based on energy density considerations. These models can capture both the linear and nonlinear constitutive response of multiaxially loaded composite materials in a manner that accounts for progressive...

  12. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    USDA-ARS?s Scientific Manuscript database

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...

  13. Investigation of Advanced Personnel Armor Using Layered Construction

    DTIC Science & Technology

    2009-12-01

    foam were constructed to test against baseline armor AISI 4140 steel plate. A hypothetical orthotropic material model closely resembling that of...against baseline armor AISI 4140 steel plate. A hypothetical orthotropic material model closely resembling that of Dyneema HB25 was derived based on...54 2. Steel AISI 4140 ...................................................................................56 3. Composite Plates

  14. Recursive renormalization group theory based subgrid modeling

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1991-01-01

    Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.

  15. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  16. Partnerships in Medical Education: An Exploration of Library Service Models for Postgraduate Medicine at Macquarie University

    ERIC Educational Resources Information Center

    Simons, Mary

    2008-01-01

    Macquarie University's new medical school, The Australian School of Advanced Medicine (ASAM), is developing a postgraduate program that incorporates a partnership with Macquarie University Library. The curriculum encompasses contemporary models of competency-based assessment, teamwork and lifelong learning that are integrated with research and…

  17. Fish Assemblage Indicators for the National Rivers and Streams Assessment: Performance of model-based vs. traditionally constructed multimetric indices

    EPA Science Inventory

    The development of multimetric indices (MMIs) for use in assessing the ecological condition of rivers and streams has advanced in recent years with the use of various types of modeling approaches to factor out the influence of natural variability and improve the performance. Ass...

  18. A reference model systesm of industrial yeasts Saccharomyces cerevisiae is needed for development of the next-generation biocatalyst toward advanced biofuels production

    USDA-ARS?s Scientific Manuscript database

    Diploid industrial yeast Saccharomyces cerevisiae has demonstrated distinct characteristics that differ from haploid laboratory model strains. However, as a workhorse for a broad range of fermentation-based industrial applications, it was poorly characterized at the genome level. Observations on the...

  19. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Burton, E.; Duran, A.

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digitalmore » elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.« less

  20. Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling

    NASA Technical Reports Server (NTRS)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank

    1991-01-01

    Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.

  1. A Cost-Effectiveness Analysis of Gemcitabine plus Cisplatin Versus Gemcitabine Alone for Treatment of Advanced Biliary Tract Cancer in Japan.

    PubMed

    Tsukiyama, Ikuto; Ejiri, Masayuki; Yamamoto, Yoshihiro; Nakao, Haruhisa; Yoneda, Masashi; Matsuura, Katsuhiko; Arakawa, Ichiro; Saito, Hiroko; Inoue, Tadao

    2017-12-01

    This study assessed the cost-effectiveness of combination treatment with gemcitabine and cisplatin compared to treatment with gemcitabine alone for advanced biliary tract cancer (BTC) in Japan. A monthly transmitted Markov model of three states was constructed based on the Japan BT-22 trial. Transition probabilities among the health states were derived from a trial conducted in Japan and converted to appropriate parameters for our model. The associated cost components, obtained from a receipt-based survey undertaken at the Aichi Medical University Hospital, were those related to inpatient care, outpatient care, and treatment for BTC. Costs for palliative care and treatment of adverse events were obtained from the National Health Insurance price list. We estimated cost-effectiveness per quality-adjusted life year (QALY) at a time horizon of 36 months. An annual discount of 3 % for both cost and outcome was considered. The base case outcomes indicated that combination therapy was less cost-effective than monotherapy when the incremental cost-effectiveness ratio (ICER) was approximately 14 million yen per QALY gained. The deterministic sensitivity analysis of the ICER revealed that the ICER of the base case was robust. A probabilistic analysis conducted with 10,000-time Monte Carlo simulations demonstrated efficacy at the willingness to pay threshold of 6 million yen per QALY gained for approximately 33 % of the population. In Japan, combination therapy is less cost-effective than monotherapy for treating advanced BTC, regardless of the statistical significance of the two therapies. Useful information on the cost-effectiveness of chemotherapy is much needed for the treatment of advanced BTC in Japan.

  2. Recent Advances in the LEWICE Icing Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas

    2015-01-01

    This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.

  3. Designing an Agent-Based Model Using Group Model Building: Application to Food Insecurity Patterns in a U.S. Midwestern Metropolitan City.

