Science.gov

Sample records for advanced moisture sensor

  1. Advanced moisture sensor research and development

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  2. Advanced MR moisture sensor market feasibility analysis. Executive summary

    SciTech Connect

    1995-02-01

    This paper briefly documents activities, background information, and results of marketing studies on the Magnetic Resonance Advanced Moisture Sensor (AMS). The main goals of the study are to identify industrial uses to guide development efforts, to become familiar with the industrial and magnetic resonance research capabilities/resources at the Southwest Research Institute (SwRI), and to develop a summary data sheet describing the AMS product for use with a broad mail survey of potential users. The studies are being performed through an alliance of Quantum Magnetics, US DOE, SwRI, The Townsend Agency, and PAI Partners. Efforts are being focused on NIR, Raman, and other optical spectroscopies as process measurement tools for onstream applications. Domestic and world markets for process analytical instrumentation, process moisture instrumentation, and nuclear magnetic resonance instrumentation are summarized. Three applications are identified as the most promising for magnetic resonance instrumentation: (1) polymer production, (2) pharmaceuticals preparation, and (3) prepared food processing. It is estimated that the process magnetic resonance market could reach $5 to $10 million annually by the end of this decade.

  3. Advanced moisture sensor research and development. Quarterly progress report, August 1, 1992--October 31, 1992

    SciTech Connect

    De Los Santos, A.

    1992-10-31

    During this period, testing of the system continued at the American Fructose (AF) plant in Dimmitt, Texas. Testing at the first two sites (dryer output and dryer input) was completed. Following the testing at the second site, the sensor was returned to the Southwest Research Institute (SwRI) laboratories for modifications and for fitting of the additional components required to allow sampling of the material to be measured at the third site. These modifications were completed during this reporting period, and the system is scheduled to be installed at the third site (Rotary Vacuum Filter output) early in the next period. Laboratory measurements of corn germ (to be measured at the fourth site) and a variety of fruits and vegetables (one of which will be measured at the fifth site) have also continued during this period.

  4. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  5. Soil-moisture sensors and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  6. Porous Si structure as moisture sensor

    SciTech Connect

    Peterson, D.W.; Nguyen, L.T.

    1996-12-31

    Development and characterization of a capacitive moisture sensor made from porous Si is presented. The sensor development was in support of the DoD funded Plastic Package Availability program and was intended for the detection of pinholes and defects in moisture barrier coatings applied to ICs during fabrication or during the plastic encapsulation assembly process.

  7. An update on monitoring moisture ingression with fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Trego, Angela

    2003-11-01

    Newly developed advanced aircraft structures are utilizing composite technology for improving stiffness, strength and weight properties. Such structures are commonly found in inaccessible regions where current NDE techniques are limited. The development of low profile, distributed, embeddable, real-time, optical fiber sensors capable of detecting the onset of composite failure in aircraft structures would eliminate a significant portion of related maintenance costs. Notable composite failures that are difficult to assess include delaminations and moisture ingression issues. Optical fiber-based sensors add the inherent advantages of being lightweight, low profile, immune to EMI, resistant to harsh environments, and highly sensitive to a variety of physical and chemical measurements. Optical fiber-based sensors can also be embedded directly into the composite part during manufacturing and co-cured. This creates a monitoring system that has little impact on the properties of the final part while providing significant benefits. Fiber optics embedded in composite honeycomb panels were fabricated and tested using ground - air - ground thermal cycles to determine moisture ingression monitoring capabilities of the sensors. Two different types of moisture sensing fiber optics were measured. One type of installed moisture sensor is based off of a Bragg grating system, while the other moisture sensor is based off of a long period grating system. Presented herein is a comparison of the two different types of fiber optic sensors that monitored the moisture ingression in honeycomb panels.

  8. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  9. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  10. Remote sensing of soil moisture - Recent advances

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1983-01-01

    Recent advancements in microwave remote sensing of soil moisture include a method for estimating the dependence of the soil dielectric constant on its texture, the use of a percent of field capacity to express soil moisture magnitudes independently of soil texture, methods of estimating soil moisture sampling depth, and models for describing the effect of surface roughness on microwave response in terms of surface height variance and horizontal correlation length, as well as the verification of radiative transfer model predictions of microwave emission from soils and methods for the estimation of vegetation effects on the microwave response to soil moisture. Such researches have demonstrated that it is possible to remotely sense soil moisture in the 0-5 cm soil surface layer, and simulation studies have indicated how remotely sensed surface soil moisture may be used to estimate evapotranspiration rates and root-zone soil moisture.

  11. Polymer optical fibre sensor to monitor skin moisture

    NASA Astrophysics Data System (ADS)

    Vaughan, John; Woodyatt, Christopher; Scully, Patricia J.

    2007-07-01

    We present a polymer optical fibre sensor to sense skin moisture and droplet formation when sweating occurs. The sensor used evanescent field attenuation, by exploiting a moisture sensitive cladding with moisture indicator (fluorescein) contained within a porous cladding (HEMA). The sensor was designed to be comfortable to wear and unobtrusive, hygienic, with sterilised interchangeable sensing elements. It had maximum sensitivity between 98% and 100% humidity, and response time of 24 seconds.

  12. Moisture infrared sensor for medical applications

    NASA Astrophysics Data System (ADS)

    Monacelli, Eric; Alayli, Yasser; Lofaso, Frederic

    2003-04-01

    The importance of delivering warm, humidified air to patients ventilated through an endotracheal or tracheostomy tube is widely accepted. The use of modern artificial noses or heat and moisture exchangers made of recently developed material could be a solution to both problems of humidification and heat preservation. For this investigation, an IR optical sensor to measure weak partial pressure of water vapor has been designed and realized. This sensor is based on direct molecular absorption in the near IR corresponding to fundamental mode v1 and it is an extrinsic and amplitude modulation type. In the quasi-linear region between 0 to 30 mbars, the calibration curve that represents the transmited power versus the water vapor partial pressure in air shows a high sensitivity with a minimum detectable of 100 μbars. The experimental setup, test procedure, theory analysis, and data processing of the optical water vapor sensor will be described in this article. The sensor has been designed to monitor water vapor in the modern artificial noses.

  13. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  14. Fiber optic moisture sensor with moisture-absorbing reflective target

    DOEpatents

    Kirkham, Randy R.

    1987-01-01

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  15. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  16. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  17. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  18. Moisture sensors 1980 on-line roles increase

    SciTech Connect

    Bailey, S.J.

    1980-09-01

    A review of on- and off-line moisture and humidity sensors covers instruments based on the capacitive principle such as Panametrics' Aquamax II and those developed by Ondyne, Moisture Control Systems, Phys-Chemical Research Corp., Shaw Instruments, and Diversified Engineering; instruments based on the microwave plus gamma and nuclear plus gamma radiation principles such as those by Kay-Ray and Ohmart Corp., respectively; sensors based on the saturated salt principle such as Foxboro's self-heated lithium chloride sensor; Kahn and Co.'s electrolytic hygrometer for monitoring the moisture content of pure gases or gas mixtures in natural gas transmissions; the Ohaus gravimetric instrument; microprocessor-based titrators by Foxboro Analytical and Photovolt Corp.; instruments which sense moving web moisture such as Beckman Instrument's Hygroline System HMP20 and Hy-Cal Engineering's sensor; IR stack gas analyzers by Anarad Inc. and Moisture Systems Corp.; optical hygrometers by EG and G and General Eastern; Panametrics' Model 4000 moisture computer; and Du Pont's standard 560 analyzer and new controller.

  19. Field testing a microwave moisture sensor for real-time kernel moisture content monitoring during peanut drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present peanut drying process lacks the capability of kernel moisture content determination in real-time. A microwave moisture sensor, developed within USDA ARS, affords the capability of in-shell kernel moisture content determination; thus, providing a means for monitoring kernel moisture conte...

  20. Moisture content measurements of moss (Sphagnum spp.) using commercial sensors

    USGS Publications Warehouse

    Yoshikawa, K.; Overduin, P.P.; Harden, J.W.

    2004-01-01

    Sphagnum (spp.) is widely distributed in permafrost regions around the arctic and subarctic. The moisture content of the moss layer affects the thermal insulative capacity and preservation of permafrost. It also controls the growth and collapse history of palsas and other peat mounds, and is relevant, in general terms, to permafrost thaw (thermokarst). In this study, we test and calibrate seven different soil moisture sensors for measuring the moisture content of Sphagnum moss under laboratory conditions. The soil volume to which each probe is sensitive is one of the important parameters influencing moisture measurement, particularly in a heterogeneous medium such as moss. Each sensor has a unique response to changing moisture content levels, solution salinity, moss bulk density and to the orientation (structure) of the Sphagnum relative to the sensor. All of the probes examined here require unique polynomial calibration equations to obtain moisture content from probe output. We provide polynomial equations for dead and live Sphagnum moss (R2 > 0.99. Copyright ?? 2004 John Wiley & Sons, Ltd.

  1. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  2. Wheat moisture measurement with a fringing field capacitive sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain storage managers could improve the quality of stored grain if they could directly monitor stored grain moisture content, which is a key indicator of stored grain quality and an early indicator of deterioration. However, currently available sensors are too expensive and lack the necessary relia...

  3. Evaluation of an in situ Grain Moisture Sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain storage managers could improve the quality of stored grain if they could directly monitor grain moisture content in storage bins, which is a key indicator of stored grain quality and an early indicator of deterioration. However, the necessary sensors are not commercially available. A new capa...

  4. Derivation of soil moisture sensing depth from microwave satellite sensors

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Holmes, Thomas

    2015-04-01

    Soil moisture retrievals from low frequency passive microwave satellite sensors (e.g. ESAs current Soil Moisture Ocean Salinity mission (SMOS)) are assumed to estimate spatially explicit soil moisture content of the first centimeters. However, the exact microwave sensing depth and the dynamic nature of the sensing depth at satellite grid scale is still to a large degree unknown. A more reliable estimation of the sensing depth would greatly improve the utility of microwave soil moisture retrievals. Validation activities could be fine-tuned, algorithms could be improved, and modeling applications could match observations to more optimal model depth. In addition to all this, soil moisture sensing depth information is essential for the development of a consistent fundamental soil moisture climate data record. With the availability of multiple polar orbiting satellites with multi-frequency microwave radiometers it has now become possible to study the microwave sensing depth as it manifests itself at observational scales. The approach uses the differences in timing between the diurnal temperature cycle (DTC) of microwave observations and thermal infrared observations as a basis to calculate the sensing depth. Using an intercalibrated multi sensor microwave data set and geostationary thermal infrared observations this approach is used to evaluate sensing depth at several microwave frequencies relevant for soil moisture retrieval. Field data in combination with an integrated thermodynamic hydrological microwave model are then used to develop guidelines for a dynamic sensing depth algorithm. The key advantage of this approach is its global applicability, providing timely and consistent information on sensing depth for different satellite soil moisture datasets.

  5. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  6. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  7. Advancing Sensor Web Interoperability

    SciTech Connect

    Shankar, Mallikarjun; Gorman, Bryan L.; Smith, Cyrus M.

    2005-01-01

    SensorNet is a framework being developed at Oak Ridge National Laboratory to tie together sensor data from all over the country to create a real-time detection and alert system for various threats, whether they are chemical, radiological, biological, nuclear, or explosive.

  8. A comparison of soil moisture sensors for space flight applications

    NASA Technical Reports Server (NTRS)

    Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.

    2005-01-01

    Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.

  9. A comparison of soil moisture sensors for space flight applications.

    PubMed

    Norikane, J H; Prenger, J J; Rouzan-Wheeldon, D T; Levine, H G

    2005-03-01

    Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.

  10. Trace moisture detection in oil filled transformer by ceramic sensor

    NASA Astrophysics Data System (ADS)

    Saha, Debdulal; Sengupta, K.

    2015-02-01

    This paper reports on the suitability of thin film nano porous γ-alumina sensor for sensing parts per million (ppm) moisture present in transformer oil. Transformer oil degrades slowly by weathering, causing dielectric break down voltage of the oil to fall down. For improving this break down voltage, water must be removed from the transformer oil. Flash point of the transformer oil ranges from 150°C to 200°C.When the oil is slowly heated up to 75°C water vapour comes out from oil which is detected by ceramic sensor. The sensor is prepared from organo-metallic precursor by sol-gel process. Gold coated α-alumina substrate was dipped within the alumina hydra-sol and a thin film of γ-alumina formed on the substrate. The sensor capacitance was measured as a function of ppm moisture level. The circuit produces an output voltage which is precisely related to the absolute value of the capacitance of the dielectric material. In order to improve the sensitivity, parallel electrode structure was patterned on the nano porous dielectric. The response is sufficiently linear in extremely low ppm level moisture. A prototype hygrometer was built for detection of trace moisture in transformer oil. Porous alumina can be produced at a relatively low cost and in a variety of structural configurations. Sol- gel processing of alumina allows superior control on pore morphology, phase formation, purity and product microstructure compared to the more traditional techniques like Anodic oxidation of alumina sheets, tape cast by different sizes of alumina powder etc.

  11. Wireless soil moisture sensor networks for environmental monitoring and irrigation

    NASA Astrophysics Data System (ADS)

    Hübner, Christof; Cardell-Oliver, Rachel; Becker, Rolf; Spohrer, Klaus; Jotter, Kai; Wagenknecht, Tino

    2010-05-01

    Dependable spatial-temporal soil parameter data is required for informed decision making in precision farming and hydrological applications. Wireless sensor networks are seen as a key technology to satisfy these demands. Hence, research and development focus is on reliable outdoor applications. This comprises sensor design improvement, more robust communication protocols, less power consumption as well as better deployment strategies and tools. Field trials were performed to investigate and iteratively improve wireless sensor networks in the above-mentioned areas. They accounted for different climate conditions, soil types and salinity, irrigation practices, solar power availability and also for different radio spectrum use which affects the reliability of the wireless links. E.g. 868 MHz and 2.4 GHz wireless nodes were compared in the field with regard to range. Furthermore a low-cost soil moisture sensor was developed to allow for large-scale field experiments. It is based on the measurement of the high frequency dielectric properties of the soil. Two agricultural sites were equipped with 80 sensors and 20 wireless nodes each. The soil moisture data is collected in regular intervals, aggregated in a base station and visualized through a web-based geographical information system. The complete system and results of field experiments are presented.

  12. Miniaturized nondestructive microwave sensor for chickpea moisture measurement

    NASA Astrophysics Data System (ADS)

    Abegaonkar, Mahesh P.; Karekar, R. N.; Aiyer, R. C.

    1999-07-01

    A miniaturized microstrip ring resonator (MRR) 1 in.×1 in. resonating at fro=10.27 GHz was used as a nondestructive moisture sensor for chickpea kernels (Cicer arietinum L.) for ease in loading and unloading. The change in the resonant frequency (Δfr) of the MRR is a measure of the amount of moisture in the overlaid kernel. The percentage of moisture (M) was varied from 0% (dry) to ˜50% (fully soaked) calculated on a wet weight basis. Δfr increased with M, although not linearly. Three regions were observed in the sensitivity curve. The first region extended from 0%-12%, the central region from 12%-43%, and the saturation region from 43%-50% in moisture content. In the central region the observed Δfr was 574 MHz, whereas in the first and third regions it was 44 and 55 MHz, respectively. The regions in the sensitivity curves indicate different dominant phenomena. A small scatter was observed in the first region, which increased with the increasing percent of moisture content.

  13. Monitoring Land Surface Soil Moisture from Space with in-Situ Sensors Validation: The Huntsville Example

    NASA Technical Reports Server (NTRS)

    Wu, Steve Shih-Tseng

    1997-01-01

    Based on recent advances in microwave remote sensing of soil moisture and in pursuit of research interests in areas of hydrology, soil climatology, and remote sensing, the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCARS) conducted the Huntsville '96 field experiment in Huntsville, Alabama from July 1-14, 1996. We, researchers at the Global Hydrology and Climate Center's MSFC/ES41, are interested in using ground-based microwave sensors, to simulate land surface brightness signatures of those spaceborne sensors that were in operation or to be launched in the near future. The analyses of data collected by the Advanced Microwave Precipitation Radiometer (AMPR) and the C-band radiometer, which together contained five frequencies (6.925,10.7,19.35, 37.1, and 85.5 GHz), and with concurrent in-situ collection of surface cover conditions (surface temperature, surface roughness, vegetation, and surface topology) and soil moisture content, would result in a better understanding of the data acquired over land surfaces by the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR), because these spaceborne sensors contained these five frequencies. This paper described the approach taken and the specific objective to be accomplished in the Huntsville '97 field experiment.

  14. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  15. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y. H.

    2015-12-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and HOBE sites are

  16. Orbiting passive microwave sensor simulation applied to soil moisture estimation

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.

    1979-01-01

    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.

  17. Advanced MEMS spectral sensor for the NIR

    NASA Astrophysics Data System (ADS)

    Antila, Jarkko E.; Kantojärvi, Uula; Mäkynen, Jussi; Tammi, Matti; Suhonen, Janne

    2015-02-01

    Near Infrared (NIR) spectrometers are widely used in many fields to measure material content, such as moisture, fat and protein in grains, foodstuffs and pharmaceutical powders. These fields include applications where only highly miniaturized and robust NIR sensors can be used due to small usable space, weight requirements and/or hostile working environment. Handheld devices for material inspection, online process automation and automotive industry introduce requirements for size, robustness and cost, which is currently difficult to meet. In this paper we present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer. The sensor is fibercoupled, weighs 125 grams and fits to an envelope of 25x55x55 mm3. Three types of sensors cover the wavelength ranges from 1.35-1.7 μm, 1.55-2.0 μm and 1.7-2.2 μm, utilizing only a single pixel extended InGaAs detector, avoiding the expensive linear array detectors. We describe the design, principle of operation and calibration methods together with the control schemes. Some environmental tests are described and their results and finally application measurement results are presented along with discussion and conclusions.

  18. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  19. Estimation of building material moisture using non-invasive TDR sensors

    NASA Astrophysics Data System (ADS)

    Suchorab, Zbigniew; Sobczuk, Henryk; Łagód, Grzegorz

    2016-07-01

    The article presents the noninvasive attempt to measure moisture of building materials with the use of electric methods. Comparing to the other techniques of moisture detection like chemical or physical, the electric methods enable quick moisture estimation and they seem to be a suitable solution to monitor moisture changes. Most of electric moisture meters are the capacitance and resistance sensors. A perspective technique to determine moisture of building materials and barriers is Time Domain Reflectometry (TDR) method. This method has been successfully applied for moisture determination of the soils and since a few years has been used to measure moisture of building materials. The attempts to measure moisture of building materials require modification of traditional TDR sensor construction and extra calibration procedures. Sensors applied for building materials, comparing to the traditional ones are noninvasive. The advantages of surface sensors proposed in this article are the following: no influence on material structure, easier sample preparation for laboratory measurements, good possibility to apply for in-situ measurements. Major disadvantage of the described sensors is the difficulty of outgoing sensor signal interpretation and thus the possibility of the increase of measurement uncertainty. Anyhow it must be underlined that proposed in the article sensor constructions seem to be a balanced alternative for quick moisture detection.

  20. A sensor array system for monitoring moisture dynamics inunsaturated soil

    SciTech Connect

    Salve, R.; Cook, P.J.

    2007-05-15

    To facilitate investigations of moisture dynamics inunsaturated soil, we have developed a technique to qualitatively monitorpatterns of saturation changes. Field results suggest that this device,the sensor array system (SAS), is suitable for determining changes inrelative wetness along vertical soil profiles. The performance of theseprobes was compared with that of the time domain reflectometry (TDR)technique under controlled and field conditions. Measurements from bothtechniques suggest that by obtaining data at high spatial and temporalresolution, the SAS technique was effective in determining patterns ofsaturation changes along a soil profile. In addition, hardware used inthe SAS technique was significantly cheaper than the TDR system, and thesensor arrays were much easier to install along a soilprofile.

  1. Recent advances in (soil moisture) triple collocation analysis

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W.

    2016-03-01

    To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.

  2. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  3. Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations

    NASA Technical Reports Server (NTRS)

    Schaber, Chad L.; Nurge, Mark; Monje, Oscar

    2011-01-01

    Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.

  4. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOEpatents

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  5. Soil moisture from the recent AMSR2 and FY3B multi-frequency passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Parinussa, Robert; Wang, Guojie; de Jeu, Richard

    2014-05-01

    Over the years several different multi-frequency passive microwave sensors were used to estimate surface soil moisture. An historical multi-frequency passive microwave database from these satellite platforms was already used to generate a long term (32 years) surface soil moisture dataset. The Land Parameter Retrieval Algorithm (LPRM) was applied to this historical multi-frequency passive microwave database, including the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), that plays a dominant role in the 2002-2011 period. The Advanced Microwave Scanning Radiometer 2 (AMSR2) shares a similar design with its predecessor, it was improved based on general technical development as well as the valuable heritage that AMSR-E left behind. Most recently, the Japanese Aerospace Exploration Agency (JAXA) started offering brightness temperature observations from the AMSR2 radiometer. In the recent years, China's National Satellite Meteorological Center (NSMC) developed meteorological satellites. The NSMC has polar orbiting sun-synchronized meteorological satellites in operation since 1988 in the so-called FengYun (FY) satellite series. FY3 is China's 2nd generation polar orbiting satellite series, its design was based on the previous polar orbiting satellite series and FY3 will ultimately become series of four satellites (FY3A to FY3D). The FY3B satellite is the 2nd satellite of the FY3 series and it's the 1st in the series to carry a microwave imager (MWRI) onboard observing the Earth's surface in 10 microwave channels. Brightness temperature observations of these recently developed sensors were compared to the existing database. An inter-calibration step was performed in order to overcome small difference in brightness temperature observations as a result of the different sensor calibration procedures. The LPRM was applied to observations made by the FY3B and AMSR2 sensors resulting in global soil moisture products. After the implementation of the

  6. Timberline Forest Upward Advance Facilitated by Moisture and Disturbance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, J. A.

    2013-12-01

    Although climate warming is generally expected to facilitate timberline upward advance, tree regeneration will be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better predict factors promoting regeneration in the alpine treeline ecotone (ATE), this study examined microsites at timberline-alpine meadow borders both regionally (Pacific Northwest, PNW) and globally. In the PNW, 14 sites each having three levels of incoming radiation were randomly selected along a west-east decreasing precipitation gradient. Associations among forest disturbance, tree regeneration, radiation, precipitation, site moisture, and plant stomatal conductance were assessed. Globally, relationships among annual precipitation, annual temperature, and dominant species were evaluated for five microsites types. In the PNW, highest seedling densities at timberline-alpine meadow borders were associated with sites having greatest volumetric water content (VWC), locations typically associated with downed highly decayed wood. Wood microsites had greater seedling survival, greater temperature, and greater number of growing degree hours, as compared to adjacent soils. Greater seedling densities were positively associated with VWC > 12%, conditions most commonly associated with wood substrate presence. For sites having > 25% percent transmitted radiation, positive relationships existed between stomatal conductance and VWC. Global temperature increases, associated with both increases in rainfall amount and drought occurrence, are likely to increase importance of wood microsites at timberline-alpine meadow and timberline-grassland locations with mean annual temperatures < 5°C. We found that ATE wood microsites are common globally and are typically associated with blowdown, but are currently under-recognized as an important factor for tree regeneration above timberline. World-wide, wood microsites had annual precipitation from 86 cm to 320 cm and annual

  7. Advanced Sensors and Applications Study (ASAS)

    NASA Technical Reports Server (NTRS)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  8. Advanced Sensors for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra B.; Clinton, R. G.; Frazier, Donald

    2005-01-01

    This paper presents a variety of advanced sensors needed for NASA's space exploration. The topics include: 1) The vision of the President of the United States of America for Space Exploration; 2) The report of the President's Commission on Implementation of United States Space Exploration Policy; 3) Exploration Systems Interim Report; 4) Major areas of sensor needs; 5) Classes of material; and 6) Variety of Sensors for Space Exploration.

  9. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  10. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    USGS Publications Warehouse

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1988-01-01

    Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.

  11. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  12. Recognition of Devoiced Vowels Using Optical Microphone Made of Multipled POF-Type Moisture Sensors

    NASA Astrophysics Data System (ADS)

    Morisawa, Masayuki; Natori, Yoichi; Taki, Tomohito; Muto, Shinzo

    A novel optical fiber microphone system for recognizing devoiced vowels has been studied. This system consists of the optical detection of moisture pattern formed by devoiced breath and its recognization process using a modified DP-matching. To detect moisture pattern of devoiced vowels, five plastic optical fiber moisture sensors with fast response were developed and used. Using this system, high discernment rate over 93% was obtained for the devoiced vowels. This system will be used for verbally handicapped people to create sounds with a small effort in the near future.

  13. Recent advances in (soil moisture) triple collocation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, triple collocation (TC) analysis is one of the most important methods for the global scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method....

  14. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  15. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  16. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  17. Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers

    PubMed Central

    García, Belén; García, Diego; Robles, Guillermo

    2015-01-01

    Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393

  18. Development of a moisture-in-solid-insulation sensor for power transformers.

    PubMed

    García, Belén; García, Diego; Robles, Guillermo

    2015-02-04

    Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.

  19. Monitoring Moisture Content in Surface Barriers Using a Passive Sensor Platform

    SciTech Connect

    Kunerth, Dennis Clyde; Svoboda, John Mark; Lee, James Edwin

    2001-09-01

    Work is being performed to develop a versatile micro-power sensor platform for the purpose of periodic, remote sensing of environmental variables such as subsurface moisture or radiation. The key characteristics of the platform architecture are that the components are passive, thereby requiring no internal power source and that it communicates with a "reader" via short range telemetry, i.e. no wires need penetrate barrier structure. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing barrier structures. Functionally, the sensor package is read by a short range induction coil that both activates/powers the sensor platform and detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. To date, a prototype of the platform has been constructed and tested with a commercial moisture sensor. Work is now in progress to extend the capabilities of the existing platform to permit moisture sensing through landfill surface barriers (caps). Specifically, work is being performed to extend the telemetry range for transmission through a cap, select/develop low power sensor elements, and package the components to survive subsurface conditions. Considerations are being given to minimize package dimensions to permit retrofit applications.

  20. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor

    PubMed Central

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  1. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-08-15

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.

  2. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  3. Temporal observations of surface soil moisture using a passive microwave sensor

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas.

  4. Comparison of four soil moisture sensor types under field conditions in Switzerland

    NASA Astrophysics Data System (ADS)

    Mittelbach, Heidi; Lehner, Irene; Seneviratne, Sonia I.

    2012-04-01

    SummaryMany environmental and hydrological applications require knowledge about soil moisture. Its measurement accuracy is known to depend on the sensor technique, which is sensitive to soil characteristics such as texture, temperature, bulk density and salinity. However, the calibration functions provided by instrument manufacturers are generally developed under laboratory conditions, and their accuracy for field applications is rarely investigated, in particular over long time periods and in comparison with other sensors types. In this paper, four side-by-side profile soil moisture measurements down to 110 cm using three low-cost sensors and one high-accuracy and high-cost time domain reflectometry (TDR) sensor are compared over a 2-year period at a clay loam site in Switzerland. The low-cost instruments include the (1) 10HS (Decagon Devices, United States), (2) CS616 (Campbell Scientific, United States), and (3) SISOMOP (SMG University of Karlsruhe, Germany) sensors, which are evaluated against the (4) TDR-based TRIME-IT/-EZ (IMKO GmbH, Germany) sensors. For the comparison, the calibration functions provided by the manufacturers are applied for each sensor type. The sensors are evaluated based on daily data regarding their representation of the volumetric water content (VWC) and its anomalies, as well as the respective temperature dependency of the measurements. Furthermore, for each sensor type the actual evapotranspiration is estimated using the soil water balance approach and compared with measurements from a weighing lysimeter. It is shown that the root mean square difference (RMSD) of VWC for the low-cost sensors compared to the TDR measurements are up to 0.3 m3/m3, with highest values in near-surface layers. However, the RMSD for the VWC anomalies are lower compared to those for absolute values. We conclude that under the studied conditions none of the evaluated low-cost sensors has a level of performance consistent with the respective manufacturer

  5. Calibrating a FDR sensor for soil moisture monitoring in a wetland in Central Kenya

    NASA Astrophysics Data System (ADS)

    Böhme, Beate; Becker, Mathias; Diekkrüger, Bernd

    The recent transformation of wetlands into farmland in East Africa is accelerating due to growing food-demand, land shortages, and an increasing unpredictability of climatic conditions for crop production in uplands. However, the conversion of pristine wetlands into sites of production may alter hydrological attributes with negative effects on production potential. Particularly the amount and the dynamics of plant available soil moisture in the rooting zone of crops determine to a large extent the agricultural production potential of wetlands. Various methods exist to assess soil moisture dynamics with Frequency Domain Reflectometry (FDR) being among the most prominent. However, the suitability of FDR sensors for assessing plant available soil moisture has to date not been confirmed for wetland soils in the region. We monitored the seasonal and spatial dynamics of water availability for crop growth in an inland valley wetland of the Kenyan highlands using a FDR sensor which was site-specifically calibrated. Access tubes were installed within different wetland use types and hydrological situations along valley transects and soil properties affecting soil moisture (organic C, texture, and bulk density) were investigated. There was little variation in soil attributes between physical positions in the valley, and also between topsoil and subsoil attributes with the exception of organic C contents. With a root mean squared error of 0.073 m3/m3, the developed calibration function of the FDR sensor allows for reasonably accurate soil moisture prediction for both within-site comparisons and the monitoring of temporal soil moisture variations. Applying the calibration equation to a time series of profile probe readings over a period of one year illustrated not only the temporal variation of soil moisture, but also effects of land use.

