Science.gov

Sample records for advanced molecular imaging

  1. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  2. Recent advances in ophthalmic molecular imaging.

    PubMed

    Ramos de Carvalho, J Emanuel; Verbraak, Frank D; Aalders, Maurice C; van Noorden, Cornelis J; Schlingemann, Reinier O

    2014-01-01

    The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology. PMID:24529711

  3. Advances of Molecular Imaging in Epilepsy.

    PubMed

    Galovic, Marian; Koepp, Matthias

    2016-06-01

    Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis. PMID:27113252

  4. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  5. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  6. ADVANCES IN MOLECULAR IMAGING OF PANCREATIC BETA CELLS

    PubMed Central

    Lin, Mai; Lubag, Angelo; McGuire, Michael J.; Seliounine, Serguei Y.; Tsyganov, Edward N.; Antich, Peter P.; Sherry, A. Dean; Brown, Kathlynn C.; Sun, Xiankai

    2009-01-01

    The development of non-invasive imaging methods for early diagnosis of the beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn considerable interest from the molecular imaging community as well as clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of currently available imaging techniques have been tested for the assessment of the pancreatic beta cell islets. Here we discuss the current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress in the field for obtaining such ligands is presented. Additionally, we report our preliminary efforts of developing such a peptidic ligand for PET imaging of the pancreatic beta cells. PMID:18508529

  7. Recent Advances in Molecular Magnetic Resonance Imaging of Liver Fibrosis

    PubMed Central

    Li, Zhiming; Sun, Jihong; Yang, Xiaoming

    2015-01-01

    Liver fibrosis is a life-threatening disease with high morbidity and mortality owing to its diverse causes. Liver biopsy, as the current gold standard for diagnosing and staging liver fibrosis, has a number of limitations, including sample variability, relatively high cost, an invasive nature, and the potential of complications. Most importantly, in clinical practice, patients often reject additional liver biopsies after initiating treatment despite their being necessary for long-term follow-up. To resolve these problems, a number of different noninvasive imaging-based methods have been developed for accurate diagnosis of liver fibrosis. However, these techniques only reflect morphological or perfusion-related alterations in the liver, and thus they are generally only useful for the diagnosis of late-stage liver fibrosis (liver cirrhosis), which is already characterized by “irreversible” anatomic and hemodynamic changes. Thus, it is essential that new approaches are developed for accurately diagnosing early-stage liver fibrosis as at this stage the disease may be “reversed” by active treatment. The development of molecular MR imaging technology has potential in this regard, as it facilitates noninvasive, target-specific imaging of liver fibrosis. We provide an overview of recent advances in molecular MR imaging for the diagnosis and staging of liver fibrosis and we compare novel technologies with conventional MR imaging techniques. PMID:25874221

  8. The advancing clinical impact of molecular imaging in CVD.

    PubMed

    Osborn, Eric A; Jaffer, Farouc A

    2013-12-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging), as well as in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g., the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in phase II clinical trials. Here, we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  9. The Advancing Clinical Impact of Molecular Imaging in Cardiovascular Disease

    PubMed Central

    Osborn, Eric A; Jaffer, Farouc A

    2013-01-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (PET, SPECT, MRI), as well in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g. the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in Phase II clinical trials. Here we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  10. Advances in multimodality molecular imaging of bone structure and function

    PubMed Central

    Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2012-01-01

    The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622

  11. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  12. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  13. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  14. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  15. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    PubMed

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  16. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  17. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology

    PubMed Central

    Andia, Marcelo E.; Shah, Ajay M.; Botnar, René M.

    2012-01-01

    Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging. PMID:23064836

  18. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    PubMed Central

    Lu, Feng-Mei

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in neuroscience has provided tremendous insights into disturbed human brain function. Among all of the molecular imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have occupied a particular position that visualize and measure the physiological processes using high-affinity and high-specificity molecular radioactive tracers as imaging probes in intact living brain. In this review, we will put emphasis on the PET/SPECT applications in Alzheimer’s disease (AD) and Parkinson’s disease (PD) as major CNS disorders. We will first give an overview of the main classical molecular neuroimaging modalities. Then, the major clinical applications of PET and SPECT along with molecular probes in the fields of psychiatry and neurology will be discussed. PMID:26029646

  19. Pushing CT and MR Imaging to the Molecular Level for Studying the “Omics”: Current Challenges and Advancements

    PubMed Central

    Huang, Hsuan-Ming; Shih, Yi-Yu

    2014-01-01

    During the past decade, medical imaging has made the transition from anatomical imaging to functional and even molecular imaging. Such transition provides a great opportunity to begin the integration of imaging data and various levels of biological data. In particular, the integration of imaging data and multiomics data such as genomics, metabolomics, proteomics, and pharmacogenomics may open new avenues for predictive, preventive, and personalized medicine. However, to promote imaging-omics integration, the practical challenge of imaging techniques should be addressed. In this paper, we describe key challenges in two imaging techniques: computed tomography (CT) and magnetic resonance imaging (MRI) and then review existing technological advancements. Despite the fact that CT and MRI have different principles of image formation, both imaging techniques can provide high-resolution anatomical images while playing a more and more important role in providing molecular information. Such imaging techniques that enable single modality to image both the detailed anatomy and function of tissues and organs of the body will be beneficial in the imaging-omics field. PMID:24738056

  20. Recent Advances in Molecular Imaging of Premalignant Gastrointestinal Lesions and Future Application for Early Detection of Barrett Esophagus

    PubMed Central

    Ko, Kwang Hyun; Han, Na Young; Kwon, Chang Il; Lee, Hoo Keun; Park, Jong Min; Kim, Eun Hee

    2014-01-01

    Recent advances in optical molecular imaging allow identification of morphologic and biochemical changes in tissues associated with gastrointestinal (GI) premalignant lesions earlier and in real-time. This focused review series introduces high-resolution imaging modalities that are being evaluated preclinically and clinically for the detection of early GI cancers, especially Barrett esophagus and esophageal adenocarcinoma. Although narrow band imaging, autofluorescence imaging, and chromoendoscopy are currently applied for this purpose in the clinic, further adoptions of probe-based confocal laser endomicroscopy, high-resolution microendoscopy, optical coherence tomography, and metabolomic imaging, as well as imaging mass spectrometry, will lead to detection at the earliest and will guide predictions of the clinical course in the near future in a manner that is beyond current advancements in optical imaging. In this review article, the readers will be introduced to sufficient information regarding this matter with which to enjoy this new era of high technology and to confront science in the field of molecular medical imaging. PMID:24570878

  1. Imaging mass spectrometry of the visual system: Advancing the molecular understanding of retina degenerations.

    PubMed

    Bowrey, Hannah E; Anderson, David M; Pallitto, Patrick; Gutierrez, Danielle B; Fan, Jie; Crouch, Rosalie K; Schey, Kevin L; Ablonczy, Zsolt

    2016-04-01

    Visual sensation is fundamental for quality of life, and loss of vision to retinal degeneration is a debilitating condition. The eye is the only part of the central nervous system that can be noninvasively observed with optical imaging. In the clinics, various spectroscopic methods provide high spatial resolution images of the fundus and the developing degenerative lesions. However, the currently utilized tools are not specific enough to establish the molecular underpinnings of retinal diseases. In contrast, mass spectrometric imaging (MSI) is a powerful tool to identify molecularly specific disease indicators and classification markers. This technique is particularly well suited to the eye, where molecular information can be correlated with clinical data collected via noninvasive diagnostic imaging modalities. Recent studies during the last few recent years have uncovered a plethora of new spatially defined molecular information on several vision-threatening diseases, including age-related macular degeneration, Stargardt disease, glaucoma, cataract, as well as lipid disorders. Even though MS inside the eye cannot be performed noninvasively, by linking diagnostic and molecular information, these studies are the first step toward the development of smart ophthalmic diagnostic and surgical tools. Here, we provide an overview of current approaches applying MSI technology to ocular pathology. PMID:26586164

  2. Molecular Imaging in Genetic Medicine

    PubMed Central

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine.  PMID:27186447

  3. Target Definition in Salvage Radiotherapy for Recurrent Prostate Cancer: The Role of Advanced Molecular Imaging

    PubMed Central

    Amzalag, Gaël; Rager, Olivier; Tabouret-Viaud, Claire; Wissmeyer, Michael; Sfakianaki, Electra; de Perrot, Thomas; Ratib, Osman; Miralbell, Raymond; Giovacchini, Giampiero; Garibotto, Valentina; Zilli, Thomas

    2016-01-01

    Salvage radiotherapy (SRT) represents the main treatment option for relapsing prostate cancer in patients after radical prostatectomy. Several open questions remain unanswered in terms of target volumes definition and delivered doses for SRT: the effective dose necessary to achieve biochemical control in the SRT setting may be different if the tumor recurrence is micro- or macroscopic. At the same time, irradiation of only the prostatic bed or of the whole pelvis will depend on the localization of the recurrence, local or locoregional. In the “theragnostic imaging” era, molecular imaging using positron emission tomography (PET) constitutes a useful tool for clinicians to define the site of the recurrence, the extent of disease, and individualize salvage treatments. The best option currently available in clinical routine is the combination of radiolabeled choline PET imaging and multiparametric magnetic resonance imaging (MRI), associating the nodal and distant metastases identification based on PET with the local assessment by MRI. A new generation of targeted tracers, namely, prostate-specific membrane antigen, show promising results, with a contrast superior to choline imaging and a higher detection rate even for low prostate-specific antigen levels; validation studies are ongoing. Finally, imaging targeting bone remodeling, using whole-body SPECT–CT, is a relevant complement to molecular/metabolic PET imaging when bone involvement is suspected. PMID:27065024

  4. Advances in Immuno–Positron Emission Tomography: Antibodies for Molecular Imaging in Oncology

    PubMed Central

    Knowles, Scott M.; Wu, Anna M.

    2012-01-01

    Identification of cancer cell–surface biomarkers and advances in antibody engineering have led to a sharp increase in the development of therapeutic antibodies. These same advances have led to a new generation of radiolabeled antibodies and antibody fragments that can be used as cancer-specific imaging agents, allowing quantitative imaging of cell-surface protein expression in vivo. Immuno–positron emission tomography (immunoPET) imaging with intact antibodies has shown success clinically in diagnosing and staging cancer. Engineered antibody fragments, such as diabodies, minibodies, and single-chain Fv (scFv) –Fc, have been successfully employed for immunoPET imaging of cancer cell–surface biomarkers in preclinical models and are poised to bring same-day imaging into clinical development. ImmunoPET can potentially provide a noninvasive approach for obtaining target-specific information useful for titrating doses for radioimmunotherapy, for patient risk stratification and selection of targeted therapies, for evaluating response to therapy, and for predicting adverse effects, thus contributing to the ongoing development of personalized cancer treatment. PMID:22987087

  5. Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images

    PubMed Central

    Cooper, Lee A.D.; Kong, Jun; Gutman, David A.; Dunn, William D.; Nalisnik, Michael; Brat, Daniel J.

    2014-01-01

    Technological advances in computing, imaging and genomics have created new opportunities for exploring relationships between histology, molecular events and clinical outcomes using quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital image archives that capture histological details in high-resolution. Commensurate advances in computing and image analysis algorithms enable mining of archives to extract descriptions of histology, ranging from basic human annotations to automatic and precisely quantitative morphometric characterization of hundreds of millions of cells. These imaging capabilities represent a new dimension in tissue-based studies, and when combined with genomic and clinical endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper we review developments in quantitative imaging technology and illustrate how image features can be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue based studies that integrate existing data resources. We show how these approaches can be used to explore the relation of the tumor microenvironment to genomic alterations and gene expression patterns and to define nuclear morphometric features that are predictive of genetic alterations and clinical outcomes. Challenges, limitations and emerging opportunities in the area of quantitative imaging and integrative analyses are also discussed. PMID:25599536

  6. Biomarkers and Molecular Imaging as Predictors of Response to Neoadjuvant Chemoradiotherapy in Patients With Locally Advanced Rectal Cancer.

    PubMed

    Molinari, Chiara; Matteucci, Federica; Caroli, Paola; Passardi, Alessandro

    2015-12-01

    Standard treatment of patients with locally advanced rectal cancer (LARC) includes neoadjuvant chemoradiotherapy (NCRT) followed by surgery. Tumor regression after NCRT varies substantially among individuals and pathological complete response is a known prognostic factor for LARC. The identification of a predictive model for response to chemoradiotherapy would help clinicians to identify patients who would probably benefit from multimodal treatment and to perform an early assessment of individual prognosis. Carcinoembryonic antigen has proven to be a good predictor of response in several clinical trials. Other widely studied predictive models in LARC include molecular biomarkers, analyzed at various levels and by different techniques, and molecular imaging, in particular magnetic resonance imaging and positron emission tomography/computed tomography. Although none of the studied markers have been approved in clinical practice, their evaluation in larger, prospective trials and in combined predictive models could be of use to define tailored therapeutic strategies. PMID:26170142

  7. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    PubMed Central

    Philipp-Abbrederis, Kathrin; Herrmann, Ken; Knop, Stefan; Schottelius, Margret; Eiber, Matthias; Lückerath, Katharina; Pietschmann, Elke; Habringer, Stefan; Gerngroß, Carlos; Franke, Katharina; Rudelius, Martina; Schirbel, Andreas; Lapa, Constantin; Schwamborn, Kristina; Steidle, Sabine; Hartmann, Elena; Rosenwald, Andreas; Kropf, Saskia; Beer, Ambros J; Peschel, Christian; Einsele, Hermann; Buck, Andreas K; Schwaiger, Markus; Götze, Katharina; Wester, Hans-Jürgen; Keller, Ulrich

    2015-01-01

    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [68Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [68Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [68Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [18F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34+ flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [68Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. PMID:25736399

  8. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  9. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  10. [Advances in Molecular Cloning].

    PubMed

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  11. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too. PMID:21942063

  12. Advanced Geosynchronous Imager

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis

    1999-01-01

    For improved understanding of chaotic processes and the diurnal cycle, an advanced GOES imager must also have the multi-spectral spectral bands used by low earth orbit (LEO) imagers, with on-orbit calibration for all bands. A synergy between GEO and LEO radiometry would enable earth system scientists to fuse the remote sensing data from all the spaceborne platforms. These additional radiometric capabilities are designed to observe important physical processes that vary rapidly and unpredicably: smoke, fires, precipitation, ozone, volcanic ash, cloud phase and height, and surface temperature. We believe the technology now exists to develop an imaging system that can meet future weather reporting and earth system science needs. To meet this need, we propose a design for a comprehensive geosynchronous atmospheric imager. This imager is envisioned to fly on a GOES-N class spacecraft, within the volume, weight and power constraints of a platform similar to GOES-N while delivering 100 times more data and radiometric quality than the GOES-N imager. The higher data rate probably requires its own ground station, which could serve as a systems prototype for NOAA's next generation of operational satellites. For operational compatibility, our proposed advanced GOES imaging system contains the GOES-R requirements as a subset, and the GOES-N imager capabilities (and the sounder's imaging channels) as a further subset.

  13. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  14. Molecular imaging in atherosclerosis

    PubMed Central

    Glaudemans, Andor W. J. M.; Slart, Riemer H. J. A.; Bozzao, Alessandro; Bonanno, Elena; Arca, Marcello; Dierckx, Rudi A. J. O.

    2010-01-01

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  15. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  16. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients. PMID:25808503

  17. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    PubMed Central

    Chen, Nai-Tzu; Cheng, Shih-Hsun; Liu, Ching-Ping; Souris, Jeffrey S.; Chen, Chen-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2012-01-01

    Förster resonance energy transfer (FRET) may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery. PMID:23443121

  18. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  19. Molecular Imaging: Current Status and Emerging Strategies

    PubMed Central

    Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.

    2011-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650

  20. Molecular-Genetic Imaging of Cancer

    PubMed Central

    Minn, Il; Menezes, Mitchell E.; Sarkar, Siddik; Yarlagadda, Keerthi; Das, Swadesh K.; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.; Pomper, Martin G.

    2015-01-01

    Molecular-genetic imaging of cancer using nonviral delivery systems has great potential for clinical application as a safe, efficient, noninvasive tool for visualization of various cellular processes including detection of cancer, and its attendant metastases. In recent years, significant effort has been expended in overcoming technical hurdles to enable clinical adoption of molecular-genetic imaging. This chapter will provide an introduction to the components of molecular-genetic imaging and recent advances on each component leading to safe, efficient clinical applications for detecting cancer. Combination with therapy, namely, generating molecular-genetic theranostic constructs, will provide further impetus for clinical translation of this promising technology. PMID:25287688

  1. Photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Kiser, William L., Jr.; Reinecke, Daniel; DeGrado, Timothy; Bhattacharyya, Sibaprasad; Kruger, Robert A.

    2007-02-01

    It is well documented that photoacoustic imaging has the capability to differentiate tissue based on the spectral characteristics of tissue in the optical regime. The imaging depth in tissue exceeds standard optical imaging techniques, and systems can be designed to achieve excellent spatial resolution. A natural extension of imaging the intrinsic optical contrast of tissue is to demonstrate the ability of photoacoustic imaging to detect contrast agents based on optically absorbing dyes that exhibit well defined absorption peaks in the infrared. The ultimate goal of this project is to implement molecular imaging, in which Herceptin TM, a monoclonal antibody that is used as a therapeutic agent in breast cancer patients that over express the HER2 gene, is labeled with an IR absorbing dye, and the resulting in vivo bio-distribution is mapped using multi-spectral, infrared stimulation and subsequent photoacoustic detection. To lay the groundwork for this goal and establish system sensitivity, images were collected in tissue mimicking phantoms to determine maximum detection depth and minimum detectable concentration of Indocyanine Green (ICG), a common IR absorbing dye, for a single angle photoacoustic acquisition. A breast mimicking phantom was constructed and spectra were also collected for hemoglobin and methanol. An imaging schema was developed that made it possible to separate the ICG from the other tissue mimicking components in a multiple component phantom. We present the results of these experiments and define the path forward for the detection of dye labeled Herceptin TM in cell cultures and mice models.

  2. Molecular Imaging of Pancreatic Cancer with Antibodies

    PubMed Central

    2015-01-01

    Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581

  3. Molecular Imaging of Prostate Cancer

    PubMed Central

    Fox, Josef J.; Schöder, Heiko; Larson, Steven M.

    2015-01-01

    Purpose of review Prostate cancer is a complex and biologically heterogeneous disease that is not adequately assessed with conventional imaging alone. Molecular imaging with positron emission tomography (PET) is poised to fill this unmet need through noninvasive probing of the multiple molecular and cellular processes that are active in prostate cancer patients. Recent findings Several PET tracers are active in early and late stage prostate cancer in humans. F18-FDG, C11/F18-choline and F18-sodium fluoride (NaF) have been studied most extensively. There is a growing body of literature supporting to the utility of choline in early stage prostate cancer. FDG and NaF are more valuable in advanced disease, especially for assessing bone metastases, the prevalent form of metastases in this patient population. F18-Fluoro-dihydrotestosterone is active in castrate disease and is emerging as a valuable pharmacodynamic marker in the development of novel AR-targeted therapies. Anti-PSMA PET tracers are in the early stages of clinical development. Summary Multiple PET tracers are currently available to aid in the detection and management of prostate cancer across the clinical spectrum of the disease. Prospective, rigorously controlled, clinical imaging trials are needed to establish the optimal role of PET in prostate cancer. PMID:22617062

  4. Molecular Imaging of Healing After Myocardial Infarction

    PubMed Central

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. However, new imaging methods can be used to assess biological processes at the cellular and molecular level. We review molecular imaging techniques for evaluating the biology of infarct healing and repair. Specifically, we cover recent advances in imaging the various phases of MI and infarct healing such as apoptosis, inflammation, angiogenesis, extracellular matrix deposition, and scar formation. Significant progress has been made in preclinical molecular imaging, and future challenges include translation of these methods to clinical practice. PMID:21869911

  5. Molecular probes for cardiovascular imaging.

    PubMed

    Liang, Grace; Nguyen, Patricia K

    2016-08-01

    Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease. PMID:27189171

  6. Advancing biomedical imaging

    PubMed Central

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel. PMID:26598657

  7. Advanced image memory architecture

    NASA Astrophysics Data System (ADS)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  8. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  9. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  10. In Vivo Molecular Imaging in Retinal Disease

    PubMed Central

    Xie, Fang; Luo, Wenting; Zhang, Zhongyu; Sun, Dawei

    2012-01-01

    There is an urgent need for early diagnosis in medicine, whereupon effective treatments could prevent irreversible tissue damage. The special structure of the eye provides a unique opportunity for noninvasive light-based imaging of ocular fundus vasculature. To detect endothelial injury at the early and reversible stage of adhesion molecule upregulation, some novel imaging agents that target retinal endothelial molecules were generated. In vivo molecular imaging has a great potential to impact medicine by detecting diseases or screening disease in early stages, identifying extent of disease, selecting disease and patient-specific therapeutic treatment, applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:22363836

  11. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  12. Advances in fluorescence labeling strategies for dynamic cellular imaging

    PubMed Central

    Dean, Kevin M; Palmer, Amy E

    2014-01-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging. PMID:24937069

  13. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  14. Molecular imaging in ovarian cancer.

    PubMed

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  15. Molecular Imaging with SERS-Active Nanoparticles

    PubMed Central

    Zhang, Yin; Hong, Hao; Myklejord, Duane V.; Cai, Weibo

    2011-01-01

    Lead-in Raman spectroscopy has been explored for various biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. To date, a wide variety of molecular targets and biological events have been investigated using surface-enhanced Raman scattering (SERS)-active nanoparticles. The superb multiplexing capability of SERS-based Raman imaging, already successfully demonstrated in live animals, can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the simultaneous interrogation of multiple biological events. Over the last several years, molecular imaging with SERS-active nanoparticles has advanced significantly and many pivotal proof-of-principle experiments have been successfully carried out. It is expected that SERS-based imaging will continue to be a dynamic research field over the next decade. PMID:21932216

  16. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  17. Targeted Molecular Imaging in Oncology: Focus on Radiation Therapy

    PubMed Central

    Nimmagadda, Sridhar; Ford, Eric C.; Wong, John W.; Pomper, Martin G.