    PubMed

    Koh, Keumseok; Reno, Rebecca; Hyder, Ayaz

    2018-04-01

    Recent advances in computing resources have increased interest in systems modeling and population health. While group model building (GMB) has been effectively applied in developing system dynamics models (SD), few studies have used GMB for developing an agent-based model (ABM). This article explores the use of a GMB approach to develop an ABM focused on food insecurity. In our GMB workshops, we modified a set of the standard GMB scripts to develop and validate an ABM in collaboration with local experts and stakeholders. Based on this experience, we learned that GMB is a useful collaborative modeling platform for modelers and community experts to address local population health issues. We also provide suggestions for increasing the use of the GMB approach to develop rigorous, useful, and validated ABMs.

  4. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.

  5. Analyzing the impact of modeling choices and assumptions in compartmental epidemiological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J.; Pullum, Laura L.; Ramanathan, Arvind

    In this study, computational models have become increasingly used as part of modeling, predicting, and understanding how infectious diseases spread within large populations. These models can be broadly classified into differential equation-based models (EBM) and agent-based models (ABM). Both types of models are central in aiding public health officials design intervention strategies in case of large epidemic outbreaks. We examine these models in the context of illuminating their hidden assumptions and the impact these may have on the model outcomes. Very few ABM/EBMs are evaluated for their suitability to address a particular public health concern, and drawing relevant conclusions aboutmore » their suitability requires reliable and relevant information regarding the different modeling strategies and associated assumptions. Hence, there is a need to determine how the different modeling strategies, choices of various parameters, and the resolution of information for EBMs and ABMs affect outcomes, including predictions of disease spread. In this study, we present a quantitative analysis of how the selection of model types (i.e., EBM vs. ABM), the underlying assumptions that are enforced by model types to model the disease propagation process, and the choice of time advance (continuous vs. discrete) affect the overall outcomes of modeling disease spread. Our study reveals that the magnitude and velocity of the simulated epidemic depends critically on the selection of modeling principles, various assumptions of disease process, and the choice of time advance.« less

  6. Analyzing the impact of modeling choices and assumptions in compartmental epidemiological models

    DOE PAGES

    Nutaro, James J.; Pullum, Laura L.; Ramanathan, Arvind; ...

    2016-05-01

    In this study, computational models have become increasingly used as part of modeling, predicting, and understanding how infectious diseases spread within large populations. These models can be broadly classified into differential equation-based models (EBM) and agent-based models (ABM). Both types of models are central in aiding public health officials design intervention strategies in case of large epidemic outbreaks. We examine these models in the context of illuminating their hidden assumptions and the impact these may have on the model outcomes. Very few ABM/EBMs are evaluated for their suitability to address a particular public health concern, and drawing relevant conclusions aboutmore » their suitability requires reliable and relevant information regarding the different modeling strategies and associated assumptions. Hence, there is a need to determine how the different modeling strategies, choices of various parameters, and the resolution of information for EBMs and ABMs affect outcomes, including predictions of disease spread. In this study, we present a quantitative analysis of how the selection of model types (i.e., EBM vs. ABM), the underlying assumptions that are enforced by model types to model the disease propagation process, and the choice of time advance (continuous vs. discrete) affect the overall outcomes of modeling disease spread. Our study reveals that the magnitude and velocity of the simulated epidemic depends critically on the selection of modeling principles, various assumptions of disease process, and the choice of time advance.« less

  7. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  8. Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function

    NASA Astrophysics Data System (ADS)

    Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali

    2015-06-01

    Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.

  9. Toward improved simulation of river operations through integration with a hydrologic model

    USGS Publications Warehouse

    Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique

    2016-01-01

    Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.

  10. Advanced reliability modeling of fault-tolerant computer-based systems

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.

    1982-01-01

    Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.

  11. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  12. Process modeling of an advanced NH₃ abatement and recycling technology in the ammonia-based CO₂ capture process.

    PubMed

    Li, Kangkang; Yu, Hai; Tade, Moses; Feron, Paul; Yu, Jingwen; Wang, Shujuan

    2014-06-17

    An advanced NH3 abatement and recycling process that makes great use of the waste heat in flue gas was proposed to solve the problems of ammonia slip, NH3 makeup, and flue gas cooling in the ammonia-based CO2 capture process. The rigorous rate-based model, RateFrac in Aspen Plus, was thermodynamically and kinetically validated by experimental data from open literature and CSIRO pilot trials at Munmorah Power Station, Australia, respectively. After a thorough sensitivity analysis and process improvement, the NH3 recycling efficiency reached as high as 99.87%, and the NH3 exhaust concentration was only 15.4 ppmv. Most importantly, the energy consumption of the NH3 abatement and recycling system was only 59.34 kJ/kg CO2 of electricity. The evaluation of mass balance and temperature steady shows that this NH3 recovery process was technically effective and feasible. This process therefore is a promising prospect toward industrial application.

  13. Achieving Accreditation Council for Graduate Medical Education duty hours compliance within advanced surgical training: a simulation-based feasibility assessment.