  6. Recent advances in downscaling soil moisture from satellite to field scale

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.

    2014-12-01

    In the past few years there have been numerous methods that have been used to downscale the coarse spatial resolution soil moisture data obtained from passive microwave satellite sensors. Typical spatial resolutions from these sensors (as they are limited by antenna size) are 10s of kilometers. Field scale data at kilometer or sub-kilometer scale are obtained by couple of methods (a) Use of the thermal inertia relation between soil moisture and surface temperature modulated by vegetation (b) Relationship between soil moisture and evaporation (c) Change detection using high spatial resolution active radar data. Field experiments in support of satellite and aircraft experiments have resulted in better validation methodology. These experiments also include various in-situ networks such as the USDA-ARS SCAN. In this presentation we will present examples from all these methods and discuss validation plans for the Soil Moisture Active Passive (SMAP) mission using data from SMEX02 and SMAPVEX12.

  7. Soil moisture sensing via swept frequency based microwave sensors.

    PubMed

    Pelletier, Mathew G; Karthikeyan, Sundar; Green, Timothy R; Schwartz, Robert C; Wanjura, John D; Holt, Greg A

    2012-01-01

    There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR). The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT). The measurement is comparable to time domain transmissometry (TDT) with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument's ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/-105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r(2) = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the SFI instrument over

  8. Field calibrations of soil moisture sensors in a forested watershed.

    PubMed

    Abbas, Farhat; Fares, Ali; Fares, Samira

    2011-01-01

    Spatially variable soil properties influence the performance of soil water content monitoring sensors. The objectives of this research were to: (i) study the spatial variability of bulk density (ρ(b)), total porosity (θ(t)), clay content (CC), electrical conductivity (EC), and pH in the upper Mākaha Valley watershed soils; (ii) explore the effect of variations in ρ(b) and θ(t) on soil water content dynamics, and (iii) establish field calibration equations for EC-20 (Decagon Devices, Inc), ML2x (Delta-T-Devices), and SM200 (Delta-T-Devices) sensors to mitigate the effect of soil spatial variability on their performance. The studied soil properties except pH varied significantly (P < 0.05) across the soil water content monitoring depths (20 and 80 cm) and six locations. There was a linear positive and a linear inverse correlation between the soil water content at sampling and ρ(b), and between the soil water content at sampling and θ(t), respectively. Values of laboratory measured actual θ(t) correlated (r = 0.75) with those estimated from the relationship θ(t) = 1 - ρ(b)/ρ(s), where ρ(s) is the particle density. Variations in the studied soil properties affected the performance of the default equations of the three tested sensors; they showed substantial under-estimations of the actual water content. The individual and the watershed-scale field calibrations were more accurate than their corresponding default calibrations. In conclusion, the sensors used in this study need site-specific calibrations in order to mitigate the effects of varying properties of the highly weathered tropical soils.

  9. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  10. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be

  11. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  12. Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale

    NASA Astrophysics Data System (ADS)

    Majone, B.; Bellin, A.; Filippi, E.; Ioriatti, L.; Martinelli, M.; Massa, A.; Toller, G.

    2009-12-01

    We describe a recent deployment of soil moisture and temperature sensors in an apple tree orchard aimed at exploring the interaction between soil moisture dynamics and plant physiology. The field is divided into three parcels with different constant irrigation rates. The deployment includes dendrometers which monitor the variations of the trunk diameter. The idea is to monitor continuously and at small time steps soil moisture dynamics, soil temperature and a parameter reflecting plant stress at the parcel scale, in order to better investigate the interaction between plant physiology and soil moisture dynamics. Other sensors monitoring plant physiology can be easily accommodated within the Wireless Sensor Network (WSN). The experimental site is an apple orchard of 5000 m2 located at Cles, province of Trento, Italy, at the elevation of 640 m.a.s.l. In this site about 1200 apple trees are cultivated (cultivar Golden Delicious). The trees have been planted in 2004 in north-south rows 3.5 m apart. The deployment consists of 27 locations connected by a multi hop WSN, each one equipped with 5 soil moisture sensors (capacitance sensors EC-5, decagon Service) at the depths of 10, 20, 30, 50 and 80 cm, and a temperature sensor at the depth of 20 cm, for a total of 135 soil moisture and 27 temperature sensors. The proposed monitoring system is based on totally autonomous sensor nodes which allow both real time and historic data management. The data gathered are then organized in a database on a public web site. The node sensors are connected through an input/output interface to a WSN platform. The power supply consists of a solar panel able to provide 250 mA at 7 V and a 3V DC/DC converter based on a dual frequency high efficient switching regulator. The typical meteorological data are monitored with a weather station located at a distance of approximately 100 m from the experimental site. Great care has been posed to calibration of the capacitance sensors both in the

  13. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    USGS Publications Warehouse

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1987-01-01

    Three sensors were tested on building stones exposed to conditions that produce deposition of moisture. A relative humidity probe, a gypsum collected circuit grid, and a limestone block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for 8 weeks at Newcomb, New York. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated. However, relative humidity did control the rate at which sensors dried after being saturated with distilled water. On-site testing of the relative humidity probe and the gypsum coated circuit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone block resistor only responded to rainfall. (Author 's abstract)

  14. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  15. Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  16. Development of advanced magnetic resonance sensor for industrial applications. Final report

    SciTech Connect

    De Los Santos, A.

    1997-06-01

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  17. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  18. Advanced fiber-optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Teixeira, João G. V.; Leite, Ivo T.; Silva, Susana; Frazão, Orlando

    2014-09-01

    Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified — fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Pérot configurations — and their recent developments are summarized.

  19. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  20. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  1. Evaluation of TDR sensors to estimate moisture content in a highly saline soil from northern Chile

    NASA Astrophysics Data System (ADS)

    Cristi Matte, F.; Hernandez, M. F.; Fierro, V.; Hausner, M. B.; Munoz, J.; Suarez, F. I.

    2013-12-01

    The major component of the water budget in many of the volcanic basins located in northern Chile is evaporation from zones with shallow groundwater tables. Therefore, the water fluxes in the vadose zone in those dry volcanic-origin soils are of particular interest. In these soils, it has been reported that traditional time domain reflectometry (TDR) measurement methods are ineffective. TDR is a fast and nondestructive indirect electromagnetic method that is used to estimate soil moisture from the soil's apparent dielectric permittivity. The relationship between moisture content and apparent dielectric permittivity is influenced by many factors, such as length of the sensor's rods, salinity of porous media and soil mineralogy. In volcanic soils, it has been reported that Topp's 'universal' relationship is no longer valid. In this study, we evaluated the performance of TDR probes for the estimation of soil moisture in a highly saline and volcanic-origin soil from the Salar del Huasco basin, northern Chile. TDR sensors with rods of 7.5 and 30 cm were used to test the dielectric permittivity of different potassium chloride solutions of known permittivity (with electrical conductivity ranging from 0.015 to 12.9 dS/m). The TDR probes were then used to test the permittivity of soils at known water contents and temperatures. The effects of temperature and the salinity of the solutions on the apparent permittivity were negligible, and the shorter rods proved more accurate than the longer rods. Furthermore, neither the Topp's equation nor previously proposed relationships for volcanic-origin soils developed around the world were adequate to represent the soil's moisture content used in this study. Based on the results, we propose a new relationship between moisture content and apparent dielectric permittivity for the volcanic-origin soil of the Salar del Huasco basin. Further research is ongoing to obtain analogous relationships between moisture content and apparent

  2. Soil moisture spatial and temporal patterns from a wireless sensor network test bed

    NASA Astrophysics Data System (ADS)

    Villalba, G.; Davis, T. W.; Liang, X.

    2014-12-01

    The dynamics of water movement through vegetated porous media is a complex problem with large variabilities over differing temporal and spatial scales. This study examines a multi-year wireless sensor network (WSN) collecting shallow subsurface (10 and 30 cm) soil moisture content and soil water potential. The study site, located at the Audubon Society of Western Pennsylvania's Beechwood Farms Nature Reserve, is one of the longest running WSNs of its kind. Despite the noisy nature of the collected data (e.g., in comparison to traditional data logger methods), the WSN, consisting of over 50 nodes with more than 100 sensors, provides critical information regarding catchment-scale spatiotemporal patterns of soil moisture and soil water potential within a forested hill-sloped region of southwestern Pennsylvania.

  3. A methodology to identify representative configurations of sensors for monitoring soil moisture.

    PubMed

    Rivera, Diego; Granda, Stalin; Arumí, José Luis; Sandoval, Marco; Billib, Max

    2012-11-01

    Soil moisture is the key link among hydroecological compartments, responding dynamically to sequences of atmospheric processes and management conditions and modulating physical, chemical, and biological processes in the soil. Currently, there are a variety of monitoring techniques to measure, directly or indirectly, the soil moisture. However, some practical issues remain open like the definition a priori of the number, location and depth of the monitoring points, and the impact of failing or poor performance soil moisture sensors. Here, we present a set of techniques, namely Δθ time series, wavelet filtering, and time stability, to identify representative points and monitoring depths through an analysis of hourly soil moisture time series for different configuration of the monitoring network. We used real data from a monitoring network consisting of seven monitoring points, each one with four EC-5 probes (Decagon Devices Inc., Pullman, WA) at 20, 40, 60, and 100 cm. The use of simple time series of Δθ allowed us to assess the spatiotemporal influence of the monitoring points, while the wavelet periodograms allowed us to get insight about the response of the monitoring points at different time scales. Both methods are easy to implement or adapt to specific conditions, being coherent to the results derived from time stability analysis. For our case study, we concluded that we could reallocate 16 sensors (out of 28) without a significant loss of information. However, the final decision strongly relies on a deep knowledge of the site features and the objectives of the monitoring network.

  4. Hyperspectral image projector for advanced sensor characterization

    NASA Astrophysics Data System (ADS)

    Brown, S. W.; Rice, J. P.; Neira, J. E.; Bousquet, R.; Johnson, B. C.

    2006-08-01

    In this work, we describe radiometric platforms able to produce realistic spectral distributions and spatial scenes for the development of application-specific metrics to quantify the performance of sensors and systems. Using these platforms, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of complex source distributions. The same platforms can also serve as a basis for algorithm testing and instrument comparison. The platforms consist of spectrally tunable light sources (STS's) coupled with spatially programmable projection systems. The resultant hyperspectral image projectors (HIP) can generate complex spectral distributions with high spectral fidelity; that is, scenes with realistic spectral content. Using the same fundamental technology, platforms can be developed for the ultraviolet, visible, and infrared regions. These radiometric platforms will facilitate advanced sensor characterization testing, enabling a pre-flight validation of the pre-flight calibration.

  5. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing

  6. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

    PubMed Central

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-01-01

    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments.

  7. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and initial results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting and many other endeavors. These in situ networks are composed of a variety of sensors and installation practic...

  8. High Spatial Resolution Soil Moisture with Passive Active Sensors Using a Change Detection Approach: Studies Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Soil moisture is an important variable in many areas of geosciences. The passive microwave sensors have been providing soil moisture of various spatial resolutions and are available for all-weather conditions. However, restricted by the antenna diameter of microwave radiometer, the spatial resolution of passive microwave soil moisture product is at tens of kilometers and needs to be improved for many applications. The SMAP (Soil Moisture Active Passive) is set to be launched in late 2014 and will be the first mission to provide L-band radar/radiometer soil moisture retrievals at three resolutions. The SMAPVEX12 is a pre-launch field validation experiment for evaluating and testing the soil moisture retrievals acquired from SMAP satellite. Airborne data using PALS (Passive/Active L-band Sensor) at two along-track resolutions (650 m and 1590 m) and UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) at 5 m spatial resolution as well as in-situ measurements were collected during the campaign. The study will implement a Single Channel Algorithm (SCA) to retrieve soil moisture from high/low altitude PALS L-band radiometer observations, as well as produce downscaled soil moisture change by combining low spatial resolution soil moisture retrievals and high spatial resolution PALS L-band radar observations through a change-detection algorithm, which models the relationship between change in radar backscatter and the change in soil moisture.

  9. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  10. A Multi-Sensor Approach for Satellite Soil Moisture Monitoring for Agricultural Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Cherneski, P.; Hadwen, T. A.; Davidson, A.

    2014-12-01

    Satellite missions specifically dedicated to soil moisture retrieval have become a reality in the past few years, with the launch of SMOS in 2009 and SMAP in 2014. While much of the work on applications around these missions has focussed on data assimilation systems for numerical weather prediction, there is also potential to use the data to support agricultural applications such as drought and flood assessment and yield forecasting. Previous work has examined the potential for using SMOS soil moisture for detecting spatial and temporal patterns of agroclimate risk, such as drought and excess wetness. This research builds upon that work through the examination of a data set with a longer reference period to determine if the dataset can be used as a baseline for detecting anomalies from normal conditions. Surface satellite soil moisture from a multi-sensor climate reference data set (1993 to 2010) and the SMOS surface soil moisture data (2010 - 2014) set were examined in hindsight to detect relevant trends for monitoring the climate conditions in agricultural regions of Canada. Soil moisture and soil moisture anomalies were examined against precipitation and temperature records over the relevant time periods, and compared against agroclimatic drought risk indicators, including the Palmer Drought Severity Index, the Standardized Precipitation Index and the MODIS Normalized Difference Vegetation Condition anomalies. High impact events, including the 2002 drought in the Canadian Prairies, excess wetness in the southern Manitoba in 2009 and 2011 were evaluated in detail. The potential for using these data sets in near real time to support agricultural decision making will be discussed.

  11. New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements

    PubMed Central

    Stacheder, Markus; Koeniger, Franz; Schuhmann, Rainer

    2009-01-01

    Measurements of material moisture are essential in fields such as agriculture or civil engineering. Electromagnetic techniques, more precisely dielectric methods, have gained wide acceptance in the last decades. Frequency or Time Domain methods take advantage of the high dielectric permittivity of water compared to dry materials. This paper presents four new dielectric sensors for the determination of soil or snow water content. After a short introduction into the principles, both the hardware and operating mode of each sensor are described. Field test results show the advantages and potentials such as automatic measurement and profiling, state-of-ground detection or large-scale determination. From the results it follows that the presented sensors offer promising new tools for modern environmental research. PMID:22574056

  12. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  13. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  14. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  15. Automation of peanut drying with a sensor network including an in-shell kernel moisture sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut drying is an essential task in the processing and handling of peanuts. Peanuts leave the fields with kernel moisture contents > 20% wet basis and need to be dried to < 10.5% w.b. for grading and storage purposes. Current peanut drying processes utilize decision support software based on model...

  16. Advanced technologies for perimeter intrusion detection sensors

    SciTech Connect

    Williams, J.D.

    1995-03-01

    The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

  17. MISTRALE: Soil moisture mapping service based on a UAV-embedded GNSS-Reflectometry sensor

    NASA Astrophysics Data System (ADS)

    Van de Vyvere, Laura; Desenfans, Olivier

    2016-04-01

    Around 70 percent of worldwide freshwater is used by agriculture. To be able to feed an additional 2 billion people by 2030, water demand is expected to increase tremendously in the next decades. Farmers are challenged to produce "more crop per drop". In order to optimize water resource management, it is crucial to improve soil moisture situation awareness, which implies both a better temporal and spatial resolution. To this end, the objective of the MISTRALE project (Monitoring soIl moiSture and waTeR-flooded Areas for agricuLture and Environment) is to provide UAV-based soil moisture maps that could complement satellite-based and field measurements. In addition to helping farmers make more efficient decisions about where and when to irrigate, MISTRALE moisture maps are an invaluable tool for risk management and damage evaluation, as they provide highly relevant information for wetland and flood-prone area monitoring. In order to measure soil water content, a prototype of a new sensor, called GNSS-Reflectometry (GNSS-R), is being developed in MISTRALE. This approach consists in comparing the direct signal, i.e. the signal travelling directly from satellite to receiver (in this case, embedded in the UAV), with its ground-reflected equivalent. Since soil dielectric properties vary with moisture content, the reflected signal's peak power is affected by soil moisture, unlike the direct one. In order to mitigate the effect of soil surface roughness on measurements, both left-hand and right-hand circular polarization reflected signals have to be recorded and processed. When it comes to soil moisture, using GNSS signals instead of traditional visible/NIR imagery has many advantages: it is operational under cloud cover, during the night, and also under vegetation (bushes, grass, trees). In addition, compared to microwaves, GNSS signal (which lies in L-band, between 1.4 and 1.8 GHz) is less influenced by variation on thermal background. GNSS frequencies are then ideal

  18. A high-performance moisture sensor based on ultralarge graphene oxide

    NASA Astrophysics Data System (ADS)

    Wee, Boon-Hong; Khoh, Wai-Hwa; Sarker, Ashis K.; Lee, Chang-Hee; Hong, Jong-Dal

    2015-10-01

    This article describes the effect of the lateral size of graphene oxide (GO) on the humidity sensing properties of a GO-based sensor. The GO size effect on the humidity sensing performance was evaluated on gold electrodes drop-coated with either an ultralarge graphene oxide (UGO) sheet (lateral size = 47.4 +/- 22.2 μm) or a small-sized graphene oxide (SGO) sheet (lateral size = 0.8 +/- 0.5 μm). The in-plane conductance obtained from the UGO and SGO electrodes was found to increase by four orders of magnitude and by three orders of magnitude, respectively, upon exposure to relative humidity RH change from 7 to 100%. The maximal sensitivity (S) values of the UGO and SGO humidity sensors were determined to be SUGO = 4339 +/- 433 and SSGO = 1982 +/- 122. The GO size clearly influenced the overall proton conductivity, as evidenced by the activation enthalpy (Ea) required for proton conduction in UGO and SGO sheets: Ea (UGO) = 0.63 eV, Ea (SGO) = 1.14 eV. The UGO humidity sensor exhibited an excellent device performance with a high sensitivity and an ultrafast response/recovery time (0.2/0.7 s). Good humidity sensing stability was observed, with a variation of only +/-4.6% over five days. The resistive-type UGO humidity sensor was capable of sensing the moisture on a fingertip at a distance of 0.5 mm with a sensitivity of 17.4 and a response/recovery time of 0.6 s/1.3 s. The excellent device performance of the UGO humidity sensor also permitted the determination of the position of a fingertip by detecting the fingertip moisture, hence offering a great potential for touchless display position interface applications.This article describes the effect of the lateral size of graphene oxide (GO) on the humidity sensing properties of a GO-based sensor. The GO size effect on the humidity sensing performance was evaluated on gold electrodes drop-coated with either an ultralarge graphene oxide (UGO) sheet (lateral size = 47.4 +/- 22.2 μm) or a small-sized graphene oxide (SGO

  19. Use of cosmic ray neutron sensors for soil moisture monitoring in forests

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Güntner, Andreas; Blume, Theresa

    2016-04-01

    Measuring soil moisture with cosmic ray neutrons is a promising technique for intermediate spatial scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). The calibration is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a cosmic-ray neutron sensor (CRS) in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.12 m3 m-3 for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a modified calibration function with a different shape that can vary from one location to another. A two-point calibration proved to be adequate to correctly define the shape of the modified calibration function if the calibration points were taken during both dry and wet conditions spanning at least half of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and non-linearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. We will also provide a best practice calibration guide for CRS in forested environments.

  20. A high-performance moisture sensor based on ultralarge graphene oxide.

    PubMed

    Wee, Boon-Hong; Khoh, Wai-Hwa; Sarker, Ashis K; Lee, Chang-Hee; Hong, Jong-Dal

    2015-11-14

    This article describes the effect of the lateral size of graphene oxide (GO) on the humidity sensing properties of a GO-based sensor. The GO size effect on the humidity sensing performance was evaluated on gold electrodes drop-coated with either an ultralarge graphene oxide (UGO) sheet (lateral size = 47.4 ± 22.2 μm) or a small-sized graphene oxide (SGO) sheet (lateral size = 0.8 ± 0.5 μm). The in-plane conductance obtained from the UGO and SGO electrodes was found to increase by four orders of magnitude and by three orders of magnitude, respectively, upon exposure to relative humidity RH change from 7 to 100%. The maximal sensitivity (S) values of the UGO and SGO humidity sensors were determined to be S(UGO) = 4339 ± 433 and SSGO = 1982 ± 122. The GO size clearly influenced the overall proton conductivity, as evidenced by the activation enthalpy (Ea) required for proton conduction in UGO and SGO sheets: Ea (UGO) = 0.63 eV, Ea (SGO) = 1.14 eV. The UGO humidity sensor exhibited an excellent device performance with a high sensitivity and an ultrafast response/recovery time (0.2/0.7 s). Good humidity sensing stability was observed, with a variation of only ±4.6% over five days. The resistive-type UGO humidity sensor was capable of sensing the moisture on a fingertip at a distance of 0.5 mm with a sensitivity of 17.4 and a response/recovery time of 0.6 s/1.3 s. The excellent device performance of the UGO humidity sensor also permitted the determination of the position of a fingertip by detecting the fingertip moisture, hence offering a great potential for touchless display position interface applications.

  1. Advanced Sensor Technologies for Next-Generation Vehicles

    SciTech Connect

    Sheen, S H; Chien, H T; Gopalsami, N; Jendrzejczyk, A; Raptis, A C

    2002-01-30

    This report summarizes the development of automobile emissions sensors at Argonne National Laboratory. Three types of sensor technologies, i.e., ultrasound, microwave, and ion-mobility spectrometry (IMS), were evaluated for engine-out emissions monitoring. Two acoustic sensor technologies, i.e., surface acoustic wave and flexural plate wave, were evaluated for detection of hydrocarbons. The microwave technique involves a cavity design and measures the shifts in resonance frequency that are a result of the presence of trace organic compounds. The IMS technique was chosen for further development into a practical emissions sensor. An IMS sensor with a radioactive {sup 63}Ni ion source was initially developed and applied to measurement of hydrocarbons and NO{sub x} emissions. For practical applications, corona and spark discharge ion sources were later developed and applied to NO{sub x} emission measurement. The concentrations of NO{sub 2} in dry nitrogen and in a typical exhaust gas mixture are presented. The sensor response to moisture was evaluated, and a cooling method to control the moisture content in the gas stream was examined. Results show that the moisture effect can be reduced by using a thermoelectric cold plate. The design and performance of a laboratory prototype sensor are described.

  2. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor.

    PubMed

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-06-10

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.

  3. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor.

    PubMed

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-01-01

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935

  4. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor

    PubMed Central

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-01-01

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935

  5. Study of soil moisture sensor for landslide early warning system: Experiment in laboratory scale

    NASA Astrophysics Data System (ADS)

    Yuliza, E.; Habil, H.; Munir, M. M.; Irsyam, M.; Abdullah, M.; Khairurrijal

    2016-08-01

    The high rate of rainfall is the main trigger factor in many cases of landslides. However, each type of soils has unique characteristics and behavior concerning the rainfall infiltration. Therefore, early warning system of landslide will be more accurate by monitoring the changes of ground water condition. In this study, the monitoring of ground water changes was designed by using soil moisture sensor and simple microcontroller for data processing. The performance of soil moisture sensor was calibrated using the gravimetric method. To determine the soil characteristic and behavior with respect to water content that induce landslides, an experiment involving small-scale landslide model was conducted. From these experiments, the electric resistance of the soil increased as soil water content increases. The increase of soil water content led to the rise of the pore pressure and soil weight which could cause soil vulnerability to the movement. In addition, the various soil types were used to determine the responses of soils that induce the slope failure. Experimental results showed that each type of soils has different volumetric water content, soil matrix suction and shear strength of the slope. This condition influenced the slope stability that trigger of landslide.

  6. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    NASA Astrophysics Data System (ADS)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  7. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  8. Impact of stone content on soil moisture measurement with capacitive sensors 10HS (Decagon)

    NASA Astrophysics Data System (ADS)

    Deraedt, Deborah; Bernard, Julien; Bietlot, Louise; Clerbois, Laura; Rosière, Clément; Starren, Amandine; Colinet, Gilles; Mercatoris, Benoit; Degré, Aurore

    2015-04-01

    Lot of soil survey focused on agricultural soils. For practical reasons, those soils have a low stone content. So, most of the soil water content sensors are placed on low stone content soils and the calibration equations are developed for them. Yet some researches take an interest in forest soils that are often much different from the previous ones. The differences lie in their stone content and their slope. Lots of studies have proved the importance of making soil specific calibration of the soil water content sensor. As our lab use regularly the 10HS sensors (Decagon Devices, United States) in forested soil, we decided to evaluate the importance of the stone content in the soil moisture measurement. The soil used for this experimentation comes from Gembloux (50°33'54.9''N, 4°42'11.3''E). It is silt that has been sieved at 2 mm to remove the gravel. The stones used to form the samples come from an experimental site located in the Belgian Ardennes (50°1'52.6''N, 4°53'22.5''E). They are mainly composed of schist with some quartz and sandstone elements. Initially, only five samples were constructed with three replications each. The size and the proportion of stones were the variables. Stones were classified in two groups, the first contains gravels whose size is less than 1,5 cm and a the second contains gravels whose size is comprised between 2 and 3 cm. The proportions of stone selected for the experiment are 0, 20 and 40%. In order to generate validation data, two more samples were constructed with intermediate proportion of stone content (30%). The samples were built in PVC container which dimensions are slightly bigger than the sensor volume of influence (1.1-1.3l). The soil samples were saturated and then dried on a thermal chamber set at about 32°C. During at least 14 days, the samples soil water content was determined by the sensor measurement with the Procheck read-out system (Decagon Devices, United State) and by weighting the samples thrice a day

  9. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very

  10. [Performance characteristics of root zone moisture and water potential sensors for greenhouses in the conditions of extended space flight].

    PubMed

    Podolskiy, I G; Strugov, O M; Bingham, G E

    2014-01-01

    The investigation was performed using greenhouse Lada in the Russian segment of the International space station (ISS RS) as part of space experiment Plants-2 during ISS missions 5 through to 22. A set of 6 point moisture sensors embedded in the root zone (turface particles of 1-2 mm in diam.) and 4 tensiometers inside root modules (RM) were used to monitor moisture content and water potential in the root zone. The purpose was to verify functionality and to test performance of the sensors in the spacefight environment. It was shown that with the average RZ moisture content of 80% the measurement error of the sensors do not exceed ± 1.5%. Dynamic analysis of the tensiometers measurements attests that error in water potential measurements does not exceed ± 111 Pa.

  11. [Performance characteristics of root zone moisture and water potential sensors for greenhouses in the conditions of extended space flight].

    PubMed

    Podolskiy, I G; Strugov, O M; Bingham, G E

    2014-01-01

    The investigation was performed using greenhouse Lada in the Russian segment of the International space station (ISS RS) as part of space experiment Plants-2 during ISS missions 5 through to 22. A set of 6 point moisture sensors embedded in the root zone (turface particles of 1-2 mm in diam.) and 4 tensiometers inside root modules (RM) were used to monitor moisture content and water potential in the root zone. The purpose was to verify functionality and to test performance of the sensors in the spacefight environment. It was shown that with the average RZ moisture content of 80% the measurement error of the sensors do not exceed ± 1.5%. Dynamic analysis of the tensiometers measurements attests that error in water potential measurements does not exceed ± 111 Pa. PMID:26035998

  12. Advances and trends in ionophore-based chemical sensors

    NASA Astrophysics Data System (ADS)

    Mikhelson, K. N.; Peshkova, M. A.

    2015-06-01

    The recent advances in the theory and practice of potentiometric, conductometric and optical sensors based on ionophores are critically reviewed. The role of the heterogeneity of the sensor/sample systems is emphasized, and it is shown that due to this heterogeneity such sensors respond to the analyte activities rather than to concentrations. The basics of the origin of the response of all three kinds of ionophore-based sensors are briefly described. The use of novel sensor materials, new preparation and application techniques of the sensors as well as advances in theoretical treatment of the sensor response are analyzed using literature sources published mainly from 2012 to 2014. The basic achievements made in the past are also addressed when necessary for better understanding of the trends in the field of ionophore-based sensors. The bibliography includes 295 references.

  13. Advances in artificial olfaction: sensors and applications.

    PubMed

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. PMID:24767451

  14. Advances in artificial olfaction: sensors and applications.

    PubMed

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned.

  15. Improving Thermal IR Sensor-Derived Soil Moisture Mapping of the Walnut Gulch Experimental Watershed, SE Arizona using Soil Texture and Vegetation Data

    NASA Astrophysics Data System (ADS)

    Rose, S.; Scheidt, S. P.; Tischler, M.