    2008-01-01

    Anatomically based technologies (CT, MR, etc.) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy. PMID:18314068

  18. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  19. Design and Development of Molecular Imaging Probes

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2013-01-01

    Molecular imaging, the visualization, characterization and measurement of biological processes at the cellular, subcellular level, or even molecular level in living subjects, has rapidly gained importance in the dawning era of personalized medicine. Molecular imaging takes advantage of the traditional diagnostic imaging techniques and introduces molecular imaging probes to determine the expression of indicative molecular markers at different stages of diseases and disorders. As a key component of molecular imaging, molecular imaging probe must be able to specifically reach the target of interest in vivo while retaining long enough to be detected. A desirable molecular imaging probe with clinical translation potential is expected to have unique characteristics. Therefore, design and development of molecular imaging probe is frequently a challenging endeavor for medicinal chemists. This review summarizes the general principles of molecular imaging probe design and some fundamental strategies of molecular imaging probe development with a number of illustrative examples. PMID:20388106

  20. [Molecular imaging in neurological diseases].

    PubMed

    Reimold, M; la Fougère, C

    2016-07-01

    In neurodegeneration and in neuro-oncology, the standard imaging procedure, magnetic resonance imaging (MRI), shows limited sensitivity and specificity. Molecular imaging with specific positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers allows various molecular targets and metabolic processes to be assessed and is thus a valuable adjunct to MRI. Two important examples are referred to here: amino acid transport for neuro-oncological issues, and the recently approved PET tracers for detecting amyloid depositions during the preclinical stage of Alzheimer's disease. This review discusses the clinical relevance and indications for the following nuclear medicine imaging procedures: amyloid PET, (18)F-fluorodeoxyglucose (FDG)-PET, and dopamine transporter (DaT)-SPECT for the diagnosis of dementia and the differential diagnosis of Parkinson's disease, in addition to amino acid PET for the diagnosis of brain tumors and somatostatin receptor imaging in meningioma. PMID:27306201

  1. Molecular Probes for Fluorescence Lifetime Imaging

    PubMed Central

    Sarder, Pinaki; Maji, Dolonchampa; Achilefu, Samuel

    2015-01-01

    Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely rely on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems, and outlines areas of potential high impact in the future. PMID:25961514

  2. Optical molecular imaging in PDT

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Snyder, John W.; Foster, Thomas H.

    2007-02-01

    Motivated by recent successes in fluorescence imaging of whole mount tissue preparations and by rapid progress in the fields of molecular imaging and molecular biology, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Imaging the PDT-induced expression of the heat shock protein 70 (HSP70) in cells and in vivo is accomplished using stably transfected EMT6 cells in which the gene for GFP is under the control of the HSP70 promoter. These cells readily form solid tumors in BALB/c mice, enabling the direct imaging of the extent and time course of the activation of this promoter, with each mouse serving as its own control. Imaging of similarly transfected EMT6 cells with a HIF-1α/GFP fusion protein vector enables visualization of HIF-1α translocation to the nucleus. Recently, we have accomplished fluorescent labeling of surface antigens in vivo using intratumor and intravenous injection of fluorophore-conjugated antibodies. Injection of deep-red fluorophore-conjugated-anti-CD31 enables confocal fluorescence imaging of the tumor vasculature to depths of at least 100 microns. With the vessels rendered fluorescent in this way, a number of interesting studies become possible in the living mouse, including the direct visualization of photosensitizer distribution from perfused vessels. Using the appropriate fluorophore-conjugated antibodies, we have also been able to image infiltrating granulocytes in EMT6 tumors in response to PDT in vivo.

  3. Protein-based tumor molecular imaging probes

    PubMed Central

    Lin, Xin; Xie, Jin

    2013-01-01

    Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging. PMID:20232092

  4. Molecular Imaging of Plaque Vulnerability

    PubMed Central

    Tavakoli, Sina; Vashist, Aseem; Sadeghi, Mehran M.

    2014-01-01

    Over the past decade significant progress has been made in the development of novel imaging strategies focusing on the biology of the vessel wall for identification of vulnerable plaques. While the majority of these studies are still in the preclinical stage, few techniques (e.g., 18F-FDG and 18F-NaF PET imaging) have already been evaluated in clinical studies with promising results. Here, we will briefly review the pathobiology of atherosclerosis and discuss molecular imaging strategies that have been developed to target these events, with an emphasis on mechanisms that are associated with atherosclerotic plaque vulnerability. PMID:25124827

  5. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  6. Molecular imaging in cervical cancer.

    PubMed

    Khan, Sairah R; Rockall, Andrea G; Barwick, Tara D

    2016-06-01

    Despite the development of screening and of a vaccine, cervix cancer is a major cause of cancer death in young women worldwide. A third of women treated for the disease will recur, almost inevitably leading to death. Functional imaging has the potential to stratify patients at higher risk of poor response or relapse by improved delineation of disease extent and tumor characteristics. A number of molecular imaging biomarkers have been shown to predict outcome at baseline and/or early during therapy in cervical cancer. In future this could help tailor the treatment plan which could include selection of patients for close follow up, adjuvant therapy or trial entry for novel agents or adaptive clinical trials. The use of molecular imaging techniques, FDG PET/CT and functional MRI, in staging and response assessment of cervical cancer is reviewed. PMID:26859085

  7. Molecular imaging of in vivo gene expression

    PubMed Central

    Harney, Allison S.; Meade, Thomas J.

    2015-01-01

    Background Advances in imaging technologies have taken a prominent role in experimental and translational research and provide essential information on how changes in gene expression are related to downstream developmental and disease states. Discussion Magnetic resonance imaging contrast agents and optical probes developed to enhance signal intensity in the presence of a specific enzyme, genetic marker, second messenger or metabolite can prove a facile method of advancing the understanding of molecular events in disease progression. Conclusion The ability to detect changes in gene expression at the early stages of disease will lead to a greater understanding of disease progression, the use of early therapeutic intervention to increase patient survival, and tailored therapies to the detected genetic alterations in individual patients. PMID:21426178

  8. Imaging molecular orbitals using photoionization

    NASA Astrophysics Data System (ADS)

    Santra, Robin

    2006-10-01

    The interpretation of a recent experiment using high-order harmonic generation [Itatani et al., Nature 432 (2004) 867] as a measurement of the highest occupied molecular orbital of a molecule is conceptually problematic, even if the independent-particle picture is taken seriously. Guided by the relationship between the amplitude for one-photon-induced electron emission and the electron-ion recombination amplitude in the three-step model of high-order harmonic generation, it is argued that synchrotron-based photoionization might be a superior approach to imaging molecular orbitals. Within the Hartree-Fock independent-particle picture, the molecular-frame photoelectron angular distributions, measured as a function of photon energy, could be used to reconstruct all orbitals occupied in the Hartree-Fock ground state of the molecule investigated. It is suggested that laser alignment techniques could be employed to facilitate the measurement of the molecular-frame photoelectron angular distributions.

  9. SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2

    PubMed Central

    de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.

    2013-01-01

    Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio

  10. Cancer Stratification by Molecular Imaging

    PubMed Central

    Weber, Justus; Haberkorn, Uwe; Mier, Walter

    2015-01-01

    The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers. PMID:25749472

  11. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one

  12. Molecular imaging: spawning a new melting-pot for biomedical imaging

    PubMed Central

    Abdullah, BJJ

    2006-01-01

    Predicting the future is a dangerous undertaking at best, and not meant for the faint-hearted. However, viewing the advances in molecular medicine, genomics and proteomics, it is easy to comprehend those who believe that molecular imaging methods will open up new vistas for medical imaging. The knock on effect will impact our capacity to diagnose and treat diseases. Anatomically detectable abnormalities, which have historically been the basis of the practice of radiology, will soon be replaced by molecular imaging methods that will reflect the under expression or over expression of certain genes which occur in almost every disease. Molecular imaging can then be resorted to so that early diagnosis and characterisation of disease can offer improved specificity. Given the growing importance of molecular medicine, imagers will find it profitable to educate themselves on molecular targeting, molecular therapeutics and the role of imaging in both areas. PMID:21614327

  13. Molecular Imaging of Pituitary Pathology.

    PubMed

    de Herder, Wouter W

    2016-01-01

    The presence of large numbers and/or the high affinity of dopamine D2 and/or somatostatin receptors on pituitary adenomas may enable their visualization with radionuclide-coupled receptor agonists or antagonists. However, the role of these imaging modalities in the differential diagnosis of or therapeutic purposes for pituitary lesions is very limited. Only in very specific cases might these molecular imaging techniques become helpful. These include the differential diagnosis of pituitary lesions, ectopic production of pituitary hormones, such as adrenocorticotrophic hormone, growth hormone (GH) or their releasing hormones (corticotropin-releasing hormone and GH-releasing hormone), and the localization of metastases from pituitary carcinomas. PMID:27002335

  14. Advanced Molecular Surveillance of Hepatitis C Virus

    PubMed Central

    Gonçalves Rossi, Livia Maria; Escobar-Gutierrez, Alejandro; Rahal, Paula

    2015-01-01

    Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted. PMID:25781918

  15. Translational Applications of Molecular Imaging and Radionuclide Therapy

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-06-17

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled “Translational Applications of Molecular Imaging and Radionuclide Therapy” to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study – the role of a diagnostic scan on therapy selection. This latter topic will include discussions on α therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research.

  16. Molecular Imaging of Neuroendocrine Tumors

    PubMed Central

    Carrasquillo, Jorge A.; Chen, Clara C.

    2014-01-01

    Neuroendocrine tumors (NET) are a heterogeneous group of tumors that arise from neuroendocrine cells. These tumors may arise from various organs, including lung, thymus, thyroid, stomach, duodenum, small bowel, large bowel, appendix, pancreas, adrenal, and skin. Most are well differentiated and have the ability to produce biogenic amines and various hormones. NET usually occur sporadically but they also be associated with various familial syndromes. For the vast majority of NET, surgical resection is the treatment of choice whenever feasible. Localization of NET prior to surgery and for staging and follow-up relies on both anatomic and functional imaging modalities. In fact, the unique secretory characteristics of these tumors lend themselves to imaging by molecular imaging modalities, which can target specific metabolic pathways or receptors. Neuroendocrine cells have a variety of such target receptors and pathways for which radiopharmaceuticals have been developed, including [123I/131I]-metaiodobenzylguanidine (MIBG), [ 111In]pentetreotide, [68Ga] somatostatin analogs, [18F] fluorodeoxyglucose (FDG), [11C/18F] dihydroxyphenylalanine (DOPA), [11C] 5-hydroxytryptophan (5-HTP) 99mTc pentavalent dimercaptosuccinic acid ([99mTc] (V) DMSA, and [18F] fluorodopamine (FDA). Here, we review the molecular imaging approaches for NET using various radiopharmaceuticals. PMID:21167384

  17. Molecular Imaging of Prostate Cancer.

    PubMed

    Wibmer, Andreas G; Burger, Irene A; Sala, Evis; Hricak, Hedvig; Weber, Wolfgang A; Vargas, Hebert Alberto

    2016-01-01

    Prostate cancer is the most common noncutaneous malignancy among men in the Western world. The natural history and clinical course of prostate cancer are markedly diverse, ranging from small indolent intraprostatic lesions to highly aggressive disseminated disease. An understanding of this biologic heterogeneity is considered a necessary requisite in the quest for the adoption of precise and personalized management strategies. Molecular imaging offers the potential for noninvasive assessment of the biologic interactions underpinning prostate carcinogenesis. Currently, numerous molecular imaging probes are in clinical use or undergoing preclinical or clinical evaluation. These probes can be divided into those that image increased cell metabolism, those that target prostate cancer-specific membrane proteins and receptor molecules, and those that bind to the bone matrix adjacent to metastases to bone. The increased metabolism and vascular changes in prostate cancer cells can be evaluated with radiolabeled analogs of choline, acetate, glucose, amino acids, and nucleotides. The androgen receptor, prostate-specific membrane antigen, and gastrin-releasing peptide receptor (ie, bombesin) are overexpressed in prostate cancer and can be targeted by specific radiolabeled imaging probes. Because metastatic prostate cancer cells induce osteoblastic signaling pathways of adjacent bone tissue, bone-seeking radiotracers are sensitive tools for the detection of metastases to bone. Knowledge about the underlying biologic processes responsible for the phenotypes associated with the different stages of prostate cancer allows an appropriate choice of methods and helps avoid pitfalls. PMID:26587888

  18. Molecular imaging in the framework of personalized cancer medicine.

    PubMed

    Belkić, Dzevad; Belkić, Karen

    2013-11-01

    With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers. PMID:24511645

  19. Companion Diagnostics and Molecular Imaging.

    PubMed

    Puranik, Ameya D; Kulkarni, Harshad R; Baum, Richard P

    2015-01-01

    Companion diagnostics (CDx) is a positive attempt in the direction of improving the drug development process, especially in the field of oncology, with the advent of newer targeted therapies. It helps the oncologist in deciding the choice of treatment for the individual patient. The role of CDx assays has attracted the attention of regulators, and especially the US Food and Drug Administration developed regulatory strategies for CDx and the drug-diagnostic codevelopment project. For an increasing number of cancer patients, the treatment selection will depend on the result generated by a CDx assay, and consequently this type of assay has become critical for the care and safety of the patients. In addition to the assay-based approach, molecular imaging with its ability to image at the genetic and receptor level has made foray into the field of drug development and personalized medicine. We shall review these aspects of CDx, with special focus on molecular imaging and the upcoming concept of Theranostics. PMID:26049701

  20. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  1. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  2. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  3. [Advances of molecular diagnosis in infectious keratitis].

    PubMed

    Zhao, Ge; Xie, Lixin

    2015-09-01

    Infectious keratitis is a serious eye disease that may cause blindness. Currently, microbial culture remains the gold standard for diagnosis of many ocular infections, but the technique is limited by low sensitivity and time consuming. Developing rapid and sensitive early diagnostic methods for infectious keratitis is important for guiding timely and effective treatment in clinical practice. Molecular diagnostic techniques use detection of specific nucleic acid sequences as evidence for presence of suspected pathogens. This kind of techniques develops very fast because of its sensitive, specific, rapid and high-throughput advantages. In this review, we highlight recent advances in the application of molecular diagnostic techniques in the diagnosis of infectious keratitis, and discuss the problems and prospects of molecular diagnosis for detecting pathogens in keratitis. PMID:26693656

  4. 99mTc-Sestamibi Using a Direct Conversion Molecular Breast Imaging System to Assess Tumor Response to Neoadjuvant Chemotherapy in Women With Locally Advanced Breast Cancer

    PubMed Central

    Mitchell, David; Hruska, Carrie B.; Boughey, Judy C.; Wahner-Roedler, Dietlind L.; Jones, Katie N.; Tortorelli, Cindy; Conners, Amy Lynn; O’Connor, Michael K.

    2014-01-01

    Purpose The objective of this study was to determine the ability of breast imaging with 99mTc-sestamibi and a direct conversion–molecular breast imaging (MBI) system to predict early response to neoadjuvant chemotherapy (NAC). Methods Patients undergoing NAC for breast cancer were imaged with a direct conversion–MBI system before (baseline), at 3 to 5 weeks after onset, and after completion of NAC. Tumor size and tumor-to-background (T/B) uptake ratio measured from MBI images were compared with extent of residual disease at surgery using the residual cancer burden. Results Nineteen patients completed imaging and proceeded to surgical resection after NAC. Mean reduction in T/B ratio from baseline to 3 to 5 weeks for patients classified as RCB-0 (no residual disease), RCB-1 and RCB-2 combined, and RCB-3 (extensive residual disease) was 56% (SD, 0.20), 28% (SD, 0.20), and 4% (SD, 0.15), respectively. The reduction in the RCB-0 group was significantly greater than in RCB-1/2 (P = 0.036) and RCB-3 (P = 0.001) groups. The area under the receiver operator characteristic curve for determining the presence or absence of residual disease was 0.88. Using a threshold of 50% reduction in T/B ratio at 3 to 5 weeks, MBI predicted presence of residual disease at surgery with a diagnostic accuracy of 89.5% (95% confidence interval [CI], 0.64%–0.99%), sensitivity of 92.3% (95% CI, 0.74%–0.99%), and specificity of 83.3% (95% CI, 0.44%–0.99%). The reduction in tumor size at 3 to 5 weeks was not statistically different between RCB groups. Conclusions Changes in T/B ratio on MBI images performed at 3 to 5 weeks following initiation of NAC were accurate at predicting the presence or absence of residual disease at NAC completion. PMID:24152645

  5. Molecular Imaging of Urogenital Diseases

    PubMed Central

    Cho, Steve Y.; Szabo, Zsolt; Morgan, Russell H.

    2013-01-01

    There is an expanding and exciting repertoire of PET imaging radiotracers for urogenital diseases, particularly in prostate cancer, renal cell cancer, and renal function. Prostate cancer is the most commonly diagnosed cancer in men. With growing therapeutics options for the treatment of metastatic and advanced prostate cancer, improved functional imaging of prostate cancer beyond the limitations of conventional computed tomography (CT) and bone scan (BS) is becoming increasingly important for both clinical management and drug development. PET radiotracers beyond 18F-Fluorodeoxyglucose (FDG) for prostate cancer include 18F-Sodium Fluoride, 11C-Choline and 18F-Fluorocholine and 11C-Acetate. Other emerging and promising PET radiotracers include a synthetic L-leucine amino acid analog (anti-18F-FACBC), dihydrotestosterone analog (18F-FDHT) and prostate specific membrane antigen (PSMA) based PET radiotracers (ex. 18F-DCFBC, 89Zr-DFO-J591, 68Ga(HBED-CC)). Larger prospective and comparison trials of these PET radiotracers are needed to establish the role of PET/CT in prostate cancer. Renal cell cancer imaging with FDG PET/CT although available can be limited, especially for detection of the primary tumor. Improved renal cell cancer detection with carbonic anhydrase IX (CAIX) based antibody (124I-girentuximab) and radioimmunotherapy targeting with 177Lu-cG250 appear promising. Evaluation of renal injury by imaging renal perfusion and function with novel PET radiotracers include p-18F-fluorohippurate (18F-PFH) and hippurate m-cyano-p-18F-fluorohippurate (18F-CNPFH) and Rubidium-82 chloride (typically used for myocardial perfusion imaging). Renal receptor imaging of the renal renin angiotensin system with a variety of selective PET radioligands are also becoming available for clinical translation. PMID:24484747

  6. Molecular Body Imaging: MR Imaging, CT, and US. Part I. Principles

    PubMed Central

    Kircher, Moritz F.

    2012-01-01

    Molecular imaging, generally defined as noninvasive imaging of cellular and subcellular events, has gained tremendous depth and breadth as a research and clinical discipline in recent years. The coalescence of major advances in engineering, molecular biology, chemistry, immunology, and genetics has fueled multi- and interdisciplinary innovations with the goal of driving clinical noninvasive imaging strategies that will ultimately allow disease identification, risk stratification, and monitoring of therapy effects with unparalleled sensitivity and specificity. Techniques that allow imaging of molecular and cellular events facilitate and go hand in hand with the development of molecular therapies, offering promise for successfully combining imaging with therapy. While traditionally nuclear medicine imaging techniques, in particular positron emission tomography (PET), PET combined with computed tomography (CT), and single photon emission computed tomography, have been the molecular imaging methods most familiar to clinicians, great advances have recently been made in developing imaging techniques that utilize magnetic resonance (MR), optical, CT, and ultrasonographic (US) imaging. In the first part of this review series, we present an overview of the principles of MR imaging-, CT-, and US-based molecular imaging strategies. © RSNA, 2012 PMID:22623690

  7. New Approaches to Molecular Imaging of Multiple Myeloma.

    PubMed

    Vij, Ravi; Fowler, Kathryn J; Shokeen, Monica

    2016-01-01

    Molecular imaging plays an important role in detection and staging of hematologic malignancies. Multiple myeloma (MM) is an age-related hematologic malignancy of clonal bone marrow plasma cells characterized by destructive bone lesions and is fatal in most patients. Traditional skeletal survey and bone scans have sensitivity limitations for osteolytic lesions manifested in MM. Progressive biomedical imaging technologies such as low-dose CT, molecularly targeted PET, MRI, and the functional-anatomic hybrid versions (PET/CT and PET/MRI) provide incremental advancements in imaging MM. Imaging with PET and MRI using molecularly targeted probes is a promising precision medicine platform that might successfully address the clinical ambiguities of myeloma spectrum diseases. The intent of this focus article is to provide a concise review of the present status and promising developments on the horizon, such as the new molecular imaging biomarkers under investigation that can either complement or potentially supersede existing standards. PMID:26541780

  8. Label-free molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Junqi; Li, Qi; Fu, Rongxin; Wang, Tongzhou; Wang, Ruliang; Huang, Guoliang

    2014-03-01

    Optical microscopy technology has achieved great improvements in the 20th century. The detection limit has reached about twenty nanometers (with near-field optics, STED, PALM and STORM). But in the application areas such as life science, medical science, clinical treatment and especially in vivo dynamic measurement, mutual restrictions still exist between numeric aperture/magnification and working distance, fluorescent dependent, and between resolution and frame rate/field size, etc. This paper explores a hyperspectral scanning super-resolution label free molecules imaging method based on the white light interferometry. The vertical detection resolution was approximate to 1 nm which is the thickness of a single molecular layer and dynamic measuring range of thickness reaches to 10 μm. The spectrum-shifting algorithm is developed for robust restructure of images when the pixels are overlapped. Micro-biochip with protein binding and DNA amplification could be detected by using this spectral scanning super-resolution molecules imaging in label free. This method has several advantages as following: Firstly, the decoding and detecting steps are combined into one step. It makes tests faster and easier. Secondly, we used thickness-coded, minimized chips instead of a large microarray chip to carry the probes. This accelerates the interaction of the biomolecules. Thirdly, since only one kind of probes are attached to our thickness-coded, minimized chip, users can only pick out the probes they are interested in for a test without wasting unnecessary probes and chips.

  9. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  10. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.

    PubMed

    Sinharay, Sanhita; Pagel, Mark D

    2016-06-12

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  11. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  12. Molecular advances in genetic skin diseases.