    PubMed

    Obi, Andrea; Chung, Jennifer; Chen, Ryan; Lin, Wandi; Sun, Siyuan; Pozehl, William; Cohn, Amy M; Daskin, Mark S; Seagull, F Jacob; Reddy, Rishindra M

    2015-11-01

    Certain operative cases occur unpredictably and/or have long operative times, creating a conflict between Accreditation Council for Graduate Medical Education (ACGME) rules and adequate training experience. A ProModel-based simulation was developed based on historical data. Probabilistic distributions of operative time calculated and combined with an ACGME compliant call schedule. For the advanced surgical cases modeled (cardiothoracic transplants), 80-hour violations were 6.07% and the minimum number of days off was violated 22.50%. There was a 36% chance of failure to fulfill any (either heart or lung) minimum case requirement despite adequate volume. The variable nature of emergency cases inevitably leads to work hour violations under ACGME regulations. Unpredictable cases mandate higher operative volume to ensure achievement of adequate caseloads. Publically available simulation technology provides a valuable avenue to identify adequacy of case volumes for trainees in both the elective and emergency setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  15. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  16. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  17. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  18. Closing the loop: integrating human impacts on water resources to advanced land surface models

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Nie, W.; Rodell, M.; Kumar, S.; Li, B.

    2016-12-01

    Advanced Land Surface Models (LSMs), including those used in the North American Land Data Assimilation System (NLDAS), offer a physically consistent and spatially and temporally complete analysis of the distributed water balance. These models are constrained both by physically-based process representation and by observations ingested as meteorological forcing or as data assimilation updates. As such, they have become important tools for hydrological monitoring and long-term climate analysis. The representation of water management, however, is extremely limited in these models. Recent advances have brought prognostic irrigation routines into models used in NLDAS, while assimilation of Gravity Recovery and Climate Experiment (GRACE) derived estimates of terrestrial water storage anomaly has made it possible to nudge models towards observed states in water storage below the root zone. But with few exceptions these LSMs do not account for the source of irrigation water, leading to a disconnect between the simulated water balance and the observed human impact on water resources. This inconsistency is unacceptable for long-term studies of climate change and human impact on water resources in North America. Here we define the modeling challenge, review instances of models that have begun to account for water withdrawals (e.g., CLM), and present ongoing efforts to improve representation of human impacts on water storage across models through integration of irrigation routines, water withdrawal information, and GRACE Data Assimilation in NLDAS LSMs.

  19. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  20. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-08-18

    This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.

  1. Risk contracting and operational capabilities in large medical groups during national healthcare reform.

    PubMed

    Mechanic, Robert E; Zinner, Darren

    2016-06-01

    Little is known about the scope of alternative payment models outside of Medicare. This study measures the full complement of public and private payment arrangements in large, multi-specialty group practices as a barometer of payment reform among advanced organizations. We collected information from 33 large, multi-specialty group practices about the proportion of their total revenue in 7 payment models, physician compensation strategies, and the implementation of selected performance management initiatives. We grouped respondents into 3 categories based on the proportion of their revenue in risk arrangements: risk-based (45%-100%), mixed (10%-35%), and fee-for-service (FFS) (0%-10%). We analyzed changes in contracting and operating characteristics between 2011 and 2013. In 2013, 68% of groups' total patient revenue was from FFS payments and 32% was from risk arrangements (unweighted average). Risk-based groups had 26% FFS revenue, whereas mixed-payment and FFS groups had 75% and 98%, respectively. Between 2011 and 2013, 9 groups increased risk contract revenue by about 15 percentage points and 22 reported few changes. Risk-based groups reported more advanced implementation of performance management strategies and were more likely to have physician financial incentives for quality and patient experience. The groups in this study are well positioned to manage risk-based contracts successfully, but less than one-third receive a majority of their revenue from risk arrangements. The experience of these relatively advanced groups suggests that expanding risk-based arrangements across the US health system will likely be slower and more challenging than many people assume.

  2. New technology continues to invade healthcare. What are the strategic implications/outcomes?

    PubMed

    Smith, Coy

    2004-01-01

    Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.

  3. Integrated Modeling for Road Condition Prediction (IMRCP)

    DOT National Transportation Integrated Search

    2018-01-17

    Intelligent transportation system deployments have enabled great advances in operational awareness and response based on the data they gather on the current state of the roadways. Operators have better access to traffic and weather condition informat...