    2011-12-01

    Soil moisture studies, especially those in semi-arid environments, are critical in understanding weather, climate, agricultural productivity, society impact, and national security. However, studying this type of environment is often difficult and costly due to remote locations, rapid dry-down following precipitation events, and required specialized equipment. In order to overcome these obstacles, remotely sensed data has been employed with limited success, as these measurements are at coarse spatial resolutions on the order of 10 km or more [e.g, 1]. Recent approaches of retrieving soil moisture have shown promise by utilizing the sensor-derived apparent thermal inertia (ATI) of the surface from higher spatial resolution imagers, including the Moderate Resolution Imaging Spectroradiometer (MODIS; 1 km) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER; 90 m) [e.g, 2]. We attempt to improve the ATI algorithm by analyzing comparisons between the sensor-derived values and in-situ field data from the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Modeled soil moisture was derived from a 10-year time series of archival MODIS data and 2 day/night acquisitions of ASTER data, accommodating for differences in scale. To accomplish this task: 1) high spatial resolution soil moisture maps were created, 2) the algorithm results were validated with an extensive open-source network of in-situ rain and 5 cm depth soil moisture gauge data, and 3) the soil moisture retrievals were adjusted for heterogeneous soils and vegetation cover. A proxy for soil texture is derived from associated mineral maps, produced by linear spectral deconvolution of emissivity [3 and 4] and validated by the open source WGEW soil maps. Vegetation influence is determined from VNIR data using standard band ratios. The results of this analysis will aim to improve the algorithm, and more accurately derive soil moisture by accounting for soil texture and

  16. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  17. Advancing Profiling Sensors with a Wireless Approach

    PubMed Central

    Galvis, Alex; Russomanno, David J.

    2012-01-01

    The notion of a profiling sensor was first realized by a Near-Infrared (N-IR) retro-reflective prototype consisting of a vertical column of wired sparse detectors. This paper extends that prior work and presents a wireless version of a profiling sensor as a collection of sensor nodes. The sensor incorporates wireless sensing elements, a distributed data collection and aggregation scheme, and an enhanced classification technique. In this novel approach, a base station pre-processes the data collected from the sensor nodes and performs data re-alignment. A back-propagation neural network was also developed for the wireless version of the N-IR profiling sensor that classifies objects into the broad categories of human, animal or vehicle with an accuracy of approximately 94%. These enhancements improve deployment options as compared with the first generation of wired profiling sensors, possibly increasing the application scenarios for such sensors, including intelligent fence applications. PMID:23443371

  18. The accuracy and calibration of three cotton bale moisture sensors used in a commercial gin with lint moisture restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper measurement of bale moisture content (mc) is crucial to proper management of a cotton gin. It is important to avoid producing wet cotton, unacceptable for Commodity Credit Corporation Marketing Assistance Loan Program, which is defined to be a bale of cotton which is at or above 7.5% wet bas...

  19. The accuracy of cotton bale moisture sensors used in a South Texas commercial gin with lint moisture restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper measurement of bale moisture content (mc) is crucial to proper management of a cotton gin. It is important to avoid producing wet cotton both for the benefit of the mills and because wet cotton is unacceptable for Commodity Credit Corporation Marketing Assistance Loan Program. Wet cotton is...

  20. Next Generation Advanced Video Guidance Sensor Development and Test

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Lee, Jimmy; Robertson, Bryan

    2009-01-01

    The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.

  1. Application of discrete wavelet analysis for moisture content estimation of in-shell nuts nondestructively with a capacitance sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content is an important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating this parameter for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance analyzer. ...

  2. Estimation of moisture and oil content of in-shell nuts with a capacitance sensor using discrete wavelet analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    . Moisture and oil contents are important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating these parameters for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance...

  3. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  4. A Non-Invasive Phase Sensor for Permittivity and Moisture Estimation Based on Anomalous Dispersion.

    PubMed

    Siddiqui, Omar; Ramzan, Rashad; Amin, Muhammad; Ramahi, Omar M

    2016-01-01

    The traditional microwave resonance sensors are based on the measurement of the frequency shift and bandwidth of a resonator's amplitude spectrum. Here we propose a novel sensing scheme in which the material properties are estimated by determining the changes in the phase spectrum of an anomalous-phase resonator. In the proposed phase sensing, we exploit the unique double phase reversal which takes place on the edges of the anomalous dispersion region as a signature to detect the resonance. We show that with the phase sensing, a significant reduction in detection errors compared to the traditional sensing can be obtained because of the noise immunity offered by the phase detection and also due to the strong dispersive phase response that reduces the sensor's dependence on the external environment. We also show that the bandwidth determination procedure of the resonance which is needed to characterize the sample losses is significantly simplified. The concept of phase sensing is shown by devising an experimental microstrip open stub resonator whose frequency response lies in the anomalous dispersion region. The dielectric characteristics of the samples placed on the stub are extracted from the resonant frequency and the slope of the phase response. We also demonstrate that the changes in moisture levels can also be detected by utilizing the phase sensing method. PMID:27346337

  5. Advanced fiber optic seismic sensors (geophone) research

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    The systematical research on the fiber optic seismic sensors based on optical Fiber Bragg Grating (FBG) sensing technology is presented in this thesis. Optical fiber sensors using fiber Bragg gratings have a number of advantages such as immunity to electromagnetic interference, lightweight, low power consumption. The FBG sensor is intrinsically sensitive to dynamic strain signals and the strain sensitivity can approach sub micro-strain. Furthermore, FBG sensors are inherently suited for multiplexing, which makes possible networked/arrayed deployment on a large scale. The basic principle of the FBG geophone is that it transforms the acceleration of ground motion into the strain signal of the FBG sensor through mechanical design, and after the optical demodulation generates the analog voltage output proportional to the strain changes. The customized eight-channel FBG seismic sensor prototype is described here which consists of FBG sensor/demodulation grating pairs attached on the spring-mass mechanical system. The sensor performance is evaluated systematically in the laboratory using the conventional accelerometer and geophone as the benchmark, Two major applications of FBG seismic sensor are demonstrated. One is in the battlefield remote monitoring system to detect the presence of personnel, wheeled vehicles, and tracked vehicles. The other application is in the seismic reflection survey of oilfield exploration to collect the seismic waves from the earth. The field tests were carried out in the air force base and the oilfield respectively. It is shown that the FBG geophone has higher frequency response bandwidth and sensitivity than conventional moving-coil electromagnetic geophone and the military Rembass-II S/A sensor. Our objective is to develop a distributed FBG seismic sensor network to recognize and locate the presence of seismic sources with high inherent detection capability and a low false alarm rate in an integrated system.

  6. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  7. Advances in Sensor Webs for NASA Earth Science Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, R.; Moe, K.; Smith, S.; Prescott, G.

    2007-12-01

    The world is slowly evolving into a web of interconnected sensors. Innovations such as camera phones that upload directly to the internet, networked devices with built-in GPS chips, traffic sensors, and the wireless networks that connect these devices are transforming our society. Similar advances are occurring in science sensors at NASA. NASA developed autonomy software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events. This software has also enabled NASA satellites to coordinate with other satellites and ground sensors to form an autonomous sensor web. A vision for NASA sensor webs for Earth science is to enable "on-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit." Several technologies for improved autonomous science and sensor webs are being developed at NASA. Each of these technologies advances the state of the art in sensorwebs in different areas including enabling model interactions with sensorwebs, smart autonomous sensors, and sensorweb communications. Enabling model interactions in sensor webs is focused on the creation and management of new sensor web enabled information products. Specifically, the format of these data products and the sensor webs that use them must be standardized so that sensor web components can more easily communicate with each other. This standardization will allow new components such as models and simulations to be included within sensor webs. Smart sensing implies sophistication in the sensors themselves. The goal of smart sensing is to enable autonomous event detection and reconfiguration. This may include onboard processing, self-healing sensors, and self-identifying sensors. The goal of communication enhancements, especially session layer management, is to support dialog control for autonomous operations

  8. Advanced sensors for surveying and mapping

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Arnold, Gabriele; Lorenz, Eckehard; Jahn, Herbert; Oertel, Dieter A.; B÷rner, Anko

    2004-12-01

    During the last years the department of Optical Information Systems of the German Aerospace Center (DLR) developed a considerable number of imaging sensor systems for a wide field of applications. Systems with a high geometric and radiometric resolution in dedicated spectral ranges of the electromagnetic spectrum were provided by developing and applying cutting edge technologies. Designed for photogrammetry and remote sensing, such systems play an important role for security and defence tasks. Complete system solutions were implemented considering theoretical framework, hardware design and deployment, overall system tests, calibration, sensor operation and data processing. Outstanding results were achieved with the airborne digital sensor ADS40 and the micro satellite BIRD and its infrared camera payload. Future activities will focus on intelligent cameras and sensor webs. The huge amount of data will force the issue of thematic multi-sensor data processing which is to be implemented in real time near the sensor. In dependence on well defined tasks, combinations of several sensors with special properties will be placed on spaceborne, airborne or terrestrial platforms. The paper gives an overview about finished and current projects and strategic goals.

  9. Advances in sapphire optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.

    1993-01-01

    We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

  10. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  11. A Non-Invasive Phase Sensor for Permittivity and Moisture Estimation Based on Anomalous Dispersion

    PubMed Central

    Siddiqui, Omar; Ramzan, Rashad; Amin, Muhammad; Ramahi, Omar M.

    2016-01-01

    The traditional microwave resonance sensors are based on the measurement of the frequency shift and bandwidth of a resonator’s amplitude spectrum. Here we propose a novel sensing scheme in which the material properties are estimated by determining the changes in the phase spectrum of an anomalous-phase resonator. In the proposed phase sensing, we exploit the unique double phase reversal which takes place on the edges of the anomalous dispersion region as a signature to detect the resonance. We show that with the phase sensing, a significant reduction in detection errors compared to the traditional sensing can be obtained because of the noise immunity offered by the phase detection and also due to the strong dispersive phase response that reduces the sensor’s dependence on the external environment. We also show that the bandwidth determination procedure of the resonance which is needed to characterize the sample losses is significantly simplified. The concept of phase sensing is shown by devising an experimental microstrip open stub resonator whose frequency response lies in the anomalous dispersion region. The dielectric characteristics of the samples placed on the stub are extracted from the resonant frequency and the slope of the phase response. We also demonstrate that the changes in moisture levels can also be detected by utilizing the phase sensing method. PMID:27346337

  12. A Non-Invasive Phase Sensor for Permittivity and Moisture Estimation Based on Anomalous Dispersion

    NASA Astrophysics Data System (ADS)

    Siddiqui, Omar; Ramzan, Rashad; Amin, Muhammad; Ramahi, Omar M.

    2016-06-01

    The traditional microwave resonance sensors are based on the measurement of the frequency shift and bandwidth of a resonator’s amplitude spectrum. Here we propose a novel sensing scheme in which the material properties are estimated by determining the changes in the phase spectrum of an anomalous-phase resonator. In the proposed phase sensing, we exploit the unique double phase reversal which takes place on the edges of the anomalous dispersion region as a signature to detect the resonance. We show that with the phase sensing, a significant reduction in detection errors compared to the traditional sensing can be obtained because of the noise immunity offered by the phase detection and also due to the strong dispersive phase response that reduces the sensor’s dependence on the external environment. We also show that the bandwidth determination procedure of the resonance which is needed to characterize the sample losses is significantly simplified. The concept of phase sensing is shown by devising an experimental microstrip open stub resonator whose frequency response lies in the anomalous dispersion region. The dielectric characteristics of the samples placed on the stub are extracted from the resonant frequency and the slope of the phase response. We also demonstrate that the changes in moisture levels can also be detected by utilizing the phase sensing method.

  13. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  14. Sensor Needs for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2000-01-01

    Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that

  15. Calibration of non-contact ultrasound as an online sensor for wood characterization: Effects of temperature, moisture, and scanning direction

    NASA Astrophysics Data System (ADS)

    Vun, R. Y.; Hoover, K.; Janowiak, J.; Bhardwaj, M.

    2008-01-01

    Numerous handheld moisture meters are available for measuring moisture levels of wood and building materials for a vast range of quality control and moisture diagnosis applications. However, many methods currently available require physical contact of a probe with the test material to operate. The contact requirement of such devices has limited applications for these purposes. There is a tremendous demand for dynamic online quality assessment of in-process materials for moisture content (MC) measurements. In this paper, a non-destructive non-contact ultrasound technology was used to evaluate the effects of increasing temperature in two MC levels and of increasing MC in lumber. The results show that the ultrasonic absolute transmittance and velocity parameters are directly correlated very well (R2≥0.87) with temperature for the two moisture levels in wood. At constant temperature, however, the velocity is inversely correlated with MC. It was also found that the distribution of MC along the length is marginally insignificant to both ultrasonic measurements. The transmittance measurement along the orthogonal thickness direction is insignificant above the fiber saturation MC; similarly, the velocity measurement is marginally insignificant. The study concludes a positive correlation and a good fit for this technology to advance into the development of an automated device for determining wood moisture levels, which will in turn be used to control the dynamics of wood drying/sterilization processes. Further calibration research is recommended to ascertain the constraints and limitations of the technology to specific wood species and dimension.

  16. Advanced figure sensor operations and maintenance manual

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    This manual contains procedures for installing, operating, and maintaining the optical figure sensor and its associated electronic controls. The optical figure sensor, a system of integrated components, comprises: (1) a phase measuring modified interferometer employing a single frequency 6328 A laser, and a Vidissector; (2) a two-axis automatic thermal compensation control mount; (3) a five degree of freedom manual adjustment stand; and (4) a control console. This instrument provides real time output data of optical figure errors for spherical mirrors, and is also capable of measuring aspherical mirrors if a null corrector is added.

  17. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  18. Advanced technology for space communications, tracking, and robotic sensors

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1989-01-01

    Technological advancements in tracking, communications, and robotic vision sensors are reviewed. The development of communications systems for multiple access, broadband, high data rate, and efficient operation is discussed. Consideration is given to the Tracking and Data Relay Satellite systems, GPS, and communications and tracking systems for the Space Shuttle and the Space Station. The use of television, laser, and microwave sensors for robotics and technology for autonomous rendezvous and docking operations are examined.

  19. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  20. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  1. Underwater sensor networks: applications, advances and challenges.

    PubMed

    Heidemann, John; Stojanovic, Milica; Zorzi, Michele

    2012-01-13

    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds and simulation tools available to the research community.

  2. Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites

    NASA Astrophysics Data System (ADS)

    Calamita, G.; Perrone, A.; Brocca, L.; Onorati, B.; Manfreda, S.

    2015-10-01

    Soil moisture is a variable of paramount importance for a number of natural processes and requires the capacity to be routinely measured at different spatial and temporal scales (e.g., hillslope and/or small catchment scale). The electromagnetic induction (EMI) method is one of the geophysical techniques potentially useful in this regard. Indeed, it does not require contact with the ground, it allows a relatively fast survey of hillslope, it gives information related to soil depth greater than few centimetres and it can also be used in wooded areas. In this study, apparent electrical conductivity (ECa) and soil moisture (SM) measurements were jointly carried out by using a multi-frequency EMI sensor (GEM-300) and Time Domain Reflectometry (TDR) probes, respectively. The aim was to retrieve SM variations at the hillslope scale over four sites, characterized by different land-soil units, located in a small mountainous catchment in southern Italy. Repeated measurements of ECa carried out over a fixed point showed that the signal variability of the GEM-300 sensor (Std. Err. ∼[0.02-0.1 mS/m]) was negligible. The correlation estimated between point ECa and SM, measured with both portable and buried TDR probes, varied between 0.24 and 0.58, depending on the site considered. In order to reduce the effect of small-scale variability, a spatial smoothing filter was applied which allowed the estimation of linear relationships with higher coefficient of correlation (r ∼ 0.46-0.8). The accuracy obtained in the estimation of the temporal trend of the soil moisture spatial averages was in the range ∼4.5-7.8% v/v and up to the ∼70% of the point soil moisture variance was explained by the ECa signal. The obtained results highlighted the potential of EMI to provide, in a short time, sufficiently accurate estimate of soil moisture over large areas that are highly needed for hydrological and remote sensing applications.

  3. Evaluation of several calibration procedures for a portable soil moisture sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation of remotely sensed soil moisture products relies upon an accurate source of ground truth data. The primary method of providing this ground truth is to conduct intensive field campaigns with manual surface soil moisture sampling measurements, which utilize gravimetric s...

  4. Capacitance Sensors for Nondestructive Moisture Determination in Agricultural and Bio-fuel materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content of wood chips, pellets, switch grass powders, and similar organic bio-fuel materials is an important property to be known to determine their utility and energy efficiency at various stages of their processing and storage. Several moisture measuring instruments are available in the m...

  5. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  6. Achieving miniature sensor systems via advanced packaging techniques

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Bobier, Kevin; Demmin, Jeffrey

    2005-05-01

    Demands for miniaturized networked sensors that can be deployed in large quantities dictate that the packages be small and cost effective. In order to accomplish these objectives, system developers generally apply advanced packaging techniques to proven systems. A partnership of Nova Engineering and Tessera begins with a baseline of Nova's Unattended Ground Sensors (UGS) technology and utilizes Tessera's three-dimensional (3D) Chip-Scale Packaging (CSP), Multi-Chip Packaging (MCP), and System-in-Package (SIP) innovations to enable novel methods for fabricating compact, vertically integrated sensors utilizing digital, RF, and micro-electromechanical systems (MEMS) devices. These technologies, applied to a variety of sensors and integrated radio architectures, enable diverse multi-modal sensing networks with wireless communication capabilities. Sensors including imaging, accelerometers, acoustical, inertial measurement units, and gas and pressure sensors can be utilized. The greatest challenge to high density, multi-modal sensor networks is the ability to test each component prior to integration, commonly called Known Good Die (KGD) testing. In addition, the mix of multi-sourcing and high technology magnifies the challenge of testing at the die level. Utilizing Tessera proprietary CSP, MCP, and SIP interconnection methods enables fully testable, low profile stacking to create multi-modal sensor radios with high yield.

  7. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  8. Automated sensor networks to advance ocean science

    NASA Astrophysics Data System (ADS)

    Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.

    2010-12-01

    The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.

  9. Development of sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.

  10. Latest Development in Advanced Sensors at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)

    2002-01-01

    Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.

  11. Design and performance of a wireless sensor network for catchment-scale snow and soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Kerkez, Branko; Glaser, Steven D.; Bales, Roger C.; Meadows, Matthew W.

    2012-09-01

    A wireless sensor network (WSN) was deployed as part of a water balance instrument cluster across a forested 1 km2headwater catchment in the southern Sierra Nevada of California. The network, which integrates readings from over 300 sensors, provides spatially representative measurements of snow depth, solar radiation, relative humidity, soil moisture, and matric potential. The ability of this densely instrumented watershed to capture catchment-scale snow depth and soil moisture distributions is investigated through comparison with three comprehensive gridded surveys and 1 day of detailed lidar snow data. Statistical analysis shows that the network effectively characterized catchment-wide distributions of snow depth, while offering a cost-effective, reliable, and energy-efficient means for collecting distributed data in real time. A temporal analysis of snow depth variability reveals that canopy cover is the major explanatory variable of snow depth and that under-canopy measurements persistently show higher variability compared to those in open terrain. An analysis of soil moisture shows lower variability at deeper soil depth and a correlation between mean soil moisture and variability for shallow soils. A three-phase design procedure was used to optimize the WSN deployment. First, as off-the-shelf performance of current WSN platforms for large-scale, long-term deployments cannot be guaranteed, statistics from a prototype deployment were analyzed. Two indicators of network performance, the packet delivery ratio and received signal strength indicator, showed that for our site conditions, a conservative 50 m node-to-node spacing would ensure low-power, reliable, and robust network communications. Second, results from the prototype were used to refine hardware specifications and to guide the layout of the full 57-node wireless network. Of these nodes, 23 were used actively for sensing, while the remaining 34 nodes were used as signal repeaters to ensure proper spatial

  12. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  13. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN. PMID:22826960

  14. Fiber optic sensors for an in-situ monitoring of moisture and pH value in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Grahn, Walter; Makedonski, Pavel; Wichern, Juergen; Kowalsky, Wolfgang; Wiese, Stefan

    2002-01-01

    Concrete structures such as social buildings and bridges are important economic goods. Thus, maintenance and preservation of these structures are of major interest. Buildings of reinforced concrete are exposed to a variety of damaging influences. In particular, moisture has an important influence on the lifetime of concrete structures. This is caused by the involvement of free water in corrosion of the steel, and the fact that water acts as transport medium for damaging ions such as chloride, sulfate, carbonate and ammonium. Thus, we designed and developed an integrated fiberoptical sensor system, which allows in-situ non- destructive long-term monitoring of concrete structures. As moisture indicator we use a pyridinium-N-phenolat betainital dye, which shows a strong solvatochromic behavior in the ultraviolet-visible spectral range (UV-VIS). The dye is embedded in a polymer matrix, whose moderate polarity is enhanced by free water diffusing into the sensor. This leads to a continuous hypsochromic shift of the absorption spectrum according to the water concetration. Another appropriate dye is 4-amino-N-methylphthalimid, which shows a similar behavior in its fluorescent spectra, and presently we are developing its derivatives and suitable polymer matrices. The determination of the pH-value of concrete is of major importance for the assessment of acidic attacks which may lead to serious damage in reinforced concrete, as the embedded steel structures exhibit long-term stability (i.e. resistance to corrosion) only at pH-values of 9 or higher. Therefore we have developed a fiberoptical sensor system for the measurement of pH-values in concrete consisting of pH- indicator dyes immobilized in a highly immobilized in a highly hydrophilic polymer matrix. Any change in pH-value of the wet concrete material is indicated by a color change of the dye/polymer system. The sensor system displays long term stability even in aggressive media of pH12 - 13.

  15. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  16. Estimation of moisture and oil content of in-shell nuts with a capacitance sensor using discrete wavelet analysis

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya; Govindarajan, K. N.; Butts, Chris L.; Subbiah, Jeyam

    2009-03-01

    Moisture and oil contents are important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating these parameters for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance analyzer. Impedance, phase angle and dissipation factor were measured for the parallel-plate system, holding the in-shell peanut samples between its plates, at frequencies ranging between 1MHz and 30 MHz in intervals of 0.5 MHz. The acquired signals were analyzed with discrete wavelet analysis. The signals were decomposed to 6 levels using Daubechies mother wavelet. The decomposition coefficients of the sixth level were passed onto a stepwise variable selection routine to select significant variables. A linear regression was developed using only the significant variables to predict the moisture and oil content of peanut pods (inshell peanuts) from the impedance measurements. The wavelet analysis yielded similar R2 values with fewer variables as compared to multiple linear and partial least squares regressions. The estimated values were found to be in good agreement with the standard values for the samples tested. Ability to estimate the moisture and oil contents in peanuts without shelling them will be of considerable help to the peanut industry.

  17. Next Generation Advanced Video Guidance Sensor: Low Risk Rendezvous and Docking Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Carrington, Connie; Spencer, Susan; Bryan, Thomas; Howard, Ricky T.; Johnson, Jimmie

    2008-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is being built and tested at MSFC. This paper provides an overview of current work on the NGAVGS, a summary of the video guidance heritage, and the AVGS performance on the Orbital Express mission. This paper also provides a discussion of applications to ISS cargo delivery vehicles, CEV, and future lunar applications.

  18. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  19. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  20. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Astrophysics Data System (ADS)

    Lafleur, S.

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  1. Advances in measuring ocean salinity with an optical sensor

    NASA Astrophysics Data System (ADS)

    Le Menn, M.; de Bougrenet de la Tocnaye, J. L.; Grosso, P.; Delauney, L.; Podeur, C.; Brault, P.; Guillerme, O.

    2011-11-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep.

  2. Design and performance of a capicitor sensor and impedance analyzer for nondestructive moisture content detemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method to determine the moisture content of in-shell peanuts with a parallel-plate electrode system fitted inside a cylinder by using impedance measurements made on the system. Two parallel-plate electrodes were mounted inside a cylinder, made of acrylic material, and the spac...

  3. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  4. Advanced exterior sensor project : final report, September 2004.

    SciTech Connect

    Ashby, M. Rodema

    2004-12-01

    This report (1) summarizes the overall design of the Advanced Exterior Sensor (AES) system to include detailed descriptions of system components, (2) describes the work accomplished throughout FY04 to evaluate the current health of the original prototype and to return it to operation, (3) describes the status of the AES and the AES project as of September 2004, and (4) details activities planned to complete modernization of the system to include development and testing of the second-generation AES prototype.

  5. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  6. Data assimilation with in situ soil moisture observations: what spatial configuration of the sensor network should be considered?

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, Niels; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.

    2016-04-01

    Continuously monitoring soil moisture in a permanent in situ network can yield an interesting observation product for hydrological data assimilation. Those in situ observations can be characterised by some major advantages such as a fine temporal resolution, a large vertical extent, the small impact of land cover on the observation error, etc. Because of the typical small integration volume of in situ measurements and the often large spacing between monitoring locations, only a small part of the modelling domain can be directly observed. Therefore a first important question to answer is whether spatially sparse in-situ soil moisture observations contain a sufficient data representativeness to successfully update the largely unobserved spatial extent of a distributed hydrological model. Furthermore, the spatial configuration of the sensors remains unaltered through time. Consequently it is interesting to assess the sensitivity of the spatial configuration of the sensors regarding the data assimilation performance. This allows for answering a second question: is it possible to reduce the number of sensors by optimising the design of the in situ network whilst maintaining the same level of assimilation performance? To bring added value in practice, one should be able to identify optimal network configurations using prior available model input data and/or open loop statistics, i.e. statistics derived from a model run without data assimilation. In this study the meso-scale catchment of the Bellebeek (±100 km²) in Belgium is modelled. The above-mentioned questions are addressed by means of a synthetic data assimilation framework using the ensemble Kalman filter. It can be concluded that the network configuration can indeed have a significant influence on the assimilation performance. Furthermore, preliminary results indicate that certain open loop statistics can be used as a network performance predictor. More in particular, it was examined whether the information

  7. Comparison of Riparian Evapotranspiration Estimated Using Raman LIDAR and Water Balance Based Estimates from a Soil Moisture Sensor Network

    NASA Astrophysics Data System (ADS)

    Solis, J. A.; Rajaram, H.; Whittemore, D. O.; Butler, J. J.; Eichinger, W. E.; Reboulet, E. C.

    2013-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impacts on water management and conservation. A common method of measuring ET is using the eddy correlation technique. However, since most riparian zones are narrow, eddy correlation techniques are not applicable because of limited fetch distance. Techniques based on surface-subsurface water balance are applicable in these situations, but their accuracy is not well constrained. In this study, we estimated RET within a 100 meter long and 40 meter wide riparian zone along Rock Creek in the Whitewater Basin in central Kansas using a water balance approach and Raman LIDAR measurements. A total of six soil moisture profiles (with six soil moisture sensors in each profile) and water-table measurements were used to estimate subsurface water storage (total soil moisture, TSM). The Los Alamos National Laboratory (LANL)-University of Iowa (UI) Raman LIDAR was used to measure the water vapor concentrations in three dimensions where the Monin-Obukhov similarity theory was used to obtain the spatially resolved fluxes. The LIDAR system included a 1.064 micron Nd:YAG laser with a Cassagrain telescope with a laser pulse of 50Hz with 25mJ of energy per pulse. Estimates of RET obtained from TSM changes were compared to LIDAR estimates obtained from three-dimensional water vapor concentrations of the atmosphere directly above and downwind of the riparian vegetation. The LIDAR measurements help to validate the TSM based estimates of RET and constrain their accuracy. RET estimates obtained from TSM changes in individual soil moisture profiles exhibited a large variability (up to a factor 8). This variability results from the highly heterogeneous soils in the vadose zone (2-3 m thick), where soil moisture (rather than groundwater) is the major source of water for riparian vegetation. Variable vegetation density and species also

  8. Advances in downscaling soil moisture for use in drought and flood assessments: Implications for data from the Soil Moisture Active and Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Fang, B.; Narayan, U.

    2015-12-01

    Hydrological hazards, namely droughts and floods are dependent on the deficit and excess of soil moisture. With the launch of the Soil Moisture Active and Passive Mission (SMAP) in January 2015 we will have twice a day global observations of soil moisture. However the spatial resolution of soil moisture retrieved from the SMAP radiometer is 10s of km and the SMAP radar will provide backscatter observations 100m-1km. High spatial resolution of soil moisture helps to monitor floods and droughts in a spatially distributed fashion. The current focus is finding the best way to obtain high spatial resolution soil moisture using the radar and radiometer observations. In this presentation we will deal with downscaling by couple of methods - (a) Use of the thermal inertia relation between soil moisture and surface temperature modulated by vegetation (b) Relationship between soil moisture and evaporation (c) Change detection using high spatial resolution active radar data.

  9. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  10. Advances in materials for room temperature hydrogen sensors.