    PubMed

    Siegel, Dawn H; Howard, Renee

    2002-08-01

    The genes for several genetic skin diseases have been identified in recent years. This development improves diagnostic capabilities and genetic counseling, and investigators can now turn to the molecular mechanisms involved in the pathogenesis of these diseases. The identification of the causative genes has led to the generation of mouse models for some genetic skin diseases. A study of the keratin 10 deficient mouse, a model for epidermolytic hyperkeratosis, and a mouse model for Bloom syndrome are reviewed in this article. Several studies also evaluate the relation between genotype and phenotype. In this article, the clinical findings and molecular advances in tuberous sclerosis complex, neurofibromatosis type 1, Bloom syndrome, epidermolytic hyperkeratosis, X-linked ichthyosis, Netherton syndrome, and Hermansky-Pudlak syndrome are reviewed. PMID:12130905

  13. Recent advances in human viruses imaging studies.

    PubMed

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease. PMID:27059598

  14. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  15. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  16. Developing MR probes for molecular imaging.

    PubMed

    McMahon, Michael T; Chan, Kannie W Y

    2014-01-01

    Molecular imaging plays an important role in the era of personalized medicine, especially with recent advances in magnetic resonance (MR) probes. While the first generation of these probes focused on maximizing contrast enhancement, a second generation of probes has been developed to improve the accumulation within specific tissues or pathologies, and the newest generation of agents is also designed to report on changes in physiological status and has been termed "smart" agents. This represents a paradigm switch from the previously commercialized gadolinium and iron oxide probes to probes with new capabilities, and leads to new challenges as scanner hardware needs to be adapted for detecting these probes. In this chapter, we highlight the unique features for all five different categories of MR probes, including the emerging chemical exchange saturation transfer, (19)F, and hyperpolarized probes, and describe the key physical properties and features motivating their design. As part of this comparison, the strengths and weaknesses of each category are discussed. PMID:25287693

  17. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines. PMID:26632539

  18. Microscopy imaging device with advanced imaging properties

    SciTech Connect

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  19. [Advances in musculoskeletal MR imaging].

    PubMed

    Ho, Michael; Andreisek, Gustav

    2015-09-01

    Musculoskeletal imaging is a rapidly developing field offering several new techniques. MR neurography provides an additive value with complementary and precise information about peripheral nerves. Hereby, MR neurography not only enables the radiologist to differentiate between a mononeuropathic or a polyneuropathic process, but also helps to find nerve compression syndromes by visualizing the nerve surrounding structures as well. An additional administration of contrast agent enables detection of tumors and inflammation of peripheral nerves. Whole body MRI opens new possibilities for detection and follow-up in oncological disorders, systemic diseases, in pediatric diagnostics and in preventive medicine. Guidelines are useful for an evidence-based application of this technique. MRI is generally considered to be the gold standard in diagnostic imaging of the spine. Continuous technical developments have led to a better image quality. New guidelines for standardized image interpretation and reporting have been published and should be used to avoid loss of information from high resolution imaging to effective treatment. PMID:26331202

  20. Molecular imaging promotes progress in orthopedic research.

    PubMed

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics. PMID:16843078

  1. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  2. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  3. Anatomical and molecular imaging of skin cancer

    PubMed Central

    Hong, Hao; Sun, Jiangtao; Cai, Weibo

    2008-01-01

    Skin cancer is the most common form of cancer types. It is generally divided into two categories: melanoma (∼ 5%) and nonmelanoma (∼ 95%), which can be further categorized into basal cell carcinoma, squamous cell carcinoma, and some rare skin cancer types. Biopsy is still the gold standard for skin cancer evaluation in the clinic. Various anatomical imaging techniques have been used to evaluate different types of skin cancer lesions, including laser scanning confocal microscopy, optical coherence tomography, high-frequency ultrasound, terahertz pulsed imaging, magnetic resonance imaging, and some other recently developed techniques such as photoacoustic microscopy. However, anatomical imaging alone may not be sufficient in guiding skin cancer diagnosis and therapy. Over the last decade, various molecular imaging techniques (in particular single photon emission computed tomography and positron emission tomography) have been investigated for skin cancer imaging. The pathways or molecular targets that have been studied include glucose metabolism, integrin αvβ3, melanocortin-1 receptor, high molecular weight melanoma-associated antigen, and several other molecular markers. Preclinical molecular imaging is thriving all over the world, while clinical molecular imaging has not lived up to the expectations because of slow bench-to-bedside translation. It is likely that this situation will change in the near future and molecular imaging will truly play an important role in personalized medicine of melanoma patients. PMID:21437135

  4. Molecular magnetic resonance imaging in cancer.

    PubMed

    Haris, Mohammad; Yadav, Santosh K; Rizwan, Arshi; Singh, Anup; Wang, Ena; Hariharan, Hari; Reddy, Ravinder; Marincola, Francesco M

    2015-01-01

    The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care. PMID:26394751

  5. Molecular imaging of oncolytic viral therapy

    PubMed Central

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  6. Molecular imaging of oncolytic viral therapy.

    PubMed

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  7. Advanced MR Imaging of the Visual Pathway.

    PubMed

    Yu, Fang; Duong, Timothy; Tantiwongkosi, Bundhit

    2015-08-01

    Vision is one of our most vital senses, deriving from the eyes as well as structures deep within the intracranial compartment. MR imaging, through its wide selection of sequences, offers an array of structural and functional imaging tools to interrogate this intricate system. This review describes several advanced MR imaging sequences and explores their potential clinical applications as well as areas for further development. PMID:26208415

  8. Imaging of the pancreas: Recent advances

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2011-01-01

    A wide spectrum of anomalies of pancreas and the pancreatic duct system are commonly encountered at radiological evaluation. Diagnosing pancreatic lesions generally requires a multimodality approach. This review highlights the new advances in pancreatic imaging and their applications in the diagnosis and management of pancreatic pathologies. The mainstay techniques include computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), radionuclide imaging (RNI) and optical coherence tomography (OCT). PMID:21847450

  9. Emerging Applications of Conjugated Polymers in Molecular Imaging

    PubMed Central

    Li, Junwei; Liu, Jie; Wei, Chen-Wei; Liu, Bin; O’Donnell, Matthew; Gao, Xiaohu

    2013-01-01

    In recent years, conjugated polymers have attracted considerable attention from the imaging community as a new class of contrast agent due to their intriguing structural, chemical, and optical properties. Their size and emission wavelength tunability, brightness, photostability, and low toxicity have been demonstrated in a wide range of in vitro sensing and cellular imaging applications, and have just begun to show impact in in vivo settings. In this Perspective, we summarize recent advances in engineering conjugated polymers as imaging contrast agents, their emerging applications in molecular imaging (referred to as in vivo uses in this paper), as well as our perspectives on future research. PMID:23860904

  10. Activatable Molecular Probes for Cancer Imaging

    PubMed Central

    Lee, Seulki; Xie, Jin; Chen, Xiaoyuan

    2013-01-01

    The development of highly sensitive and specific molecular probes for cancer imaging still remains a daunting challenge. Recently, interdisciplinary research at the interface of imaging sciences and bionanoconjugation chemistry has generated novel activatable imaging probes that can provide high-resolution imaging with ultra-low background signals. Activatable imaging probes are designed to amplify output imaging signals in response to specific biomolecular recognition or environmental changes in real time. This review introduces and highlights the unique design strategies and applications of various activatable imaging probes in cancer imaging. PMID:20388112

  11. Advanced imaging techniques for the study of plant growth and development

    PubMed Central

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P.; Benfey, Philip N.

    2014-01-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

  12. Advances in optical imaging for pharmacological studies

    PubMed Central

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  13. Optical Molecular Imaging in the Gastrointestinal Tract

    PubMed Central

    Carns, Jennifer; Keahey, Pelham; Quang, Timothy; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2013-01-01

    Recent developments in optical molecular imaging allow for real-time identification of morphological and biochemical changes in tissue associated with gastrointestinal neoplasia. This review summarizes widefield and high resolution imaging modalities currently in pre-clinical and clinical evaluation for the detection of colorectal cancer and esophageal cancer. Widefield techniques discussed include high definition white light endoscopy, narrow band imaging, autofluoresence imaging, and chromoendoscopy; high resolution techniques discussed include probe-based confocal laser endomicroscopy, high-resolution microendoscopy, and optical coherence tomography. Finally, new approaches to enhance image contrast using vital dyes and molecular-specific targeted contrast agents are evaluated. PMID:23735112

  14. Advanced noninvasive imaging of spinal vascular malformations

    PubMed Central

    Eddleman, Christopher S.; Jeong, Hyun; Cashen, Ty A.; Walker, Matthew; Bendok, Bernard R.; Batjer, H. Hunt; Carroll, Timothy J.

    2010-01-01

    Spinal vascular malformations (SVMs) are an uncommon, heterogeneous group of vascular anomalies that can render devastating neurological consequences if they are not diagnosed and treated in a timely fashion. Imaging SVMs has always presented a formidable challenge because their clinical and imaging presentations resemble those of neoplasms, demyelination diseases, and infection. Advancements in noninvasive imaging modalities (MR and CT angiography) have increased during the last decade and have improved the ability to accurately diagnose spinal vascular anomalies. In addition, intraoperative imaging techniques have been developed that aid in the intraoperative assessment before, during, and after resection of these lesions with minimal and/or optimal use of spinal digital subtraction angiography. In this report, the authors review recent advancements in the imaging of SVMs that will likely lead to more timely diagnoses and treatment while reducing procedural risk exposure to the patients who harbor these uncommon spinal lesions. PMID:19119895

  15. Recent advances in liver imaging.

    PubMed

    Mutter, D; Soler, L; Marescaux, J

    2010-10-01

    Liver surgery remains a difficult challenge in which preoperative data analysis and strategy definition may play a significant role in the success of the procedure. Medical image processing led to a major improvement of patient care by guiding the surgical gesture. From this initial data, new technologies of virtual reality and augmented reality can increase the potential of such images. The 3D modeling of the liver of patients from their CT scan or MRI thus allows an improved surgical planning. Simulation allows the procedure to be simulated preoperatively and offers the opportunity to train the surgical gesture before carrying it out. These three preoperative steps can be used intraoperatively thanks to the development of augmented reality, which consists of superimposing the preoperative 3D modeling of the patient onto the real intraoperative view of the patient and his/her organs. Augmented reality provides surgeons with a transparent view of the patient. This facilitated the intraoperative identification of the vascular anatomy and the control of the segmental arteries and veins in liver surgery, thus preventing intraoperative bleeding. It can also offer guidance due to the virtual improvement of their real surgical tools, which are tracked in real-time during the procedure. During the surgical procedure, augmented reality, therefore, offers surgeons a transparent view of their patient, which will lead to the automation of the most complex maneuvers. The new ways of processing and analyzing liver images have dramatically changed the approach to liver surgery. PMID:20932146

  16. Chemical Approaches for Advanced Optical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhixing

    Advances in optical microscopy have been constantly expanding our knowledge of biological systems. The achievements therein are a result of close collaborations between physicists/engineers who build the imaging instruments and chemists/biochemists who design the corresponding probe molecules. In this work I present a number of chemical approaches for the development of advanced optical imaging methods. Chapter 1 provides an overview of the recent advances of novel imaging approaches taking advantage of chemical tag technologies. Chapter 2 describes the second-generation covalent trimethoprim-tag as a viable tool for live cell protein-specific labeling and imaging. In Chapter 3 we present a fluorescence lifetime imaging approach to map protein-specific micro-environment in live cells using TMP-Cy3 as a chemical probe. In Chapter 4, we present a method harnessing photo-activatable fluorophores to extend the fundamental depth limit in multi-photon microscopy. Chapter 5 describes the development of isotopically edited alkyne palette for multi-color live cell vibrational imaging of cellular small molecules. These studies exemplify the impact of modern chemical approaches in the development of advanced optical microscopies.

  17. How have developments in molecular imaging techniques furthered schizophrenia research?

    PubMed Central

    Thompson, Judy L; Urban, Nina; Abi-Dargham, Anissa

    2010-01-01

    Molecular imaging techniques have led to significant advances in understanding the pathophysiology of schizophrenia and contributed to knowledge regarding potential mechanisms of action of the drugs used to treat this illness. The aim of this article is to provide a review of the major findings related to the application of molecular imaging techniques that have furthered schizophrenia research. This article focuses specifically on neuroreceptor imaging studies with PET and SPECT. After providing a brief overview of neuroreceptor imaging methodology, we consider relevant findings from studies of receptor availability, and dopamine synthesis and release. Results are discussed in the context of current hypotheses regarding neurochemical alterations in the illness. We then selectively review pharmacological occupancy studies and the role of neuroreceptor imaging in drug development for schizophrenia. PMID:21243081

  18. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  19. Advanced MR Imaging of Gliomas: An Update

    PubMed Central

    Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Fong Y.; Chen, Cheng-Yu

    2013-01-01

    Recent advances in the treatment of cerebral gliomas have increased the demands on noninvasive neuroimaging for the diagnosis, therapeutic planning, tumor monitoring, and patient outcome prediction. In the meantime, improved magnetic resonance (MR) imaging techniques have shown much potentials in evaluating the key pathological features of the gliomas, including cellularity, invasiveness, mitotic activity, angiogenesis, and necrosis, hence, further shedding light on glioma grading before treatment. In this paper, an update of advanced MR imaging techniques is reviewed, and their potential roles as biomarkers of tumor grading are discussed. PMID:23862163

  20. Advanced Imaging of Chiari 1 Malformations.

    PubMed

    Fakhri, Akbar; Shah, Manish N; Goyal, Manu S

    2015-10-01

    Type I Chiari malformations are congenital deformities involving cerebellar tonsillar herniation downward through the foramen magnum. Structurally, greater than 5 mm of tonsillar descent in adults and more than 6 mm in children is consistent with type I Chiari malformations. However, the radiographic severity of the tonsillar descent does not always correlate well with the clinical symptomatology. Advanced imaging can help clinically correlate imaging to symptoms. Specifically, cerebrospinal fluid (CSF) flow abnormalities are seen in patients with type I Chiari malformation. Advanced MRI involving cardiac-gated and phase-contrast MRI affords a view of such CSF flow abnormalities. PMID:26408061

  1. Advanced gastrointestinal endoscopic imaging for inflammatory bowel diseases

    PubMed Central

    Tontini, Gian Eugenio; Rath, Timo; Neumann, Helmut

    2016-01-01

    Gastrointestinal luminal endoscopy is of paramount importance for diagnosis, monitoring and dysplasia surveillance in patients with both, Crohn’s disease and ulcerative colitis. Moreover, with the recent recognition that mucosal healing is directly linked to the clinical outcome of patients with inflammatory bowel disorders, a growing demand exists for the precise, timely and detailed endoscopic assessment of superficial mucosal layer. Further, the novel field of molecular imaging has tremendously expanded the clinical utility and applications of modern endoscopy, now encompassing not only diagnosis, surveillance, and treatment but also the prediction of individual therapeutic responses. Within this review, we describe how novel endoscopic approaches and advanced endoscopic imaging methods such as high definition and high magnification endoscopy, dye-based and dye-less chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and molecular imaging now allow for the precise and ultrastructural assessment of mucosal inflammation and describe the potential of these techniques for dysplasia detection. PMID:26811662

  2. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  3. Advances in molecular diagnostics for Mycobacterium bovis.

    PubMed

    Collins, Desmond M

    2011-07-01

    The two most important molecular diagnostic techniques for bovine tuberculosis are the polymerase chain reaction (PCR) because of its rapid determination of infection, and DNA strain typing because of its ability to answer important epidemiological questions. PCR tests for Mycobacterium bovis have been improved through recent advances in PCR technology, but still lack the sensitivity of good culture methods, and in some situations are susceptible to giving both false negative and false positive results. Therefore, PCR does not usually replace the need for culture, but is used to provide fast preliminary results. DNA typing of M. bovis isolates by restriction endonuclease analysis (REA) was developed 25 years ago in New Zealand, and remains an important tool in the New Zealand control scheme, where the typing results are combined with other information to determine large and expensive possum poisoning operations. A range of other DNA typing systems developed for M. bovis in the 1990 s have assisted epidemiological investigations in some countries but are now less commonly used. Variable number tandem repeat (VNTR) typing and spoligotyping, either alone or together, have now become the preferred approaches as they are robust and amenable to electronic analysis and comparison. Spoligotyping gives only moderate discrimination but can be easily applied to large numbers of isolates, and VNTR typing provides better discrimination than all other methods except for REA. While the current typing techniques are sufficient for most epidemiological purposes, more discriminating methods are likely to become available in the near future. PMID:21420257

  4. Molecular imaging of movement disorders

    PubMed Central

    Lizarraga, Karlo J; Gorgulho, Alessandra; Chen, Wei; De Salles, Antonio A

    2016-01-01

    caudal-to-rostral direction. Uptake declines prior to symptom presentation and progresses from contralateral to the most symptomatic side to bilateral, correlating with symptom severity. In progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), striatal activity is symmetrically and diffusely decreased. The caudal-to-rostral pattern is lost in PSP, but could be present in MSA. In corticobasal degeneration (CBD), there is asymmetric, diffuse reduction of striatal activity, contralateral to the most symptomatic side. Additionally, there is hypometabolism in contralateral parieto-occipital and frontal cortices in PD; bilateral putamen and cerebellum in MSA; caudate, thalamus, midbrain, mesial frontal and prefrontal cortices in PSP; and contralateral cortices in CBD. Finally, cardiac sympathetic SPECT signal is decreased in PD. The capacity of molecular imaging to provide in vivo time courses of gene expression, protein synthesis, receptor and transporter binding, could facilitate the development and evaluation of novel medical, surgical and genetic therapies in movement disorders. PMID:27029029

  5. Molecular imaging of movement disorders.

    PubMed

    Lizarraga, Karlo J; Gorgulho, Alessandra; Chen, Wei; De Salles, Antonio A

    2016-03-28

    -to-rostral direction. Uptake declines prior to symptom presentation and progresses from contralateral to the most symptomatic side to bilateral, correlating with symptom severity. In progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), striatal activity is symmetrically and diffusely decreased. The caudal-to-rostral pattern is lost in PSP, but could be present in MSA. In corticobasal degeneration (CBD), there is asymmetric, diffuse reduction of striatal activity, contralateral to the most symptomatic side. Additionally, there is hypometabolism in contralateral parieto-occipital and frontal cortices in PD; bilateral putamen and cerebellum in MSA; caudate, thalamus, midbrain, mesial frontal and prefrontal cortices in PSP; and contralateral cortices in CBD. Finally, cardiac sympathetic SPECT signal is decreased in PD. The capacity of molecular imaging to provide in vivo time courses of gene expression, protein synthesis, receptor and transporter binding, could facilitate the development and evaluation of novel medical, surgical and genetic therapies in movement disorders. PMID:27029029

  6. Advances of imaging for hepatocellular carcinoma.

    PubMed

    Choi, Byung Ihn

    2010-07-01

    A variety of imaging modalities, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, and angiography, are currently used in evaluating patients with chronic liver disease and suspected hepatocellular carcinoma (HCC). Further technological advancement will undoubtedly have a major impact on liver tumor imaging. Increased speed of data acquisition and consequently shorter scan times in CT and MRI show further improvement in resolution by further reducing motion artifacts. Development of new contrast materials for liver tumor imaging in US and MRI improve tumor detection and characterization by increasing the contrast resolution. Currently available advanced US techniques in the evaluation of HCC are various harmonic imaging techniques with contrast agents, volume imaging, and recently, US elastography, that has been developing and might play a role in characterizing liver nodules in the future. The latest advance in CT is the multidetector (MD) CT scanner where a 256- or 320-detector CT was introduced. Recent studies describe the high sensitivity of double arterial phase imaging in hepatic tumor detection and the usefulness of CT angiography by using MD CT in a detailed assessment of hepatic arterial anatomy using a three-dimensional dataset. In addition, perfusion CT imaging is also being developed and can be used for the characterization and treatment monitoring of HCC. Dual-energy CT with new technology is also continuously progressing. Advances in MR technology, including hardware and pulse sequence implementation, allow acquisition times to be reduced to the time frame of one breathhold, providing multiphasic dynamic MRI. Functional MRI including diffusion-weighted MRI, MR elastography, and new MR contrast agent with dual function have been investigated for the clinical utility of detection and characterization of HCCs. Functional MRI has a potential to be a promising technique for assessing HCC. PMID:20616584

  7. Inorganic nanoparticle-based contrast agents for molecular imaging

    PubMed Central

    Cho, Eun Chul; Glaus, Charles; Chen, Jingyi; Welch, Michael J.; Xia, Younan

    2010-01-01

    Inorganic nanoparticles including semiconductor quantum dots, iron oxide nanoparticles, and gold nanoparticles have been developed as contrast agents for diagnostics by molecular imaging. Compared to traditional contrast agents, nanoparticles offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size, and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multi-modal imaging. Here, we review recent advances in the development of contrast agents based on inorganic nanoparticles for molecular imaging, with a touch on contrast enhancement, surface modification, tissue targeting, clearance, and toxicity. As research efforts intensify, contrast agents based on inorganic nanoparticles that are highly sensitive, target-specific, and safe to use are expected to enter clinical applications in the near future. PMID:21074494

  8. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  9. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  10. Molecular Imaging in Optical Coherence Tomography

    PubMed Central

    Mattison, Scott P.; Kim, Wihan; Park, Jesung; Applegate, Brian E.

    2015-01-01

    Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT’s impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT. PMID:25821718

  11. Optical imaging: Ultrafast buffering by molecular gas

    NASA Astrophysics Data System (ADS)

    Hertz, Edouard; Lavorel, Bruno; Faucher, Olivier

    2011-02-01

    A simple molecular gas sample can be used to achieve ultrafast optical buffering in two-dimensional optical imaging, thus serving as a promising extension of the well-developed liquid-crystal display technology.