  4. Using the Many-Facet Rasch Model to Evaluate Standard-Setting Judgments: Setting Performance Standards for Advanced Placement® Examinations

    ERIC Educational Resources Information Center

    Kaliski, Pamela; Wind, Stefanie A.; Engelhard, George, Jr.; Morgan, Deanna; Plake, Barbara; Reshetar, Rosemary

    2012-01-01

    The Many-Facet Rasch (MFR) Model is traditionally used to evaluate the quality of ratings on constructed response assessments; however, it can also be used to evaluate the quality of judgments from panel-based standard setting procedures. The current study illustrates the use of the MFR Model by examining the quality of ratings obtained from a…

  5. Theoretical Modeling and Electromagnetic Response of Complex Metamaterials

    DTIC Science & Technology

    2017-03-06

    AFRL-AFOSR-VA-TR-2017-0042 Theoretical Modeling and Electromagnetic Response of Complex Metamaterials Andrea Alu UNIVERSITY OF TEXAS AT AUSTIN Final...Nov 2016 4. TITLE AND SUBTITLE Theoretical Modeling and Electromagnetic Response of Complex Metamaterials 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...based on parity-time symmetric metasurfaces, and various advances in electromagnetic and acoustic theory and applications. Our findings have opened

  6. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots

    NASA Astrophysics Data System (ADS)

    Saati, Ferina; Arik, Mehmet

    2018-02-01

    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  7. An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

    NASA Astrophysics Data System (ADS)

    Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.

    2016-02-01

    As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.

  8. Association of Hospital Volume With Racial and Ethnic Disparities in Locally Advanced Cervical Cancer Treatment.

    PubMed

    Uppal, Shitanshu; Chapman, Christina; Spencer, Ryan J; Jolly, Shruti; Maturen, Kate; Rauh-Hain, J Alejandro; delCarmen, Marcela G; Rice, Laurel W

    2017-02-01

    To evaluate racial-ethnic disparities in guideline-based care in locally advanced cervical cancer and their relationship to hospital case volume. Using the National Cancer Database, we performed a retrospective cohort study of women diagnosed between 2004 and 2012 with locally advanced squamous or adenocarcinoma of the cervix undergoing definitive primary radiation therapy. The primary outcome was the race-ethnicity-based rates of adherence to the National Comprehensive Cancer Network guideline-based care. The secondary outcome was the effect of guideline-based care on overall survival. Multivariable models and propensity matching were used to compare the hospital risk-adjusted rates of guideline-based adherence and overall survival based on hospital case volume. The final cohort consisted of 16,195 patients. The rate of guideline-based care was 58.4% (95% confidence interval [CI] 57.4-59.4%) for non-Hispanic white, 53% (95% CI 51.4-54.9%) for non-Hispanic black, and 51.5% (95% CI 49.4-53.7%) for Hispanic women (P<.001). From 2004 to 2012, the rate of guideline-based care increased from 49.5% (95% CI 47.1-51.9%) to 59.1% (95% CI 56.9-61.2%) (Ptrend<.001). Based on a propensity score-matched analysis, patients receiving guideline-based care had a lower risk of mortality (adjusted hazard ratio 0.65, 95% CI 0.62-0.68). Compared with low-volume hospitals, the increase in adherence to guideline-based care in high-volume hospitals was 48-63% for non-Hispanic white, 47-53% for non-Hispanic black, and 41-54% for Hispanic women. Racial and ethnic disparities in the delivery of guideline-based care are the highest in high-volume hospitals. Guideline-based care in locally advanced cervical cancer is associated with improved survival.

  9. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  10. MyTeachingPartner: A Professional Development Intervention for Teacher Self-Efficacy

    ERIC Educational Resources Information Center

    Jamil, Faiza M.

    2012-01-01

    MyTeachingPartner (MTP) is an interactive, web-based professional development format created at the Center for Advanced Studies in Teaching and Learning (CASTL) at the University of Virginia (Hadden & Pianta, 2006). The MTP model is based on the understanding that effective teacher professional development requires opportunities for teachers…

  11. A Self-Instructional Approach To the Teaching of Enzymology Involving Computer-Based Sequence Analysis and Molecular Modelling.

    ERIC Educational Resources Information Center

    Attwood, Paul V.

    1997-01-01

    Describes a self-instructional assignment approach to the teaching of advanced enzymology. Presents an assignment that offers a means of teaching enzymology to students that exposes them to modern computer-based techniques of analyzing protein structure and relates structure to enzyme function. (JRH)

  12. Online Certificate Program Moves Participants to Advanced Stages of Concern for Social Marketing

    ERIC Educational Resources Information Center

    Chaudhary, Anil Kumar; Warner, Laura A.; Stofer, Kathryn A.