    PubMed

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors.

  11. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Azhari, Faezeh

    2012-07-01

    The highly optimized performance of nature's creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.

  12. Soil moisture detection by Skylab's microwave sensors. [radiometer/scatterometer measurements of Texas

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator); Barr, J. C.; Sobti, A.

    1974-01-01

    The author has identified the following significant results. Terrain microwave backscatter and emission response to soil moisture variations were investigated using Skylab's 13.9 GHz RADSCAT (radiometer/scatterometer) system. Data acquired on June 5, 1973, over a test site in west-central Texas indicated a fair degree of correlation with composite rainfall. The scan made was cross-track contiguous (CTC) with a pitch of 29.4 deg and no roll effect. Vertical polarization was employed with both radiometer and scatterometer. The composite rainfall was computed according to the flood prediction technique using rainfall data supplied by weather reporting stations.

  13. New DEMs may stimulate significant advancements in remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Nolan, Matt; Fatland, Dennis R.

    From Napoleon's defeat at Waterloo to increasing corn yields in Kansas to greenhouse gas flux in the Arctic, the importance of soil moisture is endemic to world affairs and merits the considerable attention it receives from the scientific community. This importance can hardly be overstated, though it often goes unstated.Soil moisture is one of the key variables in a variety of broad areas critical to the conduct of societies' economic and political affairs and their well-being; these include the health of agricultural crops, global climate dynamics, military trafficability planning, and hazards such as flooding and forest fires. Unfortunately the in situ measurement of the spatial distribution of soil moisture on a watershed-scale is practically impossible. And despite decades of international effort, a satellite remote sensing technique that can reliably measure soil moisture with a spatial resolution of meters has not yet been identified or implemented. Due to the lack of suitable measurement techniques and, until recently digital elevation models (DEMs), our ability to understand and predict soil moisture dynamics through modeling has largely remained crippled from birth [Grayson and Bloschl, 200l].

  14. SSC Geopositional Assessment of the Advanced Wide Field Sensor

    NASA Technical Reports Server (NTRS)

    Ross, Kenton

    2006-01-01

    The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.

  15. Advanced Sensor Fish Device for ImprovedTurbine Design

    SciTech Connect

    Carlson, Thomas J.

    2009-09-14

    Juvenile salmon (smolts) passing through hydroelectric turbines are subjected to environmental conditions that can potentially kill or injure them. Many turbines are reaching the end of their operational life expectancies and will be replaced with new turbines that incorporate advanced “fish friendly” designs devised to prevent injury and death to fish. To design a fish friendly turbine, it is first necessary to define the current conditions fish encounter. One such device used by biologists at Pacific Northwest National Laboratory was the sensor fish device to collect data that measures the forces fish experience during passage through hydroelectric projects.

  16. Understanding Soil Moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...

  17. Advances in modeling sorption and diffusion of moisture in porous reactive materials.

    PubMed

    Harley, Stephen J; Glascoe, Elizabeth A; Lewicki, James P; Maxwell, Robert S

    2014-06-23

    Water-vapor-uptake experiments were performed on a silica-filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed. A high-fidelity modeling approach is derived and used to improve the modeling of moisture uptake and diffusion. Our modeling approach captures the physics and kinetics of diffusion and adsorption/desorption, simultaneously. It predicts uptake better than the established method; more importantly, it is also able to predict outgassing. The material used for these studies is a filled-PDMS network; physical interpretations concerning the sorption and diffusion of moisture in this network are discussed.

  18. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    NASA Astrophysics Data System (ADS)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  19. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect

    Brambley, M. R.; Haves, P.; McDonald, S. C.; Torcellini, P.; Hansen, D.; Holmberg, D. R.; Roth, K. W.

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  20. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  1. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, Kent B.; Frye, Gregory C.; Schneider, Thomas W.

    1996-01-01

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO.sub.2. In another embodiment, the SiO.sub.2 is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system.

  2. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOEpatents

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  3. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  4. Advancing from offline to online activity recognition with wearable sensors.

    PubMed

    Ermes, Miikka; Parkka, Juha; Cluitmans, Luc

    2008-01-01

    Activity recognition with wearable sensors could motivate people to perform a variety of different sports and other physical exercises. We have earlier developed algorithms for offline analysis of activity data collected with wearable sensors. In this paper, we present our current progress in advancing the platform for the existing algorithms to an online version, onto a PDA. Acceleration data are obtained from wireless motion bands which send the 3D raw acceleration signals via a Bluetooth link to the PDA which then performs the data collection, feature extraction and activity classification. As a proof-of-concept, the online activity system was tested with three subjects. All of them performed at least 5 minutes of each of the following activities: lying, sitting, standing, walking, running and cycling with an exercise bike. The average second-by-second classification accuracies for the subjects were 99%, 97%, and 82 %. These results suggest that earlier developed offline analysis methods for the acceleration data obtained from wearable sensors can be successfully implemented in an online activity recognition application. PMID:19163702

  5. Continental-Scale Evaluation of Assimilated Soil Moisture Retrievals From the Advanced Microwave Scanning Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a fundamental data source used in crop growth stage and crop stress models developed by the USDA Foreign Agriculture Service for global crop estimation. USDA’s International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA). Currently, the PECAD DSS utiliz...

  6. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.

    SciTech Connect

    PEPPER,S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-11-13

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  7. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are

  8. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  9. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  10. Monitoring Soil Moisture in Saline Soils using Neutron Probe, Time Domain Reflectometry, and Heat Dissipation Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.

    2004-12-01

    Knowledge of spatial and temporal variability of soil moisture content (SMC) is important for understanding of land-atmosphere interactions, groundwater recharge, and water balance. Different measurement methods have contrasting strengths and weaknesses. Traditional neutron probe measurements cannot be automated and are time-intensive. However, there are widespread problems with using automated time domain reflectometry (TDR) for monitoring SMC due to high soil salinity/electrical conductivity. The objective of this study was to show how these limitations can be overcome by using multiple methods. Neutron probe access tubes, TDR probes (coated and uncoated), and heat dissipation sensors (HDS) were installed at an engineered field laboratory in a semiarid setting. The texture of the soils was sandy clay loam, including 0.3 m of uncompacted topsoil with low salinity and non-swelling clays underlain by 1.0 to 1.7 m of compacted subsoil with high salinity and swelling clays. A neutron probe was used to manually measure SMC profiles at 20 locations at approximately monthly intervals over a 3.5 yr period. During a 4 to 5 yr overlapping period, daily automated measurements were made at 8 locations of apparent dielectric constant (Ka) and bulk electrical conductivity (EC) profiles using TDR (128 probes) and matric potential profiles using HDS (54 sensors). TDR measurements in the high salinity soils were effectively calibrated in situ using neutron probe measurements. Modeled estimates of spatial average water content were generally within 0.01 m3/m3. A similar approach was used to combine neutron probe, TDR, and HDS measurements to generate in situ soil water retention functions. These functions were then used to estimate SMC from matric potential measurements. These approaches allowed SMC to be monitored in high salinity swelling soils and provided much higher resolution time series than were obtained from the limited neutron probe measurements.

  11. An Evaluation of Soil Moisture Retrievals Using Aircraft and Satellite Passive Microwave Observations during SMEX02

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Lakshmi, Venkat

    2009-01-01

    The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.

  12. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  13. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  14. A Robust Wireless Sensor Network Architecture for the Large-scale Deployment of the Soil Moisture Sensing Controller and Optimal Estimator (SoilSCaPE)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Entekhabi, D.; Castillo, A. E.; Liu, M.; Burgin, M.; Goykhman, Y.

    2011-12-01

    We develop energy-efficient wireless sensor network technologies and data analysis techniques for dynamic and near-real-time validation of space-borne soil moisture measurements, in particular those from the Soil Moisture Active and Passive (SMAP) mission. Soil moisture fields are functions of variables that change over time across the range of scales from a few meters to several kilometers, necessitating the deployment of an extensive in-situ network for validation of coarse-resolution retrievals of soil moisture from SMAP and other remote sensing data. Previously we have reported on the scheduling and placement strategies for achieving optimal spatial and temporal sampling by the network. This work focuses on the latest developments of the large-scale wireless sensor network architecture that we have termed the Ripple architecture, and in particular, its latest version Ripple-2. The new network architecture solves many of the previous problems encountered during field deployments of the SoilSCAPE network, including reliability and scalability. The new architecture will be described, along with the results of the latest field deployments at the University of Michigan Matthaei botanical gardens and at the representative field site in Canton, Oklahoma. The status of the large-scale deployment at the Tonzi Ranch in central California will also be given. Additionally, the latest results of hydrologic and radar landscape simulators will also be presented, highlighting the connection between the SoilSCAPE network data, remote sensing retrievals, and the target science application of SMAP validation.

  15. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  16. Estimating root-zone moisture and evapotranspiration with AVHRR data[Advanced Very High Resolution Radiometer

    SciTech Connect

    Song, J.; Wesely, M. L.

    1999-10-08

    The parameterized subgrid-scale surface fluxes (PASS) model uses satellite data and limited surface observations to infer root-zone available moisture content and evapotranspiration rate with moderate spatial resolution over extended terrestrial areas. The ultimate goal of this work is to produce estimates of water loss by evapotranspiration, for application in hydrological models. The major advantage to the method is that it can be applied to areas having diverse surface characteristics where direct surface flux measurements either do not exist or are not feasible and where meteorological data are available from only a limited number of ground stations. The emphasis of this work with the PASS model is on improving (1) methods of using satellite remote sensing data to derive the essential parameters for individual types of surfaces over large areas, (2) algorithms for describing the interactions of near-surface atmospheric conditions with surface processes, and (3) algorithms for computing surface energy and water vapor flux at a scale close to the size of a satellite-derived image pixel. The PASS approach is being developed and tested further with observations from the 1997 Cooperative Atmosphere-Surface Exchange Study (CASES-97) at the Atmospheric Boundary Layer Experiments (ABLE) site in the Walnut River Watershed (WRW), an area of about 5,000 km{sup 2} in southern Kansas. Here the authors describe some of the progress made since the previous report.

  17. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  18. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  19. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  20. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  1. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  2. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  3. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  4. Advances in fiber optic sensors for in-vivo monitoring

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  5. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  6. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  7. System performance advances of 18-mm and 16-mm subminiature image intensifier sensors

    NASA Astrophysics Data System (ADS)

    Thomas, Nils I.

    2000-11-01

    Night vision system design has been centered aroudn the An/AVS-6 and AN/PVS-7 night vision goggle systems for the past 20 years. Goggle performance has improved during this time through increased performance of the image intensifier sensor, primarily the Omni IV sensor from ITT Industries Night Vision. Most of this improvement has been at the optimal light level (1E-3 fc scene illumination). Recent advances in image sensor performance from the filmless Generation (Gen) IV sensors has increased the low light level performance of night vision devices from 0.3 cy/mr to 0.7 cy/mr. In addition, sensor packaging design requirements have forced night vision sensor manufactures to design light weight, small volume sensors. ITT recently has designed such a sensor in a 16-mm format. This sensor if 50% lighter, up to 50% shorter, and has design features that simplify the objective lens design. New night vision goggles have been, and are being, designed which reduce the perceived head-supported weight. This paper presents signal-to-noise ratio, halo, and other film-less sensor data and similar 16-mm subminiature sensor data. The resulting system performance data will be described. Finally, the system design improvements and relationships with the subminiature 16-mm subminiature sensor will be given.

  8. Advances on Sensor Web for Internet of Things

    NASA Astrophysics Data System (ADS)

    Liang, S.; Bermudez, L. E.; Huang, C.; Jazayeri, M.; Khalafbeigi, T.

    2013-12-01

    'In much the same way that HTML and HTTP enabled WWW, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE), envisioned in 2001 [1] will allow sensor webs to become a reality.'. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not a simple task. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. SWE standardizes web service interfaces, sensor descriptions and data encodings as building blocks for a Sensor Web. SWE standards are now mature specifications (version 2.0) with approved OGC compliance test suites and tens of independent implementations. Many earth and space science organizations and government agencies are using the SWE standards to publish and share their sensors and observations. While SWE has been demonstrated very effective for scientific sensors, its complexity and the computational overhead may not be suitable for resource-constrained tiny sensors. In June 2012, a new OGC Standards Working Group (SWG) was formed called the Sensor Web Interface for Internet of Things (SWE-IoT) SWG. This SWG focuses on developing one or more OGC standards for resource-constrained sensors and actuators (e.g., Internet of Things devices) while leveraging the existing OGC SWE standards. In the near future, billions to trillions of small sensors and actuators will be embedded in real- world objects and connected to the Internet facilitating a concept called the Internet of Things (IoT). By populating our environment with real-world sensor-based devices, the IoT is opening the door to exciting possibilities for a variety of application domains, such as environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as personal and social applications. The current SWE-IoT development aims on modeling the IoT components and defining a standard web service that makes the

  9. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  10. Effects of Moisture Profiles and Laminate Configuration on the Hygro Stresses in Advanced Composites. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1978-01-01

    An integrated hygrothermo-mechanical theory was used to predict the effects of three moisture profiles on the ply hygro stresses in angleplied laminates. The moisture profiles were linear, parabolic and hyperbolic. Moisture content varied from 1 percent in the exposed ply to zero in the protected ply. The angleplied laminates were of two generic configurations. The results obtained are summarized graphically to illustrate the effects of both moisture profile and laminate configuration. The results indicate that ply transverse tensile hygro stresses may reach sufficiently high magnitudes to cause transply cracking.

  11. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  12. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  13. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  14. Advances in hybrid optics physical sensors for extreme environments

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2010-04-01

    Highlighted are novel innovations in hybrid optical design physical sensors for extreme environments. Various hybrid design compositions are proposed that are suited for a particular sensor application. Examples includes combining freespace (wireless) and fiber-optics (wired) for gas turbine sensing and combining single crystal and sintered Silicon Carbide (SiC) materials for robust extreme environment Coefficent of Thermal Expansion (CTE) matched frontend probe design. Sensor signal processing also includes the hybrid theme where for example Black-Body radiation thermometry (pyrometry) is combined with laser interferometry to provide extreme temperature measurements. The hybrid theme also operates on the optical device level where a digital optical device such as a Digital Micromirror Device (DMD) is combined with an analog optical device such as an Electronically Controlled Variable Focal Length Lens (ECVFL) to deliver a smart and compressive Three Dimensional (3-D) imaging sensor for remote scene and object shape capture including both ambient light (passive) mode and active laser targeting and receive processing. Within a device level, the hybrid theme also operates via combined analog and digital control such as within a wavelength-coded variable optical delay line. These powerful hybrid design optical sensors have numerous applications in engineering and science applications from the military to the commercial/industrial sectors.

  15. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  16. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  17. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  18. Advanced Layered Composite Polylaminate Electroactive Actuator and Sensor

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); Copeland, Benjamin M., Jr. (Inventor); Bryant, Robert G. (Inventor)

    2000-01-01

    The present invention relates to the mounting of pre-stressed electroactive material in such a manner that large displacement actuators or sensors result. The invention comprises mounting the pre-stressed electroactive material to a support layer. This combination of a pre-stressed electroactive material and support layer may in turn be attached to a mounting surface. The pre-stressed electroactive material may be a ferroelectric, pyroelectric, piezoelectric, or magnetostrictive material. The size, stiffness, mass, and material of the support layer is selected to result in the electroactive device having dynamic response properties, environmental capability characteristics, and the required resilience optimized for a given application. The capacity to connect the support layer to a surface expands the arenas in which the prestressed electroactive device may be used. Application for which the invention may be used include actuators, sensors, or as a component in a pumps, switches, relays, pressure transducers and acoustic devices.

  19. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  20. Advanced spectral fiber optic sensor systems and their application in energy facility monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Bosselmann, Thomas; Willsch, Michael; Lindner, Eric; Bartelt, Hartmut

    2011-06-01

    Various spectral-encoded fiber optic sensor concepts and advanced system solutions for application in energy facility monitoring have been investigated. The technological maturity, high performance and reliability of multiplexed fiber Bragg grating (FBG) sensor arrays and networks for the measurement of temperature, dynamic strain, air flow, and magnetic field distributions in electric power generators increasing their efficiency will be demonstrated by selected examples of field testing under harsh environmental conditions. For high-temperature combustion monitoring in gas turbines, beside silica FBGs with enhanced temperature stability also sapphire FBGs and Fabry-Perot sensors have been tested and evaluated as well as fiber-based black-body thermal radiation sensors. Finally, the potential of FBG sensors for application in cryo-energetic facilities such as super-conductive high-power motors and experimental nuclear fusion reactors will be discussed.

  1. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  2. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  3. EDITORIAL: Advanced Sensors and Instrumentation Systems for the Food and Beverage Industries

    NASA Astrophysics Data System (ADS)

    Yan, Yong

    2006-02-01

    Advanced sensors and instrumentation systems are becoming increasingly important in the classification, characterization, authentication, quality control and safety management of food products and beverages. To bring together industrialists and academic researchers to discuss the latest developments and trends in this particular area, the ISAT (Instrument Science and Technology) Group of the Institute of Physics organized a highly focused one-day technical meeting, which was held at the Rutherford Conference Centre at the Institute of Physics in London on 15 December 2004. The event was co-sponsored by the Measurement, Sensors, Instrumentation and NDT Professional Network of the Institution of Electrical Engineers and the Measurement Science and Technology Panel of the Institute of Measurement and Control. The special feature in this issue (on pages 229 287) brings together a collection of some of the papers that were presented at the event. Also included in the special feature are two relevant papers that were submitted through the usual route. Technical topics covered, though wide ranging as reflected in part by the diversity of the papers, demonstrate recent developments and possible approaches that may offer solutions to a broad range of sensing and measurement problems in the food and beverage industries. The first paper, reported by Sheridan et al, is concerned with the quality monitoring of chicken, sausages and pastry products during their cooking processes using an optical fibre-based sensing system. Carter et al describe how digital imaging and image processing techniques have been applied to achieve the classification and authentication of rice grains. The challenges in the measurement and control of final moisture content in baked food products such as bread and biscuits are addressed and discussed by McFarlane. Juodeikiene et al report their progress in the development of acoustic echolocation-based techniques for the evaluation of porosity and

  4. Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.

    1991-04-01

    The combination of noninvasive in-situ monitoring sensors single-wafer processing modules vacuum-integrated cluster tools and computer-integrated manufacturing (CIM) can provide a suitable fabrication environment for flexible and high-yield advanced semiconductor device manufacturing. The use of in-situ sensors for monitoring of equipment process and wafer parameters results in increased equipment/process up-time reduced process and device parameter spread improved cluster tool reliability and functionality and reduced overall device manufacturing cycle time. This paper will present an overview of the main features and impact of noninvasive in-situ monitoring sensors for semiconductor device manufacturing applications. Specific examples will be presented for the use of critical sensors in conjunction with cluster tools for advanced CMOS device processing. A noninvasive temperature sensor will be presented which can monitor true wafer temperature via infrared (5. 35 jtm) pyrometery and laser-assisted real-time spectral wafer emissivity measurements. This sensor design eliminates any. temperature measurement errors caused by the heating lamp radiation and wafer emissivity variations. 1. SENSORS: MOTIVATIONS AND IMPACT Semiconductor chip manufacturing factories usually employ well-established statistical process control (SPC) techniques to minimize the process parameter deviations and to increase the device fabrication yield. The conventional fabrication environments rely on controlling a limited set of critical equipment and process parameters (e. g. process pressure gas flow rates substrate temperature RF power etc. ) however most of the significant wafer process and equipment parameters of interest are not monitored in real

  5. Field test of a multi-frequency electromagnetic induction sensor for the study of soil moisture in different land-soil units

    NASA Astrophysics Data System (ADS)

    Calamita, Giuseppe; Onorati, Beniamino; Perrone, Angela; Manfreda, Salvatore; Brocca, Luca

    2015-04-01

    The crucial role of the soil moisture (SM) in a number of natural processes that act at different spatial and temporal scales has been largely recognized by the scientific community. Although the most used ground-based techniques for SM measurement (i.e. the Thermo-gravimentric, Time Domain Reflectometry (TDR) probes, Capacitance sensors, Neutron-moisture meters (NMM)) proved to be accurate and permit to acquire data at a high temporal resolution, they still remain invasive and punctual. As the size of the area of interest grows, these methods reveal applicability limitations that have been only partially overcome with the coming of the distributed sensor networks. During last decade, it has been pointed out that an improved understanding of the processes and factors that control SM patterns at non-punctual scales might result from information collected in larger volume of subsoil or larger study area. Indeed, sensing greater volumes of soil over larger areas would filter less important details that derive from a simple sum of multi-point measurements and would be useful to emphasize the characteristics emerging at larger scales. This implies the collection of measurements on a large number of points distributed over larger scales, although characterized by lower accuracy. Recently, geophysical methods have received special attention thanks to their ability to collect information that go beyond the local information sensed with traditional sensors. Between potentially useful methods, the Electro-Magnetic Induction (EMI) method has been indicated as one of the most promising for hydrological applications. Ground-based EMI sensors are lightweight, do not require contact with the soil allowing a considerable reduction of the survey costs as long as the spatial extent of the area of interest grows. Moreover, the ability to measure through thicknesses of soil greater than some centimetres and the possibility to collect data in wooded areas make the use of these sensors

  6. ADVANCED SOLID STATE SENSORS FOR VISION 21 SYSTEMS

    SciTech Connect

    C.D. Stinespring

    2005-04-28

    Silicon carbide (SiC) is a high temperature semiconductor with the potential to meet the gas and temperature sensor needs in both present and future power generation systems. These devices have been and are currently being investigated for a variety of high temperature sensing applications. These include leak detection, fire detection, environmental control, and emissions monitoring. Electronically these sensors can be very simple Schottky diode structures that rely on gas-induced changes in electrical characteristics at the metal-semiconductor interface. In these devices, thermal stability of the interfaces has been shown to be an essential requirement for improving and maintaining sensor sensitivity and lifetime. In this report, we describe device fabrication and characterization studies relevant to the development of SiC based gas and temperature sensors. Specifically, we have investigated the use of periodically stepped surfaces to improve the thermal stability of the metal semiconductor interface for simple Pd-SiC Schottky diodes. These periodically stepped surfaces have atomically flat terraces on the order of 200 nm wide separated by steps of 1.5 nm height. It should be noted that 1.5 nm is the unit cell height for the 6H-SiC (0001) substrates used in these studies. These surfaces contrast markedly with the ''standard'' SiC surfaces normally used in device fabrication. Obvious scratches and pots as well as subsurface defects characterize these standard surfaces. This research involved ultrahigh vacuum deposition and characterization studies to investigate the thermal stability of Pd-SiC Schottky diodes on both the stepped and standard surfaces, high temperature electrical characterization of these device structures, and high temperature electrical characterization of diodes under wet and dry oxidizing conditions. To our knowledge, these studies have yielded the first electrical characterization of actual sensor device structures fabricated under ultrahigh

  7. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  8. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  9. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  10. Recent Advances in Nanoplasmonic Sensors for Environmental Detection and Monitoring.

    PubMed

    Choi, Inhee

    2016-05-01

    The great attention in environmental pollution urges the development of innovative monitoring system enabling rapid, sensitive, specific detection and easy operation. Recent progress in nanoplasmonic sensors allowing real-time, highly-sensitive, label-free and multiplex detection provides a promising alternative to conventional environmental analyzing techniques. This review summarizes novel nanoplasmonic approaches categorized by optical detection technologies, which include surface plasmon resonance spectroscopy, dark-field nanospectroscopy, Raman spectroscopy, and even naked eyes. The focus of this review will be on how plasmonic nanostructures can be utilized to detect environmental pollutants, and remarkable accomplishments to enhance the detection performances. In addition, we discuss current challenge and future direction for ubiquitous environmental sensing and monitoring. PMID:27483747

  11. Advanced array techniques for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Followill, Fred E.; Wolford, James K.; Candy, James V.

    1997-07-01

    Sensor arrays offer opportunities to beamform, and time- frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16- element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on a floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window). (Source 11). The transient event of a diesel generator turning on, including a few seconds before the `turn-on time' and a few seconds after the generator reaches `steady-state conditions'. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 163-component, high- frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  12. Advanced array techniques for unattended ground sensor applications

    SciTech Connect

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  13. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  14. NASA Programs in Advanced Sensors and Measurement Technology for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    2004-01-01

    There are many challenges facing designers and operators of our next-generation aircraft in meeting the demands for efficiency, safety, and reliability which are will be imposed. This paper discusses aeronautical sensor requirements for a number of research and applications areas pertinent to the demands listed above. A brief overview will be given of aeronautical research measurements, along with a discussion of requirements for advanced technology. Also included will be descriptions of emerging sensors and instrumentation technology which may be exploited for enhanced research and operational capabilities. Finally, renewed emphasis of the National Aeronautics and Space Administration in advanced sensor and instrumentation technology development will be discussed, including project of technology advances over the next 5 years. Emphasis on NASA efforts to more actively advance the state-of-the-art in sensors and measurement techniques is timely in light of exciting new opportunities in airspace development and operation. An up-to-date summary of the measurement technology programs being established to respond to these opportunities is provided.

  15. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  16. Moisturizer Allergy

    PubMed Central

    Stechschulte, Sarah A.

    2008-01-01

    Background: Moisturizers are used by patients with dry skin conditions as well as those with healthy skin to enhance and preserve the smoothness of the skin and to interrupt the dry-skin cycle. Moisturizers are generally considered safe, although skin reactions, such as allergic contact dermatitis from topical preparations may occur. Cosmetic products including moisturizers are among the main culprits of allergic contact dermatitis. Methods: Utilizing a recently published database of all moisturizers available at Walgreens Pharmacies (Chicago, Illinois), which listed each product's allergens from the North American Contact Dermatitis Group (NACDG) screening panel, we evaluated the number of moisturizers containing each allergen. Results: Of the 276 moisturizers accounted for in the database, 68 percent contained fragrance making it the most common allergen found in these moisturizers. Parabens were discovered in 62 percent of moisturizers, followed by Vitamin E in 55 percent of products. Essential oils and biologic additives were found in 45 percent of products, followed by benzyl alcohol in 24 percent of moisturizers. Propylene glycol was found in 20 percent of moisturizers, followed by formaldehyde releasers in 20 percent of products. Iodopropynyl butylcarbamate was discovered in 16 percent of products, followed by lanolin in 10 percent of moisturizers. Methylisothiazolinone/methylchloroisothiazolinone was found in six percent of available products. Conclusions: Many ingredients of moisturizers have the potential to cause irritant and allergic contact dermatitis; therefore, it is necessary for clinicians to be aware of such potential allergens in order to manage and advise their patients accordingly. PMID:21212847

  17. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  18. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  19. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  20. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.

    2008-01-01

    The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).

  1. Advanced Sensors for Accurate, Broadband AC Voltage Metrology

    NASA Astrophysics Data System (ADS)

    Lipe, Thomas E.; Kinard, Joseph R.; Novotny, Donald B.; Sims, June E.

    2013-06-01

    We report on advances in ac voltage metrology made possible by a new generation of Multijunction Thermal Converters (MJTCs). Although intended for use primarily in high-frequency (1 MHz to 100 MHz) metrology, their exceptional low-frequency qualities, combined with a large dynamic range, makes these MJTCs excellent devices for the frequency range 10 Hz to 100 MHz at voltages from 1 V to 20 V, depending on the design. We anticipate that these devices will form the future basis for ac voltage metrology at the National Institute of Standards and Technology (NIST).

  2. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

    SciTech Connect

    DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A.; GROSHOLZ,J.

    2002-07-08

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.

  3. Soil Moisture Workshop

    NASA Technical Reports Server (NTRS)

    Heilman, J. L. (Editor); Moore, D. G. (Editor); Schmugge, T. J. (Editor); Friedman, D. B. (Editor)

    1978-01-01

    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report.

  4. Measurement of soil moisture using remote sensing multisensor radiation techniques

    NASA Technical Reports Server (NTRS)

    Waite, W. P. (Principal Investigator)

    1982-01-01

    Theoretical modeling as well as laboratory and field measurement were coupled with analysis of aircraft data obtained from controlled sites in an effort to enhance understanding of the microwave response due to soil moisture so as to specify sensor parameters and develop inversion algorithms. Models to predict the complex dielectric constant were produced which led to the interpretation of the results in terms of a matrix potential rather than simply moisture content. Similar advances were made in the development of coherent and incoherent radiative transfer models and rough surface scattering models.

  5. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Santi, Emanuele; Paloscia, Simonetta; Pettinato, Simone; Fontanelli, Giacomo

    2016-06-01

    Among the algorithms used for the retrieval of SMC from microwave sensors (both active, such as Synthetic Aperture Radar-SAR, and passive, radiometers), the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at a resolution varying from hundreds of meters to tens of kilometers according to the spatial scale of each sensor. These algorithms, which are based on the ANN techniques for inverting theoretical and semi-empirical models, have been adapted to the C- to Ka- band acquisitions from spaceborne radiometers (AMSR-E/AMSR2), SAR (Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these algorithms. An overall quality assessment of the obtained results in terms of accuracy and computational cost was carried out, and the main advantages and limitations for an operational use of these algorithms were evaluated. This technique allowed the retrieval of SMC from both active and passive satellite systems, with accuracy values of about 0.05 m3/m3 of SMC or better, thus making these applications compliant with the usual accuracy requirements for SMC products from space.