  12. Recent advances in clinical/molecular andrology.

    PubMed

    Hafez, B

    1998-01-01

    -peptide with it. Varicocele occurs unilaterally on the left side in 78% to 93% of men. Typically the presence of a varicocele is associated with an abnormal semen analysis (sperm density and morphology) and a decreased testicular volume on the affected side. Impaired sperm motility occurs in 89.5% of all varicocele patients. Varicocele ligation improves semen parameters in two thirds of patients. A few studies on andropause included sexual dysfunction, hormonal changes, medical/psychological correlates of impotence, ostenopenia/osteoporosis and bone loss; indices of bone remodeling, testosterone supplementation, androgen, negative feedback and hypothalamo-pituitary-testicular axis. Prostatic cancer is the second leading cause of cancer death for men between the ages of 60 and 80. Early detection involves a simple blood test for prostate specific antigen (PSA). Regular screening and early detection are essential. This is an important test because a high antigen count can be the only symptom. Since no screening is 100% accurate, physicians recommend both a PSA blood test and a physical examination. Although heredity plays a major role in whether a man will develop prostate cancer, men who lead healthy lives can dramatically reduce their chances of cancer: low-fat diet, eating plenty of fruits and vegetables and not smoking. Recent advances in molecular andrology include peptide hormone binding proteins; gonadotropin-releasing hormone (GnRH) agonists/antagonists analog; gonadotropins/their receptors; growth factors/reproduction; peptides as intratesticular regulators; molecular cloning of reproductive proteins/peptides. Gene cloning is applied for characterization/expression of genes coding. The interaction of gp120 with CD4 receptor plays a role in syncytium formation, apoptosis and CD4 cell deletion in human immunodeficiency virus (HIV) infection. The recombinant V3 peptide of fragment 307-330 of HIV-1 can induce sperm head agglutination. The generation process of react PMID

  13. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  14. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  15. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  16. Advanced imaging and visualization in gastrointestinal disorders

    PubMed Central

    Gilja, Odd Helge; Hatlebakk, Jan G; Ødegaard, Svein; Berstad, Arnold; Viola, Ivan; Giertsen, Christopher; Hausken, Trygve; Gregersen, Hans

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract. Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography, and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound, three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future. PMID:17457973

  17. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  18. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  19. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques

    PubMed Central

    2014-01-01

    Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ3 integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein. PMID:25099015

  20. Molecular Imaging of Prostate Cancer: PET Radiotracers

    PubMed Central

    Jadvar, Hossein

    2012-01-01

    OBJECTIVE Recent advances in the fundamental understanding of the complex biology of prostate cancer have provided an increasing number of potential targets for imaging and treatment. The imaging evaluation of prostate cancer needs to be tailored to the various phases of this remarkably heterogeneous disease. CONCLUSION In this article, I review the current state of affairs on a range of PET radiotracers for potential use in the imaging evaluation of men with prostate cancer. PMID:22826388

  1. Atomic force microscope, molecular imaging, and analysis.

    PubMed

    Chen, Shu-wen W; Teulon, Jean-Marie; Godon, Christian; Pellequer, Jean-Luc

    2016-01-01

    Image visibility is a central issue in analyzing all kinds of microscopic images. An increase of intensity contrast helps to raise the image visibility, thereby to reveal fine image features. Accordingly, a proper evaluation of results with current imaging parameters can be used for feedback on future imaging experiments. In this work, we have applied the Laplacian function of image intensity as either an additive component (Laplacian mask) or a multiplying factor (Laplacian weight) for enhancing image contrast of high-resolution AFM images of two molecular systems, an unknown protein imaged in air, provided by AFM COST Action TD1002 (http://www.afm4nanomedbio.eu/), and tobacco mosaic virus (TMV) particles imaged in liquid. Based on both visual inspection and quantitative representation of contrast measurements, we found that the Laplacian weight is more effective than the Laplacian mask for the unknown protein, whereas for the TMV system the strengthened Laplacian mask is superior to the Laplacian weight. The present results indicate that a mathematical function, as exemplified by the Laplacian function, may yield varied processing effects with different operations. To interpret the diversity of molecular structure and topology in images, an explicit expression for processing procedures should be included in scientific reports alongside instrumental setups. PMID:26224520

  2. Molecular Imaging of Inflammation in Atherosclerosis

    PubMed Central

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  3. Advanced laser systems for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Sampathkumar, Ashwin; Chan, Gary; Wu, Chunbai; Gross, Daniel; Heller, Donald F.

    2015-03-01

    We describe the ongoing development of laser systems for advanced photoacoustic imaging (PAI). We discuss the characteristics of these laser systems and their particular benefits for soft tissue imaging and next-generation breast cancer diagnostics. We provide an overview of laser performance and compare this with other laser systems that have been used for early-stage development of PAI. These advanced systems feature higher pulse energy output at clinically relevant repetition rates, as well as a novel wavelength-cycling output pulse format. Wavelength cycling provides pulse sequences for which the output repeatedly alternates between two wavelengths that provide differential imaging. This capability improves co-registration of captured differential images. We present imaging results of phantoms obtained with a commercial ultrasound detector system and a wavelength-cycling laser source providing ~500 mJ/pulse at 755 and 797 nm, operating at 25 Hz. The results include photoacoustic images and corresponding pulse-echo data from a tissue mimicking phantom containing inclusions, simulating tumors in the breast. We discuss the application of these systems to the contrast-enhanced detection of various tissue types and tumors.

  4. Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging.

    PubMed

    Khondee, Supang; Wang, Thomas D

    2013-01-01

    Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes. PMID:23502247

  5. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  6. Molecular and Functional Imaging of Internet Addiction

    PubMed Central

    Zhu, Yunqi; Zhang, Hong; Tian, Mei

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition. PMID:25879023

  7. Diagnostic imaging advances in murine models of colitis

    PubMed Central

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-01

    Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD. PMID:26811642

  8. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  9. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  10. Image stabilization for SWIR advanced optoelectronic device

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  11. Molecular imaging of cerebrovascular lesions.

    PubMed

    Chalouhi, Nohra; Jabbour, Pascal; Magnotta, Vincent; Hasan, David

    2014-04-01

    Inflammation is a key component in the pathogenesis of cerebrovascular lesions. Two agents have emerged as promising possibilities for imaging cerebrovascular lesions. These agents are ferumoxytol and myeloperoxidase (MPO)-specific paramagnetic magnetic resonance (MR) contrast agent. Ferumoxytol is an iron oxide nanoparticle coated by a carbohydrate shell that is used in MRI studies as an inflammatory marker as it is cleared by macrophages. Ferumoxytol-enhanced MRI allows noninvasive assessment of the inflammatory status of cerebral aneurysms and arteriovenous malformations and, possibly, may differentiate "unstable" lesions that require early intervention from "stable" lesions that can be safely observed. Several pilot studies have also suggested that MPO-specific paramagnetic MR contrast agent, di-5-hydroxytryptamide of gadopentetate dimeglumine, may allow imaging of inflammation in the wall of saccular aneurysms in animal models. However, studies in human subjects have yet to be performed. In this paper, we review current data regarding ferumoxytol-enhanced MRI and MPO-specific paramagnetic MR contrast agent and discuss current and future applications. PMID:24323714

  12. SHG nanoprobes: advancing harmonic imaging in biology.

    PubMed

    Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-05-01

    Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution. PMID:22392481

  13. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    NASA Astrophysics Data System (ADS)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  14. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  15. Pretargeted molecular imaging and radioimmunotherapy.

    PubMed

    Goldenberg, David M; Chang, Chien-Hsing; Rossi, Edmund A; J, William; McBride; Sharkey, Robert M

    2012-01-01

    Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors. PMID:22737190

  16. Pretargeted Molecular Imaging and Radioimmunotherapy

    PubMed Central

    Goldenberg, David M.; Chang, Chien-Hsing; Rossi, Edmund A.; J, William; McBride; Sharkey, Robert M.

    2012-01-01

    Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors. PMID:22737190

  17. Advances in molecular breeding of flowering dogwood (Cornus florida L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the production and sales of ornamental crops represent significant contributions to the global economy, breeding and selection of ornamental plants using molecular markers lags far behind that used for agronomic crops. However, with the recent advances in molecular technologies including r...

  18. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  19. Treatment of advanced thyroid cancer: role of molecularly targeted therapies.

    PubMed

    Covell, Lorinda L; Ganti, Apar Kishor

    2015-09-01

    Advanced thyroid cancer is not amenable to therapy with conventional cytotoxic chemotherapy. However, newer advances in the understanding of the molecular pathogenesis of different subtypes of thyroid cancer have provided new opportunities for the evaluation of molecularly targeted therapies. This has led to multiple clinical trials using various multi-kinase inhibitors and the subsequent US FDA approval of sorafenib for differentiated thyroid cancer and vandetanib and cabozantinib for medullary thyroid carcinoma. This review provides a summary of the current literature for the treatment of advanced thyroid carcinoma and future directions in this disease. PMID:26335853

  20. Molecular Imaging of Influenza and Other Emerging Respiratory Viral Infections

    PubMed Central

    Lawler, James; Paragas, Jason; Jahrling, Peter B.; Mollura, Daniel J.

    2011-01-01

    Research on the pathogenesis and therapy of influenza and other emerging respiratory viral infections would be aided by methods that directly visualize pathophysiologic processes in patients and laboratory animals. At present, imaging of diseases, such as swine-origin H1N1 influenza, is largely restricted to chest radiograph and computed tomography (CT), which can detect pulmonary structural changes in severely ill patients but are more limited in characterizing the early stages of illness, differentiating inflammation from infection or tracking immune responses. In contrast, imaging modalities, such as positron emission tomography, single photon emission CT, magnetic resonance imaging, and bioluminescence imaging, which have become useful tools for investigating the pathogenesis of a range of disease processes, could be used to advance in vivo studies of respiratory viral infections in patients and animals. Molecular techniques might also be used to identify novel biomarkers of disease progression and to evaluate new therapies. PMID:21422476

  1. Optimizing Central Nervous System Drug Development Using Molecular Imaging.

    PubMed

    Hargreaves, R J; Hoppin, J; Sevigny, J; Patel, S; Chiao, P; Klimas, M; Verma, A

    2015-07-01

    Advances in multimodality fusion imaging technologies promise to accelerate the understanding of the systems biology of disease and help in the development of new therapeutics. The use of molecular imaging biomarkers has been proven to shorten cycle times for central nervous system (CNS) drug development and thereby increase the efficiency and return on investment from research. Imaging biomarkers can be used to help select the molecules, doses, and patients most likely to test therapeutic hypotheses by stopping those that have little chance of success and accelerating those with potential to achieve beneficial clinical outcomes. CNS imaging biomarkers have the potential to drive new medical care practices for patients in the latent phases of progressive neurodegenerative disorders by enabling the detection, preventative treatment, and tracking of disease in a paradigm shift from today's approaches that have to see the overt symptoms of disease before treating it. PMID:25869938

  2. Molecular specific optoacoustic imaging with plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallidi, Srivalleesha; Larson, Timothy; Aaron, Jesse; Sokolov, Konstantin; Emelianov, Stanislav

    2007-05-01

    Gold nanoparticles functionalized with antibodies can specifically bind to molecular biomarkers such as epithelial growth factor receptor (EGFR). The molecule specific nature of the antibody-functionalized gold nanoparticles forms the basis for the developed optoacoustic imaging technique to detect cancer at an asymptotic stage. Optoacoustic imaging was performed with 532 nm and 680 nm pulsed laser irradiation on three-dimensional tissue phantoms prepared using a human keratinocyte cell line. The results of our study demonstrate that the combination of anti-EGFR gold ioconjugates and optoacoustic imaging can allow highly sensitive and selective detection of human epithelial cancer cells.

  3. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  4. Dose reduction in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  5. A solution for archiving and retrieving preclinical molecular imaging data in PACS using a DICOM gateway

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Liu, Bihui; Liu, Brent

    2011-03-01

    Advances in biology, computer technology and imaging technology have given rise to a scientific specialty referred to as molecular imaging, which is the in vivo imaging of cellular and molecular pathways using contrast-enhancing targeting agents. Increasing amounts of molecular imaging research are being performed at pre-clinical stages, generating diverse datasets that are unstructured and thereby lacking in archiving and distribution solutions. Since PACS in radiology is a mature clinical archiving solution, a method is proposed to convert current imaging files from preclinical molecular imaging studies into DICOM formats for archival and retrieval from PACS systems. A web-based DICOM gateway is presented with an emphasis on metadata mapping in the DICOM header, system connectivity, and overall user workflow. This effort to conform preclinical imaging data to the DICOM standard is necessary to utilize current PACS solutions for preclinical imaging data content archiving and distribution.

  6. Multi-modality molecular imaging: pre-clinical laboratory configuration

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.

    2006-02-01

    In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.

  7. Advances in Imaging for Atrial Fibrillation Ablation

    PubMed Central

    D'Silva, Andrew; Wright, Matthew

    2011-01-01

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electroanatomic mapping systems, preprocedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electrophysiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment. PMID:22091384

  8. Advanced imaging systems programs at DARPA MTO

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Elizondo, Lee A.; Dat, Ravi; Elizondo, Shelly L.

    2013-09-01

    In this paper, we review a few selected imaging technology development programs at the Defense Advanced Research Projects Agency (DARPA) in the reflective visible to the emissive/thermal long wave infrared (LWIR) spectral bands. For the reflective visible band, results are shown for two different imagers: a gigapixel monocentric multi-scale camera design that solves the scaling issues for a high pixel count, and a wide field of view and a single photon detection camera with a large dynamic range. Also, a camera with broadband capability covering both reflective and thermal bands (0.5 μm to 5.0 μm) with >80% quantum efficiency is discussed. In the emissive/thermal band, data is presented for both uncooled and cryogenically cooled LWIR detectors with pixel pitches approaching the fundamental detection limits. By developing wafer scale manufacturing processes and reducing the pixel size of uncooled thermal imagers, it is shown that an affordable camera on a chip, capable of seeing through obscurants in day or night, is feasible. Also, the fabrication and initial performance of the world's first 5 μm pixel pitch LWIR camera is discussed. Lastly, we use an initial model to evaluate the signal to noise ratio and noise equivalent differential temperature as a function of well capacity to predict the performance for this thermal imager.

  9. Cerenkov imaging - a new modality for molecular imaging

    PubMed Central

    Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan

    2012-01-01

    Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811

  10. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    PubMed

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  11. Rhabdomyosarcoma: Advances in Molecular and Cellular Biology

    PubMed Central

    Sun, Xin; Guo, Wei; Shen, Jacson K.; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR), in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS. PMID:26420980

  12. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    SciTech Connect

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  13. Translational Molecular Imaging of Prostate Cancer

    PubMed Central

    Kiess, Ana P.; Cho, Steve Y.; Pomper, Martin G.

    2013-01-01

    Prostate cancer is a heterogeneous disease, and its management is now evolving to become more personalized and to incorporate new targeted therapies. With these new changes comes a demand for molecular imaging techniques that can not only detect disease but also assess biology and treatment response. This review article summarizes current molecular imaging approaches in prostate cancer (e.g. 99mTc bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography) and highlights emerging clinical and preclinical imaging agents, with an emphasis on mechanism and clinical application. Emerging agents at various stages of clinical translation include radiolabeled analogs of lipid, amino acid, and nucleoside metabolism, as well as agents more specifically targeting prostate cancer biomarkers including androgen receptor, prostate-specific membrane antigen and others. We also highlight new techniques and targeted contrast agents for magnetic resonance imaging and spectroscopy. For all these imaging techniques, a growing and important unmet need is for well-designed prospective clinical trials to establish clear indications with clinical benefit in prostate cancer. PMID:24159427

  14. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances

    PubMed Central

    Dhanasekaran, Renumathy; Bandoh, Salome; Roberts, Lewis R.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has an increasing incidence worldwide. HCC can be induced by multiple etiologies, is influenced by many risk factors, and has a complex pathogenesis. Furthermore, HCCs exhibit substantial heterogeneity, which compounds the difficulties in developing effective therapies against this highly lethal cancer. With advances in cancer biology and molecular and genetic profiling, a number of different mechanisms involved in the development and progression of HCC have been identified. Despite the advances in this area, the molecular pathogenesis of hepatocellular carcinoma is still not completely understood. This review aims to elaborate our current understanding of the most relevant genetic alterations and molecular pathways involved in the development and progression of HCC, and anticipate the potential impact of future advances on therapeutic drug development. PMID:27239288

  15. Directed molecular evolution to design advanced red fluorescent proteins

    PubMed Central

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2015-01-01

    Fluorescent proteins have become indispensable imaging tools for biomedical research. continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications. PMID:22127219

  16. Molecular Imaging of Biomarkers in Breast Cancer

    PubMed Central

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  17. A novel SPECT camera for molecular imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  18. Predicting Malignancy in Thyroid Nodules: Molecular Advances

    PubMed Central

    Melck, Adrienne L.; Yip, Linwah

    2016-01-01

    Over the last several years, a clearer understanding of the genetic alterations underlying thyroid carcinogenesis has developed. This knowledge can be utilized to tackle one of the greatest challenges facing thyroidologists: management of the indeterminate thyroid nodule. Despite the accuracy of fine needle aspiration cytology, many patients undergo invasive surgery in order to determine if a follicular or Hurthle cell neoplasm is malignant, and better diagnostic tools are required. A number of biomarkers have recently been studied and show promise in this setting. In particular, BRAF, RAS, PAX8-PPARγ, microRNAs and loss of heterozygosity have each been demonstrated as useful molecular tools for predicting malignancy and can thereby guide decisions regarding surgical management of nodular thyroid disease. This review summarizes the current literature surrounding each of these markers and highlights our institution’s prospective analysis of these markers and their subsequent incorporation into our management algorithms for thyroid nodules. PMID:21818817

  19. Hybrid imaging is the future of molecular imaging

    PubMed Central

    Hicks, RJ; Lau, EWF; Binns, DS

    2007-01-01

    Correlative imaging has long been used in clinical practice and particularly for the interpretation of nuclear medicine studies wherein detailed anatomical information is often lacking. Previously, side-by-side comparison or software co-registration techniques were applied but suffered from technical limitations related to the differing geometries of the imaging equipment, differences in the positioning of patients and displacement of mobile structures between studies. The development of the first hybrid PET and CT device struck a chord with the medical imaging community that is still ringing loudly throughout the world. So successful has been the concept of PET-CT that none of the major medical imaging manufacturers now offers stand-alone PET scanners. Following close behind this success, SPECT-CT devices have recently been adopted by the nuclear medicine community, already compelled by the benefits of hybrid imaging through their experience with PET-CT. Recent reports of adaptation of PET detectors to operate within the strong magnetic field of MRI scanners have generated further enthusiasm. Prototype PET-MRI devices are now in development. The complementary anatomical, functional and molecular information provided by these techniques can now be presented in an intuitive and aesthetically-pleasing format. This has made end-users more comfortable with the results of functional imaging techniques than when the same information is presented independently. Despite the primacy of anatomical imaging for locoregional disease definition, the molecular characterisation available from PET and SPECT offers unique complementary information for cancer evaluation. A new era of cancer imaging, when hybrid imaging will be the primary diagnostic tool, is approaching. PMID:21614291

  20. New Applications of Cardiac Computed Tomography: Dual-Energy, Spectral, and Molecular CT Imaging.

    PubMed

    Danad, Ibrahim; Fayad, Zahi A; Willemink, Martin J; Min, James K

    2015-06-01

    Computed tomography (CT) has evolved into a powerful diagnostic tool, and it is impossible to imagine current clinical practice without CT imaging. Because of its widespread availability, ease of clinical application, superb sensitivity for the detection of coronary artery disease, and noninvasive nature, CT has become a valuable tool within the armamentarium of cardiologists. In the past few years, numerous technological advances in CT have occurred, including dual-energy CT, spectral CT, and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging tool that permits accurate plaque characterization, assessment of myocardial perfusion, and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  1. Molecular imaging probe development: a chemistry perspective

    PubMed Central

    Nolting, Donald D; Nickels, Michael L; Guo, Ning; Pham, Wellington

    2012-01-01

    Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed. PMID:22943038

  2. Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters

    PubMed Central

    Jokerst, Jesse V.; Pohling, Christoph; Gambhir, Sanjiv S.

    2013-01-01

    Molecular imaging scans cellular and molecular targets in living subjects through the introduction of imaging agents that bind to these targets and report their presence through a measurable signal. The picomolar sensitivity, signal stability, and high multiplexing capacity of Raman spectroscopy satisfies important needs within the field of molecular imaging, and several groups now utilize Raman and surface-enhanced Raman spectroscopy to image molecular targets in small animal models of human disease. This article details the role of Raman spectroscopy in molecular imaging, describes some substrates and imaging agents used in animal models, and illustrates some examples. PMID:24293809

  3. Pathology and Molecular Genetics of Meningioma: Recent Advances

    PubMed Central

    SHIBUYA, Makoto

    2015-01-01

    Meningiomas are the most common intracranial primary neoplasm in adults. Although the spectrum of clinical and molecular genetic issues regarding meningiomas remains undefined, novel genetic alterations that are associated with tumor morphology, malignancy, or location have recently been discovered. This review focuses on recent advances in understanding of the heterogenous pathology of meningiomas, particularly on associations between the clinical, histological, etiological, epidemiological, and molecular genetical aspects of the neoplasm. PMID:25744347

  4. Molecular Imaging System for Monitoring Tumor Angiogenesis

    NASA Astrophysics Data System (ADS)

    Aytac, Esra; Burcin Unlu, Mehmet

    2012-02-01

    In cancer, non-invasive imaging techniques that monitor molecular processes associated with the tumor angiogenesis could have a central role in the evaluation of novel antiangiogenic and proangiogenic therapies as well as early detection of the disease. Matrix metalloproteinases (MMP) can serve as specific biological targets for imaging of angiogenesis since expression of MMPs is required for angiogenesis and has been found to be upregulated in every type of human cancer and correlates with stage, invasive, metastatic properties and poor prognosis. However, for most cancers it is still unknown when, where and how MMPs are involved in the tumor angiogenesis [1]. Development of high-resolution, high sensitivity imaging techniques in parallel with the tumor models could prove invaluable for assessing the physical location and the time frame of MMP enzymatic acitivity. The goal of this study is to understand where, when and how MMPs are involved in the tumor angiogenesis. We will accomplish this goal by following two objectives: to develop a high sensitivity, high resolution molecular imaging system, to develop a virtual tumor simulator that can predict the physical location and the time frame of the MMP activity. In order to achieve our objectives, we will first develop a PAM system and develop a mathematical tumor model in which the quantitative data obtained from the PAM can be integrated. So, this work will develop a virtual tumor simulator and a molecular imaging system for monitoring tumor angiogenesis. 1.Kessenbrock, K., V. Plaks, and Z. Werb, MMP:regulators of the tumor microenvironment. Cell, 2010. 141(1)

  5. Imaging in the era of molecular oncology

    PubMed Central

    Weissleder, Ralph; Pittet, Mikael J.