    2017-01-01

    Social marketing is an underused strategy that agricultural educators can employ to bring about behavior change. We designed an online certificate program for Extension professionals and other educators based on an identified need for social marketing professional development. The Concerns-Based Adoption Model (CBAM) served as the conceptual…

  13. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  14. Calibrating Parameters of Power System Stability Models using Advanced Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Diao, Ruisheng; Li, Yuanyuan

    With the ever increasing penetration of renewable energy, smart loads, energy storage, and new market behavior, today’s power grid becomes more dynamic and stochastic, which may invalidate traditional study assumptions and pose great operational challenges. Thus, it is of critical importance to maintain good-quality models for secure and economic planning and real-time operation. Following the 1996 Western Systems Coordinating Council (WSCC) system blackout, North American Electric Reliability Corporation (NERC) and Western Electricity Coordinating Council (WECC) in North America enforced a number of policies and standards to guide the power industry to periodically validate power grid models and calibrate poor parametersmore » with the goal of building sufficient confidence in model quality. The PMU-based approach using online measurements without interfering with the operation of generators provides a low-cost alternative to meet NERC standards. This paper presents an innovative procedure and tool suites to validate and calibrate models based on a trajectory sensitivity analysis method and an advanced ensemble Kalman filter algorithm. The developed prototype demonstrates excellent performance in identifying and calibrating bad parameters of a realistic hydro power plant against multiple system events.« less

  15. Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Ajmal Choudhary, Muhammad

    2017-07-01

    In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.

  16. A Methodology for Formal Hardware Verification, with Application to Microprocessors.

    DTIC Science & Technology

    1993-08-29

    concurrent programming lan- guages. Proceedings of the NATO Advanced Study Institute on Logics and Models of Concurrent Systems ( Colle - sur - Loup , France, 8-19...restricted class of formu- las . Bose and Fisher [26] developed a symbolic model checker based on a Cosmos switch-level model. Their modeling approach...verification using SDVS-the method and a case study. 17th Anuual Microprogramming Workshop (New Orleans, LA , 30 October-2 November 1984). Published as

  17. The Role of the Advanced Practice Nurse in Geriatric Oncology Care.

    PubMed

    Morgan, Brianna; Tarbi, Elise

    2016-02-01

    To describe how the Advanced Practice Nurse (APN) is uniquely suited to meet the needs of older adults throughout the continuum of cancer, to explore the progress that APNs have made in gero-oncology care, and make suggestions for future directions. Google Scholar, PubMed, and CINAHL. Search terms included: "gero-oncology," "geriatric oncology," "Advanced Practice Nurse," "Nurse Practitioner," "older adult," "elderly," and "cancer." Over the last decade, APNs have made advances in caring for older adults with cancer by playing a role in prevention, screening, and diagnosis; through evidence-based gero-oncology care during cancer treatment; and in designing tailored survivorship care models. APNs must combat ageism in treatment choice for older adults, standardize comprehensive geriatric assessments, and focus on providing person-centered care, specifically during care transitions. APNs are well-positioned to help understand the complex relationship between risk factors, geriatric syndromes, and frailty and translate research into practice. Palliative care must expand beyond specialty providers and shift toward APNs with a focus on early advanced care planning. Finally, APNs should continue to establish multidisciplinary survivorship models across care settings, with a focus on primary care. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Toward a closer integration of magnetospheric research: Magnetospheric currents inferred from ground-based magnetic data

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.; Kamide, Y.

    1998-07-01

    A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite-based researchers, ground-based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two-dimensional ground-based data and single points satellite-based data to infer three-dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground-based magnetic data from an extensive, systematic network of observations, combined with ground-based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite-based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground-based space physics has made a major advance during the last decade.

  19. A Diagnostic Model for Impending Death in Cancer Patients: Preliminary Report

    PubMed Central

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-01-01

    Background We recently identified several highly specific bedside physical signs associated with impending death within 3 days among patients with advanced cancer. In this study, we developed and assessed a diagnostic model for impending death based on these physical signs. Methods We systematically documented 62 physical signs every 12 hours from admission to death or discharge in 357 patients with advanced cancer admitted to acute palliative care units (APCUs) at two tertiary care cancer centers. We used recursive partitioning analysis (RPA) to develop a prediction model for impending death in 3 days using admission data. We validated the model with 5 iterations of 10-fold cross-validation, and also applied the model to APCU days 2/3/4/5/6. Results Among 322/357 (90%) patients with complete data for all signs, the 3-day mortality was 24% on admission. The final model was based on 2 variables (palliative performance scale [PPS] and drooping of nasolabial fold) and had 4 terminal leaves: PPS≤20% and drooping of nasolabial fold present, PPS≤20% and drooping of nasolabial fold absent, PPS 30–60% and PPS ≥ 70%, with 3-day mortality of 94%, 42%, 16% and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79%–84% for subsequent APCU days. Conclusion(s) We developed a diagnostic model for impending death within 3 days based on 2 objective bedside physical signs. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. PMID:26218612

  20. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    PubMed

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.