  6. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  7. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect

    Wang, Anbo; Pickrell, Gary

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  8. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  9. A field evaluation of remote sensor measurements of wind, temperature, and moisture for ARM integrated sounding system research

    SciTech Connect

    Martner, B.E.; Westwater, E.R.; Strauch, R.G.

    1993-10-01

    Remote sensing systems were operated in Colorado in February and March 1991 to obtain detailed profiles of the kinematic and thermodynamic structure of the atmosphere for the US Department of Energy`s Atmospheric Radiation Measurement (ARM) research program. The instruments included wind profilers, Radio Acoustic Sounding Systems (PASS), microwave and infrared radiometers, an infrared spectrometer, ceilometers, radiosondes, surface meteorological stations, and other equipment. A mesoscale data assimilation model will be used to combine the data into dynamically consistent four-dimensional fields as part of an integrated data assimilation sounding system. This report evaluates the performance of the NOAA remote sensors used in the 1991 field data collection. These included five different wind profilers, each equipped with RASS capability for temperature profiling, and microwave radiometers for measurements of pathintegrated water vapor and liquid water content. The design and initial testing of a Fourier-transform InfraRed Sounder (FIRS) for humidity profiling is also described. The ranges of height coverage and measurement accuracies for each wind profiler/RASS are examined. Specific recommendations for optimizing the design and configuration of similar instruments are made for the ARM cloud and Radiation Testbed (CART) sites, based on results of the 1991 field work and earlier tests. Examples of routine processed data products are presented for three intensive operating period studies to further illustrate the remote sensors` capabilities.

  10. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    NASA Astrophysics Data System (ADS)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    -CCI-SM dataset. This recommendation is based on a series of statistical metrics (i.e. correlation, unbiased root mean square error, bias, spatial correspondence and single to noise ratios (Gruber et al., 2015)) and will provide guidelines for a seamless integration. References Al-Yaari, A., Wigneron, J.P., Kerr, Y., De Jeu, R.A.M., Rodriguez-Fernandez, N., Van der Schalie, R., Al Bitar, A., Mialon, A., Richaume, P., Dolman, A., and Ducharne, A. (2015), "Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations", Remote Sensing of Environment, IN PRESS. Gruber, A., Su, C.-H., Zwieback, S., Crowd, W., Dorigo, W., and Wagner, W. (2015), "Recent advances in (soil moisture) triple collocation analysis", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.09.002. Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira, M., and Mecklenburg, S. (2010), "The SMOS mission: New tool for monitoring key elements of the global water cycle", Proceedings of the IEEE, vol. 98, no. 5, doi: 10.1109/JPROC.2010.2043043. Rodríguez-Fernández, N.J., Aires, F., Richaume, P., Kerr, Y.H., Prigent, C., Kolassa, J., Cabot, F., Jiménez, C., Mahmoodi, A., and Drusch, M. (2015), "Soil Moisture Retrieval Using Neural Networks: Application to SMOS", IEEE Trans. on Geosc. and Remote Sens., vol. 53, no. 11, doi: 10.1109/TGRS.2015.2430845. Van der Schalie, R., Kerr, Y.H., Wigneron, J.P., Rodriguez-Fernandez, N.J., Al-Yaari, A., and De Jeu, R.A.M. (2015), "Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.08.005. Wigneron J.-P., Calvet, J.-C., De Rosnay, P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M.J. and Kruszewski, A. (2004), "Soil Moisture Retrievals from Bi-Angular L-band Passive

  11. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    NASA Astrophysics Data System (ADS)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    -CCI-SM dataset. This recommendation is based on a series of statistical metrics (i.e. correlation, unbiased root mean square error, bias, spatial correspondence and single to noise ratios (Gruber et al., 2015)) and will provide guidelines for a seamless integration. References Al-Yaari, A., Wigneron, J.P., Kerr, Y., De Jeu, R.A.M., Rodriguez-Fernandez, N., Van der Schalie, R., Al Bitar, A., Mialon, A., Richaume, P., Dolman, A., and Ducharne, A. (2015), "Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations", Remote Sensing of Environment, IN PRESS. Gruber, A., Su, C.-H., Zwieback, S., Crowd, W., Dorigo, W., and Wagner, W. (2015), "Recent advances in (soil moisture) triple collocation analysis", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.09.002. Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira, M., and Mecklenburg, S. (2010), "The SMOS mission: New tool for monitoring key elements of the global water cycle", Proceedings of the IEEE, vol. 98, no. 5, doi: 10.1109/JPROC.2010.2043043. Rodríguez-Fernández, N.J., Aires, F., Richaume, P., Kerr, Y.H., Prigent, C., Kolassa, J., Cabot, F., Jiménez, C., Mahmoodi, A., and Drusch, M. (2015), "Soil Moisture Retrieval Using Neural Networks: Application to SMOS", IEEE Trans. on Geosc. and Remote Sens., vol. 53, no. 11, doi: 10.1109/TGRS.2015.2430845. Van der Schalie, R., Kerr, Y.H., Wigneron, J.P., Rodriguez-Fernandez, N.J., Al-Yaari, A., and De Jeu, R.A.M. (2015), "Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.08.005. Wigneron J.-P., Calvet, J.-C., De Rosnay, P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M.J. and Kruszewski, A. (2004), "Soil Moisture Retrievals from Bi-Angular L-band Passive

  12. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth’s surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large sc...

  13. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers.

    PubMed

    Xu, Lin; Zhang, Zhaowei; Zhang, Qi; Li, Peiwu

    2016-01-01

    Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing. PMID:27529281

  14. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  15. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers

    PubMed Central

    Xu, Lin; Zhang, Zhaowei; Zhang, Qi; Li, Peiwu

    2016-01-01

    Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing. PMID:27529281

  16. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  17. An Advanced Compiler Designed for a VLIW DSP for Sensors-Based Systems

    PubMed Central

    Yang, Xu; He, Hu

    2012-01-01

    The VLIW architecture can be exploited to greatly enhance instruction level parallelism, thus it can provide computation power and energy efficiency advantages, which satisfies the requirements of future sensor-based systems. However, as VLIW codes are mainly compiled statically, the performance of a VLIW processor is dominated by the behavior of its compiler. In this paper, we present an advanced compiler designed for a VLIW DSP named Magnolia, which will be used in sensor-based systems. This compiler is based on the Open64 compiler. We have implemented several advanced optimization techniques in the compiler, and fulfilled the O3 level optimization. Benchmarks from the DSPstone test suite are used to verify the compiler. Results show that the code generated by our compiler can make the performance of Magnolia match that of the current state-of-the-art DSP processors. PMID:22666040

  18. Visual Sensor Technology for Advanced Surveillance Systems: Historical View, Technological Aspects and Research Activities in Italy

    PubMed Central

    Foresti, Gian Luca; Micheloni, Christian; Piciarelli, Claudio; Snidaro, Lauro

    2009-01-01

    The paper is a survey of the main technological aspects of advanced visual-based surveillance systems. A brief historical view of such systems from the origins to nowadays is given together with a short description of the main research projects in Italy on surveillance applications in the last twenty years. The paper then describes the main characteristics of an advanced visual sensor network that (a) directly processes locally acquired digital data, (b) automatically modifies intrinsic (focus, iris) and extrinsic (pan, tilt, zoom) parameters to increase the quality of acquired data and (c) automatically selects the best subset of sensors in order to monitor a given moving object in the observed environment. PMID:22574011

  19. An advanced compiler designed for a VLIW DSP for sensors-based systems.

    PubMed

    Yang, Xu; He, Hu

    2012-01-01

    The VLIW architecture can be exploited to greatly enhance instruction level parallelism, thus it can provide computation power and energy efficiency advantages, which satisfies the requirements of future sensor-based systems. However, as VLIW codes are mainly compiled statically, the performance of a VLIW processor is dominated by the behavior of its compiler. In this paper, we present an advanced compiler designed for a VLIW DSP named Magnolia, which will be used in sensor-based systems. This compiler is based on the Open64 compiler. We have implemented several advanced optimization techniques in the compiler, and fulfilled the O3 level optimization. Benchmarks from the DSPstone test suite are used to verify the compiler. Results show that the code generated by our compiler can make the performance of Magnolia match that of the current state-of-the-art DSP processors. PMID:22666040

  20. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  1. Advanced computational sensors technology: testing and evaluation in visible, SWIR, and LWIR imaging

    NASA Astrophysics Data System (ADS)

    Rizk, Charbel G.; Wilson, John P.; Pouliquen, Philippe

    2015-05-01

    The Advanced Computational Sensors Team at the Johns Hopkins University Applied Physics Laboratory and the Johns Hopkins University Department of Electrical and Computer Engineering has been developing advanced readout integrated circuit (ROIC) technology for more than 10 years with a particular focus on the key challenges of dynamic range, sampling rate, system interface and bandwidth, and detector materials or band dependencies. Because the pixel array offers parallel sampling by default, the team successfully demonstrated that adding smarts in the pixel and the chip can increase performance significantly. Each pixel becomes a smart sensor and can operate independently in collecting, processing, and sharing data. In addition, building on the digital circuit revolution, the effective well size can be increased by orders of magnitude within the same pixel pitch over analog designs. This research has yielded an innovative class of a system-on-chip concept: the Flexible Readout and Integration Sensor (FRIS) architecture. All key parameters are programmable and/or can be adjusted dynamically, and this architecture can potentially be sensor and application agnostic. This paper reports on the testing and evaluation of one prototype that can support either detector polarity and includes sample results with visible, short-wavelength infrared (SWIR), and long-wavelength infrared (LWIR) imaging.

  2. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  3. FY97 report on moisture sensors for enhanced surveillance program project LL-ESP96-13

    SciTech Connect

    Anderson, B.B.; Baylor, L.C.; Sanders, M.A.

    1997-09-23

    Several compounds were evaluated in a number of optical configurations in order to test the optical response of these compounds to changes in humidity. Reichardt`s betaine (Reichardt`s dye, ET-30 dye, 2,6-diphenyl-4-(2,4,6-triphenyl-N-pyridinio)phenolate), a solvatochromic molecule, and several vapochromic compounds were tested, and each responded to a wide range of humidity by exhibiting shifts in visible absorption. All compounds in the study suffered from some degree of hysteresis upon humidity cycling. It is unclear as to the mechanism for this hysteresis, but future work will attempt to either model or remove the hysteresis effects. In the case of the vapochromic compounds, the hysteresis may be due to structural changes in the crystal lattice of the solid state compound. A prototype sensor configuration was also developed involving an attenuated total reflectance probe. The future of the project will deal with elucidating the hysteresis mechanisms for each compound, evaluating several other vapochromic compounds, and testing different immobilization schemes for the compounds under study. In addition, several other optical technologies will be investigated for application in optical humidity sensing.

  4. Microstrip transmission line for soil moisture measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German

    2004-12-01

    Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.

  5. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  6. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    SciTech Connect

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  7. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  8. Advances in Resistive Pulse Sensors: Devices bridging the void between molecular and microscopic detection

    PubMed Central

    Kozak, Darby; Anderson, Will; Vogel, Robert; Trau, Matt

    2011-01-01

    Since the first reported use of a biological ion channel to detect differences in single stranded genomic base pairs in 1996, a renaissance in nanoscale resistive pulse sensors has ensued. This resurgence of a technique originally outlined and commercialized over fifty years ago has largely been driven by advances in nanoscaled fabrication, and ultimately, the prospect of a rapid and inexpensive means for genomic sequencing as well as other macromolecular characterization. In this pursuit, the potential application of these devices to characterize additional properties such as the size, shape, charge, and concentration of nanoscaled materials (10 – 900 nm) has been largely overlooked. Advances in nanotechnology and biotechnology are driving the need for simple yet sensitive individual object readout devices such as resistive pulse sensors. This review will examine the recent progress in pore-based sensing in the nanoscale range. A detailed analysis of three new types of pore sensors – in-series, parallel, and size-tunable pores – has been included. These pores offer improved measurement sensitivity over a wider particle size range. The fundamental physical chemistry of these techniques, which is still evolving, will be reviewed. PMID:22034585

  9. Drought monitoring using downscaled soil moisture through machine learning approaches over North and South Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; Im, J.; Rhee, J.; Park, S.

    2015-12-01

    Soil moisture is one of the most important key variables for drought monitoring. It reflects hydrological and agricultural processes because soil moisture is a function of precipitation and energy flux and crop yield is highly related to soil moisture. Many satellites including Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E), Soil Moisture and Ocean Salinity sensor (SMOS), and Soil Moisture Active Passive (SMAP) provide global scale soil moisture products through microwave sensors. However, as the spatial resolution of soil moisture products is typically tens of kilometers, it is difficult to monitor drought using soil moisture at local or regional scale. In this study, AMSR-E and AMSR2 soil moisture were downscaled up to 1 km spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) data—Evapotranspiration, Land Surface Temperature, Leaf Area Index, Normalized Difference Vegetation Index, Enhanced Vegetation Index and Albedo—through machine learning approaches over Korean peninsula. To monitor drought from 2003 to 2014, each pixel of the downscaled soil moisture was scaled from 0 to 1 (1 is the wettest and 0 is the driest). The soil moisture based drought maps were validated using Standardized Precipitation Index (SPI) and crop yield data. Spatial distribution of drought status was also compared with other drought indices such as Scaled Drought Condition Index (SDCI). Machine learning approaches were performed well (R=0.905) for downscaling. Downscaled soil moisture was validated using in situ Asia flux data. The Root Mean Square Errors (RMSE) improved from 0.172 (25 km AMSR2) to 0.065 (downscaled soil moisture). The correlation coefficients improved from 0.201 (25 km AMSR2) to 0.341 (downscaled soil moisture). The soil moisture based drought maps and SDCI showed similar spatial distribution that caught both extreme drought and no drought. Since the proposed drought monitoring approach based on the downscaled

  10. Recent advances on distributed filtering for stochastic systems over sensor networks

    NASA Astrophysics Data System (ADS)

    Ding, Derui; Wang, Zidong; Shen, Bo

    2014-05-01

    Sensor networks comprising of tiny, power-constrained nodes with sensing, computation, and wireless communication capabilities are gaining popularity due to their potential application in a wide variety of environments like monitoring of environmental attributes and various military and civilian applications. Considering the limited power and communication resources of the sensor nodes, the strategy of the distributed information processing is widely exploited. Therefore, it would be interesting to examine how the topology, network-induced phenomena, and power constraints influence the distributed filtering performance and to obtain some suitable schemes in order to solve the addressed distributed filter design problem. In this paper, we aim to survey some recent advances on the distributed filtering and distributed state estimation problems over the sensor networks with various performance requirements and/or randomly occurring network-induced phenomena. First, some practical filter structures are addressed in detail. Then, the developments of the distributed Kalman filtering, distributed state estimation based on the stability or mean-square error analysis, and distributed ? filtering are systematically reviewed. In addition, latest results on the distributed filtering or state estimation over sensor networks are discussed in great detail and some challenges are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out.

  11. Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors

    DOE PAGES

    Zhou, Ming; Guo, Shaojun

    2015-07-17

    The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achievemore » high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.« less

  12. Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors

    SciTech Connect

    Zhou, Ming; Guo, Shaojun

    2015-07-17

    The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achieve high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.

  13. Recent advances in near-surface moisture monitoring using commercial microwave links in Tel-Aviv University

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer, Hagit

    2015-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.

  14. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    PubMed Central

    Jha, Maya Nand; Levy, Jason; Gao, Yang

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area.

  15. A Modified Kriging Method to Interpolate the Soil Moisture Measured by Wireless Sensor Network with the Aid of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Q.; Li, X.; Niu, H.; Cai, E.

    2015-12-01

    In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.

  16. Development of Advanced Electrochemical Sensors for DNA Detection at the Point of Care

    NASA Astrophysics Data System (ADS)

    Hsieh, Kuangwen

    In the post-genomic era, ever-advancing capabilities in DNA detection and analysis have become vital to the detection of infectious diseases and the diagnosis of genetic abnormalities and inheritable diseases. The benefit of such capabilities, however, has yet to reach patients outside of centralized facilities. There thus exists an increasing need to decentralize DNA detection methods and to administer such diagnostics at the "point of care." Electrochemical-based DNA sensors present a compelling approach, but have yet to deliver satisfactory sensitivity, specificity, miniaturization, and real-time monitoring capability to meet the demand of point-of-care diagnostics. Motivated by their potential and their current limitations, in this dissertation, we present a series of strategies that we have undertaken in order to address the key shortcomings of electrochemical DNA sensors and advance them toward point-of-care applications. First, we report a single-step, single reagent, label-free, isothermal electrochemical DNA sensor based on the phenomenon of enzyme catalyzed target recycling amplification. Using this technique, we achieve improved detection limit in comparison to hybridization-based sensors without amplification. We also demonstrate greater than 16-fold amplification of signal at low target concentrations. Next, we present a novel electrochemical DNA sensor that detects single-nucleotide mismatched targets with unprecedented "polarity-switching" responses. This "bipolar" sensor employs a surface-bound and redox-modified (methylene blue) DNA probe architecture, and outputs a decreased Faradaic current when hybridized to a perfectly matched (PM) target, but conversely reports an increased Faradaic current when hybridized to a single-base mismatched (SM) target. Third, we describe the microfluidic electrochemical dynamic allele specific hybridization (microE-DASH) platform for versatile and rapid detection of single-nucleotide polymorphisms. Implementing

  17. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers.

    PubMed

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  18. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers.

    PubMed

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols.

  19. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    PubMed Central

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  20. Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1990-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.

  1. Parametric design of ground data processing/support systems for advanced sensor systems

    NASA Technical Reports Server (NTRS)

    Denny, C.; Johnson, E. M.; Davis, E. L.

    1977-01-01

    A parametric system design technique has been applied to ground data processing/support systems for advanced sensor applications. The system establishes a direct link between budget analysts and system planners. Three primary phases are identified: the definition of requirements, system design, and system costing. The system is evaluated for three cases: (1) a study of ground data handling systems for earth resource satellites, (2) a ground data mass storage and processing system for agricultural remote-sensing studies, and (3) a parametric study of shuttle era data processing support required for atmospheric and space physics.

  2. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  3. An Overview of Production and Validation of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; O'Neill, P.; Njoku, E.; Jackson, T.; Bindlish, R.

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission is an L-band mission scheduled for launch in Jan. 2015. The SMAP instruments consist of a radar and a radiometer to obtain complementary information from space for soil moisture and freeze/thaw state research and applications. By utilizing novel designs in antenna construction, retrieval algorithms, and acquisition hardware, SMAP provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. This improvement in hydrosphere state measurement is expected to advance our understanding of the processes that link the terrestrial water, energy and carbon cycles, improve our capability in flood prediction and drought monitoring, and enhance our skills in weather and climate forecast. For swath-based soil moisture measurement, SMAP generates three operational geophysical data products: (1) the radiometer-only soil moisture product (L2_SM_P) posted at 36-kilometer resolution, (2) the radar-only soil moisture product (L2_SM_A) posted at 3-kilometers resolution, and (3) the radar-radiometer combined soil moisture product (L2_SM_AP) posted at 9-kilometers resolution. Each product draws on the strengths of the underlying sensor(s) and plays a unique role in hydroclimatological and hydrometeorological applications. A full suite of SMAP data products is given in Table 1.

  4. The Integration of SMOS Soil Moisture in a Consistent Soil Moisture Climate Record

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Kerr, Yann; Wigneron, Jean Pierre; Rodriguez-Fernandez, Nemesio; Al-Yaari, Amen; van der Schalie, Robin; Dolman, Han; Drusch, Matthias; Mecklenburg, Susanne

    2015-04-01

    Recently, a study funded by the European Space Agency (ESA) was set up to provide guidelines for the development of a global soil moisture climate record with a special emphasis on the integration of SMOS. Three different data fusion approaches were designed and implemented on 10 year passive microwave data (2003-2013) from two different satellite sensors; the ESA Soil Moisture Ocean Salinity Mission (SMOS) and the NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E). The AMSR-E data covered the period from January 2003 until Oct 2011 and SMOS data covered the period from June 2010 until the end of 2013. The fusion approaches included a neural network approach (Rodriguez-Fernandez et al., this conference session HS6.4), a regression approach (Wigneron et al., 2004), and an approach based on the baseline algorithm of ESAs current Climate Change Initiative soil moisture program, the Land Parameter Retrieval Model (Van der Schalie et al., this conference session HS6.4). With this presentation we will show the first results from this study including a description of the different approaches and the validation activities using both globally covered modeled datasets and ground observations from the international soil moisture network. The statistical validation analyses will give us information on the temporal and spatial performance of the three different approaches. Based on these results we will then discuss the next steps towards a seamless integration of SMOS in a consistent soil moisture climate record. References Wigneron J.-P., J.-C. Calvet, P. de Rosnay, Y. Kerr, P. Waldteufel, K. Saleh, M. J. Escorihuela, A. Kruszewski, 'Soil Moisture Retrievals from Bi-Angular L-band Passive Microwave Observations', IEEE Trans. Geosc. Remote Sens. Let., vol 1, no. 4, 277-281, 2004.

  5. Nondestructive measurement of moisture content of different types of wheat using a single calibration with a parallel-plate capacitance sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, low cost instrument that measures impedance and phase angle was used along with a parallel-plate capacitance system to estimate the moisture content (MC) of six types of wheat. Moisture content of grain is important and is measured at various stages of their processing and storage. A sampl...

  6. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  7. Buried explosive hazard characterization using advanced magnetic and electromagnetic induction sensors

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan S.; Schultz, Gregory; Shah, Vishal

    2013-06-01

    Advanced electromagnetic induction arrays that feature high sensitivity wideband magnetic field and electromagnetic induction receivers provide significant capability enhancement to landmine, unexploded ordnance, and buried explosives detection applications. Specifically, arrays that are easily and quickly configured for integration with a variety of ground vehicles and mobile platforms offer improved safety and efficiency to personnel conducting detection operations including route clearance, explosive ordnance disposal, and humanitarian demining missions. We present experimental results for explosives detection sensor concepts that incorporate both magnetic and electromagnetic modalities. Key technology components include a multi-frequency continuous wave EMI transmitter, multi-axis induction coil receivers, and a high sensitivity chip scale atomic magnetometer. The use of multi-frequency transmitters provides excitation of metal encased threats as well as low conductivity non-metallic explosive constituents. The integration of a radio frequency tunable atomic magnetometer receiver adds increased sensitivity to lower frequency components of the electromagnetic response. This added sensitivity provides greater capability for detecting deeply buried targets. We evaluate the requirements for incorporating these sensor modalities in forward mounted ground vehicle operations. Specifically, the ability to detect target features in near real-time is critical to non-overpass modes. We consider the requirements for incorporating these sensor technologies in a system that enables detection of a broad range of explosive threats that include both metallic and non-metallic components.

  8. Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues

    PubMed Central

    Rassam, Murad A.; Zainal, Anazida; Maarof, Mohd Aizaini

    2013-01-01

    Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept “Internet of Things” has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed. PMID:23966182

  9. Development of highly reliable advanced grid structure (HRAGS) demonstrator using FBG sensors

    NASA Astrophysics Data System (ADS)

    Takeya, H.; Sekine, K.; Kume, M.; Ozaki, T.; Takeda, N.; Tajima, N.

    2008-03-01

    There is a growing demand in recent years for lightweight structures in aircraft systems from the viewpoints of energy and cost savings. The authors have continued development of the Highly Reliable Advanced Grid Structure (HRAGS) for aircraft structure. HRAGS is provided with health monitoring functions that make use of Fiber Bragg Grating (FBG) sensors in advanced grid structures. To apply HRAGS technology to aircraft structures, a full-scale demonstrator visualizing the actual aircraft structure needs to be built and evaluated so that the effectiveness of the technology can be validated. So the authors selected the wing tip as the candidate structural member and proceeded to design and build a demonstrator. A box-structure was adopted as the structure for the wing-tip demonstrator, and HRAGS panels were used as the skin panels on the upper and lower surfaces of the structure. The demonstrator was designed using about 600 FBG sensors using a panel size of 1 x 2 m. By using the demonstrator, damage detection functions of HRAGS system were verified analytically. The results of the design and evaluation of the demonstrator are reported here.

  10. Advancement and results in hostile fire indication using potassium line missile warning sensors

    NASA Astrophysics Data System (ADS)

    Montgomery, Joel; Montgomery, Marjorie; Hardie, Russell

    2014-06-01

    M&M Aviation has been developing and conducting Hostile Fire Indication (HFI) tests using potassium line emission sensors for the Air Force Visible Missile Warning System (VMWS) to advance both algorithm and sensor technologies for UAV and other airborne systems for self protection and intelligence purposes. Work began in 2008 as an outgrowth of detecting and classifying false alarm sources for the VMWS using the same K-line spectral discrimination region but soon became a focus of research due to the high interest in both machine-gun fire and sniper geo-location via airborne systems. Several initial tests were accomplished in 2009 using small and medium caliber weapons including rifles. Based on these results, the Air Force Research Laboratory (AFRL) funded the Falcon Sentinel program in 2010 to provide for additional development of both the sensor concept, algorithm suite changes and verification of basic phenomenology including variance based on ammunition type for given weapons platform. Results from testing over the past 3 years have showed that the system would be able to detect and declare a sniper rifle at upwards of 3km, medium machine gun at 5km, and explosive events like hand-grenades at greater than 5km. This paper will outline the development of the sensor systems, algorithms used for detection and classification, and test results from VMWS prototypes as well as outline algorithms used for the VMWS. The Falcon Sentinel Program will be outlined and results shown. Finally, the paper will show the future work for ATD and transition efforts after the Falcon Sentinel program completed.

  11. Advanced staring Si PIN visible sensor chip assembly for Bepi-Colombo mission to Mercury

    NASA Astrophysics Data System (ADS)

    Mills, R. E.; Drab, J. J.; Gin, A.

    2009-08-01

    The planet Mercury, by its near proximity to the sun, has always posed a formidable challenge to spacecraft. The Bepi-Colombo mission, coordinated by the European Space Agency, will be a pioneering effort in the investigation of this planet. Raytheon Vision Systems (RVS) has been given the opportunity to develop the radiation hardened, high operability, high SNR, advanced staring focal plane array (FPA) for the spacecraft destined (Fig. 1) to explore the planet Mercury. This mission will launch in 2013 on a journey lasting approximately 6 years. When it arrives at Mercury in August 2019, it will endure temperatures as high as 350°C as well as relatively high radiation environments during its 1 year data collection period from September 2019 until September 2020. To support this challenging goal, RVS has designed and produced a custom visible sensor based on a 2048 x 2048 (2k2) format with a 10 μm unit cell. This sensor will support both the High Resolution Imaging Camera (HRIC) and the Stereo Camera (STC) instruments. This dual purpose sensor was designed to achieve high sensitivity as well as low input noise (<100 e-) for space-based, low light conditions. It also must maintain performance parameters in a total ionizing dose environment up to 70 kRad (Si) as well as immunity to latch-up and singe event upset. This paper will show full sensor chip assembly data highlighting the performance parameters prior to irradiation. Radiation testing performance will be reported by an independent source in a subsequent paper.

  12. GHAPS: A new Green House And Pollutant Sensor

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Marshall, B.

    2013-12-01

    Advances in detector arrays, communication technology, global positioning and gas correlation sensors are combined to produce a small, simple, accurate, autonomous gas column sensor with unlimited lifetime. We describe a solar powered, miniature gas correlation sensor that can be placed anywhere that provides unobscured observation of the sun. The sensor will provide column measurements of CH4, CO2 and CO throughout the day, along with estimates of moisture and overcast. This flashlight size device could supply a low cost solution to monitoring the atmospheric abundance of key greenhouse and pollutant gases, including fluxes of gas emanating from areas surrounded by these sensors. The design, implementation strategy and performance estimates are described.

  13. Chemical process monitoring and the detection of moisture ingress in composites

    NASA Astrophysics Data System (ADS)

    Mahendran, R.; Chen, R.; Wang, L.; Pandita, S. D.; Machavaram, V. R.; Kukureka, S. N.; Fernando, G. F.