    2009-01-01

    New technologies for imaging molecules, particularly optical technologies, are increasingly being used to understand the complexity, diversity and in vivo behaviour of cancers. ‘Omic’ approaches are providing comprehensive ‘snapshots’ of biological indicators, or biomarkers, of cancer, but imaging can take this information a step further, showing the activity of these markers in vivo and how their location changes over time. Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and, ultimately, should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide ‘on the spot’ treatment. PMID:18385732

  6. Recent advances in morphological cell image analysis.

    PubMed

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  7. Molecular Breast Imaging Using Emission Tomosynthesis

    SciTech Connect

    Gopan, O.; Gilland, D.; Weisenberger, Andrew G.; Kross, Brian J.; Welch, Benjamin L.

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  8. MOLECULAR IMAGING OF PROSTATE CANCER: translating molecular biology approaches into the clinical realm

    PubMed Central

    Vargas, Hebert Alberto; Grimm, Jan; Donati, Olivio F.; Sala, Evis; Hricak, Hedvig

    2016-01-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980’s. Most prostate cancers today are detected at early stages of the disease and are considered “indolent”, however some patients’ prostate cancers demonstrate a more aggressive behavior which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterizes this disease has lead to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumor detection alone to distinguishing patients with indolent tumors that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumors that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualization of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. PMID:25693661

  9. Comprehensive phantom for interventional fluorescence molecular imaging.

    PubMed

    Anastasopoulou, Maria; Koch, Maximilian; Gorpas, Dimitris; Karlas, Angelos; Klemm, Uwe; Garcia-Allende, Pilar Beatriz; Ntziachristos, Vasilis

    2016-09-01

    Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation. PMID:27304578

  10. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging.

    PubMed

    Zhang, Jing

    2015-01-01

    Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative dementias and related neurologic disorders. Detection of neuroinflammation in vivo throughout the course of neurodegenerative diseases is of great clinical interest. Studies have shown that microglia activation (an indicator of neuroinflammation) may present at early stages of frontotemporal dementia (FTD), but the role of neuroinflammation in the pathogenesis of FTD is largely unknown. The first-generation translocator protein (TSPO) ligand ([(11)C]-PK11195) has been used to detect microglia activation in FTD, and the second-generation TSPO ligands have imaged neuroinflammation in vivo with improved pharmacokinetic properties. This paper reviews related literature and technical issues on mapping neuroinflammation in FTD with positron-emission tomography (PET) imaging. Early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and means to monitor therapeutic efficacy. More studies are needed to image and track neuroinflammation in FTD. It is anticipated that the advances of TSPO PET imaging will overcome technical difficulties, and molecular imaging of neuroinflammation will aid in the characterization of neuroinflammation in FTD. Such knowledge has the potential to shed light on the poorly understood pathogenesis of FTD and related dementias, and provide imaging markers to guide the development and assessment of new therapies. PMID:26022249

  11. PET Imaging - from Physics to Clinical Molecular Imaging

    NASA Astrophysics Data System (ADS)

    Majewski, Stan

    2008-03-01

    From the beginnings many years ago in a few physics laboratories and first applications as a research brain function imager, PET became lately a leading molecular imaging modality used in diagnosis, staging and therapy monitoring of cancer, as well as has increased use in assessment of brain function (early diagnosis of Alzheimer's, etc) and in cardiac function. To assist with anatomic structure map and with absorption correction CT is often used with PET in a duo system. Growing interest in the last 5-10 years in dedicated organ specific PET imagers (breast, prostate, brain, etc) presents again an opportunity to the particle physics instrumentation community to contribute to the important field of medical imaging. In addition to the bulky standard ring structures, compact, economical and high performance mobile imagers are being proposed and build. The latest development in standard PET imaging is introduction of the well known TOF concept enabling clearer tomographic pictures of the patient organs. Development and availability of novel photodetectors such as Silicon PMT immune to magnetic fields offers an exciting opportunity to use PET in conjunction with MRI and fMRI. As before with avalanche photodiodes, particle physics community plays a leading role in developing these devices. The presentation will mostly focus on present and future opportunities for better PET designs based on new technologies and methods: new scintillators, photodetectors, readout, software.

  12. Combining Optical Coherence Tomography with Fluorescence Molecular Imaging: Towards Simultaneous Morphology and Molecular Imaging

    PubMed Central

    Yuan, Shuai; Roney, Celeste A.; Wierwille, Jerry; Chen, Chao-Wei; Xu, Biying; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-01-01

    Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both ~10 μm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. PMID:20009192

  13. Molecular probes for malignant melanoma imaging.

    PubMed

    Ren, Gang; Pan, Ying; Cheng, Zhen

    2010-09-01

    Malignant melanoma represents a serious public health problem and is a deadly disease when it is diagnosed at late stage. Though (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) has been widely used clinically for melanoma imaging, other approaches to specifically identify, characterize, monitor and guide therapeutics for malignant melanoma are still needed. Consequently, many probes targeting general molecular events including metabolism, angiogenesis, hypoxia and apoptosis in melanoma have been successfully developed. Furthermore, probes targeting melanoma associated targets such as melanocortin receptor 1 (MC1R), melanin, etc. have undergone active investigation and have demonstrated high melanoma specificity. In this review, these molecular probes targeting diverse melanoma biomarkers have been summarized. Some of them may eventually contribute to the improvement of personalized management of malignant melanoma. PMID:20497118

  14. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  15. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    PubMed

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine. PMID:25324995

  16. Molecular magnetic resonance imaging of brain–immune interactions

    PubMed Central

    Gauberti, Maxime; Montagne, Axel; Quenault, Aurélien; Vivien, Denis

    2014-01-01

    Although the blood–brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO). PMID:25505871

  17. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer

    PubMed Central

    Zhou, Yurong; Sun, Jihong; Yang, Xiaoming

    2015-01-01

    Breast cancer is the most frequent malignancy in women worldwide. Although it is commonly treated via chemotherapy, responses vary among its subtypes, some of which are relatively insensitive to chemotherapeutic drugs. Recent studies have shown that hyperthermia can enhance the effects of chemotherapy in patients with refractory breast cancer or without surgical indications. Recent advances in molecular imaging may not only improve early diagnosis but may also facilitate the development and response assessment of targeted therapies. Combining advanced techniques such as molecular imaging and hyperthermia-integrated chemotherapy should open new avenues for effective management of breast cancer. PMID:26491673

  18. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  19. Recent advances in the imaging of hepatocellular carcinoma

    PubMed Central

    You, Myung-Won; Kim, Kyoung Won; Lee, So Jung; Shin, Yong Moon; Kim, Jin Hee; Lee, Moon-Gyu

    2015-01-01

    The role of imaging is crucial for the surveillance, diagnosis, staging and treatment monitoring of hepatocellular carcinoma (HCC). Over the past few years, considerable technical advances were made in imaging of HCCs. New imaging technology, however, has introduced new challenges in our clinical practice. In this article, the current status of clinical imaging techniques for HCC is addressed. The diagnostic performance of imaging techniques in the context of recent clinical guidelines is also presented. PMID:25834808

  20. Fluorescence lifetime-based optical molecular imaging.

    PubMed

    Kumar, Anand T N

    2011-01-01

    Fluorescence lifetime is a powerful contrast mechanism for in vivo molecular imaging. In this chapter, we describe instrumentation and methods to optimally exploit lifetime contrast using a time domain fluorescence tomography system. The key features of the system are the use of point excitation in free-space using ultrashort laser pulses and non-contact detection using a gated, intensified CCD camera. The surface boundaries of the imaging volume are acquired using a photogrammetric camera integrated with the imaging system, and implemented in theoretical models of light propagation in biological tissue. The time domain data are optimally analyzed using a lifetime-based tomography approach, which is based on extracting a tomographic set of lifetimes and decay amplitudes from the long time decay portion of the time domain data. This approach improves the ability to locate in vivo targets with a resolution better than conventional optical methods. The application of time domain lifetime multiplexing and tomography are illustrated using phantoms and tumor bearing mouse model of breast adenocarcinoma. In the latter application, the time domain approach allows an improved detection of fluorescent protein signals from intact nude mice in the presence of background autofluorescence. This feature has potential applications for longitudinal pre-clinical evaluation of drug treatment response as well as to address fundamental questions related to tumor physiology and metastasis. PMID:21153381

  1. The evolving role of nuclear molecular imaging in cancer

    PubMed Central

    Kurdziel, KA; Ravizzini, G; Croft, BY; Tatum, JL; Choyke, PL; Kobayashi, H

    2008-01-01

    Background Novel therapies targeted to specific tumor pathways are entering the clinic. The need for in vivo monitoring of resulting molecular changes, particularly with respect to the tumor microenvironment, is growing. Molecular imaging is evolving to include a variety of imaging methods to enable in vivo monitoring of cellular and molecular processes. Objectives This article reviews the emerging role of molecular imaging in the development of improved therapeutic strategies that provide better patient selection for therapeutic personalization (i.e. determine which therapies have the greatest chance of success given the individual patient’s disease genetic, and phenotypical profile). Methods In order to illustrate the utility of integrating molecular imaging into therapy development strategies, current and emerging applications of nuclear molecular imaging strategies will be compared with conventional strategies. Proposed methods of integrating molecular imaging techniques into cancer therapeutic development and limitations of these techniques will be discussed. Results/Conclusion Molecular imaging provides a variety of new tools to accelerate the development of cancer therapies. The recent drive to develop molecular imaging probes and standardize molecular imaging techniques is creating the scaffolding for the evolving paradigm shift to personalized cancer therapy. PMID:19122861

  2. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  3. Graphene-based nanomaterials as molecular imaging agents.

    PubMed

    Garg, Bhaskar; Sung, Chu-Hsun; Ling, Yong-Chien

    2015-01-01

    Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed. PMID:25857851

  4. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  5. Recent advances in the molecular characterization of circulating tumor cells.

    PubMed

    Lowes, Lori E; Allan, Alison L

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a "real-time liquid biopsy" that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

  6. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    PubMed Central

    Lowes, Lori E.; Allan, Alison L.

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

  7. Current Progress of Aptamer-Based Molecular Imaging

    PubMed Central

    Wang, Andrew Z.; Farokhzad, Omid C.

    2014-01-01

    Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. They have been approved as therapeutics and molecular diagnostics. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This review aims to provide an overview of aptamers’ advantages as targeting ligands and their application in molecular imaging. PMID:24525205

  8. Molecular imaging probes derived from natural peptides.

    PubMed

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  9. Molecular hydrogen polarization images of OMC-1

    SciTech Connect

    Burton, M.G.; Minchin, N.R.; Hough, J.H.; Aspin, C.; Axon, D.J. California Univ., Irvine Hatfield Polytechnic Joint Astronomy Centre, Hilo, HI Nuffield Radio Astronomy Labs., Jodrell Bank )

    1991-07-01

    An image of the polarization of the shocked H2 v = 1-0 S(1) line emission in the core of OMC-1 has been obtained. Along the molecular outflow of the source, the line is dichroically polarized by a medium of aligned grains located between the earth and the shock fronts. The polarization pattern traces the magnetic field direction, which is parallel to the outflow axis and to the large-scale field direction determined from far-IR continuum measurements. Close to the IR source IRc2, the likely source of the outflow, the aligned vectors twist, indicating that the magnetic field direction changes. Modeling the line ratios of scattered H2 lines in the reflection nebula, it is concluded that the size distribution of grains there is typical of the small grains in the diffuse interstellar medium. By contrast, the scattered continuum radiation from the core region suggests that the grains there are larger than this. 33 refs.

  10. Molecular hydrogen polarization images of OMC-1

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Minchin, N. R.; Hough, J. H.; Aspin, C.; Axon, D. J.

    1991-01-01

    An image of the polarization of the shocked H2 v = 1-0 S(1) line emission in the core of OMC-1 has been obtained. Along the molecular outflow of the source, the line is dichroically polarized by a medium of aligned grains located between the earth and the shock fronts. The polarization pattern traces the magnetic field direction, which is parallel to the outflow axis and to the large-scale field direction determined from far-IR continuum measurements. Close to the IR source IRc2, the likely source of the outflow, the aligned vectors twist, indicating that the magnetic field direction changes. Modeling the line ratios of scattered H2 lines in the reflection nebula, it is concluded that the size distribution of grains there is typical of the small grains in the diffuse interstellar medium. By contrast, the scattered continuum radiation from the core region suggests that the grains there are larger than this.

  11. Computational methods for optical molecular imaging

    PubMed Central

    Chen, Duan; Wei, Guo-Wei; Cong, Wen-Xiang; Wang, Ge

    2010-01-01

    Summary A new computational technique, the matched interface and boundary (MIB) method, is presented to model the photon propagation in biological tissue for the optical molecular imaging. Optical properties have significant differences in different organs of small animals, resulting in discontinuous coefficients in the diffusion equation model. Complex organ shape of small animal induces singularities of the geometric model as well. The MIB method is designed as a dimension splitting approach to decompose a multidimensional interface problem into one-dimensional ones. The methodology simplifies the topological relation near an interface and is able to handle discontinuous coefficients and complex interfaces with geometric singularities. In the present MIB method, both the interface jump condition and the photon flux jump conditions are rigorously enforced at the interface location by using only the lowest-order jump conditions. This solution near the interface is smoothly extended across the interface so that central finite difference schemes can be employed without the loss of accuracy. A wide range of numerical experiments are carried out to validate the proposed MIB method. The second-order convergence is maintained in all benchmark problems. The fourth-order convergence is also demonstrated for some three-dimensional problems. The robustness of the proposed method over the variable strength of the linear term of the diffusion equation is also examined. The performance of the present approach is compared with that of the standard finite element method. The numerical study indicates that the proposed method is a potentially efficient and robust approach for the optical molecular imaging. PMID:20485461

  12. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  13. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging.

    PubMed

    Sharifi, Shahriar; Seyednejad, Hajar; Laurent, Sophie; Atyabi, Fatemeh; Saei, Amir Ata; Mahmoudi, Morteza

    2015-01-01

    In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges. PMID:25882768

  14. Molecular breast imaging with gamma emitters.

    PubMed

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  15. Size-Minimized Quantum Dots for Molecular and Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Wen, Mary M.; Wang, May D.; Nie, Shuming

    Semiconductor quantum dots, tiny light-emitting particles on thenanometer scale, are emerging as a new class of fluorescent labels for a broad range of molecular and cellular applications. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties such as size-tunable light emission, intense signal brightness, resistance to photobleaching, and broadband absorption for simultaneous excitation of multiple fluorescence colors. Here we report new advances in minimizing the hydrodynamic sizes of quantum dots using multidentate and multifunctional polymer coatings. A key finding is that a linear polymer containing grafted amine and thiol coordinating groups can coat nanocrystals and lead to a highly compact size, exceptional colloidal stability, strong resistance to photobleaching, and high fluorescence quantum yields. This has allowed a new generation of bright and stable quantum dots with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near infrared (720 nm). These quantum dots are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size needs to be minimized. Together with the novel properties of new strain-tunable quantum dots, these findings will be especially useful for multicolor and super-resolution imaging at the single-molecule level.

  16. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  17. [Molecular imaging for early diagnosis of Alzheimer's disease].

    PubMed

    Pozo García, Miguel Angel

    2004-01-01

    The progressive aging of the population and the difficulty of diagnosing and treating Alzheimer's disease (AD) portends an exponencial increase in the prevalence of this illness. One way to approach this social and health problem is to develop diagnostic techniques that allow us to detect the disease in its pre-clinical stages and apply early treatment that can slow down AD advance. Molecular imaging, in particular that generated by positron emission tomography with 2-fluoro-2 deoxi-D-glucose (PET-FDG) has shown high sensitivity in detecting changes in cerebral metabolic activity in the early stages of AD, and allow other dementias and physiological changes that accompany normal aging to be distinguished from AD. PMID:15997594

  18. Recent Advances in Imaging Alzheimer’s Disease

    PubMed Central

    Braskie, Meredith N.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    Advances in brain imaging technology in the past five years have contributed greatly to the understanding of Alzheimer’s disease (AD). Here, we review recent research related to amyloid imaging, new methods for magnetic resonance imaging analyses, and statistical methods. We also review research that evaluates AD risk factors and brain imaging, in the context of AD prediction and progression. We selected a variety of illustrative studies, describing how they advanced the field and are leading AD research in promising new directions. PMID:22672880

  19. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  20. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  1. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  2. PETglove: a new technology for portable molecular imaging

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Gruionu, Lucian G.; Cheng, Patrick; Abshire, Pamela; Saveliev, Valeri; Mun, Seong K.; Cleary, Kevin; Weinberg, Irving N.

    2007-03-01

    PET (Positron Emission Tomography) scanning has become a dominant force in oncology care because of its ability to identify regions of abnormal function. The current generation of PET scanners is focused on whole-body imaging, and does not address aspects that might be required by surgeons or other practitioners interested in the function of particular body parts. We are therefore developing and testing a new class of hand-operated molecular imaging scanners designed for use with physical examinations and intraoperative visualization. These devices integrate several technological advances, including (1) nanotechnology-based quantum photodetectors for high performance at low light levels, (2) continuous position tracking of the detectors so that they form a larger 'virtual detector', and (3) novel reconstruction algorithms that do not depend on a circular or ring geometry. The first incarnations of this device will be in the form of a glove with finger-mounted detectors or in a "sash" of detectors that can be draped over the patient. Potential applications include image-guided biopsy, surgical resection of tumors, assessment of inflammatory conditions, and early cancer detection. Our first prototype is in development now along with a clinical protocol for pilot testing.

  3. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  4. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  5. Advances in hyperspectral LWIR pushbroom imagers

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Mattila, Antti-Jussi; Hyvärinen, Timo; Weatherbee, Oliver

    2011-06-01

    Two long-wave infrared (LWIR) hyperspectral imagers have been under extensive development. The first one utilizes a microbolometer focal plane array (FPA) and the second one is based on an Mercury Cadmium Telluride (MCT) FPA. Both imagers employ a pushbroom imaging spectrograph with a transmission grating and on-axis optics. The main target has been to develop high performance instruments with good image quality and compact size for various industrial and remote sensing application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation. The challenge is much bigger in a hyperspectral instrument than in a broadband camera, because the optical signal from the target is spread spectrally, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target even by 1000 times. The means to handle the instrument radiation in the MCT imager include precise instrument temperature stabilization (but not cooling), efficient optical background suppression and the use of background-monitoring-on-chip (BMC) method. This approach has made possible the implementation of a high performance, extremely compact spectral imager in the 7.7 to 12.4 μm spectral range. The imager performance with 84 spectral bands and 384 spatial pixels has been experimentally verified and an excellent NESR of 14 mW/(m2srμm) at 10 μm wavelength with a 300 K target has been achieved. This results in SNR of more than 700. The LWIR imager based on a microbolometer detector array, first time introduced in 2009, has been upgraded. The sensitivity of the imager has improved drastically by a factor of 3 and SNR by about 15 %. It provides a rugged hyperspectral camera for chemical imaging applications in reflection mode in laboratory and industry.

  6. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  7. Molecular Imaging of Myocardial Injury: A Magnetofluorescent Approach

    PubMed Central

    Sosnovik, David E.

    2009-01-01

    The role of molecular imaging in enhancing the understanding of myocardial injury and repair is rapidly expanding. Moreover, in recent years magnetic resonance and fluorescence-based approaches have been added to the molecular imaging armamentarium and have been used to image selected molecular and cellular targets in the myocardium. Apoptosis, necrosis, macrophage infiltration, myeloperoxidase activity, cathepsin activity, and type 1 collagen have all been imaged in vivo with a magnetofluorescent (MRI and/or fluorescence) approach. This review highlights the potential of these and other magnetofluorescent agents, with particular focus on their role in ischemic heart disease. PMID:20090858

  8. Combining advanced imaging processing and low cost remote imaging capabilities

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  9. Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications

    PubMed Central

    Chang, John; Schomer, Donald; Dragovich, Tomislav

    2015-01-01

    Pancreatic adenocarcinoma is one of the deadliest human malignancies. Early detection is difficult and effective treatment is limited. Verifying the presence of micrometastatic dissemination and vessel invasion remains elusive, limiting radiological staging once this diagnosis is made. Diagnostic imaging provides independent tools to evaluate and characterize the biologic behavior of pancreatic cancer. Conventional anatomic imaging alone with either CT or MRI yields useful information on organ involvement but is limited in providing molecular and physiological information. Molecular imaging techniques such as PET or MRS provide information on metabolic and signaling pathways. Advanced MR sequences that target physiological parameters expand imaging options to characterize these tumors. By considering the parametric data from these three imaging approaches (anatomic, molecular, and physiological) we can better define specific tumor signatures. Such parametric characterization can provide insight into tumor metabolism, cellular density, protein expression, focal perfusion, and vascular permeability of these tumors. Radiogenomics research has already demonstrated ability to obtain information about cancer's genotype and phenotype; this is without invasive procedures or surgery. Further advances in these areas of experimental imaging hold promise to enable future clinical advances in detection and therapy of pancreatic cancer. PMID:26146615

  10. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    PubMed

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  11. Molecular Imaging with Single-Walled Carbon Nanotubes

    PubMed Central

    Hong, Hao; Gao, Ting; Cai, Weibo

    2011-01-01

    Nanoparticle-based molecular imaging has emerged as an interdisciplinary field which involves physics, chemistry, engineering, biology, and medicine. Single-walled carbon nanotubes (SWCNTs) have unique properties which make them suitable for applications in a variety of imaging modalities, such as magnetic resonance, near-infrared fluorescence, Raman spectroscopy, photoacoustic tomography, and radionuclide-based imaging. In this review, we will summarize the current state-of-the-art of SWCNTs in molecular imaging applications. Multifunctionality is the key advantage of nanoparticles over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoparticle to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. A multifunctional, SWCNT-based nanoplatform holds great potential for clinical applications in the future. PMID:21754949

  12. Advanced Image Search: A Strategy for Creating Presentation Boards

    ERIC Educational Resources Information Center

    Frey, Diane K.; Hines, Jean D.; Swinker, Mary E.