  1. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.

  2. Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)

    1979-01-01

    NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.

  3. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  4. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  5. Electromigration model for the prediction of lifetime based on the failure unit statistics in aluminum metallization

    NASA Astrophysics Data System (ADS)

    Park, Jong Ho; Ahn, Byung Tae

    2003-01-01

    A failure model for electromigration based on the "failure unit model" was presented for the prediction of lifetime in metal lines.The failure unit model, which consists of failure units in parallel and series, can predict both the median time to failure (MTTF) and the deviation in the time to failure (DTTF) in Al metal lines. The model can describe them only qualitatively. In our model, both the probability function of the failure unit in single grain segments and polygrain segments are considered instead of in polygrain segments alone. Based on our model, we calculated MTTF, DTTF, and activation energy for different median grain sizes, grain size distributions, linewidths, line lengths, current densities, and temperatures. Comparisons between our results and published experimental data showed good agreements and our model could explain the previously unexplained phenomena. Our advanced failure unit model might be further applied to other electromigration characteristics of metal lines.

  6. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    NASA Astrophysics Data System (ADS)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  7. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  8. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  9. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  11. Recent advances of nanotechnology in medicine and engineering

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    2016-05-01

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  12. Recent advances of nanotechnology in medicine and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Lucio; Nobile, Stefano

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  13. Towards an advanced e-Infrastructure for Civil Protection applications: Research Strategies and Innovation Guidelines

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Angelini, V.

    2009-04-01

    In the context of the EU co-funded project CYCLOPS (http://www.cyclops-project.eu) the problem of designing an advanced e-Infrastructure for Civil Protection (CP) applications has been addressed. As a preliminary step, some studies about European CP systems and operational applications were performed in order to define their specific system requirements. At a higher level it was verified that CP applications are usually conceived to map CP Business Processes involving different levels of processing including data access, data processing, and output visualization. At their core they usually run one or more Earth Science models for information extraction. The traditional approach based on the development of monolithic applications presents some limitations related to flexibility (e.g. the possibility of running the same models with different input data sources, or different models with the same data sources) and scalability (e.g. launching several runs for different scenarios, or implementing more accurate and computing-demanding models). Flexibility can be addressed adopting a modular design based on a SOA and standard services and models, such as OWS and ISO for geospatial services. Distributed computing and storage solutions could improve scalability. Basing on such considerations an architectural framework has been defined. It is made of a Web Service layer providing advanced services for CP applications (e.g. standard geospatial data sharing and processing services) working on the underlying Grid platform. This framework has been tested through the development of prototypes as proof-of-concept. These theoretical studies and proof-of-concept demonstrated that although Grid and geospatial technologies would be able to provide significant benefits to CP applications in terms of scalability and flexibility, current platforms are designed taking into account requirements different from CP. In particular CP applications have strict requirements in terms of: a) Real-Time capabilities, privileging time-of-response instead of accuracy, b) Security services to support complex data policies and trust relationships, c) Interoperability with existing or planned infrastructures (e.g. e-Government, INSPIRE compliant, etc.). Actually these requirements are the main reason why CP applications differ from Earth Science applications. Therefore further research is required to design and implement an advanced e-Infrastructure satisfying those specific requirements. In particular five themes where further research is required were identified: Grid Infrastructure Enhancement, Advanced Middleware for CP Applications, Security and Data Policies, CP Applications Enablement, and Interoperability. For each theme several research topics were proposed and detailed. They are targeted to solve specific problems for the implementation of an effective operational European e-Infrastructure for CP applications.

  14. Deep facial analysis: A new phase I epilepsy evaluation using computer vision.

    PubMed

    Ahmedt-Aristizabal, David; Fookes, Clinton; Nguyen, Kien; Denman, Simon; Sridharan, Sridha; Dionisio, Sasha