    2008-03-01

    It is generally appreciated that the ingress of moisture in composites can have adverse effects on matrix-dominated properties such as the glass transition temperature and compressive mechanical properties. Moisture ingress in composites can also lead to swelling and blistering. A number of excellent studies have been reported on the detection, modelling and effects of moisture ingress on the properties of thermosetting resins (matrix) and composites. However, it is generally taken for granted that the quality of the resin and the processing conditions used to cross-link the resin are identical. Given the recent advances in the design and deployment of optical-fibre sensors in composites, it is now possible to use the same sensor to facilitate in-situ cure monitoring and structural health monitoring (after processing). This paper will present recent developments in the design of low-cost fibre-optic sensor systems for in-situ chemical process monitoring and the detection of moisture ingress after curing. The cure kinetics derived from three fibre optic sensor designs is presented as well as those obtained from evanescent-wave spectroscopy using E-glass fibres. After conducting the in-situ cure monitoring experiments, one of the fibre-optic sensor designs was selected and the samples (with the embedded sensors) were dried to constant mass at 50°C then transferred to water baths maintained at 70, 50, and 30 °C. The diffusion kinetics for the samples was determined using samples without and with embedded optical-fibre sensors. The effect of moisture ingress in the resin was also assessed using dynamic mechanical thermal analysis (DMTA), transmission infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Preliminary results are also presented to demonstrate that the reinforcing fibres in E-glass composites can be used to track the cross-linking kinetics of a commercial epoxy/amine resin is presented.

  14. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  15. Proceedings of the DOE/industry advanced research and development sensor working group members, Gaithersburg, Maryland

    SciTech Connect

    Emerson, D.B.; Whitworth, B.A.

    1986-04-29

    Sensor topics studied by this working group, for the pulp and paper industry, include in situ combustion control, consistency sensor, humidity sensor, lignin mass spectrometer, and steam flow meter. Presentation aids are included as appendices. (DLC)

  16. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  17. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography

    PubMed Central

    Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed

    2012-01-01

    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341

  18. Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: a survey.

    PubMed

    Abushagur, Abdulfatah A G; Arsad, Norhana; Reaz, Mamun Ibne; Bakar, A Ashrif A

    2014-04-09

    The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients.

  19. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  20. Design and performance evaluation of sensors and actuators for advanced optical systems

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2011-04-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA's next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers.

  1. Advanced sensor development program for the pulp and paper industry. Annual report

    SciTech Connect

    Not Available

    1984-01-01

    A program is described for the development of measurement science and technology for on-line measurement of process variables in the pulp and paper industry. Four research projects are currently in progress; (1) combustion control sensor, (2) pulp consistency sensor, (3) steam flow sensor, and (4) lignin sensor.

  2. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  3. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  4. An Automated Approach to Peanut dring with real-time monitoring of in-shell Kernel Moisture Content with a Microwave Sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today’s peanut drying processes utilize decision support software based on modeling and require substantial human interaction for moisture sampling. These conditions increase the likelihood of peanuts being overdried or underdried. This research addresses the need for an automated controller with re...

  5. Comparing and Combining Surface Soil Moisture Products from AMSR2

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Kim, S.; Liu, Y.; Johnson, F.; Sharma, A.

    2015-12-01

    Soil moisture is an important variable in hydrological systems as its part of the water cycle in the atmosphere, the land surface and subsurface. Microwave remote sensing is a viable tool to monitor global soil moisture conditions at regular time intervals. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Multiple soil moisture products from AMSR2 observations exist; these were compared and combined with special emphasis to the global scale. The first product is retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm, the other uses the Land Parameter Retrieval Model (LPRM). These two products were compared against each other and evaluated against COSMOS data over the United States, Australia, Europe and Africa. The temporal correlations highlight differences in the representation of the seasonal cycle of soil moisture. It is hypothesized that four factors, physical surface temperatures, surface roughness, vegetation and ground soil wetness conditions, affect the quality of soil moisture retrievals. The complementary between the products led to the opportunity to combine them into a superior one that benefits from the strengths of both algorithms.These soil moisture algorithms share the same background in the radiative transfer model, but each algorithm applies different approaches to reflect various external conditions. As a result, the performance of the products is complementary in many locations in terms of bias, RMSE and, most importantly temporal correlation coefficients. Here, we present a methodology that combines the two AMSR2 based soil moisture products into a single product, which improves the overall performance by leveraging the strengths of the individual products. The new product is combined by applying an optimal weighting factor, calculated based on variance and correlation coefficients against a reference dataset. The complementary

  6. Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement.

    PubMed

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna; Gernaey, Krist V

    2011-10-01

    The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.

  7. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  8. De-noising of microwave satellite soil moisture time series

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  9. Sensors 2000! Program: Advanced Biosensor and Measurement Systems Technologies for Spaceflight Research and Concurrent, Earth-Based Applications

    NASA Technical Reports Server (NTRS)

    Hines, J.

    1999-01-01

    Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.

  10. Advanced unattended sensors and systems: state of the art and future challenges

    NASA Astrophysics Data System (ADS)

    McQuiddy, John H.

    2010-04-01

    The unattended ground sensors (UGS) have come a long way over the more than 40 years they have been used to detect adversarial activities. From large, single phenomenology sensors with little signal processing and point to point communications the technology has now changed to small, intelligent sensors using network communications. This technology change has resulted in far more capable sensors but challenges remain for UGS to be effective in providing information to users.

  11. Intercomparison of AMSR2 and AMSR-E Soil Moisture Retrievals with MERRA-L data set over Australia

    NASA Astrophysics Data System (ADS)

    Cho, E.; Choi, M.; Su, C. H.; Ryu, D.; Kim, H.; Jacobs, J. M.

    2015-12-01

    Soil moisture is an important variable in the hydrological cycle on the land surface and plays an essential role in hydrological and meteorological processes. The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor on board the Aqua satellite offered valuable soil moisture data set from June 2002 and October 2011 and has been used in a wide range of applications. However, the AMSR-E sensor stopped operation from 4 October 2011 due to a problem with its antenna. AMSR-E was replaced by the Advanced Microwave Scanning Radiometer 2 (AMSR2) on the Global Climate Change Observation Mission 1 - Water (GCOM-W1) satellite in May 2012. Assessment of AMSR2 soil moisture retrievals as compared to AMSR-E has not yet been extensively evaluated. This task is critical if AMSR2 soil moisture products are used as a continuous dataset continuing the legacy of AMSR-E. The purpose of this study is to inter-compare AMSR2 and AMSR-E microwave based soil moisture over Australia, mediated by using model-based soil moisture data set to determine statistically similar inter-comparison periods from time periods of the individual sensors. This work use NASA-VUA AMSR2 and AMSR-E based soil moisture products derived by the Land Parameter Retrieval Model (LPRM) and the modelled soil moisture from NASA's MERRA-L (Modern Era Retrospective-analysis for Research and Applications-Land) re-analysis. The satellite soil moisture products are compared against the MERRA-L using traditional metrics, and the random errors in individual products are estimated using lagged instrumental variable regression analysis. Generally, the results demonstrate that the two satellite-based soil moisture retrievals have reasonable agreement with MERRA-L soil moisture data set. The error differences are notable, with the zonal error statistics are higher for AMSR2 in all climate zones, though the error maps of AMSR2 and AMSR-E are spatially similar over the Australia regions. This study leads

  12. 77 FR 39561 - Advanced Braking Technologies That Rely on Forward-Looking Sensors; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Sensors; Request for Comments AGENCY: National Highway Traffic Safety Administration (NHTSA), Department... technologies that rely on forward-looking sensors to supplement driver braking or to actuate automatic braking... information from forward-looking sensors, usually a camera or radar, to determine whether or not a crash...

  13. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  14. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  15. Advanced parametrical modelling of 24 GHz radar sensor IC packaging components

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, R.; John, W.; Wellmann, J.; Bala, U. B.; Thiede, A.

    2011-08-01

    This paper deals with the development of an advanced parametrical modelling concept for packaging components of a 24 GHz radar sensor IC used in automotive driver assistance systems. For fast and efficient design of packages for system-in-package modules (SiP), a simplified model for the description of parasitic electromagnetic effects within the package is desirable, as 3-D field computation becomes inefficient due to the high density of conductive elements of the various signal paths in the package. By using lumped element models for the characterization of the conductive components, a fast indication of the design's signal-quality can be gained, but so far does not offer enough flexibility to cover the whole range of geometric arrangements of signal paths in a contemporary package. This work pursues to meet the challenge of developing a flexible and fast package modelling concept by defining parametric lumped-element models for all basic signal path components, e.g. bond wires, vias, strip lines, bumps and balls.

  16. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  17. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  18. Evaluation drought response of tropical dry forests using advanced wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sanchez-Azofeifa, G. A.

    2015-12-01

    Understanding of the effects of persistent drought in tropical dry forests has not been fully studied until today. In this presentation we will discuss one of the first results on the response of tropical dry forests to drought using advanced wireless sensor networks and canopy phenology towers, that provide hyper-temporal information on micro-meteorological variables such Temperature, relative humidity, and Vapor Pressure Deficit (VPD). In addition, we will evaluate drought response to as function of the Fraction of the Photosynthetic Active Radiation (FPAR), and the Normalized Difference Vegetation Index (NDVI). Our work is conducted at the Santa Rosa Environmental Monitoring Super Site (NR-EMSS) located at the Guancaste Province, Costa Rica, Central America. Our results indicate significant changes in terms of FPAR, VPD manifested via strong changes on NDVI. Our results pose questions about the resilience of these understudied tropical ecosystems and their long-term survival under severe and persistent drought conditions. This results provide a reference framework for the need of more integrated research on the Central American Dry Forest corridor where just between Costa Rica and Nicaragua over 100,000 families are facing strong drought conditions.

  19. Development of equilibrium moisture relationships for storage moisture monitoring of corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial systems are currently available to measure grain moisture during storage using relative humidity and temperature sensors and equilibrium moisture, EMC, models. However, the variability of the EMC relationships between grain lots necessitates that a good model needs to be selected or deve...

  20. Dual-wavelength moisture meter for clay

    NASA Astrophysics Data System (ADS)

    Norgia, Michele; Pesatori, Alessandro

    2012-10-01

    An optical sensor for measuring the moisture level of clay has been realized by a couple of telecommunications lasers at 1300 and 1550 nm. The sensor can operate directly during building material production. The measurement principle is based on the measurement of the optical reflection at different wavelengths in the infrared region. Custom low-noise electronics allows rejecting disturbances of ambient light, and a digital processing makes the system independent on the clay distance. By means of a proper calibration, the sensor can monitor the moisture level during brick production, without moving parts or optical filters.

  1. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  2. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices.

    PubMed

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO(2) and C(2)H(4) using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  3. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    PubMed Central

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548

  4. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Astrophysics Data System (ADS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  5. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  6. Multispectral sensing of moisture stress

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.

    1970-01-01

    Laboratory reflectance data, and field tests with multispectral remote sensors provide support for this hypotheses that differences in moisture content and water deficits are closely related to foliar reflectance from woody plants. When these relationships are taken into account, automatic recognition techniques become more powerful than when they are ignored. Evidence is increasing that moisture relationships inside plant foliage are much more closely related to foliar reflectance characteristics than are external variables such as soil moisture, wind, and air temperature. Short term changes in water deficits seem to have little influence on foliar reflectance, however. This is in distinct contrast to significant short-term changes in foliar emittance from the same plants with changing wind, air temperature, incident radiation, or water deficit conditions.

  7. Evaluation of satellite soil moisture products over Norway using ground-based observations

    NASA Astrophysics Data System (ADS)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  8. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  9. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  10. Detection of moisture and moisture related phenomena from Skylab. [Texas

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1973-01-01

    The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.

  11. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    NASA Astrophysics Data System (ADS)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  12. SOIL moisture data intercomparison

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  13. Recent Advances in Continuous Glucose Monitoring: Biocompatibility of Glucose Sensors for Implantation in Subcutis

    PubMed Central

    Kvist, Peter H.; Jensen, Henrik E.

    2007-01-01

    Tight glycemic control slows or prevents the development of short- and long-term complications of diabetes mellitus. Continuous glucose measurements provide improved glycemic control and potentially prevent these diabetic complications. Glucose sensors, especially implantable devices, offer an alternative to classical self-monitored blood glucose levels and have shown promising glucose-sensing properties. However, the ultimate goal of implementing the glucose sensor as the glucose-sensing part of a closed loop system (artificial pancreas) is still years ahead because of malfunctions of the implanted sensor. The malfunction is partly a consequence of the subcutaneous inflammatory reaction caused by the implanted sensor. In order to improve sensor measurements and thereby close the loop, it is crucial to understand what happens at the tissue-sensor interface. PMID:19885143

  14. Validation of two gridded soil moisture products over India with in-situ observations

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; George, John P.; Lodh, Abhishek; Maurya, Devesh Kumar; Mallick, Swapan; Rajagopal, E. N.; Mohandas, Saji

    2016-07-01

    Surface level soil moisture from two gridded datasets over India are evaluated in this study. The first one is the UK Met Office (UKMO) soil moisture analysis produced by a land data assimilation system based on Extended Kalman Filter method (EKF), which make use of satellite observation of Advanced Scatterometer (ASCAT) soil wetness index as well as the screen level meteorological observations. Second dataset is a satellite soil moisture product, produced by National Remote Sensing Centre (NRSC) using passive microwave Advanced Microwave Scanning Radiometer 2 measurements. In-situ observations of soil moisture from India Meteorological Department (IMD) are used for the validation of the gridded soil moisture products. The difference between these datasets over India is minimum in the non-monsoon months and over agricultural regions. It is seen that the NRSC data is slightly drier (0.05%) and UKMO soil moisture analysis is relatively wet during southwest monsoon season. Standard AMSR-2 satellite soil moisture product is used to compare the NRSC and UKMO products. The standard AMSR-2 and UKMO values are closer in monsoon season and AMSR-2 soil moisture is higher than UKMO in all seasons. NRSC and AMSR-2 showed a correlation of 0.83 (significant at 0.01 level). The probability distribution of IMD soil moisture observation peaks at 0.25 m3/m3, NRSC at 0.15 m3/m3, AMSR-2 at 0.25 m3/m3 and UKMO at 0.35 m3/m3 during June-September period. Validation results show UKMO analysis has better correlation with in-situ observations compared to the NRSC and AMSR-2 datasets. The seasonal variation in soil moisture is better represented in UKMO analysis. Underestimation of soil moisture during monsoon season over India in NRSC data suggests the necessity of incorporating the actual vegetation for a better soil moisture retrieval using passive microwave sensors. Both products have good agreement over bare soil, shrubs and grassland compared to needle leaf tree, broad leaf tree and

  15. Estimating Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR

    PubMed Central

    Oki, Kazuo

    2016-01-01

    The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0–20 cm soil layer showed the largest correlation coefficient with σ (r = 0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0–20 cm soil layer across a bare field and a crop coverage ratio when crops were planted. PMID:27529080

  16. Estimating Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR.

    PubMed

    Kojima, Yuki; Oki, Kazuo; Noborio, Kosuke; Mizoguchi, Masaru

    2016-01-01

    The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0-20 cm soil layer showed the largest correlation coefficient with σ (r = 0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0-20 cm soil layer across a bare field and a crop coverage ratio when crops were planted.

  17. Estimating Soil Moisture Distributions across Small Farm Fields with ALOS/PALSAR.

    PubMed

    Kojima, Yuki; Oki, Kazuo; Noborio, Kosuke; Mizoguchi, Masaru

    2016-01-01

    The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0-20 cm soil layer showed the largest correlation coefficient with σ (r = 0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0-20 cm soil layer across a bare field and a crop coverage ratio when crops were planted. PMID:27529080

  18. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  19. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  20. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore » replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  1. Heat transfer measurements in fully turbulent flows: basic investigations with an advanced thin foil triple sensor

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2008-07-01

    In a former article in this journal a double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil was introduced as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. For further investigations with respect to the underlying sensor concept a triple sensor has been built which consists of three double layer film sensors very close to each other. Various aspects of heat transfer measurements in active modes can be addressed by this sensor.

  2. A real-time implementation of an advanced sensor failure detection, isolation, and accommodation algorithm

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Merrill, W. C.

    1983-01-01

    A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.

  3. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  4. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  5. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  6. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    Soil moisture governs the partitioning of mass and energy fluxes between the land surface and the atmosphere and, hence, it represents a key variable for many applications in hydrology and earth science. In recent years, it was demonstrated that soil moisture observations from ground and satellite sensors contain important information useful for improving rainfall estimation. Indeed, soil moisture data have been used for correcting rainfall estimates from state-of-the-art satellite sensors (e.g. Crow et al., 2011), and also for improving flood prediction through a dual data assimilation approach (e.g. Massari et al., 2014; Chen et al., 2014). Brocca et al. (2013; 2014) developed a simple algorithm, called SM2RAIN, which allows estimating rainfall directly from soil moisture data. SM2RAIN has been applied successfully to in situ and satellite observations. Specifically, by using three satellite soil moisture products from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observation) and SMOS (Soil Moisture and Ocean Salinity); it was found that the SM2RAIN-derived rainfall products are as accurate as state-of-the-art products, e.g., the real-time version of the TRMM (Tropical Rainfall Measuring Mission) product. Notwithstanding these promising results, a detailed study investigating the physical basis of the SM2RAIN algorithm, its range of applicability and its limitations on a global scale has still to be carried out. In this study, we carried out a crash test for SM2RAIN algorithm on a global scale by performing a synthetic experiment. Specifically, modelled soil moisture data are obtained from HTESSEL model (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced by ERA-Interim near-surface meteorology. Afterwards, the modelled soil moisture data are used as input into SM2RAIN algorithm for testing weather or not the resulting rainfall estimates are able to reproduce ERA-Interim rainfall data. Correlation, root

  7. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  8. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  9. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  10. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  11. Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons.

    PubMed

    Chen, Yunsheng; Zhang, Yixia; Pan, Fei; Liu, Jie; Wang, Kan; Zhang, Chunlei; Cheng, Shangli; Lu, Lungen; Zhang, Wei; Zhang, Zheng; Zhi, Xiao; Zhang, Qian; Alfranca, Gabriel; de la Fuente, Jesús M; Chen, Di; Cui, Daxiang

    2016-09-27

    Fourteen volatile organic compound (VOC) biomarkers in the breath have been identified to distinguish early gastric cancer (EGC) and advanced gastric cancer (AGC) patients from healthy persons by gas chromatography-mass spectrometry coupled with solid phase microextraction (SPME). Then, a breath analysis approach based on a surface-enhanced Raman scattering (SERS) sensor was developed to detect these biomarkers. Utilizing hydrazine vapor adsorbed in graphene oxide (GO) film, the clean SERS sensor is facilely prepared by in situ formation of gold nanoparticles (AuNPs) on reduced graphene oxide (RGO) without any organic stabilizer. In the SERS sensor, RGO can selectively adsorb and enrich the identified biomarkers from breath as an SPME fiber, and AuNPs well dispersed on RGO endow the SERS sensor with an effective detection of adsorbed biomarkers. Fourteen Raman bands associated with the biomarkers are selected as the fingerprints of biomarker patterns to distinguish persons in different states. The approach has successfully analyzed and distinguished different simulated breath samples and 200 breath samples of clinical patients with a sensitivity of higher than 83% and a specificity of more than 92%. In conclusion, the VOC biomarkers and breath analysis approach in this study can not only diagnose gastric cancer but also distinguish EGC and AGC. This work has great potential for clinical translation in primary screening diagnosis and stage determination of stomach cancer in the near future.

  12. Recent Advances of Portable Multi-Sensor Technique of Volcanic Plume Measurement

    NASA Astrophysics Data System (ADS)

    Shinohara, H.

    2005-12-01

    A technique has been developed to estimate chemical composition volcanic gases based on the measurement of volcanic plumes at distance from a source vent by the use of a portable multi-sensor system consisting a humidity sensor, an SO2 electrochemical sensor and a CO2 IR analyzer (Shinohara, 2005). Since volcanic plume is a mixture of the atmosphere and volcanic gases, the volcanic gas composition can be estimated by subtracting the atmospheric background from the plume data. This technique enabled us to estimate concentration ratios of major volcanic gas species (i.e., H2O, CO2 and SO2) without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Since the portable multi-sensor system was light (~ 5 kg) and small enough to carry in a medium size backpack, we could apply this technique to measure volcanic plumes at summit of various volcanoes including those which require us a tough climbing, such as Villarrica volcano, Chile. We further improved the sensor system and the measurements techniques, including application of LI-840 IR H2O and CO2 analyzer, H2S electrochemical sensor and H2 semi-conductor sensor. Application of the new LI-840 analyzer enabled us to measure H2O concentration in the plume with similar response time with CO2 concentration. The H2S electrochemical sensor of Komyo Co. has a chemical filter to removed SO2 to achieve a low sensitivity (0.1%) to SO2, and we can measure a high SO2/H2S ratio up to 1000. The semi-conductor sensor can measure H2 concentration in the range from the background level in the atmosphere (~0.5 ppm) to ~50 ppm. Response of the H2 sensor is slower (90% response time = ~90 sec) than other sensors in particular in low concentration range, and the measurement is still semi-quantitative with errors up to ±50%. The H2/H2O ratios are quite variable in volcanic gases ranging from less than 10-5 up to 10-1, and the ratio is largely controlled by temperature and pressure condition of the

  13. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this

  14. CATSI EDM: recent advances in the development and validation of a ruggedized passive standoff CWA sensor

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul

    2008-04-01

    Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.

  15. Recent Advances in the Design of Electro-Optic Sensors for Minimally Destructive Microwave Field Probing

    PubMed Central

    Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.

    2011-01-01

    In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604

  16. Electron Pattern Recognition using trigger mode SOI pixel sensor for Advanced Compton Imaging

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Yoshihara, Y.; Fairuz, A.; Koyama, A.; Takahashi, H.; Takeda, A.; Tsuru, T.; Arai, Y.

    2016-02-01

    Compton imaging is a useful method for localizing sub MeV to a few MeV gamma-rays and widely used for environmental and medical applications. The direction of recoiled electrons in Compton scattering process provides the additional information to limit the Compton cones and increases the sensitivity in the system. The capability of recoiled electron tracking using trigger-mode Silicon-On-Insulator (SOI) sensor is investigated with various radiation sources. The trigger-mode SOI sensor consists of 144 by 144 active pixels with 30 μm cells and the thickness of sensor is 500 μm. The sensor generates the digital output when it is hit by gamma-rays and 25 by 25 pixel pattern of surrounding the triggered pixel is readout to extract the recoiled electron track. The electron track is successfully observed for 60Co and 137Cs sources, which provides useful information for future electron tracking Compton camera.

  17. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  18. Proceedings of the DOE/Industry Advanced Research and Development Sensor Working Group meeting, Phoenix, Arizona

    SciTech Connect

    Emerson, D.B.

    1987-11-13

    This document includes the minutes and presentation aids of this meeting and covers: In-Situ Combustion Control; Consistency Meter; Lignin Mass Spectrometer; NBS Consistency Meter and JPL Lignin Mass Spectrometer Testing; On-Machine Sensors to Measure Paper Mechanical Properties; Modelling, Optimization and Control of Complex Physical Systems; Real Time, Non-Contract Optical Surface Motion Monitor; and DOE/Industry Sensor Working Group Caucus Report.

  19. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.

    PubMed

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-08-18

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  20. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments

    PubMed Central

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-01-01

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA. PMID:26295235

  1. Spatial and temporal structure within moisture measurements of a stormwater control system

    EPA Science Inventory

    Moisture sensing is a mature soil research technology commonly applied to agriculture. Such sensors may be appropriated for use in novel stormwater research applications. Knowledge of moisture (with respect to space and time) in infiltration based stormwater control measures (SCM...

  2. Application of Cosmic-ray Soil Moisture Sensing to Understand Land-atmosphere Interactions in Three North American Monsoon Ecosystems

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.

    2013-12-01

    Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from

  3. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  4. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  5. Ultrasonic and LIDAR Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve Pesticide Application Methods

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Escolà, Alexandre

    2011-01-01

    Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed. PMID:22319405

  6. Tailored magnetoelastic sensor geometry for advanced functionality in wireless biliary stent monitoring systems

    NASA Astrophysics Data System (ADS)

    Green, Scott R.; Gianchandani, Yogesh B.

    2010-07-01

    This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe-Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000-36 000 ppm mg-1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.

  7. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    USGS Publications Warehouse

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  8. Advances in SAW gas sensors based on the condensate-adsorption effect.

    PubMed

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  9. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1992-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES, AVHRR, and SSM/I sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  10. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    PubMed Central

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M. N.

    2014-01-01

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator. PMID:24618728

  11. Recent advances in long-term climate and moisture reconstructions from the Baltic region: Exploring the potential for a new multi-millennial tree-ring chronology

    NASA Astrophysics Data System (ADS)

    Edvardsson, Johannes; Corona, Christophe; Mažeika, Jonas; Pukienė, Rutile; Stoffel, Markus

    2016-01-01

    This study presents the first results from an ongoing initiative to develop a multi-millennial Baltic tree-ring width (TRW) chronology consisting of 12 floating records from subfossil Scots pines (Pinus sylvestris L.) extracted from three Lithuanian peat-mining areas. The floating series have been complemented with absolutely dated TRW chronologies which were obtained from living trees growing in unmanaged and unexploited peatland areas adjacent to each of the above study sites. The subfossil material has been dated by radiocarbon and shows a temporal spread over the last 6000 years, with assemblages of trees during the Holocene Thermal Maximum (HTM; 8000-4000 BP) and the onset of the Medieval Warm Period (MWP, AD 900-1350). Annual tree growth and sample replication of peatland pines reflect moisture variations and long-term climate variability. The importance of extending the TRW chronologies should not therefore be underestimated as (1) climate records of comparable length and resolution do not exist for the Baltic region, but also as (2) a result of a widespread lack of detailed moisture proxies spanning several millennia. Our data clearly show that a 6000-yr, continuous pine chronology from the Baltic region is a realistic objective, and would doubtlessly fill a major geographic gap in an ecologically sensitive region located at the interface between the temperate and boreal vegetation zones.

  12. The SoilSCAPE Network Multiscale In-situ Soil Moisture Measurements: Innovations in Network Design and Approaches to Upscaling in Support of SMAP

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Clewley, D.; Silva, A.; Akbar, R.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture at 3, 9, and 36 km scales through the use of radar and radiometer data. To validate SMAP products, in-situ sensors are required. Typically, validation plans consist of several sensors installed nearly uniformly in the scene. To upscale the soil moisture estimates to the scales of SMAP products requires a large number of sensors, distributed throughout the instrument footprint. Even for the higher resolution SMAP products (3 km) there are often insufficient sensors available within a resolution cell. The Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) project provides a new adaptive validation strategy, including upscaled estimates of soil moisture. By utilizing smarter network technology and optimized sensor placement, more representative measurements of soil moisture are obtained, at a range of spatial scales with lower costs than traditional networks. A large network was established around the Tonzi Ranch site in central California. The network design comprises multiple sites, each with a 10-30 node cluster taking measurements from up to 4 sensors installed at different depths. The nodes wirelessly communicate to a Local Coordinator, which collects data and transmits to a server (http://soilscape.usc.edu). Each node can communicate with the Coordinator up to a distance of 400m. Each station supports up to 60 nodes. Currently 111 nodes have been installed over 6 sites. The SoilSCAPE nonuniform placement of sensors requires novel upscaling methods. Previous studies have used regression, which works well when the measurement is well correlated with other variables. However, soil moisture dependence on various variables could be complex and nonlinear. To account for such complexities, we use the Random Forests algorithm, which is capable of modeling complex non-linear system and can handle continuous and categorical data. The algorithm has not previously been applied to

  13. Technology advancement of the CCD201-20 EMCCD for the WFIRST coronagraph instrument: sensor characterization and radiation damage

    NASA Astrophysics Data System (ADS)

    Harding, Leon K.; Demers, Richard T.; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Neat, Leo S.; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R.; Jordan, Douglas

    2016-01-01

    The Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission is a 2.4-m class space telescope that will be used across a swath of astrophysical research domains. JPL will provide a high-contrast imaging coronagraph instrument-one of two major astronomical instruments. In order to achieve the low noise performance required to detect planets under extremely low flux conditions, the electron multiplying charge-coupled device (EMCCD) has been baselined for both of the coronagraph's sensors-the imaging camera and integral field spectrograph. JPL has established an EMCCD test laboratory in order to advance EMCCD maturity to technology readiness level-6. This plan incorporates full sensor characterization, including read noise, dark current, and clock-induced charge. In addition, by considering the unique challenges of the WFIRST space environment, degradation to the sensor's charge transfer efficiency will be assessed, as a result of damage from high-energy particles such as protons, electrons, and cosmic rays. Science-grade CCD201-20 EMCCDs have been irradiated to a proton fluence that reflects the projected WFIRST orbit. Performance degradation due to radiation displacement damage is reported, which is the first such study for a CCD201-20 that replicates the WFIRST conditions. In addition, techniques intended to identify and mitigate radiation-induced electron trapping, such as trap pumping, custom clocking, and thermal cycling, are discussed.

  14. Recent CESAR (Center for Engineering Systems Advanced Research) research activities in sensor based reasoning for autonomous machines

    SciTech Connect

    Pin, F.G.; de Saussure, G.; Spelt, P.F.; Killough, S.M.; Weisbin, C.R.

    1988-01-01

    This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioning of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.