    2008-01-01

    Finding relevant digital images to create presentation boards requires advanced search skills. This article describes a course assignment involving a technique designed to develop students' literacy skills with respect to locating images of desired quality and content from Internet databases. The assignment was applied in a collegiate apparel…

  13. Prostate Radiotherapy in the Era of Advanced Imaging and Precision Medicine

    PubMed Central

    Dulaney, Caleb R.; Osula, Daniel O.; Yang, Eddy S.; Rais-Bahrami, Soroush

    2016-01-01

    Tremendous technological advancements in prostate radiotherapy have decreased treatment toxicity and improved clinical outcomes for men with prostate cancer. While these advances have allowed for significant treatment volume reduction and whole-organ dose escalation, further improvement in prostate radiotherapy has been limited by classic techniques for diagnosis and risk stratification. Developments in prostate imaging, image-guided targeted biopsy, next-generation gene expression profiling, and targeted molecular therapies now provide information to stratify patients and select treatments based on tumor biology. Image-guided targeted biopsy improves detection of clinically significant cases of prostate cancer and provides important information about the biological behavior of intraprostatic lesions which can further guide treatment decisions. We review the evolution of prostate magnetic resonance imaging (MRI) and MRI-ultrasound fusion-guided prostate biopsy. Recent advancements in radiation therapy including dose escalation, moderate and extreme hypofractionation, partial prostate radiation therapy, and finally dose escalation by simultaneous integrated boost are discussed. We also review next-generation sequencing and discuss developments in targeted molecular therapies. Last, we review ongoing clinical trials and future treatment paradigms that integrate targeted biopsy, molecular profiling and therapy, and prostate radiotherapy. PMID:27022486

  14. Prostate Radiotherapy in the Era of Advanced Imaging and Precision Medicine.

    PubMed

    Dulaney, Caleb R; Osula, Daniel O; Yang, Eddy S; Rais-Bahrami, Soroush

    2016-01-01

    Tremendous technological advancements in prostate radiotherapy have decreased treatment toxicity and improved clinical outcomes for men with prostate cancer. While these advances have allowed for significant treatment volume reduction and whole-organ dose escalation, further improvement in prostate radiotherapy has been limited by classic techniques for diagnosis and risk stratification. Developments in prostate imaging, image-guided targeted biopsy, next-generation gene expression profiling, and targeted molecular therapies now provide information to stratify patients and select treatments based on tumor biology. Image-guided targeted biopsy improves detection of clinically significant cases of prostate cancer and provides important information about the biological behavior of intraprostatic lesions which can further guide treatment decisions. We review the evolution of prostate magnetic resonance imaging (MRI) and MRI-ultrasound fusion-guided prostate biopsy. Recent advancements in radiation therapy including dose escalation, moderate and extreme hypofractionation, partial prostate radiation therapy, and finally dose escalation by simultaneous integrated boost are discussed. We also review next-generation sequencing and discuss developments in targeted molecular therapies. Last, we review ongoing clinical trials and future treatment paradigms that integrate targeted biopsy, molecular profiling and therapy, and prostate radiotherapy. PMID:27022486

  15. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  16. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  17. Advances in the cellular and molecular biology of angiogenesis.

    PubMed

    Egginton, Stuart; Bicknell, Roy

    2011-12-01

    Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine. PMID:22103485

  18. Advances in noninvasive imaging of melanoma.

    PubMed

    Menge, Tyler D; Pellacani, Giovanni

    2016-03-01

    Melanoma is the most dangerous type of skin cancer and its incidence has risen sharply in recent decades. Early detection of disease is critical for improving patient outcomes. Any pigmented lesion that is clinically concerning must be removed by biopsy for morphologic investigation on histology. However, biopsies are invasive and can cause significant morbidity, and their accuracy in detecting melanoma may be limited by sampling error. The advent of noninvasive imaging devices has allowed for assessment of intact skin, thereby minimizing the need for biopsy; and these technologies are increasingly being used in the diagnosis and management of melanoma. Reflectance confocal microscopy, optical coherence tomography, ultrasonography, and multispectral imaging are noninvasive imaging techniques that have emerged as diagnostic aids to physical exam and/or conventional dermoscopy. This review summarizes the current knowledge about these techniques and discusses their practical applications and limitations. PMID:26963113

  19. Functional knee assessment with advanced imaging.

    PubMed

    Amano, Keiko; Li, Qi; Ma, C Benjamin

    2016-06-01

    The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes. PMID:27052009

  20. The Advanced Light Source: A new tool for research in atomic and molecular physics

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters. 13 figs., 4 tabs.

  1. Advanced MEMS-based infrared imager

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    2003-04-01

    Infrared radiation imager is of important for a wide range of applications. IR infrared imagers have not been widely available due to cost and complexity issues. A major cost of IR imager is associated with the requirements of cooling and pixel-level integration with electronic amplifier and read-out circuitry that are often incompatible with the detector materials. Recent research activities have lead to a new class of IR imager based on thermally isolated MEMS (micro-electromechanical systems) arrays whose bending can be directly detected by optical means. This approach eliminates the need for cooling and complex electronic multiplexers, holding the potential to drastically reduce IR imager cost. However, MEMS based IR imaging devices demonstrated to date are less sensitive than the commercially available ones. We have established a comprehensive finite element model (FEM) using Ansys tool. An accurate computer model for the proposed MEME IR detector is critical for the device development and fabrication. The model greatly enhanced our capability to cost effectively optimize the design from concept to fabrication layout. Our model predicts the deformation of this pixel structure under a surface stress for both thermal and photo-induced effects under various conditions. This simulation model provided a design base for new generation of optical MEMS IR sensors that has higher sensitivity and the potential of incorporating passive thermal amplification. Our simple MEMS design incorporates optical read-out, which eliminates the drawback of electronic means that inevitably introduce additional signal loss due to thermal contact made to the detector element. When packaged under vacuum environment, significant sensitivity improvement is anticipated. The deflection of a cantilever as a function of a rise in its temperature is determined by the classical thermomechanical governing equation for a bimaterial cantilever beam. Our finite element model is established using

  2. Molecular Imaging Using Fluorescence and Bioluminescence to Reveal Tissue Response to Laser-Mediated Thermal Injury

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Jansen, E. Duco; Contag, Christopher H.

    For decades biological investigation has focused on a reductionist approach, which has greatly advanced our understanding of the biological process, but has also served to move the analysis further and further away from the living body. This was necessary as we sought to identify the cells, genes, mutations and/or etiological agents that were associated with a given process. The information generated through these approaches can now be used to advance more integrative strategies in which specific cellular and molecular events can be studied in context of the functional circulation and intact organ systems of living animals, and humans. Essential tools for integrative analyses of biology include imaging modalities that enable visualization of structure and function in the living body. The relatively recent development of molecular probes as exogenous contrast agents and reporter genes that encode proteins with unique properties that can be distinguished from tissues and cells has ushered in a new set of approaches that are being called molecular imaging.

  3. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  4. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    PubMed

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  5. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  6. Advances in image registration and fusion

    NASA Astrophysics Data System (ADS)

    Steer, Christopher; Rogers, Jeremy; Smith, Moira; Heather, Jamie; Bernhardt, Mark; Hickman, Duncan

    2008-03-01

    Many image fusion systems involving passive sensors require the accurate registration of the sensor data prior to performing fusion. Since depth information is not readily available in such systems, all registration algorithms are intrinsically approximations based upon various assumption about the depth field. Although often overlooked, many registration algorithms can break down in certain situations and this may adversely affect the image fusion performance. In this paper, we discuss a framework for quantifying the accuracy and robustness of image registration algorithms which allows a more precise understanding of their shortcomings. In addition, some novel algorithms have been investigated that overcome some of these limitations. A second aspect of this work has considered the treatment of images from multiple sensors whose angular and spatial separation is large and where conventional registration algorithms break down (typically greater than a few degrees of separation). A range of novel approaches is reported which exploit the use of parallax to estimate depth information and reconstruct a geometrical model of the scene. The imagery can then be combined with this geometrical model to render a variety of useful representations of the data. These techniques (which we term Volume Registration) show great promise as a means of gathering and presenting 3D and 4D scene information for both military and civilian applications.

  7. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  8. Image-guided surgery using multimodality strategy and molecular probes.

    PubMed

    Xi, Lei; Jiang, Hubei

    2016-01-01

    The ultimate goal of cancer surgery is to maximize the excision of tumorous tissue with minimal damage to the collateral normal tissues, reduce the postoperative recurrence, and improve the survival rate of patients. In order to locate tumor lesions, highlight tumor margins, visualize residual disease in the surgical wound, and map potential lymph node metastasis, various imaging techniques and molecular probes have been investigated to assist surgeons to perform more complete tumor resection. Combining imaging techniques with molecular probes is particularly promising as a new approach for image-guided surgery. Considering inherent limitations of different imaging techniques and insufficient sensitivity of nonspecific molecular probes, image-guided surgery with multimodality strategy and specific molecular probes appears to be an optimal choice. In this article, we briefly describe typical imaging techniques and molecular probes followed by a focused review on the current progress of multimodal image-guided surgery with specific molecular navigation. We also discuss optimal strategy that covers all stages of image-guided surgery including preoperative scanning of tumors, intraoperative inspection of surgical bed and postoperative care of patients. PMID:26053199

  9. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  10. Advances in PET Imaging of Degenerative, Cerebrovascular, and Traumatic Causes of Dementia.

    PubMed

    Eisenmenger, Laura B; Huo, Eugene J; Hoffman, John M; Minoshima, Satoshi; Matesan, Manuela C; Lewis, David H; Lopresti, Brian J; Mathis, Chester A; Okonkwo, David O; Mountz, James M

    2016-01-01

    In this review we present the most recent advances in nuclear medicine imaging as a diagnostic and management tool for dementia. The clinical diagnosis of dementia syndromes can be challenging for physicians, particularly in the early stages of disease. Given the growing number of individuals affected by dementia, early and accurate diagnosis can lead to improved clinical management of patients. Although tests are available for exclusion of certain causes of cognitive impairment, the results rarely allow the clinician to make a definitive diagnosis. For this reason, information obtained from imaging ("imaging biomarkers") is playing an increasingly important role in the workup of patients with suspected dementia. Imaging biomarkers also provide indispensable tools for clinical and preclinical studies of dementing illnesses to elucidate their pathophysiology and to develop better therapies. A wide range of imaging has been used to diagnose and investigate neurodegenerative disorders including structural, cerebral perfusion, glucose metabolism, neurochemical, and molecular imaging. In the first section, we discuss the imaging methods used in clinical practice to diagnose dementia as well as explore additional experimental modalities that are currently used as research tools. In the second section, a comprehensive review covering the myriad aspects of vascular disease as a cause of dementia is presented and illustrated with MRI- and PET-focused case examples. In the third section, advances in imaging Alzheimer disease pathology are emphasized by reviewing current approaches for PET imaging with β-amyloid imaging agents. We provide an outline for the appropriate use criteria for β-amyloid imaging agents in dementia. In addition, the recognition of the importance of neocortical neurofibrillary tangles as related to Alzheimer disease progression has led to the development of promising tau imaging agents such as [(18)F]T807. The last section provides a history brain

  11. Molecular imaging and personalized medicine: an uncertain future.

    PubMed

    Nunn, Adrian D

    2007-12-01

    The Food and Drug Administration has described their view of the role that imaging will play in the approval, and perhaps postapproval, use of new therapeutic drugs. The therapeutic drug industry and regulatory authorities have turned to imaging to help them achieve better efficiency and efficacy. We must extend this initiative by demonstrating that molecular imaging can also improve the efficiency and efficacy of routine treatment with these same drugs. The role of molecular imaging in personalized medicine, using targeted drugs in oncology, is very attractive because of the regional information that it provides (in many cases, with a functional or dynamic component), which cannot be provided by in vitro methods ("regional proteomics"). There is great potential for molecular imaging to play a major role in selecting appropriate patients and providing early proof of response, which is critical to addressing the conflict between the high price of treatment and limited reimbursement budgets. This is a new venture in both molecular imaging and targeted drugs. However, there are various regulatory, financial, and practical barriers that must be overcome to achieve this aim, in addition to the normal scientific challenges of drug discovery. There is an urgent need to reduce the cost (i.e., time and money) of developing imaging agents for routine clinical use. The mismatch between the current regulations and personalized medicine includes molecular imaging and requires the engagement of the regulatory authorities to correct. Therapeutic companies must be engaged early in the development of new targeted drugs and molecular imaging agents to improve the fit between the two drug types. Clinical trials must be performed to generate data that not only shows the efficacy of imaging plus therapy in a medical sense, but also in a financial sense. Molecular imaging must be accepted as not just good science but also as central to routine patient management in the personalized

  12. Recent advances in radiology and medical imaging

    SciTech Connect

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  13. Advanced image analysis for the preservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    France, Fenella G.; Christens-Barry, William; Toth, Michael B.; Boydston, Kenneth

    2010-02-01

    The Library of Congress' Preservation Research and Testing Division has established an advanced preservation studies scientific program for research and analysis of the diverse range of cultural heritage objects in its collection. Using this system, the Library is currently developing specialized integrated research methodologies for extending preservation analytical capacities through non-destructive hyperspectral imaging of cultural objects. The research program has revealed key information to support preservation specialists, scholars and other institutions. The approach requires close and ongoing collaboration between a range of scientific and cultural heritage personnel - imaging and preservation scientists, art historians, curators, conservators and technology analysts. A research project of the Pierre L'Enfant Plan of Washington DC, 1791 had been undertaken to implement and advance the image analysis capabilities of the imaging system. Innovative imaging options and analysis techniques allow greater processing and analysis capacities to establish the imaging technique as the first initial non-invasive analysis and documentation step in all cultural heritage analyses. Mapping spectral responses, organic and inorganic data, topography semi-microscopic imaging, and creating full spectrum images have greatly extended this capacity from a simple image capture technique. Linking hyperspectral data with other non-destructive analyses has further enhanced the research potential of this image analysis technique.

  14. Advanced Imaging Among Health Maintenance Organization Enrollees With Cancer

    PubMed Central

    Loggers, Elizabeth T.; Fishman, Paul A.; Peterson, Do; O'Keeffe-Rosetti, Maureen; Greenberg, Caprice; Hornbrook, Mark C.; Kushi, Lawrence H.; Lowry, Sarah; Ramaprasan, Arvind; Wagner, Edward H.; Weeks, Jane C.; Ritzwoller, Debra P.

    2014-01-01

    Purpose: Fee-for-service (FFS) Medicare expenditures for advanced imaging studies (defined as computed tomography [CT], magnetic resonance imaging [MRI], positron emission tomography [PET] scans, and nuclear medicine studies [NM]) rapidly increased in the past two decades for patients with cancer. Imaging rates are unknown for patients with cancer, whether under or over age 65 years, in health maintenance organizations (HMOs), where incentives may differ. Materials and Methods: Incident cases of breast, colorectal, lung, prostate, leukemia, and non-Hodgkin lymphoma (NHL) cancers diagnosed in 2003 and 2006 from four HMOs in the Cancer Research Network were used to determine 2-year overall mean imaging counts and average total imaging costs per HMO enrollee by cancer type for those under and over age 65. Results: There were 44,446 incident cancer patient cases, with a median age of 75 (interquartile range, 71-81), and 454,029 imaging procedures were performed. The mean number of images per patient increased from 7.4 in 2003 to 12.9 in 2006. Rates of imaging were similar across age groups, with the exception of greater use of echocardiograms and NM studies in younger patients with breast cancer and greater use of PET among younger patients with lung cancer. Advanced imaging accounted for approximately 41% of all imaging, or approximately 85% of the $8.7 million in imaging expenditures. Costs were nearly $2,000 per HMO enrollee; costs for younger patients with NHL, leukemia, and lung cancer were nearly $1,000 more in 2003. Conclusion: Rates of advanced imaging appear comparable among FFS and HMO participants of any age with these six cancers. PMID:24844241

  15. Recent advancement of molecular mechanisms of liver fibrosis

    PubMed Central

    Brenner, David A.

    2015-01-01

    Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis. PMID:25869468

  16. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  17. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  18. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    PubMed

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  19. Dyslexia: advances in clinical and imaging studies.

    PubMed

    Koeda, Tatsuya; Seki, Ayumi; Uchiyama, Hitoshi; Sadato, Norihiro

    2011-03-01

    The aim of this report is to describe the characteristics of Japanese dyslexia, and to demonstrate several of our studies about the extraction of these characteristic and their neurophysiological and neuroimaging abnormalities, as well as advanced studies of phonological awareness and the underlying neural substrate. Based on these results, we have proposed a 2-step approach for remedial education (e-learning web site: http://www.dyslexia-koeda.jp/). The first step is decoding, which decreases reading errors, and the second is vocabulary learning, which improves reading fluency. This 2-step approach is designed to serve first grade children. In addition, we propose the RTI (response to intervention) model as a desirable system for remedial education. PMID:21146943

  20. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  1. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  2. Advances in Molecular Serotyping and Subtyping of Escherichia coli†

    PubMed Central

    Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; Needleman, David S.; Baranzoni, Gian Marco; Feng, Peter

    2016-01-01

    Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers. PMID:27199968

  3. Advances in molecular serotyping and subtyping of Escherichia coli

    DOE PAGESBeta

    Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; Needleman, David S.; Baranzoni, Gian Marco; Feng, Peter

    2016-05-03

    Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less

  4. Advances and applications of molecular cloning in clinical microbiology.

    PubMed

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents. PMID:25023463

  5. Recent advances in the molecular basis of frontotemporal dementia

    PubMed Central

    Rademakers, Rosa; Neumann, Manuela; Mackenzie, Ian R. A.

    2013-01-01

    Frontotemporal dementia (FTD) is a clinical syndrome with heterogeneous molecular basis. Until recently, our knowledge was limited to a minority of cases associated with abnormalities of the tau protein or gene (MAPT). However, in 2006, mutations in progranulin (GRN) were discovered as another important cause of familial FTD. That same year, TAR DNA binding protein 43 (TDP-43) was identified as the pathological protein in the most common subtypes of FTD and ALS. Since then, significant efforts have been made to understand the normal functions and regulation of GRN and TDP-43 and their roles in neurodegeneration. More recently, other DNA/RNA binding proteins (FUS, EWS and TAF15) were identified as pathological proteins in most of the remaining cases of FTD. And just six months ago, abnormal expansion of a hexanucleotide repeat in C9ORF72 was found to be the most common genetic cause of both FTD and ALS. With this remarkable progress, it appears that all the common FTD-causing genes have now been discovered and the major pathological proteins identified. This review highlights recent advances in the molecular aspects of FTD, which will provide the basis for improved patient care through the future development of more targeted diagnostic tests and therapies. PMID:22732773

  6. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    PubMed

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  7. Advances in CT imaging for urolithiasis

    PubMed Central

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J.; Eisner, Brian; Sahani, Dushyant V.; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  8. Satisfaction of search experiments in advanced imaging

    NASA Astrophysics Data System (ADS)

    Berbaum, Kevin S.

    2012-03-01

    The objective of our research is to understand the perception of multiple abnormalities in an imaging examination and to develop strategies for improved diagnostic. We are one of the few laboratories in the world pursuing the goal of reducing detection errors through a better understanding of the underlying perceptual processes involved. Failure to detect an abnormality is the most common class of error in diagnostic imaging and generally is considered the most serious by the medical community. Many of these errors have been attributed to "satisfaction of search," which occurs when a lesion is not reported because discovery of another abnormality has "satisfied" the goal of the search. We have gained some understanding of the mechanisms of satisfaction of search (SOS) traditional radiographic modalities. Currently, there are few interventions to remedy SOS error. For example, patient history that the prompts specific abnormalities, protects the radiologist from missing them even when other abnormalities are present. The knowledge gained from this programmatic research will lead to reduction of observer error.

  9. Advances in CT imaging for urolithiasis.

    PubMed

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J; Eisner, Brian; Sahani, Dushyant V; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  10. Advanced terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Redman, Brian; Espinola, Richard L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.; Griffin, Steven T.; Halford, Carl E.; Reynolds, Joe

    2007-04-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory (ARL) have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The details of this MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium. The focus of this paper is to report on recent advances to the base model which have been designed to more realistically account for the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system. The advanced terahertz-band imaging system performance model now also accounts for target and background thermal emission, and has been recast into a user-friendly, Windows-executable tool. This advanced THz model has been developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will describe the advanced THz model and its new radiometric sub-model in detail, and provide modeling and experimental results on target observability as a function of target and background orientation.

  11. Molecular Imaging and Radiotherapy: Theranostics for Personalized Patient Management

    PubMed Central

    Velikyan, Irina

    2012-01-01

    This theme issue presents current achievements in the development of radioactive agents, pre-clinical and clinical molecular imaging, and radiotherapy in the context of theranostics in the field of oncology. PMID:22768022

  12. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  13. [Interventional MR imaging: state of the art and technological advances].

    PubMed

    Viard, R; Rousseau, J

    2008-01-01

    Due to its excellent soft tissue contrast and lack of ionizing radiation, MR imaging is well suited for interventional procedures. MRI is being increasingly used for guidance during percutaneous procedures or surgery. Technical advances in interventional MR imaging are reviewed in this paper. Ergonomical factors with improved access to patients as well as advances in informatics, electronics and robotics largely explain this increasing role. Different elements are discussed from improved access to patients in the scanners to improved acquisition pulse sequences. Selected clinical applications and recent publications will be presented to illustrate the current status of this technique. PMID:18288022

  14. Advanced Imaging Catheter: Final Project Report

    SciTech Connect

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A

    2001-07-20

    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  15. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  16. Imaging spectrometer technologies for advanced earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from earth orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s. Previously announced in STAR as N83-28542

  17. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  18. Continuous-terahertz-wave molecular imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Wang, Ruixue; Zuo, Shasha; Wu, Dong; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-07-01

    Molecular imaging techniques are becoming increasingly important in biomedical research and potentially in clinical practice. We present a continuous-terahertz (THz)-wave molecular imaging system for biomedical applications, in which an infrared (IR) laser is integrated into a 0.2-THz reflection-mode continuous-THz-wave imaging system to induce surface plasmon polaritons on the nanoparticles and further improve the intensity of the reflected signal from the water around the nanoparticles. A strong and rapid increment of the reflected THz signal in the nanoparticle solution upon the IR laser irradiation is demonstrated, using either gold or silver nanoparticles. This low-cost, simple, and stable continuous-THz-wave molecular imaging system is suitable for miniaturization and practical imaging applications; in particular, it shows great promise for cancer diagnosis and nanoparticle drug-delivery monitoring.