    2018-05-01

    Semiology observation and characterization play a major role in the presurgical evaluation of epilepsy. However, the interpretation of patient movements has subjective and intrinsic challenges. In this paper, we develop approaches to attempt to automatically extract and classify semiological patterns from facial expressions. We address limitations of existing computer-based analytical approaches of epilepsy monitoring, where facial movements have largely been ignored. This is an area that has seen limited advances in the literature. Inspired by recent advances in deep learning, we propose two deep learning models, landmark-based and region-based, to quantitatively identify changes in facial semiology in patients with mesial temporal lobe epilepsy (MTLE) from spontaneous expressions during phase I monitoring. A dataset has been collected from the Mater Advanced Epilepsy Unit (Brisbane, Australia) and is used to evaluate our proposed approach. Our experiments show that a landmark-based approach achieves promising results in analyzing facial semiology, where movements can be effectively marked and tracked when there is a frontal face on visualization. However, the region-based counterpart with spatiotemporal features achieves more accurate results when confronted with extreme head positions. A multifold cross-validation of the region-based approach exhibited an average test accuracy of 95.19% and an average AUC of 0.98 of the ROC curve. Conversely, a leave-one-subject-out cross-validation scheme for the same approach reveals a reduction in accuracy for the model as it is affected by data limitations and achieves an average test accuracy of 50.85%. Overall, the proposed deep learning models have shown promise in quantifying ictal facial movements in patients with MTLE. In turn, this may serve to enhance the automated presurgical epilepsy evaluation by allowing for standardization, mitigating bias, and assessing key features. The computer-aided diagnosis may help to support clinical decision-making and prevent erroneous localization and surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

  16. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  17. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  18. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  19. IMPACTT5A model : enhancements and modifications since December 1994 with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions

    DOT National Transportation Integrated Search

    1998-09-01

    Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACIT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emi...

  20. Using Concepts in Literature-based Discovery: Simulating Swanson's Raynaud-Fish Oil and Migraine-Magnesium Discoveries.

    ERIC Educational Resources Information Center

    Weeber, Marc; Klein, Henny; de Jong-van den Berg, Lolkje T. W.; Vos, Rein

    2001-01-01

    Proposes a two-step model of discovery in which new scientific hypotheses can be generated and subsequently tested. Applying advanced natural language processing techniques to find biomedical concepts in text, the model is implemented in a versatile interactive discovery support tool. This tool is used to successfully simulate Don R. Swanson's…

  1. The Kalamazoo Promise: A Study of Philanthropy's Increasing Role in the American Economy and Education

    ERIC Educational Resources Information Center

    Strickland, Shelley

    2009-01-01

    This paper explores the Kalamazoo Promise through the lens of the existing literature on other privately funded scholarships programs and the broader advancement knowledge base. The author concludes that current research does not adequately explain the Promise, and suggests a conceptual model--a logic model--to be used in philanthropy evaluation.

  2. Two-Year Community: Implementing Vision and Change in a Community College Classroom

    ERIC Educational Resources Information Center

    Lysne, Steven; Miller, Brant

    2015-01-01

    The purpose of this article is to describe a model for teaching introductory biology coursework within the Vision and Change framework (American Association for the Advancement of Science, 2011). The intent of the new model is to transform instruction by adopting an active, student-centered, and inquiry-based pedagogy consistent with Vision and…

  3. Resampling and Distribution of the Product Methods for Testing Indirect Effects in Complex Models

    ERIC Educational Resources Information Center

    Williams, Jason; MacKinnon, David P.

    2008-01-01

    Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…

  4. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  5. Hyperspectral remote sensing of vegetation: knowledge gain and knowledge gap after 50 years of research (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thenkabail, Prasad S.

    2017-04-01

    This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher:Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advances made in processing when handling large volumes of hyperspectral data have generated tremendous interest in advancing the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing more sensitive wavebands and indices to study vegetation characteristics. The presentation will discuss topics such as: (1) hyperspectral sensors and their characteristics, (2) methods of overcoming the Hughes phenomenon, (3) characterizing biophysical and biochemical properties, (4) advances made in using hyperspectral data in modeling evapotranspiration or actual water use by plants, (5) study of phenology, light use efficiency, and gross primary productivity, (5) improved accuracies in species identification and land cover classifications, and (6) applications in precision farming.

  6. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    NASA Astrophysics Data System (ADS)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  7. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  8. The predictive value of 53BP1 and BRCA1 mRNA expression in advanced non-small-cell lung cancer patients treated with first-line platinum-based chemotherapy

    PubMed Central

    Bonanno, Laura; Costa, Carlota; Majem, Margarita; Sanchez, Jose Javier; Gimenez-Capitan, Ana; Rodriguez, Ignacio; Vergenegre, Alain; Massuti, Bartomeu; Favaretto, Adolfo; Rugge, Massimo; Pallares, Cinta; Taron, Miquel; Rosell, Rafael

    2013-01-01

    Platinum-based chemotherapy is the standard first-line treatment for non-oncogene-addicted non-small cell lung cancers (NSCLCs) and the analysis of multiple DNA repair genes could improve current models for predicting chemosensitivity. We investigated the potential predictive role of components of the 53BP1 pathway in conjunction with BRCA1. The mRNA expression of BRCA1, MDC1, CASPASE3, UBC13, RNF8, 53BP1, PIAS4, UBC9 and MMSET was analyzed by real-time PCR in 115 advanced NSCLC patients treated with first-line platinum-based chemotherapy. Patients expressing low levels of both BRCA1 and 53BP1 obtained a median progression-free survival of 10.3 months and overall survival of 19.3 months, while among those with low BRCA1 and high 53BP1 progression-free survival was 5.9 months (P <0.0001) and overall survival was 8.2 months (P=0.001). The expression of 53BP1 refines BRCA1-based predictive modeling to identify patients most likely to benefit from platinum-based chemotherapy. PMID:24197907