  15. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  16. Advances in linear and area HgCdTe APD arrays for eyesafe LADAR sensors

    NASA Astrophysics Data System (ADS)

    Jack, Michael D.; Asbrock, James F.; Anderson, C.; Bailey, Steven L.; Chapman, George; Gordon, E.; Herning, P. E.; Kalisher, Murray H.; Kosai, Kim; Liquori, V.; Randall, Valerie; Rosbeck, Joseph P.; Sen, Sanghamitra; Wetzel, P.; Halmos, Maurice J.; Trotta, Patrick A.; Hunter, Andrew T.; Jensen, John E.; de Lyon, Terence J.; Johnson, W.; Walker, B.; Trussel, Ward; Hutchinson, Andy; Balcerak, Raymond S.

    2001-11-01

    HgCdTe APDs and APD arrays offer unique advantages for high-performance eyesafe LADAR sensors. These include: operation at room temperature, low-excess noise, high gain, high-quantum efficiency at eyesafe wavelengths, GHz bandwidth, and high-packing density. The utility of these benefits for systems are being demonstrated for both linear and area array sensors. Raytheon has fabricated 32 element linear APD arrays utilizing liquid phase epitaxy (LPE), and packaged and integrating these arrays with low-noise amplifiers. Typical better APDs configured as 50-micron square pixels and fabricated utilizing RIE, have demonstrated high fill factors, low crosstalk, excellent uniformity, low dark currents, and noise equivalent power (NEP) from 1-2 nW. Two units have been delivered to NVESD, assembled with range extraction electronics, and integrated into the CELRAP laser radar system. Tests on these sensors in July and October 2000 have demonstrated excellent functionality, detection of 1-cm wires, and range imaging. Work is presently underway under DARPA's 3-D imaging Sensor Program to extend this excellent performance to area arrays. High-density arrays have been fabricated using LPE and molecular beam epitaxy (MBE). HgCdTe APD arrays have been made in 5 X 5, 10 X 10 and larger formats. Initial data shows excellent typical better APD performance with unmultiplied dark current < 10 nA; and NEP < 2.0 nW at a gain of 10.

  17. Ultra sensitive magnetic sensors integrating the giant magnetoelectric effect with advanced microelectronics

    NASA Astrophysics Data System (ADS)

    Fang, Zhao

    This dissertation investigates approaches to enhance the performance, especially the sensitivity and signal to noise ratio of magnetoelectric sensors, which exploits the magnetoelectric coupling in magnetostrictive and piezoelectric laminate composites. A magnetic sensor is a system or device that can measure the magnitude of a magnetic field or each of its vector components. Usually the techniques encompass many aspects of physics and electronics. The common technologies used for magnetic field sensing include induction coil sensors, fluxgate, SQUID (superconducting quantum interference device), Hall effect, giant magnetoresistance, magnetostrictive/piezoelectric composites, and MEMS (microelectromechanical systems)-based magnetic sensors. Magnetic sensors have found a broad range of applications for many decades. For example, ultra sensitive magnetic sensors are able to detect tiny magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application. Measuring the brain's magnetic field is extremely challenging because they are so weak, have strengths of 0.1--1 pT and thus requiring magnetic sensors with sub-picotesla sensitivity. In fact, to date, these measurements can only performed with the most sensitive magnetic sensors, i.e., SQUID. However, such detectors need expensive and cumbersome cryogenics to operate. Additionally, the thermal insulation of the sensors prevents them from being placed very closed to the tissues under study, thereby preventing high-resolution measurement capability. All of these severely limit their broad usage and proliferation for biomedical imaging, diagnosis, and research. A novel ultra-sensitive magnetic sensor capable of operating at room temperature is investigated in this thesis. Magnetoelectric effect is a material phenomenon featuring the interchange between the magnetic and electric energies or signals. The large ME effect observed in ME composites, especially the ME laminates

  18. Initial assessments of life support technology evolution and advanced sensor requirements, volume 2, appendix A

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.

    1991-01-01

    The primary issues studied were how the transition from a physical/chemical (P/C) to hybrid to a Closed Ecological Life Support System (CELSS) could be achieved, what sensors and monitors are needed for a P/C -CELSS hybrid system, and how a CELSS could be automated and what controls would be needed to do so.

  19. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    PubMed

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters.

  20. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    PubMed

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters. PMID:26074188

  1. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture

    NASA Astrophysics Data System (ADS)

    Rajib, Mohammad Adnan; Merwade, Venkatesh; Yu, Zhiqiang

    2016-05-01

    The objective of this study is to evaluate the relative potential of spatially distributed surface and root zone soil moisture estimates in calibration of Soil and Water Assessment Tool (SWAT) toward improving its hydrologic predictability with reduced equifinality. The Upper Wabash and Cedar Creek, two agriculture-dominated watersheds in Indiana, USA are considered as test beds to implement this multi-objective SWAT calibration. The proposed calibration approach is performed using remotely sensed Advanced Microwave Scanning Radiometer-Earth Observing System surface soil moisture (∼1 cm top soil) estimates (NASA's Aqua daily level-3 gridded land surface product-version 2) in sub-basin/HRU level together with observed streamflow data at the watershed's outlet. Although application of remote sensing data in calibration improves surface soil moisture simulation, other hydrologic components such as streamflow, evapotranspiration (ET) and deeper layer moisture content in SWAT remain less affected. An extension of this approach to apply root zone soil moisture estimates from limited field sensor data showed considerable improvement in the simulation of root zone moisture content and streamflow with corresponding observed data. Difference in relative sensitivity of parameters and reduced extent of uncertainty are also evident from the proposed method, especially for parameters related to the subsurface hydrologic processes. Regardless, precise representation of vertical soil moisture stratification at different layers is difficult with current SWAT ET depletion mechanism. While the results from this study show that root zone soil moisture can play a major role in SWAT calibration, more studies including various soil moisture data products are necessary to validate the proposed approach.

  2. Synergies of the European Microwave Remote Sensing Missions SMOS and ASCAT for Monitoring Soil Moisture

    NASA Astrophysics Data System (ADS)

    Scipal, K.; Wagner, W.

    2003-04-01

    The lack of global soil moisture observations is one of the most glaring and pressing deficiencies in current research activities of related fields, from climate monitoring and ecological applications to the quantification of biogeophysical fluxes. This has implications for important issues of the international political agenda like managing global water resources, securing food production and studying climate change. Currently it is held that only microwave remote sensing offers the potential to produce reliable global scale soil moisture information economically. Recognising the urgent need for a soil moisture mission several international initiatives are planning satellite missions dedicated to monitor the global hydrological cycle among them two European microwave satellites. ESA is planning to launch the Soil Moisture and Ocean Salinity Mission SMOS, in 2006. SMOS will measure soil moisture over land and ocean salinity over the oceans. The mission rests on a passive microwave sensor (radiometer) operated in L-band which is currently believed to hold the largest potential for soil moisture retrieval. One year before (2005) EUMETSAT will launch the Meteorological Operational satellite METOP which carries the active microwave system Advanced Scatterometer ASCAT on board. ASCAT has been designed to retrieve winds over the oceans but recent research has established its capability to retrieve soil moisture. Although currently it is hold that, using active microwave techniques, the effect of surface roughness dominates that of soil moisture (while the converse is true for radiometers), the ERS scatterometer was successfully used to derive global soil moisture information at a spatial resolution of 50 km with weekly to decadal temporal resolution. The quality of the soil moisture products have been assessed by independent experts in several pilot projects funded by the European Space Agency. There is evidence to believe that both missions will provide a flow of

  3. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  4. Advanced Telescopes and Observatories and Scientific Instruments and Sensors Capability Roadmaps: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Coulter, Dan; Bankston, Perry

    2005-01-01

    Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  5. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean

  6. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  7. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  8. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  9. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    NASA Astrophysics Data System (ADS)

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor

  10. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  11. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  12. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy

    PubMed Central

    O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G

    2015-01-01

    This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212

  13. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  14. Estimating root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, the vertical support of microwave-based surface soil moistur...

  15. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  16. Retrieval of atmospheric temperature and moisture vertical profiles from satellite Advanced Infrared Sounder radiances with a new regularization parameter selecting method

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wu, Chunqiang; Li, Jun

    2016-06-01

    Considering the characteristics of nonlinear problems, a new method based on the L-curve method and including the concept of entropy was designed to select the regularization parameter in the one-dimensional variational analysis-based sounding retrieval method. In the first iteration, this method uses an empirical regularization parameter derived by minimizing the entropy of variables. During subsequent iterations, it uses the L-curve method to select the regularization parameter in the vicinity of the regularization parameter selected in the last iteration. The new method was employed to select the regularization parameter in retrieving atmospheric temperature and moisture profiles from Atmospheric Infrared Sounder radiance measurements selected from the first day of each month in 2008. The results show that compared with the original L-curve method, the new method yields 5.5% and 2.5% improvements on temperature and relative humidity profiles, respectively. Compared with the discrepancy principle method, the improvements on temperature and relative humidity profiles are 1.6% and 2.0%, respectively.

  17. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  18. Performance of a-Si:H photodiode technology-based advanced CMOS active pixel sensor imagers

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy A.; Haddad, Homayoon; Snyder, Rick D.; Zelman, Mike; Hula, David; Lindahl, Kirk A.

    2001-12-01

    Amorphous silicon photodiode technology is a very attractive option for image array integrated circuits because it enables large die-size reduction and higher light collection efficiency than c-Si arrays. The concept behind the technology is to place the photosensing element directly above the rest of the circuit, thus eliminating the need to make areal tradeoffs between photodiode and pixel circuit. We have developed an photodiode array technology that is fully compatible with a 0.35 um CMOS process to produce image sensors arrays with 10-bit dynamic range that are 30% smaller than comparable c-Si photodiode arrays. The work presented here will discuss performance issues and solutions to lend itself to cost-effective high-volume manufacturing. The various methods of interconnection of the diode to the array and their advantages will be presented. The effect of doped layer thickness and concentration on quantum efficiency, and the effect of a-Si:H defect concentration on diode performance will be discussed. The photodiode dark leakage current density is about 80 pA/cm2, and its absolute quantum efficiency peaks about 85% at 550 nm. These sensors have 50% higher sensitivity, and 2x lower dark current when compared to bulk silicon sensors of the same design. The cell utilizes a 3 FET design, but allows for 100% photodiode area due to the elevated nature of the design. The VGA (640 X 480), array demonstrated here uses common intrinsic and p-type contact layers, and makes reliable contact to those layers by use of a monolithic transparent conductor strap tied to vias in the interconnect.

  19. Uncertainty Analysis And Synergy Of Aerosol Products From Multiple Satellite Sensors For Advanced Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Petrenko, M.

    2013-05-01

    Aerosols are tiny particles suspended in the air, and can be made up of wind-blown dust, smoke from fires, and particulate emissions from automobiles, industries, and other natural and man-made sources. Aerosols can have significant impacts on the air quality, and can interact with clouds and solar radiation in such a way as to affect the water cycle and climate. However, the extent and scale of these impacts are still poorly understood, and this represents one of the greatest uncertainties in climate research to date. To fill this gap in our knowledge, the global and local properties of atmospheric aerosols are being extensively observed and measured, especially during the last decade, using both satellite and ground-based instruments, including such spaceborne sensors as MODIS on the Terra and Aqua satellites, MISR on Terra, OMI on Aura, POLDER on PARASOL, CALIOP on CALIPSO, SeaWiFS on SeaStar, and the ground-based Aerosol Robotic Network (AERONET) of sunphotometers. The aerosol measurements collected by these instruments over the last decade contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. Still, to be able to utilize these measurements synergistically, they have to be carefully and uniformly analyzed and inter-compared, in order to understand the uncertainties and limitations of the products - a process that is greatly complicated by the diversity of differences that exist among them. In this presentation, we will show results of a coherent comparative uncertainty analysis of aerosol measurements from the above-named satellite sensors relative to AERONET. We use these results to demonstrate how these sensors perform in different parts of the world over different landcover types as well as their performance relative to one another, thereby facilitating product selection and integration for specific research and applications needs.

  20. Dynamic moisture permeation through clothing.

    PubMed

    Kakitsuba, N; Gaul, K; Michna, H; Mekjavic, I B

    1988-01-01

    Dynamic moisture permeation through clothing often occurs during thermal transience, causing an imbalance between evaporative heat loss from the skin (Esk) and that from the clothing surface (Ecl). A device was designed to observe Esk and Ecl simultaneously. It consists of two relative humidity sensors coupled with thermistors so that densities of water vapor at two points within the boundary layer can be calculated. The rate of local evaporation is then estimated from Fick's law of diffusion. Local evaporation rates from the skin and clothing surface at the chest, arm, and thigh were measured during exposure to controlled ambient temperatures varying from 20 degrees-40 degrees C. The subjects wore four different types of helicopter pilot suits: Nomex/Neoprene, Goretex, cotton ventile, and Nomex/Insulite. For the Goretex and cotton ventile suits, consisting of relatively permeable and hygroscopic fabrics, a sudden increase in Esk, exponential decay of Esk, and a gradual increase in Ecl were observed. These appear to be associated with, respectively, the onset of sweat secretion, moisture build-up within the clothing, and water gain in the fabric. Thus, the device may be useful for observing dynamic moisture permeation through clothing. PMID:3355466

  1. Study of QCL Laser Sources for the Realization of Advanced Sensors.

    PubMed

    de Risi, Giuseppe; Columbo, Lorenzo Luigi; Brambilla, Massimo

    2015-08-05

    We study the nonlinear dynamics of a quantum cascade laser (QCL) with a strong reinjection provided by the feedback from two external targets in a double cavity configuration. The nonlinear coupling of interferometric signals from the two targets allows us to propose a displacement sensor with nanometric resolution. The system exploits the ultra-stability of QCLs in self-mixing configuration to access the intrinsic nonlinearity of the laser, described by the Lang-Kobayashi model, and it relies on a stroboscopic-like effect in the voltage signal registered at the QCL terminals that relates the "slow" target motion to the "fast" target one.

  2. Study of QCL Laser Sources for the Realization of Advanced Sensors

    PubMed Central

    de Risi, Giuseppe; Columbo, Lorenzo Luigi; Brambilla, Massimo

    2015-01-01

    We study the nonlinear dynamics of a quantum cascade laser (QCL) with a strong reinjection provided by the feedback from two external targets in a double cavity configuration. The nonlinear coupling of interferometric signals from the two targets allows us to propose a displacement sensor with nanometric resolution. The system exploits the ultra-stability of QCLs in self-mixing configuration to access the intrinsic nonlinearity of the laser, described by the Lang–Kobayashi model, and it relies on a stroboscopic-like effect in the voltage signal registered at the QCL terminals that relates the “slow” target motion to the “fast” target one. PMID:26251907

  3. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    PubMed Central

    Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo

    2012-01-01

    Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190

  4. Microwave Moisture Measurement System for Hardwood Lumber Drying

    SciTech Connect

    Moschler, William W; Hanson, Gregory R

    2008-09-01

    The goal of this project was to develop a prototype microwave-based moisture sensor system suitable for the kiln drying of hardwood lumber. The moisture sensors developed are battery powered and are capable of communicating with a host kiln control system via spread spectrum wireless communications. We have developed two designs of the sensors working at 4.5 to 6 GHz with linear response to moisture content (MC) over a range of 6-100%. These sensors allow us to make a swept frequency microwave transmission measurement through a small area of a board. Using the prototype electronics and sensors, we have obtained measurements of MC over the above MC range for red oak and yellow poplar with standard deviations of less than 1.5% MC. We have developed data for board thickness corrections and for temperature corrections for the MC measurement system.

  5. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  6. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  7. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated. PMID:27475586

  8. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  9. Recent advances in the development of a self-powered wireless sensor network for structural health prognosis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Inman, Daniel J.; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio

    2011-04-01

    This paper presents the most recent advances in the development of a self powered wireless sensor network for steel and concrete bridges monitoring and prognosis. This five-year cross-disciplinary project includes development and deployment of a 4-channel acoustic emission wireless node powered by structural vibration and wind energy harvesting modules. In order to accomplish this ambitious goal, the project includes a series of tasks that encompassed a variety of developments such as ultra low power AE systems, energy harvester hardware and especial sensors for passive and active acoustic wave detection. Key studies on acoustic emission produced by corrosion on reinforced concrete and by crack propagation on steel components to develop diagnosis tools and models for bridge prognosis are also a part of the project activities. It is important to mention that the impact of this project extends beyond the area of bridge health monitoring. Several wireless prototype nodes have been already requested for applications on offshore oil platforms, composite ships, combat deployable bridges and wind turbines. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami and is sponsored through the NIST-TIP Grant #70NANB9H007.

  10. Wireless device for monitoring the temperature - moisture regime in situ

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít

    2014-05-01

    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  11. Microwave remote sensing of soil moisture, volume 1. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J. (Principal Investigator); Theis, S. W.; Rosenthal, W. D.; Jones, C. L.

    1982-01-01

    Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone.

  12. Design and implementation of a new autonomous sensor fish to support advanced hydropower development.

    PubMed

    Deng, Z D; Lu, J; Myjak, M J; Martinez, J J; Tian, C; Morris, S J; Carlson, T J; Zhou, D; Hou, H

    2014-11-01

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a broader range of turbine designs and operating environments. It provides in situ measurements of three-dimensional (3D) linear accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio-frequency transmitter for recovery. The relative errors of the pressure, acceleration, and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2 °C. The new-generation Sensor Fish is becoming a major technology and being deployed for evaluating the conditions for fish passage of turbines or other hydraulic structures in both the United States and several other countries. PMID:25430138

  13. Design and implementation of a new autonomous sensor fish to support advanced hydropower development.

    PubMed

    Deng, Z D; Lu, J; Myjak, M J; Martinez, J J; Tian, C; Morris, S J; Carlson, T J; Zhou, D; Hou, H

    2014-11-01

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a broader range of turbine designs and operating environments. It provides in situ measurements of three-dimensional (3D) linear accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio-frequency transmitter for recovery. The relative errors of the pressure, acceleration, and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2 °C. The new-generation Sensor Fish is becoming a major technology and being deployed for evaluating the conditions for fish passage of turbines or other hydraulic structures in both the United States and several other countries.

  14. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  15. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  16. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  17. Moisturizers for Acne

    PubMed Central

    Chularojanamontri, Leena; Tuchinda, Papapit; Kulthanan, Kanokvalai

    2014-01-01

    Acne is a chronic inflammatory disease of the pilosebaceous unit that affects almost all teenagers. Different treatments offer different modes of action, but aim to target acne pathology. Topical therapies, such as benzoyl peroxide, retinoids, antibiotics with alcohol-based preparations, and salicylic acid, can cause skin irritation resulting in a lack of patient adherence. Some physicians recommend patients use moisturizers as adjunctive treatment of acne, especially when either topical benzoyl peroxide or a retinoid is prescribed. Furthermore, some evidence shows that moisturizers can contribute independently to improve signs and symptoms of acne. Moisturizers contain three main properties, which are occlusive, humectant, and emollient effects. Currently, many moisturizers claim to be suitable for acne treatment. This article aims to provide a review of the active ingredients and properties of those moisturizers. Fifty-two moisturizers for acne were included for analysis. Most of the products (92%) have anti-inflammatory properties apart from occlusive, humectant, and emollient effects. Anti-acne medications, including salicylic acid, benzoyl peroxide, and retinol, were found respectively in 35, 10, and 8 percent of the moisturizer products containing anti-inflammatory properties. More than half of the products contain dimethicone and/or glycerin for its moisturizer property. Aloe vera and witch hazel are botanical anti-inflammatories that were commonly found in this study. Scientific data regarding some ingredients are discussed to provide a guide for physicians in selecting moisturizers for acne patients. PMID:24847408

  18. Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...

  19. Advances in lead-free piezoelectric materials for sensors and actuators.

    PubMed

    Aksel, Elena; Jones, Jacob L

    2010-01-01

    Piezoelectrics have widespread use in today's sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [Zr(x)Ti(1-x)] O(3) (PZT), are comprised of more than 60 weight percent lead (Pb). Due to its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO(3), Na(0.5)Bi(0.5)TiO(3), K(0.5)Bi(0.5)TiO(3), Na(0.5)K(0.5)NbO(3), and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided.

  20. Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development

    SciTech Connect

    Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

    2014-11-04

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

  1. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    NASA Astrophysics Data System (ADS)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  2. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  3. Aircraft scatterometer observations of soil moisture on rangeland watersheds

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1983-01-01

    Extensive studies conducted by several researchers using truck-mounted active microwave sensors have shown the sensitivity of these sensors to soil moisture variations. The logical extension of these results is the evaluation of similar systems at lower resolutions typical of operational systems. Data collected during a series of aircraft flights in 1978 and 1980 over four rangeland watersheds located near Chickasha, Oklahoma, were analyzed in this study. These data included scatterometer measurements made at 1.6 and 4.75 GHz using a NASA aircraft and ground observations of soil moisture for a wide range of moisture conditions. Data were analyzed for consistency and compared to previous truck and aircraft results. Results indicate that the sensor system is capable of providing consistent estimates of soil moisture under the conditions tested.

  4. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  5. Soil Moisture Monitoring at Watershed Scale in Eastern India

    NASA Astrophysics Data System (ADS)

    Panda, R. K.

    2015-12-01

    Understanding the spatio-temporal variation of soil moisture on time scales that range from minute to decades on the watershed scale is important for the hydrological, meteorological and agricultural communities. Lack of reliable, longterm soil moisture datasets in developing countries like India, is a bottleneck for soil moisture analysis and prediction. Recognizing the need of continuous, automated in-situ soil moisture observations, three in-situ soil moisture test-beds have been established in an agricultural watershed of the Eastern India. Test-beds have been specifically designed to capture the root zone soil moisture dynamic at different crop fields under both surplus and water deficit conditions in low, medium and up-lands of the study region. Both volumetric and tensiometric method based sensors, Campbell Scientific soil water content reflectometer (CS650) and matric potential sensor (CS229) are installed at depths of 5, 15, 30, 60 and 100 cm below the surface. GPRS communication modems were installed at each station for remote communication from the data loggers (Campbell Scientific, CR1000) for automatic data collection. To achieve a better understanding of the spatial variation of the soil moisture on watershed scale, the strategic ground-based surface measurements were made in diverse landscape using portable impedance probe. The primary aim of spatial and temporal scale soil moisture measurement is to validate current remote sensing products of Soil Moisture Active Passive (SMAP). In order to improve validation procedure, the soil texture and soil hydraulic parameters are also estimated across the spatial scales to develop dynamic relationship between these parameters. Herein, the strategies for the site selection, calibration of the soil moisture sensors, ground-based soil moisture monitoring, hydraulic properties estimation at spatial scale and the quality assurance techniques applied to the observations are provided.

  6. Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.

  7. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Blanchard, A. J.

    1984-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  8. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, A. J.; Blanchard, B. J.

    1986-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  9. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  10. Detection of moisture and moisture related phenomena from Skylab. [Texas and Kansas

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R. (Principal Investigator); Lin, W. C.

    1974-01-01

    The author has identified the following significant results. The high correlations between radiometric temperature and soil moisture content are shown to remain quite high for independent footprints of the S194 sensor. Since an analysis based on overlapping footprints had previously been reported with a high correlation, it was necessary to verify that the correlation did not arise from dependent data.

  11. Field effect sensors for nucleic Acid detection: recent advances and future perspectives.

    PubMed

    Veigas, Bruno; Fortunato, Elvira; Baptista, Pedro V

    2015-01-01

    In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs' greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategies-from production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab. PMID:25946631

  12. Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives

    PubMed Central

    Veigas, Bruno; Fortunato, Elvira; Baptista, Pedro V.

    2015-01-01

    In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs’ greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategies—from production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab. PMID:25946631

  13. From advanced driver assistance to autonomous driving: perspectives for photonics sensors

    NASA Astrophysics Data System (ADS)

    Cochard, Jacques; Bouyé, Clémentine

    2016-03-01

    Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.

  14. Advances in utilization of structurally integrated sensor networks for health monitoring in commercial applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.

    2002-07-01

    Structural health monitoring is a new technology that has been increasingly evaluated by the industry as a potential approach to improve the cost and ease of structural inspection. By improving structural inspection, structures can be made safer and more reliable, thus reducing the cost of structure ownership. Acellent Technologies is developing tools for structural health monitoring. The tools Acellent is offering are the SMART Layer and the SMART Suitcase. The SMART Layer is a flexible layer with a distributed array of piezoelectric transducers made using the printed circuit process that allows easy installation onto structures for in-situ sensing. The SMART Suitcase is an instrument that can interact with the SMART Layer and process the information collected from the structures. Acellent has been providing the system to researchers and companies to try out this new technique. Currently, this system is being evaluated by aircraft manufacturers for monitoring fatigue cracks from rivet holes, by an automotive company for inspecting flaws in composite/foam components, and by aerospace companies for detecting damages in composite/honeycomb sandwich structures. Other recent developments include the addition of fiber-optic sensors onto the SMART Layer and proving the SMART Layer for composite RTM process.

  15. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  16. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  17. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  18. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  19. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  20. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  1. Applying Advanced and Existing Sensors in Dealing with Potential Natural Disasters

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2006-01-01

    As an integrated observing strategy, the concept of sensorweb for Earth observations is appealing in many aspects. For instance, by increasing the spatial and temporal coverage of observations from space and other vantage points, one can eventually aid in increasing the accuracy of the atmospheric models which are precursor to hurricane track prediction, volcanic eruption forecast, and trajectory path of transcontinental transport of dust, harmful nuclear and chemical plumes. In reality, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that must be carefully studied and balanced over many boundaries such as science, defense, early warning, security, and surveillance. Simplistically, the sensorweb concept from the technological point of view alone has a great appeal in the defense, early warning and security applications. In fact, it can be relatively less expensive in per unit cost as opposed to building and deploying it for the scientific use. However, overall observing approach should not be singled out and aligned somewhat orthogonally to serve a particular need. On the other hand, the sensorweb should be designed and deployed to serve multiple subject areas and customers simultaneously; and can behave as directed measuring systems for both science and operational entities. Sensorweb can be designed to act as expert systems, and/or also provide a dedicated integrated surveillance network. Today, there is no system in the world that is fully integrated in terms of reporting timely multiple hazards warnings, computing the loss of life and property damage estimates, and is also designed to cater to everyone s needs. It is not an easier problem to undertake and more so is not practically solvable. At this time due to some recent events in the world, the scientific community, social scientists, and operational agencies are more cognizant and getting

  2. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-01

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  3. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-01

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  4. Soil moisture and temperature algorithms and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  5. Mechanically Self-Assembled, Three-Dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors.

    PubMed

    Leem, Juyoung; Wang, Michael Cai; Kang, Pilgyu; Nam, SungWoo

    2015-11-11

    Hybrid structures of graphene and metal nanoparticles (NPs) have been actively investigated as higher quality surface enhanced Raman spectroscopy (SERS) substrates. Compared with SERS substrates, which only contain metal NPs, the additional graphene layer provides structural, chemical, and optical advantages. However, the two-dimensional (2D) nature of graphene limits the fabrication of the hybrid structure of graphene and NPs to 2D. Introducing three-dimensionality to the hybrid structure would allow higher detection sensitivity of target analytes by utilizing the three-dimensional (3D) focal volume. Here, we report a mechanical self-assembly strategy to enable a new class of 3D crumpled graphene-gold (Au) NPs hybrid nanoplasmonic structures for SERS applications. We achieve a 3D crumpled graphene-Au NPs hybrid structure by the delamination and buckling of graphene on a thermally activated, shrinking polymer substrate. We also show the precise control and optimization of the size and spacing of integrated Au NPs on crumpled graphene and demonstrate the optimized NPs' size and spacing for higher SERS enhancement. The 3D crumpled graphene-Au NPs exhibits at least 1 order of magnitude higher SERS detection sensitivity than that of conventional, flat graphene-Au NPs. The hybrid structure is further adapted to arbitrary curvilinear structures for advanced, in situ, nonconventional, nanoplasmonic sensing applications. We believe that our approach shows a promising material platform for universally adaptable SERS substrate with high sensitivity.

  6. Soil Moisture Retrieval Using the Aquarius/SAC-D Instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquarius/SAC-D will share common elements with several current and future satellite missions that provide soil moisture. Passive microwave soil moisture retrieval using low frequencies is currently performed using Aqua Advanced Microwave Scanning Radiometer-E (AMSR-E) (C/X-band). This will extended ...

  7. High resolution soil moisture mapping using Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan; Ochsner, Tyson; van de Giesen, Nick

    2016-04-01

    Distributed Temperature Sensing (DTS) can measure high resolution (spatial < 1 m, and temporal < 1 min) soil temperature at multiple depths at scales up to kilometers. This study presents a data assimilation framework for robustly estimating soil moisture using DTS observed soil temperature data. The combination of advanced data assimilation techniques and DTS produces a tool for high spatial and temporal resolution soil moisture mapping. To robustly extract soil moisture information from the evolution of soil temperatures, we use a new data assimilation algorithm, particle batch smoother (PBS). Synthetic, as well as real point and DTS data were use develop the data assimilation framework. In addition to estimating soil moisture, the PBS was also used to estimate soil thermal and hydraulic properties by assimilating soil temperatures. The improved soil hydraulic properties fundamentally benefit the forward model in the data assimilation framework, which leads to the most robust soil moisture estimates. Finally, we applied the proposed data assimilation frame work to a real transect of DTS cable. The estimated soil moisture and soil properties are validated using data observed at a nearby site. The DTS mapped soil moisture shows that the soil moisture spatial variability is a strong function of the areal mean soil moisture, which is consistent with previous studies. Results so far indicate that we can finally use DTS to understand intermediate scale soil moisture spatial variability, and link soil moisture measurements at different scales.