  19. Molecular Imaging in Tumor Angiogenesis and Relevant Drug Research

    PubMed Central

    Ma, Xibo; Tian, Jie; Yang, Xin; Qin, Chenghu

    2011-01-01

    Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role in the process of tumor and relevant drug research. CT, especially Micro-CT, can provide the anatomic information for a region of interest (ROI); PET and SPECT can provide functional information for the ROI. BLI and FMI can provide optical information for an ROI. Tumor angiogenesis and relevant drug development is a lengthy, high-risk, and costly process, in which a novel drug needs about 10–15 years of testing to obtain Federal Drug Association (FDA) approval. Molecular imaging can enhance the development process by understanding the tumor mechanisms and drug activity. In this paper, we focus on tumor angiogenesis, and we review the characteristics of molecular imaging modalities and their applications in tumor angiogenesis and relevant drug research. PMID:21808639

  20. Molecular and Therapeutic Advances in the Diagnosis and Management of Malignant Pheochromocytomas and Paragangliomas

    PubMed Central

    Lowery, Aoife J.; Walsh, Siun; McDermott, Enda W.

    2013-01-01

    Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare catecholamine-secreting tumors derived from chromaffin cells originating in the neural crest. These tumors represent a significant diagnostic and therapeutic challenge because the diagnosis of malignancy is frequently made in retrospect by the development of metastatic or recurrent disease. Complete surgical resection offers the only potential for cure; however, recurrence can occur even after apparently successful resection of the primary tumor. The prognosis for malignant disease is poor because traditional treatment modalities have been limited. The last decade has witnessed exciting discoveries in the study of PCCs and PGLs; advances in molecular genetics have uncovered hereditary and germline mutations of at least 10 genes that contribute to the development of these tumors, and increasing knowledge of genotype-phenotype interactions has facilitated more accurate determination of malignant potential. Elucidating the molecular mechanisms responsible for malignant transformation in these tumors has opened avenues of investigation into targeted therapeutics that show promising results. There have also been significant advances in functional and radiological imaging and in the surgical approach to adrenalectomy, which remains the mainstay of treatment for PCC. In this review, we discuss the currently available diagnostic and therapeutic options for patients with malignant PCCs and PGLs and detail the molecular rationale and clinical evidence for novel and emerging diagnostic and therapeutic strategies. PMID:23576482

  1. Nanobody: The “Magic Bullet” for Molecular Imaging?

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  2. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  3. MRI Reporter Genes for Noninvasive Molecular Imaging.

    PubMed

    Yang, Caixia; Tian, Rui; Liu, Ting; Liu, Gang

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies. PMID:27213309

  4. Natural language processing and visualization in the molecular imaging domain.

    PubMed

    Tulipano, P Karina; Tao, Ying; Millar, William S; Zanzonico, Pat; Kolbert, Katherine; Xu, Hua; Yu, Hong; Chen, Lifeng; Lussier, Yves A; Friedman, Carol

    2007-06-01

    Molecular imaging is at the crossroads of genomic sciences and medical imaging. Information within the molecular imaging literature could be used to link to genomic and imaging information resources and to organize and index images in a way that is potentially useful to researchers. A number of natural language processing (NLP) systems are available to automatically extract information from genomic literature. One existing NLP system, known as BioMedLEE, automatically extracts biological information consisting of biomolecular substances and phenotypic data. This paper focuses on the adaptation, evaluation, and application of BioMedLEE to the molecular imaging domain. In order to adapt BioMedLEE for this domain, we extend an existing molecular imaging terminology and incorporate it into BioMedLEE. BioMedLEE's performance is assessed with a formal evaluation study. The system's performance, measured as recall and precision, is 0.74 (95% CI: [.70-.76]) and 0.70 (95% CI [.63-.76]), respectively. We adapt a JAVA viewer known as PGviewer for the simultaneous visualization of images with NLP extracted information. PMID:17084109

  5. Image force microscopy of molecular resonance: A microscope principle

    PubMed Central

    Rajapaksa, I.; Uenal, K.; Wickramasinghe, H. Kumar

    2010-01-01

    We demonstrate a technique in microscopy which extends the domain of atomic force microscopy to optical spectroscopy at the nanometer scale. We show that molecular resonance of feature sizes down to the single molecular level can be detected and imaged purely by mechanical detection of the force gradient between the interaction of the optically driven molecular dipole and its mirror image in a platinum coated scanning probe tip. This microscopy and spectroscopy technique is extendable to frequencies ranging from radio to infrared and the ultraviolet. PMID:20859536

  6. AXIOM: Advanced X-ray imaging of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Branduardi-Raymont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T.

    2012-04-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  7. The ADIS advanced data acquisition, imaging, and storage system

    SciTech Connect

    Flaherty, J.W.

    1986-01-01

    The design and development of Automated Ultrasonic Scanning Systems (AUSS) by McDonnell Aircraft Company has provided the background for the development of the ADIS advanced data acquisition, imaging, and storage system. The ADIS provides state-of-the-art ultrasonic data processing and imaging features which can be utilized in both laboratory and production line composite evaluation applications. System features, such as, real-time imaging, instantaneous electronic rescanning, multitasking capability, histograms, and cross-sections, provide the tools necessary to inspect and evaluate composite parts quickly and consistently.

  8. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  9. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  10. In-flight performance of the Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffrey J.; Osgood, Roderic; Auchter, Joseph; Hurt, W. Todd; Hitomi, Miyamoto; Sasaki, Masayuki; Tahara, Yoshihiko; Tadros, Alfred; Faller, Ken; Mclaren, Mark; Sheffield, Jonathan; Gaiser, John; Kamel, Ahmed; Gunshor, Mathew

    2006-08-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. MTSAT-1R was launched from the Tanegashima Space Center on 2005 February 26 and became formally operational on 2005 June 28. This paper compares in-flight performance of JAMI with predictions made before launch. The performance areas discussed include radiometric sensitivity (NEDT and SNR) versus spectral channel, calibration accuracy versus spectral channel derived from comparisons of JAMI and AIRS measurements and image navigation and registration.

  11. Advanced Techniques for Constrained Internal Coordinate Molecular Dynamics

    PubMed Central

    Wagner, Jeffrey R.; Balaraman, Gouthaman S.; Niesen, Michiel J. M.; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate representation. Freezing high frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed in order to make the CICMD method robust and widely usable. In this paper we have designed a new framework for 1) initializing velocities for non-independent CICMD coordinates, 2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4) cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to fold four proteins to their native topologies. With these advancements we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  12. Imaging for understanding speech communication: Advances and challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth

    2005-04-01

    Research in speech communication has relied on a variety of instrumentation methods to illuminate details of speech production and perception. One longstanding challenge has been the ability to examine real-time changes in the shaping of the vocal tract; a goal that has been furthered by imaging techniques such as ultrasound, movement tracking, and magnetic resonance imaging. The spatial and temporal resolution afforded by these techniques, however, has limited the scope of the investigations that could be carried out. In this talk, we focus on some recent advances in magnetic resonance imaging that allow us to perform near real-time investigations on the dynamics of vocal tract shaping during speech. Examples include Demolin et al. (2000) (4-5 images/second, ultra-fast turbo spin echo) and Mady et al. (2001,2002) (8 images/second, T1 fast gradient echo). A recent study by Narayanan et al. (2004) that used a spiral readout scheme to accelerate image acquisition has allowed for image reconstruction rates of 24 images/second. While these developments offer exciting prospects, a number of challenges lie ahead, including: (1) improving image acquisition protocols, hardware for enhancing signal-to-noise ratio, and optimizing spatial sampling; (2) acquiring quality synchronized audio; and (3) analyzing and modeling image data including cross-modality registration. [Work supported by NIH and NSF.

  13. Molecular imaging in atherosclerosis, thrombosis and vascular inflammation

    PubMed Central

    Choudhury, Robin P.; Fisher, Edward A.

    2009-01-01

    Appreciation of the molecular and cellular processes of atherosclerosis, thrombosis and vascular inflammation has identified new targets for imaging. The common goals of molecular imaging approaches are to accelerate and refine diagnosis, provide insights that reveal disease diversity, guide specific therapies and monitor the effects of those therapies. Here we undertake a comparative analysis of imaging modalities that have been used in this disease area. We consider the elements of contrast agents, emphasizing how an understanding of the biology of atherosclerosis and its complications can inform optimal design. We address the potential and limitations of current contrast approaches in respect of translation to clinically usable agents and speculate on future applications. PMID:19213945

  14. On the potential for molecular imaging with Cerenkov luminescence

    PubMed Central

    Lewis, Matthew A.; Kodibagkar, Vikram D.; Öz, Orhan K.; Mason, Ralph P.

    2011-01-01

    Recent observation of optical luminescence due to beta decay from suitable radiotracers has led to the possible development of new preclinical optical imaging methods. The generation of photons that can be detected using instrumentation optimized for bioluminescence imaging has been putatively associated with the Cerenkov effect. We describe the simultaneous utilization of fluorescence reporters to convert the Cerenkov luminescence to longer wavelengths for better tissue penetration and also for modulating the luminescence spectrum for potential molecular imaging strategies. PMID:21124555

  15. Quantum dot imaging platform for single-cell molecular profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel; Gao, Xiaohu

    2013-03-01

    Study of normal cell physiology and disease pathogenesis heavily relies on untangling the complexity of intracellular molecular mechanisms and pathways. To achieve this goal, comprehensive molecular profiling of individual cells within the context of microenvironment is required. Here we report the development of a multicolour multicycle in situ imaging technology capable of creating detailed quantitative molecular profiles for individual cells at the resolution of optical imaging. A library of stoichiometric fluorescent probes is prepared by linking target-specific antibodies to a universal quantum dot-based platform via protein A in a quick and simple procedure. Surprisingly, despite the potential for multivalent binding between protein A and antibody and the intermediate affinity of this non-covalent bond, fully assembled probes do not aggregate or exchange antibodies, facilitating highly multiplexed parallel staining. This single-cell molecular profiling technology is expected to open new opportunities in systems biology, gene expression studies, signalling pathway analysis and molecular diagnostics.

  16. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  17. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  18. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  19. The Advanced Gamma-Ray Imaging System (AGIS): Science Highlights

    SciTech Connect

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.; /UCLA

    2011-11-21

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of {approx}50 atmospheric Cherenkov telescopes distributed over an area of {approx}1 km{sup 2}, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of {gamma}-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view ({approx}4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of {approx}10{sup -13} erg cm{sup -2} sec{sup -1} will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent

  20. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  1. Advancing Molecular-Guided Surgery through probe development and testing in a moderate cost evaluation pipeline

    PubMed Central

    Pogue, Brian W; Paulsen, Keith D; Hull, Sally M.; Samkoe, Kimberly S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-01-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill & finish, toxicity testing, and early phase clinical trials with image guidance. PMID:25914500

  2. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rahman, Mohammed; Mack, Vivian; Sokolov, Konstantin; Rogers, Jeremy D.; Richards-Kortum, Rebecca; Descour, Michael R.

    2004-08-01

    Structured-illumination microscopy delivers confocal-imaging capabilities and may be used for optical sectioning in bio-imaging applications. However, previous structured-illumination implementations are not capable of imaging molecular changes within highly scattering, biological samples in reflectance mode. Here, we present two advances which enable successful structured illumination reflectance microscopy to image molecular changes in epithelial tissue phantoms. First, we present the sine approximation algorithm to improve the ability to reconstruct the in-focus plane when the out-of-focus light is much greater in magnitude. We characterize the dependencies of this algorithm on phase step error, random noise and backscattered out-of-focus contributions. Second, we utilize a molecular-specific reflectance contrast agent based on gold nanoparticles to label disease-related biomarkers and increase the signal and signal-to-noise ratio (SNR) in structured illumination microscopy of biological tissue. Imaging results for multi-layer epithelial cell phantoms with optical properties characteristic of normal and cancerous tissue labeled with nanoparticles targeted against the epidermal growth factor receptor (EGFR) are presented. Structured illumination images reconstructed with the sine approximation algorithm compare favorably to those obtained with a standard confocal microscope; this new technique can be implemented in simple and small imaging platforms for future clinical studies.

  3. [Recent advances in molecular genetics of GM2 gangliosidosis].

    PubMed

    Wakamatsu, N

    1995-12-01

    Recent advances in molecular genetics of GM2 gangliosidosis are reviewed. GM2 gangliosidosis is an autosomal recessive, neurodegenerative disease caused by a deficiency of beta-hexosaminidase (Hex, EC 3.2.1.52) A activity, resulting in accumulation of GM2 ganglioside in the lysosomes of neuronal cells. There are two catalytically active forms of this enzyme: Hex A, composed of one alpha and one beta subunits. Three forms of this disease, Tay-Sachs disease, Sandhoff disease, and GM2 activator deficiency, have been recognized according to whether the defect involves the alpha subunit, beta subunit, or GM2 activator protein, respectively. A number of gene abnormalities responsible for the disease have been identified and mutations specific for phenotypes and racial backgrounds are summarized. Recently, the murine models of human Tay-Sachs disease and Sandhoff disease have been produced. With the finding of dramatically clinical phenotypes in these mice, these models could be useful for research on the pathogenesis or therapy of these diseases. PMID:8577047

  4. [Molecular MR imaging. State of the research with examples describing individual results] .

    PubMed

    Fleige, G; Hamm, B; Zimmer, C

    2000-11-01

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. PMID:11142117

  5. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  6. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  7. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  8. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    PubMed

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  9. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  10. New strategy for monitoring targeted therapy: molecular imaging

    PubMed Central

    Teng, Fei-Fei; Meng, Xue; Sun, Xin-Dong; Yu, Jin-Ming

    2013-01-01

    Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future. PMID:24124361

  11. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation

    PubMed Central

    Eggleston, Heather; Panizzi, Peter

    2016-01-01

    Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods. PMID:26985401

  12. Fluorescent Molecular Imaging and Dosimetry Tools in Photodynamic Therapy

    PubMed Central

    Pogue, Brian W.; Samkoe, Kimberley S.; Gibbs-Strauss, Summer L.; Davis, Scott C.

    2013-01-01

    Measurement of fluorescence and phosphorescence in vivo is readily used to quantify the concentration of specific species that are relevant to photodynamic therapy. However, the tools to make the data quantitatively accurate vary considerably between different applications. Sampling of the signal can be done with point samples, such as specialized fiber probes or from bulk regions with either imaging or sampling, and then in broad region image-guided manner. Each of these methods is described below, the application to imaging photosensitizer uptake is discussed, and developing methods to image molecular responses to therapy are outlined. PMID:20552350

  13. Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies.

    PubMed

    Keunen, Olivier; Taxt, Torfinn; Grüner, Renate; Lund-Johansen, Morten; Tonn, Joerg-Christian; Pavlin, Tina; Bjerkvig, Rolf; Niclou, Simone P; Thorsen, Frits

    2014-09-30

    The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges. PMID:25078721

  14. Recent advances in image-guided targeted prostate biopsy.

    PubMed

    Brown, Anna M; Elbuluk, Osama; Mertan, Francesca; Sankineni, Sandeep; Margolis, Daniel J; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2015-08-01

    Prostate cancer is a common malignancy in the United States that results in over 30,000 deaths per year. The current state of prostate cancer diagnosis, based on PSA screening and sextant biopsy, has been criticized for both overdiagnosis of low-grade tumors and underdiagnosis of clinically significant prostate cancers (Gleason score ≥7). Recently, image guidance has been added to perform targeted biopsies of lesions detected on multi-parametric magnetic resonance imaging (mpMRI) scans. These methods have improved the ability to detect clinically significant cancer, while reducing the diagnosis of low-grade tumors. Several approaches have been explored to improve the accuracy of image-guided targeted prostate biopsy, including in-bore MRI-guided, cognitive fusion, and MRI/transrectal ultrasound fusion-guided biopsy. This review will examine recent advances in these image-guided targeted prostate biopsy techniques. PMID:25596716

  15. Advanced hyperspectral video imaging system using Amici prism.

    PubMed

    Feng, Jiao; Fang, Xiaojing; Cao, Xun; Ma, Chenguang; Dai, Qionghai; Zhu, Hongbo; Wang, Yongjin

    2014-08-11

    In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable. PMID:25321019

  16. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales.

    PubMed

    Hogstrom, L J; Guo, S M; Murugadoss, K; Bathe, M

    2016-02-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  17. Molecular imaging by single-photon emission

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Accorsi, R.; Cinti, M. N.; Colilli, S.; Fortuna, A.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lanza, R. C.; Loizzo, A.; Lucentini, M.; Pani, R.; Pellegrini, R.; Santavenere, F.; Scopinaro, F.

    2004-07-01

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon.

  18. Optical design and characterization of an advanced computational imaging system

    NASA Astrophysics Data System (ADS)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  19. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  20. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  1. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    PubMed Central

    Mills, Jena N.; Mehta, Vivek; Russin, Jonathan; Amar, Arun P.; Rajamohan, Anandh; Mack, William J.

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  2. Molecular imaging of breast cancer: present and future directions

    PubMed Central

    Alcantara, David; Leal, Manuel Pernia; García-Bocanegra, Irene; García-Martín, Maria L.

    2014-01-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises. PMID:25566530

  3. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  4. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  5. Labeling of virus components for advanced, quantitative imaging analyses.

    PubMed

    Sakin, Volkan; Paci, Giulia; Lemke, Edward A; Müller, Barbara

    2016-07-01

    In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging. PMID:26987299

  6. Advances in brain imaging: a new ethical challenge.

    PubMed

    Alfano, B; Brunetti, A

    1997-01-01

    Technical advances in the past 25 years permitted substantial advances in the neuroimaging field, expanding the diagnostic and research potentials and significantly reducing the use of old invasive imaging techniques for research purposes. The safer procedures now available allow acquisition of reference data, morphological assessment and functional characterisation from healthy volunteers. However, enrollment of volunteers is still a sensitive ethical issue. Ethical problems related to informed consent, for both research and diagnostic procedures, in patients with neuropsychiatric disorders represent an additional crucial issue. Furthermore, with both functional and structural neuroimaging studies, there is a theoretical risk of violation of individual privacy. Research in the neuroimaging field should tend to increase the amount of information obtained through appropriate post-processing procedures, including multimodality image fusion, and to limit stress and discomfort. PMID:9616958

  7. Advanced Imaging for Biopsy Guidance in Primary Brain Tumors

    PubMed Central

    Tsiouris, Apostolos J; Ramakrishna, Rohan

    2016-01-01

    Accurate glioma sampling is required for diagnosis and establishing eligibility for relevant clinical trials. MR-based perfusion and spectroscopy sequences supplement conventional MR in noninvasively predicting the areas of highest tumor grade for biopsy. We report the case of a patient with gliomatosis cerebri and multifocal patchy enhancement in whom the combination of advanced and conventional imaging attributes successfully guided a diagnostic biopsy. PMID:27014538

  8. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  9. Imprints of Molecular Clouds in Radio Continuum Images

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    2012-11-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic-ray particles. The contribution of the continuum emission along different path lengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the Snake filament, and G359.75-0.13 demonstrates an anti-correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are identified in Green Bank Telescope maps and Very Large Array images taken with uniform sampling of uv coverage. The level at which the continuum flux is suppressed in these sources suggests that the depth of the molecular cloud is similar to the size of the continuum emission within a factor of two. These examples suggest that high-resolution, high-dynamic-range continuum images can be powerful probes of interacting molecular clouds with massive stars and supernova remnants in regions where the kinematic distance estimates are ambiguous as well as in the nuclei of active galaxies.

  10. Multimodality molecular imaging--from target description to clinical studies.

    PubMed

    Schober, O; Rahbar, K; Riemann, B

    2009-02-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. PMID:19130054

  11. Multiphoton and photothermal imaging of molecular events in cancer

    NASA Astrophysics Data System (ADS)

    Skala, Melissa

    2010-10-01

    Optical techniques are attractive for monitoring disease processes in living tissues because they are relatively cheap, non-invasive and provide a wealth of functional information. Multiphoton microscopy (MPM) and Optical Coherence Tomography (OCT) are two types of three-dimensional optical imaging modalities that have demonstrated great utility in pre-clinical models of disease. These techniques are particularly useful for identifying metabolic and molecular biomarkers in cancer. These biomarkers can be used to identify the mechanisms of tumor growth, and to predict the response of a particular tumor to treatment. Specifically, MPM of the co-enzymes NADH and FAD was used to quantify metabolic changes associated with developing cancers in vivo. This imaging technique exploits intrinsic sources of tissue contrast and thus does not require contrast agents. Ongoing work combines this metabolic imaging technique with vascular imaging to provide a comprehensive picture of oxygen supply and demand with tumor therapy. Molecular signaling represents a third critical component in tumor physiology. To this end we have recently developed photothermal OCT, which combines coherent detection with laser-heated gold nanoparticles to achieve high-resolution molecular contrast at deeper depths than MPM. This multi-functional imaging platform will provide unprecedented insight into oxygen supply and demand, and molecular signaling in response to tumor growth and targeted cancer therapies in pre-clinical models.

  12. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  13. Molecular imaging: a promising tool to monitor islet transplantation.

    PubMed

    Wang, Ping; Medarova, Zdravka; Moore, Anna

    2011-01-01

    Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells. PMID:22013504

  14. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  15. Ultrafast molecular imaging by laser-induced electron diffraction

    SciTech Connect

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-05-15

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO{sub 2} molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  16. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  17. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    PubMed Central

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  18. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  19. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S; Endres, Christopher; Foss, Catherine; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard Jr, James Samuel; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander; Weisenberger, Andrew G.; Pomper, Martin

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  20. Meeting the challenges of PET-based molecular imaging in cancer.