  9. Effects of Advanced Fuel Injection Strategies on DI Diesel Emissions

    DTIC Science & Technology

    2001-06-19

    Skeletal mechanism for NO chemistry in Diesel engines ," SAE Paper 981450. 2) Duffy, K. P. and Mellor, A. M. (1998), "jadf;lkajdf," SAE Paper. 3) Lavoie...pressure for this zone are the start of combustion, stoichiometric flame temperature (Tý.,) and pressure. The NO chemistry is based on a skeletal mechanism ...emissions from a 2.2L high speed direct injection (HSDI) Diesel engine [2]. Model Formulation for Single Injections: The model is based on the assumption

  10. TechTuning: Stress Management For 3D Through-Silicon-Via Stacking Technologies

    NASA Astrophysics Data System (ADS)

    Radojcic, Riko; Nowak, Matt; Nakamoto, Mark

    2011-09-01

    The concerns with managing mechanical stress distributions and the consequent effects on device performance and material integrity, for advanced TSV based technologies 3D are outlined. A model and simulation based Design For Manufacturability (DFM) type of a flow for managing the mechanical stresses throughout Si die, stack and package design is proposed. The key attributes of the models and simulators required to fuel the proposed flow are summarized. Finally, some of the essential infrastructure and the Supply Chain support items are described.

  11. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  12. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  13. Wage Equity and Female Faculty Job-Satisfaction: The Role of Wage Differentials in a Job Satisfaction Causal Model. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra

    This study examined the role of female/male wage differentials in a model of job satisfaction. It is based on data from 5,021 respondents to the 1989 Carnegie Foundation for the Advancement of Teaching national faculty survey. The model considers the interrelated effects of the calculated wage differential, stress, social perceptions of students,…

  14. Using the Many-Faceted Rasch Model to Evaluate Standard Setting Judgments: An Illustration with the Advanced Placement Environmental Science Exam

    ERIC Educational Resources Information Center

    Kaliski, Pamela K.; Wind, Stefanie A.; Engelhard, George, Jr.; Morgan, Deanna L.; Plake, Barbara S.; Reshetar, Rosemary A.

    2013-01-01

    The many-faceted Rasch (MFR) model has been used to evaluate the quality of ratings on constructed response assessments; however, it can also be used to evaluate the quality of judgments from panel-based standard setting procedures. The current study illustrates the use of the MFR model for examining the quality of ratings obtained from a standard…

  15. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  16. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling

    USGS Publications Warehouse

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre D.; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt-Olabisi, Laura; Singer, Alison; Sterling, Eleanor J.; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human–environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  17. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling.

    PubMed

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt Olabisi, Laura; Singer, Alison; Sterling, Eleanor; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM. © 2017 by the Ecological Society of America.

  18. Mathematical modelling of prostate cancer growth and its application to hormone therapy.

    PubMed

    Tanaka, Gouhei; Hirata, Yoshito; Goldenberg, S Larry; Bruchovsky, Nicholas; Aihara, Kazuyuki

    2010-11-13

    Hormone therapy in the form of androgen deprivation is a major treatment for advanced prostate cancer. However, if such therapy is overly prolonged, tumour cells may become resistant to this treatment and result in recurrent fatal disease. Long-term hormone deprivation also is associated with side effects poorly tolerated by patients. In contrast, intermittent hormone therapy with alternating on- and off-treatment periods is a possible clinical strategy to delay progression to hormone-refractory disease with the advantage of reduced side effects during the off-treatment periods. In this paper, we first overview previous studies on mathematical modelling of prostate tumour growth under intermittent hormone therapy. The model is categorized into a hybrid dynamical system because switching between on-treatment and off-treatment intervals is treated in addition to continuous dynamics of tumour growth. Next, we present an extended model of stochastic differential equations and examine how well the model is able to capture the characteristics of authentic serum prostate-specific antigen (PSA) data. We also highlight recent advances in time-series analysis and prediction of changes in serum PSA concentrations. Finally, we discuss practical issues to be considered towards establishment of mathematical model-based tailor-made medicine, which defines how to realize personalized hormone therapy for individual patients based on monitored serum PSA levels.

  19. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  20. Causal discovery and inference: concepts and recent methodological advances.

    PubMed

    Spirtes, Peter; Zhang, Kun

    This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.

Top