  8. Advances in Bio-Tactile Sensors for Minimally Invasive Surgery Using the Fibre Bragg Grating Force Sensor Technique:A Survey

    PubMed Central

    Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.

    2014-01-01

    The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774

  9. Diamonds are a spectroscopist's best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors.

    PubMed

    Wang, Xiaofeng; Karlsson, Mikael; Forsberg, Pontus; Sieger, Markus; Nikolajeff, Fredrik; Österlund, Lars; Mizaikoff, Boris

    2014-08-19

    The first combination of mid-infrared (MIR) tunable quantum cascade lasers (tQCLs) with thin-film diamond strip waveguides (DSWGs) suitable for advanced chemical sensing/biosensing is demonstrated. The sensing system is composed of thin diamond films grown on surface-passivated Si wafers via chemical vapor deposition (CVD) and microstructured using inductively coupled plasma (ICP) etching, serving as photonic waveguides for radiation emitted by a broadly tunable quantum cascade laser (tQCL) in the spectral regime of 5.78-6.35 μm (1570-1730 cm(-1)). The characterization of the free-standing diamond waveguides reveals excellent transmission properties across a broad MIR band. As a proof of concept, the detection of acetone in D2O via evanescent field absorption is demonstrated achieving a limit of detection (LOD) as low as 200 pL, which indicates a significant sensitivity improvement compared to conventional MIR slab/strip waveguides reported to date. Providing characteristic absorption features within the tuning range of the tQCL, studies using anisaldehyde as an analyte further corroborate the potential of tQCL-DSWG-based chemical sensors/biosensors.

  10. Microwave moisture measurement for wood drying

    SciTech Connect

    Moschler, William W; Hanson, Gregory R; Gee, Timothy Felix; Killough, Stephen M; Wilgen, John B

    2007-01-01

    The goal of this project was to develop a prototype moisture sensor system suitable for a hardwood dry kiln based on the microwave transmission measurements of the complex dielectric constant of the wood. In this project, prototypes of two designs of microwave-based moisture sensor probes (launchers) working in the frequency range from 4.5 GHz to 6 GHz were developed and tested. A prototype set of battery powered electronics that both provides the microwave excitation and records the amplitude and phase of the returned signal after passing through the wood was built and tested. The sensors and electronics built in this project allow a swept frequency microwave transmission measurement through a small area of a board. Using the prototype electronics and launchers, measurements of moisture content (MC) over a range of 6 percent to 70 percent MC for red oak and 6 percent to 100 percent for yellow-poplar with standard deviations of less than 1.5 percent MC have been obtained.

  11. Innovative sensing techniques and data analysis for characterizing the spatial and temporal dynamics of soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2015-04-01

    Soil moisture plays a critical role in every hydrological or meteorological model; nevertheless, it is still a great challenge to provide adequate information on soil moisture distribution beyond the point scale. Mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. The objective of this study was to characterize the spatio-temporal pattern of soil moisture at the hillslope scale and infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing the monitoring setup of a wireless sensor network for a grassland hillslope in the Schäfertal catchment, Central Germany. At the same site, we measured soil apparent electrical conductivity (ECa) using EMI devices. Hypothesizing a wet and a dry soil moisture state to be characteristic of the spatial pattern of soil moisture, we tested a new method of analysis based on the Spearman rank correlation coefficient for describing the spatial and temporal evolution of such patterns. Based on this approach, we described the persistence and switching mechanisms of the two characteristic states, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. The method showed to provide valuable insight into the persistence of characteristic states of soil moisture and the mechanisms of transition, and to be suitable for highlighting events for which specific hydrological processes occurred. The spatial organization of soil moisture was observed to be controlled by different processes in different soil

  12. MAMS data for the Convection and Moisture Experiment (CAMEX)

    NASA Technical Reports Server (NTRS)

    Guillory, A. R.; Jedlovec, G. J.; Atkinson, R. J.

    1994-01-01

    During the fall of 1993, NASA sponsored a field program called the Convection And Moisture Experiment (CAMEX). The field effort focused on: convective storms in order to investigate their associated electrical properties, precipitation, and predictability, and atmospheric moisture studies. The data collected from the Multispectral Atmospheric Mapping Sensor (MAMS) onboard a NASA ER-2 aircraft which was deployed out of NASA/Wallops Flight Facility, Wallops Island, Virginia, from 11 Sep. through 7 Oct., 1993, is described.

  13. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia.

    PubMed

    Doubková, Marcela; Van Dijk, Albert I J M; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-05-15

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have

  14. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia

    PubMed Central

    Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-01-01

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have

  15. Soil moisture responses to vapour pressure deficit in polytunnel-grown tomato under soil moisture triggered irrigation control

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Kühn, Karl; Jenkins, Dick

    2014-05-01

    The aim of this work has been to investigate soil-to-atmosphere water transport in potted tomato plants by measuring and processing high-resolution soil moisture data against the environmental driver of vapour pressure deficit (VPD). Whilst many researchers have successfully employed sap flow sensors to determine water uptake by roots and transport through the canopy, the installation of sap flow sensors is non-trivial. This work presents an alternative method that can be integrated with irrigation controllers and data loggers that employ soil moisture feedback which can allow water uptake to be evaluated against environmental drivers such as VPD between irrigation events. In order to investigate water uptake against VPD, soil moisture measurements were taken with a resolution of 2 decimal places - and soil moisture, air temperature and relative humidity measurements were logged every 2 minutes. Data processing of the soil moisture was performed in an Excel spread sheet where changes in water transport were derived from the rate of change of soil moisture using the Slope function over 5 soil moisture readings. Results are presented from a small scale experiment using a GP2-based irrigation controller and data logger. Soil moisture feedback is provided from a single SM300 soil moisture sensor in order to regulate the soil moisture level and to assess the water flow from potted tomato plants between irrigation events. Soil moisture levels were set to avoid drainage water losses. By determining the rate of change in soil moisture between irrigation events, over a 16 day period whilst the tomato plant was in flower, it has been possible to observe very good correlation between soil water uptake and VPD - illustrating the link between plant physiology and environmental conditions. Further data is presented for a second potted tomato plant where the soil moisture level is switched between the level that avoids drainage losses and a significantly lower level. This data

  16. Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data

    NASA Technical Reports Server (NTRS)

    Emery, W. J.; Fowler, C.; Maslanik, J.

    1994-01-01

    Nearly coincident data from the special sensor microwave imager (SSM/I) and the advanced very high resolution radiometer (AVHRR) are used to compute and compare Arctic sea ice concentrations for different regions and times of the year. To help determine overall accuracies and to highlight sources of differences between passive microwave, optical wavelength, and thermal wavelength data, ice concentrations are estimated using two operational SSM/I ice concentration algorithms and with visible- and thermal-infrared wavelength AVHRR data. All algorithms capture the seasonal patterns of ice growth and melt. The ranges of differences fall within the general levels of uncertainty expected for each method and are similar to previous accuracy estimates. The estimated ice concentrations are all highly correlated, with uniform biases, although differences between individual pairs of observations can be large. On average, the NASA Team algorithm yielded 5% higher ice concentrations than the Bootstrap algorithm, while during nonmelt periods the two SSM/I algorithms agree to within 0.5%. These seasonal differences are consistent with the ways that the 19-GHz and 37-GHz microwave channels are used in the algorithms. When compared to the AVHRR-derived ice concentrations, the Team-algorithm results are more similar on average in terms of correlation and mean differences. However, the Team algorithm underestimates concentrations relative to the AVHRR output by 6% during cold months and overestimates by 3% during summer. Little seasonal difference exists between the Bootstrap and AVHRR results, with a mean difference of about 5%. Although the mean differences are less between the SSM/I-derived concentrations and concentrations estimated using AVHRR channel 1, the correlations appear substantially better between the SSM/I data and concentrations derived from AVHRR channel 4, particularly for the Team algorithm output.

  17. First-in-Man Demonstration of Fully Implanted Myoelectric Sensors for Control of an Advanced Electromechanical Arm by Transradial Amputees

    PubMed Central

    Pasquina, Paul F.; Evangelista, Melissa; Carvalho, Antonio J.; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David

    2014-01-01

    Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. PMID:25102286

  18. Proceedings of the DOE/Industry Advanced Research and Development Sensor Working Group members meeting, Chicago, Illinois

    SciTech Connect

    Emerson, D.B.; Whitworth, B.A.

    1987-04-30

    This pulp and paper sensor program undertakes long-term, high-risk applied development activities to develop sensors for improving the efficiency of energy conversion and utilization systems. This document includes summaries, working group comments, and presentation aids (viewgraphs) for the following sensors: in-situ combustion controller, consistency meter, lignin mass spectrometer, acoustic steam flow meter, on-machine sensors to measure paper mechanical properties, and monitor for electrokinetics and flocculation of paper furnish (colloidal slurries). A caucus report is also given. (DLC)

  19. Cryogenic Moisture Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry

    2010-01-01

    The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.

  20. Characterization of sensor performance and durability for structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Giurgiutiu, Victor; Cooney, Adam; Doane, James

    2005-05-01

    A key question that needs to be addressed and answered with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems involves the long-term operability, durability, and survivability of integrated sensor systems and their associated hardware. Whether a sensor system is fully integrated within a structural material, or surface-bonded to the structure, a number of environmental and system level influences will tend to degrade the sensor system"s performance and durability over time. In this effort, an initial sensor durability study was undertaken to better understand the performance and degradation of piezo wafer active sensor (PWAS) systems under adverse mechanical, temperature, and moisture conditions. A novel displacement-field imaging approach was utilized to understand the vibration characteristics of PWAS transducers placed in accelerated vibration, temperature-cycling, and moisture-cycling conditions. The results showed damage in the form of PWAS sensor cracking events, bond degradation and failure, as well as indications of performance variation and reduction due to the accelerated exposure levels. Future activities will focus on identifying critical durability and survivability issues through advanced sensor modeling and additional accelerated testing efforts, with the ultimate goal of improving the robustness of health monitoring systems through improved sensor system design and packaging.

  1. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  2. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  3. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  4. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  5. Precipitation estimation using L-Band and C-Band soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...

  6. Data Assimilation of Space-Based Passive Microwave Soil Moisture Retrievals and the Correction for a Dynamic Open Water Fraction

    NASA Astrophysics Data System (ADS)

    Gouweleeuw, Ben T.; van Dijik, Albert I. J. M.; Renzullo, Luigi J.

    2011-01-01

    The large observation footprint of low-frequency satellite microwave emissions complicates the interpretation of near-surface soil moisture retrievals. Temporal changes in the extent of smaller water bodies can cause significant and dynamic biases. We analysed the influence of open water on near-surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) for three areas in Oklahoma, USA. Differences between on-ground observations or model estimates and AMSR-E retrievals were compared to dynamic estimates of open water fraction derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The comparison indicates that seasonally varying biases of up to 20% soil water content can be attributed to the presence of relatively small areas (<5%) of open water in or near the sensor footprint. The results presented here feed into the discussion if the retrieved variable or the observed microwave brightness temperature is most suitable for assimilation with simulated fields from land surface models.

  7. Multilayer moisture barrier

    DOEpatents

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  8. Moisturizers: The Slippery Road

    PubMed Central

    Sethi, Anisha; Kaur, Tejinder; Malhotra, SK; Gambhir, ML

    2016-01-01

    Moisturizers are an important part of a dermatologist's armamentarium although little is written and well, a less is truly known about them. There is a cornucopia of projected skin products in the market whose real scientific role is not proven. These products although at times are regarded as mere cosmetics but have a well-known role in many skin disorders. Adequate knowledge about their mechanism of action, dosage, usage, and adverse effects is must for a dermatologist in this era. This article aims to bring forth the ever hidden facts of the much-hyped moisturizers. It is probably the first of its kind covering all aspects of moisturizers ranging from basic science to clinical usage, a subject that receives a short shrift in the current dermatological text. PMID:27293248

  9. System design description for surface moisture measurement system (SMMS)

    SciTech Connect

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  10. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  11. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  12. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean

  13. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  14. A synergisitic Neural Network Soil Moisture Retrieval Algorithm for SMAP

    NASA Astrophysics Data System (ADS)

    Kolassa, J.; Reichle, R. H.; Gentine, P.; Prigent, C.; Aires, F.; Fang, B.

    2015-12-01

    A Neural Network (NN)-based algorithm is developed to retrieve surface soil moisture from Soil Moisture Active/Passive (SMAP) microwave observations. This statistical approach serves as an alternative to the official Radiative Transfer (RT) based SMAP retrieval algorithm, since it avoids an explicit formulation of the RT processes as well as the use of often uncertain or unavailable a priori knowledge for additional surface parameters. The NN algorithm is calibrated on observations from the SMAP radiometer and radar as well as surface soil moisture fields from the MERRA-2 reanalysis. To highlight different physical aspects of the satellite signals and to maximize the soil moisture information, different preprocessing techniques of the SMAP data are investigated. These include an analysis of radiometer polarization and diurnal indices to isolate the surface temperature contribution, as well as the radar co- and cross-polarized channels to account for vegetation effects. A major difference with respect to the official retrieval is the increased importance given to the information provided by the SMAP radar or other active sensors, utilizing not only the relative spatial structures, but also the absolute soil moisture information provided. The NN methodology combines multiple sensor observations in a data fusion approach and is thus able to fully exploit the complementarity of the information provided by the different instruments. The algorithm is used to compute global estimates of surface soil moisture and evaluated against retrieved soil moisture from SMOS as well as in situ observations from the International Soil Moisture Network (ISMN). The calibration on MERRA-2 data means that the NN retrieval algorithm functions as the model operator in a data assimilation framework yielding soil moisture estimates that are very compatible with the model. This could facilitate the assimilation of SMAP observations into land surface and numerical weather prediction models.

  15. CRADA with the Belhaven group and Pacific Northwest National Laboratory (PNL-081): Automated soil moisture measuring systems. Final project report

    SciTech Connect

    Ramesh, K.S.

    1996-08-01

    The objectives of this project were to (1) develop an improved, full- scale, inexpensive, soil moisture sensor, using innovative porous ceramic materials as the moisture wicking component and (2) demonstrate the performance of the sensor in the laboratory and in field to determine its reliability and accuracy. The opportunity for this project arose as a result of an inquiry from Belhaven to whom the soil moisture sensor developed at PNNL by John Cary was licensed. The existing Cary sensor needed research and development effort in order to create the type of soil moisture sensor envisioned by the Belhaven for use in an integrated soil moisture systems in the field. PNNL was identified as being uniquely qualified to participate in this Collaborative project.

  16. A Redesigned DFA Moisture Meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The DFA moisture meter has been internationally recognized as the standard for determining moisture content of dried fruit in general and is AOAC Official Method 972.2 for measuring moisture in prunes and raisins since 1972. The device has remained virtually unchanged since its inception, with its o...

  17. Modeling moisture movement in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is one of the leading food crops in the world. At harvest, rice normally has higher moisture content than the moisture content considered safe for its storage, which creates the necessity for a drying process before its storage. In addition to drying, moisture movement within the rice kernels a...

  18. NSF/ESF Workshop on Smart Structures and Advanced Sensors, Santorini Island, Greece, June 26-28, 2005: Structural Actuation and Adaptation Working Group

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Tomizuka, Masayoshi; Bergman, Lawrence; Carpenter, Bernie; Salzano, Carmine; Bairrao, rogerio; Deraemaker, Arnaud; Magonette, Georges; Rodellar, Jose; Kadirkamanathan, Visaken

    2005-01-01

    This document is a result of discussions that took place during the workshop. It describes current state of research and development (R&D) in the areas of structural actuation and adaptation in the context of smart structures and advanced sensors (SS&AS), and provides an outlook to guide future R&D efforts to develop technologies needed to build SS&AS. The discussions took place among the members of the Structural Actuation and Adaptation Working Group, as well as in general sessions including all four working groups. Participants included members of academia, industry, and government from the US and Europe, and representatives from China, Japan, and Korea.

  19. Moisture Metrics Project

    SciTech Connect

    Schuchmann, Mark

    2011-08-31

    the goal of this project was to determine the optimum moisture levels for biomass processing for pellets commercially, by correlating data taken from numerous points in the process, and across several different feedstock materials produced and harvested using a variety of different management practices. This was to be done by correlating energy consumption and material through put rates with the moisture content of incoming biomass ( corn & wheat stubble, native grasses, weeds, & grass straws), and the quality of the final pellet product.This project disseminated the data through a public website, and answering questions form universities across Missouri that are engaged in biomass conversion technologies. Student interns from a local university were employed to help collect data, which enabled them to learn firsthand about biomass processing.

  20. Microwave soil moisture estimation in humid and semiarid watersheds

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.

    1993-01-01

    Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.

  1. A strategy for downscaling SMOS-based soil moisture

    NASA Astrophysics Data System (ADS)

    Pan, M.; Sahoo, A. K.; Wood, E. F.

    2010-12-01

    The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission was launched in November 2009, and has been providing 1.4GHz (L-band) observations. A number of ongoing SMOS-related research efforts have been focusing on retrieving top surface soil moisture from the measurements and validation of such measurements and retrievals. For soil moisture detection, the SMOS sensor can only achieve a relatively low spatial resolution of about 50km. But the variability of soil moisture field is still quite high below 50km scale due to land surface heterogeneities like elevation, vegetation cover, soil texture, etc. For this reason, a lot of hydrologic applications, for example, regional land surface modeling and data assimilation studies, are performed at an increasingly finer resolution (down to 1km) and they would expect finer soil moisture fields. So in the long run, the relatively coarse soil moisture retrievals will limit their value in many applications, and spatially downscaled products are very much needed. We propose and test a strategy to downscale the SMOS-based soil moisture products to ~1km or finer. The basic idea is to relate soil moisture to other physical parameters available at higher resolution, for example, elevation, topography, vegetation cover, soil texture, land surface temperature and so on. At places with strong topography, the fine scale soil moisture is primarily controlled by gravity-driven horizontal movement of surface water. In such areas, we can relate soil moisture to topographic features through catchment hydrologic models like the TOPMODEL. In flat areas, soil texture and vegetation properties may pose a greater impact than topography. In this case, we will explore the use of high resolution vegetation information or land surface temperature for downscaling.

  2. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...

  3. Assimilation of passive microwave-based soil moisture and snow depth retrievals for drought estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article examines the influence of passive microwave based soil moisture and snow depth retrievals towards improving estimates of drought through data assimilation. Passive microwave based soil moisture and snow depth retrievals from a variety of sensors are assimilated separately into the Noah ...

  4. SMOS Soil Moisture Validation with Dense and Sparse Newtworks:Early Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Validation is an important but particularly challenging task for passive microwave remote sensing of soil moisture from Earth orbit. The key issue is spatial scale; conventional measurements of soil moisture are made at a point whereas satellite sensors provide an integrated area/volume value for a...

  5. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  6. AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

    SciTech Connect

    Sarah Allendorf; David Ottesen; Donald Hardesty

    2002-01-31

    The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events

  7. Retrieval of soil moisture based on passive microwaves measurements from AMSR-E over a Sahelian region.

    NASA Astrophysics Data System (ADS)

    Gruhier, C.; de Rosnay, P.; Wigneron, J.-P.

    2009-04-01

    Soil moisture is a crucial variable which influences the land surface processes. The feedback on precipitation is particularly strong over the Sahelian region. Access to soil moisture value is difficult because of its high spatial and temporal variability. Large scale measurements are of great importance for land surface modeling and numerical weather prediction. Remote sensing approaches are the more appropriated to provide land surface informations at continental scale and high temporal frequency. Among all channels available, passive microwaves are the most sensitive to soil moisture variations. This study proposed a retrieval of soil moisture based on AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) measurements over a Sahelian region. The study area is located in Gourma region in Mali. This site has been instrumented in the context of the AMMA project (African Monsoon Multidisciplinary Analysis). The soil moisture network was specifically designed to address the validation of remotely sensed soil moisture in the context of the SMOS mission (Soil Moisture an Ocean Salinity). AMSR-E is a passive microwaves sensor launched on AQUA in 2002. It provides brightness temperature at fives frequencies (6.9 to 89GHz) and two polarizations. Its high temporal frequency is particularly appropriated to the quick rainy events. Gruhier et al (2008-a) shows the great sensibility of the 6.9GHz channel over the study area. The goal of this study is to use the complete temporal series available from AMSR-E from 2002 to 2008 to provide soil moisture values. In a first time, a simple correction is applied to brightness temperature to correct the variations explained by instrument calibration. Secondly, the range of AMSR-E brightness temperatures values is used to identify the range of Soil Wetness Index values on each pixel. Finally, sample ground measurements are used to develop retrieval algorithm, which provide volumetric values. Retrieved soil moisture

  8. Development of an Open Source Based Sensor Platform for an Advanced and Comprehensive in-situ DOC Monitoring

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Goblirsch, Tobias; Paschen, Mathias; Rinke, Karsten; Schelwat, Heinz; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    The impact of global change, intensive agriculture and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of water catchment areas, a comprehensive monitoring of the ongoing processes and effects remains to be a challenging issue in the field of applied environmental research. Moreover, harsh conditions and a variety of influencing process parameters are representing a particular challenge due to an adaptive in-situ monitoring of vast areas. Today, open source based electronics and cost-effective sensors and sensor components are offering a promising approach to investigate new possibilities of smart phone based mobile data acquisition and comprehensive ad-hoc monitoring of environmental processes. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. The whole monitoring system consists of several mobile sensor devices, a smart phone app (Android) and a web service for data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor device and provides some built-in functions such as data visualization or data transmission via e-mail. Besides the measurement of temperature and humidity in air, the mobile sensor device is able to acquire sensor readings for the content of dissolved organic compounds (λ = 254 nm) and turbidity (λ = 860 nm) of surface water based on the developed optical in

  9. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-01-01

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged. PMID:23887085

  10. An Advanced Temporal Credential-Based Security Scheme with Mutual Authentication and Key Agreement for Wireless Sensor Networks

    PubMed Central

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-01-01

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged. PMID:23887085

  11. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-07-24

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged.

  12. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  13. Comparative measurement of hydration effects of herbal moisturizers

    PubMed Central

    Saraf, Swarnlata; Sahu, Sneha; Kaur, Chanchal Deep; Saraf, Shailendra

    2010-01-01

    Improvements of skin hydration properties by the use of polyherbal moisturizers are the recent advances in cosmetic preparations to avoid the harmful effects of chemical moisturizers. The main aim of the study was to establish selection preference of different available marketed herbal moisturizers on the basis of the efficiency of constituents for their hydration effects. The criteria for the selection of formulations were presence of herbal constituents, wheat germ oil and Aloe vera extract. Initially, physiochemical and psychometric studies were performed to visualize the compliance of moisturizers with the skin. The clinical study was carried out in six groups of six healthy human volunteers (aged 20–25 years) each applying moisturizers twice daily over a period of 3 weeks in their forearm. The skin properties measured were conductance, glow and appearance. The results indicated that all the moisturizers show moisturizing effect in a time-dependent pattern and the maximum increase in skin conductance was 168.125 and 165.24% for A2 and A1, respectively. Ranking of moisturizers based on conductance as well as physicochemical analysis is A2 > A1 > A4 > A3 > A5 > A6. It was found that the formulation A2 having wheat germ oil, Aloe vera extract and turmeric extract in combination showed best results due to their synergistic effect and wheat germ oil or Aloe extract, when present separately produced skin hydration to lesser extent. PMID:21808557

  14. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  15. Soil moisture determination study. [Guymon, Oklahoma

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1979-01-01

    Soil moisture data collected in conjunction with aircraft sensor and SEASAT SAR data taken near Guymon, Oklahoma are summarized. In order to minimize the effects of vegetation and roughness three bare and uniformly smooth fields were sampled 6 times at three day intervals on the flight days from August 2 through 17. Two fields remained unirrigated and dry. A similar pair of fields was irrigated at different times during the sample period. In addition, eighteen other fields were sampled on the nonflight days with no field being sampled more than 24 hours from a flight time. The aircraft sensors used included either black and white or color infrared photography, L and C band passive microwave radiometers, the 13.3, 4.75, 1.6 and .4 GHz scatterometers, the 11 channel modular microwave scanner, and the PRT5.

  16. Advances in reflective oxygen saturation monitoring with a novel in-ear sensor system: results of a human hypoxia study.

    PubMed

    Venema, Boudewijn; Blanik, Nikolai; Blazek, Vladimir; Gehring, Hartmut; Opp, Alexander; Leonhardt, Steffen

    2012-07-01

    Pulse oximetry is a well-established, noninvasive photoplethysmographic method to monitor vital signs. It allows us to measure cardiovascular parameters, such as heart rate and arterial oxygen saturation, and is considered an essential monitoring tool in clinical routine. However, since many of the conventional systems work in transmission mode, they can only be applied to the thinner or peripheral parts of the body, such as a finger tip. This has the major disadvantage that, in case of shock-induced centralization and a resulting drop in perfusion, such systems cannot ensure valid measurements. Therefore, we developed a reflective in-ear sensor system that can be worn in the ear channel like a headphone. Because the sensor is integrated in an ear mold and positioned very close to the trunk, reliable measurement is expected even in case of centralization. An additional advantage is that the sensor is comfortable to wear and has considerable resistance to motion artifacts. In this paper, we report on hypoxia studies with ten healthy participants which were performed to analyze the system with regard to the detection of heart rate and arterial oxygen saturation. It was shown earlier that, due to the high signal quality, heart rate can easily be detected. Using the conventional calculation principle, based on Beer-Lambert's law combined with a single-point calibration method, we now demonstrate that the detection of arterial oxygen saturation in the human ear canal is possible using reflective saturation sensors.

  17. An advanced thin foil sensor concept for heat flux and heat transfer measurements in fully turbulent flows

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2007-02-01

    A double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil is used as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. Together with the wall and free stream temperature this measured heat flux will provide the local heat transfer coefficient h = dot{q}w/left(Tw - T_{infty}right). In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. The overall concept behind this mode of measurement is based on the local character of heat transfer in fully turbulent flows which turns out to be almost independent of the upstream thermal events.

  18. Synthesis and Application of Ratiometric and "Turn-On" Fluorescent pH Sensors: An Advanced Organic Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hutt, Johnathon T.; Aron, Zachary D.

    2014-01-01

    An upper-division organic chemistry laboratory experiment exploring fluorescent sensing over two laboratory periods and part of a third is described. Two functionally distinct pH-responsive sensors are prepared through a dehydrative three-component coupling reaction. During the abbreviated (<1 h) first laboratory period, students set up…

  19. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  20. An Assessment of the Use of AMSR E 10 GHz Data for Soil Moisture Estimation in SMEX02

    NASA Astrophysics Data System (ADS)

    Hsu, A. Y.; Jackson, T. J.; O'Neill, P. E.

    2003-12-01

    The launch of the Advanced Microwave Scanning Radiometer (AMSR-E) on board the NASA EOS Aqua Satellite has drawn much interest from the scientific community that has been waiting for a low frequency spaceborne microwave radiometer (< 10 GHz) capable of measuring soil moisture. The AMSR-E instrument was developed by the National Space Development Agency of Japan (NASDA) and makes dual-polarized microwave measurements at six frequencies: 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz. Early examinations of AMSR-E measurements have shown evidence of extensive Radio-Frequency Interference (RFI) in the 6.9 GHz channels, especially over the continental U.S. Due to the contamination of 6.9 GHz data by RFI, it may be necessary to use the next lowest frequency, 10.7 GHz, for soil moisture retrieval. This frequency has been available on the TRMM Microwave Imager for several years; however, the TRMM sensor only provides data between 38 N to 38 S in latitude whereas AMSR-E provides global coverage. We examined the impact of alternative frequencies on soil moisture retrieval using data from the Soil Moisture Experiments in 2002 (SMEX02). SMEX02 took place in Walnut Creek Watershed and surrounding region of Iowa from June 24 to July 12. The experiment focused on microwave remote sensing of soil moisture in an agricultural setting. Land cover in the Walnut Creek Watershed consists of a patchwork of corn and soybean fields, with some isolated forested zones. This presents a challenge to soil moisture retrieval using AMSR-E 10 GHz data. Extensive vegetation sampling was conducted during SMEX02 to provide information to estimate vegetation parameters required by retrieval algorithm. The maps of AMSR-E 10 GHz data over the SMEX02 area from July 2 to 13 show the decrease of brightness temperature (TB) due to precipitation, although the range is not as profound as expected at L band. The Normalized Difference Polarization Index (NDPI), defined as (TBv-TBh)/(TBv+TBh), computed for various