    PubMed

    Choyke, Peter; Kurdziel, Karen A; Mena, Esther; Lindenberg, Maria L

    2013-09-01

    As personalized medicine becomes a reality, there is a need for specific imaging agents that reflect molecular characteristics of a cancer. Fluorodeoxyglucose is an important advance because of its sensitivity. Newer molecular imaging probes offer higher specificity and are categorized as: radiolabeled biomimetics; antibody-antibody fragments and drug-drug-like compounds. Biomimetics have high sensitivity but tend to be less specific as they often engage natural transporters and metabolic pathways. Antibodies and their fragments are specific but may be limited by slow clearance. Labeled drugs and drug-like compounds offer good specificity but may be limited in sensitivity. There are numerous challenges facing molecular imaging related to their complexity. Additionally, fear of ionizing radiation and regulatory constraints have somewhat inhibited clinical translation. However, there is reason for optimism due to economies of scale and a changing health care system, which places a premium on diagnostic accuracy. Although molecular imaging is not likely to become mainstream in the near future, its long-term prospects for doing so are excellent. PMID:24063395

  1. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    PubMed

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. PMID:26133185

  2. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  3. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  4. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  5. Red Fluorescent Proteins: Advanced Imaging Applications and Future Design

    PubMed Central

    Shcherbakova, Daria M.; Subach, Oksana M.; Verkhusha, Vladislav V.

    2015-01-01

    In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photo-switchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. PMID:22851529

  6. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  7. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  8. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    PubMed

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011. PMID:21532541

  9. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

    PubMed Central

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O’Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes. PMID:26392755

  10. Multicolor Computed Tomographic Molecular Imaging with Non-crystalline High Metal Density Nanobeacons

    PubMed Central

    Pan, Dipanjan; Schirra, Carsten O.; Wickline, Samuel A; Lanza, Gregory M

    2014-01-01

    Computed tomography (CT) is one of the most frequently pursued radiology technologies applied in the clinics today and in the preclinical field of biomedical imaging. Myriad advancement has been made to make this technique more powerful with improved signal sensitivity, rapid image acquisition and faster reconstruction. Synergistic development of novel nanoparticles has been adopted as the next generation CT contrasts agents for imaging specific biological markers. Nanometer-sized agents are anticipated to play a critical part in the prospect of medical diagnostics owing to their capabilities of targeting specific biological markers, extended blood circulation time and defined biological clearance. This review paper introduces the readers to the fundamental design principles of nanoparticulate CT contrast agents with a special emphasis on the molecular Imaging with non-crystalline high metal density nanobeacons. PMID:24470291

  11. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  12. Veni, vidi, vici: in vivo molecular imaging of immune response.

    PubMed

    Gross, Shimon; Moss, Britney L; Piwnica-Worms, David

    2007-10-01

    "I came, I saw, I conquered," Julius Caesar proclaimed, highlighting the importance of direct visualization as a winning strategy. Continuing the "From the Field" series (see Editorial [2007] 26, 131), Gross et al. summarize how modern molecular imaging techniques can successfully dissect the complexities of immune response in vivo. PMID:17967405

  13. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  14. Multi-modality systems for molecular tomographic imaging

    NASA Astrophysics Data System (ADS)

    Li, Mingze; Bai, Jing

    2009-11-01

    In vivo small animal imaging is a cornerstone in the study of human diseases by providing important clues on the pathogenesis, progression and treatment of many disorders. Molecular tomographic imaging can probe complex biologic interactions dynamically and to study diseases and treatment responses over time in the same animal. Current imaging technique including microCT, microMRI, microPET, microSPECT, microUS, BLT and FMT has its own advantages and applications, however, none of them can provide structural, functional and molecular information in one context. Multi-modality imaging, which utilizes the strengths of different modalities to provide a complete understanding of the object under investigation, emerges as an important alternative in small animal imaging. This article is to introduce the latest development of multimodality systems for small animal tomographic imaging. After a systematic review of imaging principles, systems and commerical products for each stand-alone method, we introduce some multimodality strategies in the latest years. In particular, two dual-modality systems, i.e. FMT-CT and FMT-PET are presented in detail. The end of this article concludes that though most multimodality systems are still in a laboratory research stage, they will surely undergo deep development and wide application in the near future.

  15. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions

    PubMed Central

    Schmieder, Anne H.; Caruthers, Shelton D.; Keupp, Jochen; Wickline, Samuel A.; Lanza, Gregory M.

    2016-01-01

    The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents. PMID:27110430

  16. Molecular Imaging of Apoptosis: From Micro to Macro

    PubMed Central

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S.; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus. PMID:25825597

  17. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  18. Practical Methods for Molecular In Vivo Optical Imaging

    PubMed Central

    Chen, Hannah; Thorne, Stephen H

    2011-01-01

    Traditional approaches for translating observations of molecular events into the context of a living organism have suffered from the requirements for either sacrificing animals at multiple time points prior to labor-intensive analyses of multiple tissues, or have relied on subjective observations or measurements of the animals over time. Recently an explosion of dedicated animal imaging modalities and the release of modified clinical imaging devices dedicated for animal imaging have allowed for the design of quantitative real time experiments incorporating fewer animals and providing whole animal analyses. Of these modalities, optical imaging (bioluminescence and fluorescence) has emerged as a powerful research tool, allowing investigators with limited whole animal imaging expertise to rapidly and inexpensively translate models produced in cellular assays into the context of a living animal. Here we will outline the steps necessary for translation of models established in culture systems into rodents. PMID:25419262

  19. Recent Molecular Advances in Our Understanding of Glioma

    PubMed Central

    Pisapia, David

    2015-01-01

    Our molecular understanding of glioma has undergone a sea change over the last decade. In this review, we discuss two recent articles that employed whole genome sequencing to subclassify gliomas vis-à-vis known molecular alterations. We further discuss the relevance of these findings vis-à-vis current treatment paradigms. PMID:26244119

  20. Design and Applications of Bispecific Heterodimers: Molecular Imaging and beyond

    PubMed Central

    2015-01-01

    Ligand-based molecular imaging probes have been designed with high affinity and specificity for monitoring biological process and responses. Single-target recognition by traditional probes can limit their applicability for disease detection and therapy because synergistic action between disease mediators and different receptors is often involved in disease progression. Consequently, probes that can recognize multiple targets should demonstrate higher targeting efficacy and specificity than their monospecific peers. This concept has been validated by multiple bispecific heterodimer-based imaging probes that have demonstrated promising results in several animal models. This review summarizes the design strategies for bispecific peptide- and antibody-based heterodimers and their applications in molecular targeting and imaging. The design and application of bispecific heterodimer-conjugated nanomaterials are also discussed. PMID:24738564

  1. Imaging of Isotopically Enhanced Molecular Targeting Agents Final Report

    SciTech Connect

    Quong, J N

    2004-02-19

    The goal of this project is to develop experimental and computational protocols to use SIMS to image the chemical composition of biological samples, focusing on optimizing sample preparation protocols and developing multivariate data analysis methods. Our results on sample preparation, molecular imaging, and multivariate analysis have been presented at several meeting abstracts (UCRL151797ABS, UCRL151797ABSREV1, UCRL151426ABS, UCRL201277, UCRL154757). A refereed paper describing our results for sample preparation and molecular imaging of various endogenous biomolecules as well as the mutagen PhIP has been accepted for publication (UCRL-JC-151797). We are also preparing two additional papers describing our multivariate analysis methods to analyze spectral data. As these papers have not been submitted, their content is included in this final report.

  2. An advanced image analysis tool for the quantification and characterization of breast cancer in microscopy images.

    PubMed

    Goudas, Theodosios; Maglogiannis, Ilias

    2015-03-01

    The paper presents an advanced image analysis tool for the accurate and fast characterization and quantification of cancer and apoptotic cells in microscopy images. The proposed tool utilizes adaptive thresholding and a Support Vector Machines classifier. The segmentation results are enhanced through a Majority Voting and a Watershed technique, while an object labeling algorithm has been developed for the fast and accurate validation of the recognized cells. Expert pathologists evaluated the tool and the reported results are satisfying and reproducible. PMID:25681102

  3. TOPICAL REVIEW: In vivo molecular and genomic imaging: new challenges for imaging physics

    NASA Astrophysics Data System (ADS)

    Cherry, Simon R.

    2004-02-01

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

  4. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  5. The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction.

    PubMed

    Chun, Se Young

    2016-03-01

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples. PMID:26941855

  6. Imaging of the heart: historical perspective and recent advances.

    PubMed

    Lam, W C; Pennell, D J

    2016-02-01

    Correct diagnosis must be made before appropriate treatment can be given. The aim of cardiac imaging is to establish cardiac diagnosis as accurate as possible and to avert unnecessary invasive procedures. There are many different modalities of cardiac imaging and each of them has advanced tremendously throughout the past decades. Echocardiography, as the first-line modality in most clinical circumstances, has progressed from two-dimensional, single-planed M-mode in the 1960s to three-dimensional speckle tracking echocardiography nowadays. Cardiac computed tomography angiogram (CCTA) has revolutionised the management of coronary artery disease as it allows clinicians to visualise the coronary arteries without performing an invasive angiogram. Because of the high negative predictive value, CCTA plays an important reassuring role in acute chest pain management. The greatest strength of cardiovascular magnetic resonance (CMR) is that it provides information in tissue characterization. It is the modality of choice in assessing myocardial viability and myocardial infiltration such as haemochromatosis or amyloidosis. Each of these modalities has its own strengths and limitations. In fact, they are complementing each other in different clinical settings. Cardiac imaging will continue to advance and, not long from now, we will not need invasive procedures to make an accurate cardiac diagnosis. PMID:26647305

  7. Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging.

    PubMed

    Panagiotopoulou, Maria; Salinas, Yolanda; Beyazit, Selim; Kunath, Stephanie; Duma, Luminita; Prost, Elise; Mayes, Andrew G; Resmini, Marina; Tse Sum Bui, Bernadette; Haupt, Karsten

    2016-07-11

    Advanced tools for cell imaging are of great interest for the detection, localization, and quantification of molecular biomarkers of cancer or infection. We describe a novel photopolymerization method to coat quantum dots (QDs) with polymer shells, in particular, molecularly imprinted polymers (MIPs), by using the visible light emitted from QDs excited by UV light. Fluorescent core-shell particles specifically recognizing glucuronic acid (GlcA) or N-acetylneuraminic acid (NANA) were prepared. Simultaneous multiplexed labeling of human keratinocytes with green QDs conjugated with MIP-GlcA and red QDs conjugated with MIP-NANA was demonstrated by fluorescence imaging. The specificity of binding was verified with a non-imprinted control polymer and by enzymatic cleavage of the terminal GlcA and NANA moieties. The coating strategy is potentially a generic method for the functionalization of QDs to address a much wider range of biocompatibility and biorecognition issues. PMID:27238424

  8. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions.

    PubMed

    Chuma, Makoto; Terashita, Katsumi; Sakamoto, Naoya

    2015-10-01

    Hepatocellular carcinoma (HCC) can be lethal due to its aggressive course and lack of effective systemic therapies for advanced disease. Sorafenib is the only systemic therapy that has demonstrated an overall survival benefit in patients with advanced HCC, and new agents for treatment of advanced HCC are needed. The multiple pathways involved in HCC oncogenesis, proliferation and survival provide many opportunities for the development of molecularly targeted therapies. Molecular targets of interest have expanded from angiogenesis to cancer cell-directed oncogenic signaling pathways for treatment of advanced HCC. Agents targeting vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, platelet-derived growth factor receptor, c-mesenchymal-epithelial transition factor-1 and mammalian target of rapamycin signaling have been actively explored. This article focuses on the evaluation of molecular agents targeting pathogenic HCC and provides a review of recently completed phase III drug studies (e.g. involving sorafenib, sunitinib, brivanib, linifanib, erlotinib, everolimus, ramucirumab or orantinib) and ongoing drug studies (e.g. involving lenvatinib, regorafenib, tivantinib or cabozantinib) of molecularly targeted agents in advanced HCC, including a brief description of the biologic rationale behind these agents. PMID:25472913

  9. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    NASA Astrophysics Data System (ADS)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.

  10. Advances Towards Synthetic Machines at the Molecular and Nanoscale Level

    PubMed Central

    Konstas, Kristina; Langford, Steven J.; Latter, Melissa J.

    2010-01-01

    The fabrication of increasingly smaller machines to the nanometer scale can be achieved by either a “top-down” or “bottom-up” approach. While the former is reaching its limits of resolution, the latter is showing promise for the assembly of molecular components, in a comparable approach to natural systems, to produce functioning ensembles in a controlled and predetermined manner. In this review we focus on recent progress in molecular systems that act as molecular machine prototypes such as switches, motors, vehicles and logic operators. PMID:20640163

  11. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10129808

  12. MR Molecular Imaging of Tumor Vasculature and Vascular Targets

    PubMed Central

    Pathak, Arvind P.; Penet, Marie-France; Bhujwalla, Zaver M.

    2016-01-01

    Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI. PMID:20807600

  13. Noninvasive imaging of focal atherosclerotic lesions using fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Maji, Dolonchampa; Solomon, Metasebya; Nguyen, Annie; Pierce, Richard A.; Woodard, Pamela K.; Akers, Walter J.; Achilefu, Samuel; Culver, Joseph P.; Abendschein, Dana R.; Shokeen, Monica

    2014-11-01

    Insights into the etiology of stroke and myocardial infarction suggest that rupture of unstable atherosclerotic plaque is the precipitating event. Clinicians lack tools to detect lesion instability early enough to intervene, and are often left to manage patients empirically, or worse, after plaque rupture. Noninvasive imaging of the molecular events signaling prerupture plaque progression has the potential to reduce the morbidity and mortality associated with myocardial infarction and stroke by allowing early intervention. Here, we demonstrate proof-of-principle in vivo molecular imaging of C-type natriuretic peptide receptor in focal atherosclerotic lesions in the femoral arteries of New Zealand white rabbits using a custom built fiber-based, fluorescence molecular tomography (FMT) system. Longitudinal imaging showed changes in the fluorescence signal intensity as the plaque progressed in the air-desiccated vessel compared to the uninjured vessel, which was validated by ex vivo tissue studies. In summary, we demonstrate the potential of FMT for noninvasive detection of molecular events leading to unstable lesions heralding plaque rupture.

  14. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer

    PubMed Central

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term “theranostics” was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging. PMID:27239470

  15. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer.

    PubMed

    Ahn, Byeong-Cheol

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging. PMID:27239470

  16. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  17. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  18. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  19. [Advance in molecular genetic research on primary congenital glaucoma].

    PubMed

    Li, Xiulan; Liu, Haotian; Zhang, Dingding

    2016-04-01

    Primary congenital glaucoma (PCG) is one of the major diseases causing blindness in children, but its pathogenesis has remained unclear. Genetic factors play an important role in the pathogenesis of PCG. Molecular genetics of candidate genes such as CYP1B1, MYOC, LTBP2 and FOXC1 has so far been explored, but no disease-causing gene has been identified. Molecular genetic research on PCG including candidate gene screening and research strategies are reviewed here. PMID:27060330

  20. Molecular Imaging Using Nanoparticle Quenchers of Cerenkov Luminescence

    PubMed Central

    Thorek, Daniel L.J.; Das, Sudeep; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) imaging is an emerging technique that collects the visible photons produced by radioisotopes. Here, we have investigated molecular imaging strategies by modulating CL signal off. Utilizing a combination of clinically approved agents, and their analogues, we demonstrate the noninvasive molecularly specific detection of cancer. CL was modulated in vitro in a dose dependent manner using approved small molecules (Lymphazurin), as well as the clinically approved Feraheme and other preclinical superparamagnetic iron oxide nanoparticles (SPIO). To evaluate the quenching of CL in vivo, two strategies were pursued. [18F]-FDG was imaged by PET and CL in tumors prior to and following accumulation of nanoparticles. Initially, non-targeted particles were administered to mice bearing tumors in order to attenuate CL. For targeted imaging, a dual tumor model (expressing the human somatostatin receptor subtype-2 (hSSTr2) and a control negative cell line) was used. Targeting hSSTr2 with octreotate-conjugated SPIO, we demonstrate quenched CL enabling non-invasive distinction between tumors’ molecular expression profiles. In this work, we demonstrate quenching of Cerenkov emissions in several proof of principle models using a combination of approved agents and nanoparticle platforms to provide disease relevant information including tumor vascularity and specific antigen expression. PMID:24861843

  1. Molecular imaging using nanoparticle quenchers of Cerenkov luminescence.

    PubMed

    Thorek, Daniel L J; Das, Sudeep; Grimm, Jan

    2014-09-24

    Cerenkov luminescence (CL) imaging is an emerging technique that collects the visible photons produced by radioisotopes. Here, molecular imaging strategies are investigated that switch the CL signal off. The noninvasive molecularly specific detection of cancer is demonstrated utilizing a combination of clinically approved agents, and their analogues. CL is modulated in vitro in a dose dependent manner using approved small molecules (Lymphazurin), as well as the clinically approved Feraheme and other preclinical superparamagnetic iron oxide nanoparticles (SPIO). To evaluate the quenching of CL in vivo, two strategies are pursued. [(18) F]-FDG is imaged by PET and CL in tumors prior to and following accumulation of nanoparticles. Initially, non-targeted particles are administered to mice bearing tumors in order to attenuate CL. For targeted imaging, a dual tumor model (expressing the human somatostatin receptor subtype-2 (hSSTr2) and a control negative cell line) is used. Targeting hSSTr2 with octreotate-conjugated SPIO, quenched CL enabling non-invasive distinction between tumors' molecular expression profiles is demonstrated. In this work, the quenching of Cerenkov emissions is demonstrated in several proof of principle models using a combination of approved agents and nanoparticle platforms to provide disease relevant information including tumor vascularity and specific antigen expression. PMID:24861843

  2. X-ray diffraction topography image materials by molecular probe

    NASA Astrophysics Data System (ADS)

    Hentschel, Manfred P.; Lange, Axel; Schors, Joerg; Wald, Oliver

    2005-05-01

    Crystallinity, composition, homogeneity and anisotropy determine the mechanical properties of materials significantly, but the performance of most non-destructive techniques is too poor for measuring these micro structures as they are optimized for finding individual flaws/defects. X-ray (wide angle) Diffraction Topography by single beam scanning images molecular information at a spatial resolution of several ten micrometers even in three dimensions. Especially for the non-destructive characterization of composite materials, they provide additional capabilities by crystallographic contrast by the molecular/atomic probe. The different material phases of compounds and their molecular orientation can be imaged e.g. fibers or polymer chain orientation in composites: A sample is scanned or rotated, while only part of the scattering pattern is pointing at an X-ray detector area. Three different methods have been developed: i) planar X-ray Scanning Topography at one or more pre-selected scattering angles provides high contrast of different phases of components. ii) X-Ray Rotation Topography reveals the texture angle of composite fibers and chain polymers. iii) X-ray Diffraction Microscopy images the texture and phase distribution of transversal sections of the material. The principles of Wide Angle X-Ray Diffraction Topography are explained and examples of investigations will be presented. They combine the advantages of radiographic imaging and crystal structure information. The applied X-ray energies are much lower than in NDT radiography, which recommends preferably the application to light weight materials.

  3. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  4. Advances in imaging ultrastructure yield new insights into presynaptic biology

    PubMed Central

    Bruckner, Joseph J.; Zhan, Hong; O’Connor-Giles, Kate M.

    2015-01-01

    Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function. PMID:26052269

  5. Glaucoma Diagnosis and Monitoring Using Advanced Imaging Technologies

    PubMed Central

    Sehi, Mitra; Iverson, Shawn M

    2014-01-01

    Advanced ocular imaging technologies facilitate objective and reproducible quantification of change in glaucoma but at the same time, impose new challenges on scientists and clinicians for separating true structural change from imaging noise. This review examines time-domain and spectral-domain optical coherence tomography, confocal scanning laser ophthalmoscopy and scanning laser polarimetry technologies and discusses the diagnostic accuracy and the ability of each technique for evaluation of glaucomatous progression. A broad review of the current literature reveals that objective assessment of retinal nerve fiber layer, ganglion cell complex and optic nerve head topography may improve glaucoma monitoring when used as a complementary tool in conjunction with the clinical judgment of an expert. PMID:24470807

  6. Recent Advances in the Imaging of Frontotemporal Dementia

    PubMed Central

    Whitwell, Jennifer L.; Josephs, Keith A.

    2012-01-01

    Neuroimaging has played an important role in the characterization of the frontotemporal dementia (FTD) syndromes, demonstrating neurodegenerative signatures that can aid in the differentiation of FTD from other neurodegenerative disorders. Recent advances have been driven largely by the refinement of the clinical syndromes that underlie FTD, and by the discovery of new genetic and pathological features associated with FTD. Many new imaging techniques and modalities are also now available that allow the assessment of other aspects of brain structure and function, such as diffusion tensor imaging and resting state functional MRI. Studies have utilized these recent techniques, as well as traditional volumetric MRI, to provide further insight into disease progression across the many clinical, genetic and pathological variants of FTD. Importantly, neuroimaging signatures have been identified that will improve the clinician’s ability to predict underlying genetic and pathological features, and hence ultimately improve patient diagnosis. PMID:23015371

  7. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  8. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  9. Advances on image interpolation based on ant colony algorithm.

    PubMed

    Rukundo, Olivier; Cao, Hanqiang

    2016-01-01

    This paper presents an advance on image interpolation based on ant colony algorithm (AACA) for high resolution image scaling. The difference between the proposed algorithm and the previously proposed optimization of bilinear interpolation based on ant colony algorithm (OBACA) is that AACA uses global weighting, whereas OBACA uses local weighting scheme. The strength of the proposed global weighting of AACA algorithm depends on employing solely the pheromone matrix information present on any group of four adjacent pixels to decide which case deserves a maximum global weight value or not. Experimental results are further provided to show the higher performance of the proposed AACA algorithm with reference to the algorithms mentioned in this paper. PMID:27047729

  10. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    NASA Astrophysics Data System (ADS)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  11. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  12. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  13. [Molecular hyperspectral imaging (MHSI) system and application in biochemical medicine].

    PubMed

    Liu, Hong-Ying; Li, Qing-Li; Wang, Yi-Ting; Liu, Jin-Gao; Xue, Yong-Qi

    2011-10-01

    A novel molecular hyperspectral imaging (MHSI) system based on AOTF (acousto-optic tunable filters) was presented. The system consists of microscope, AOTF-based spectrometer, matrix CCD, image collection card and computer. The spectral range of the MHSI is from 550 to 1 000 nm. The spectral resolution is less than 2 nm, and the spatial resolution is about 0.3 microm. This paper has also presented that spectral curves extracted from the corrected hyperspectral data of the sample, which have been preprocessed by the gray correction coefficient, can more truly represent biochemical characteristic of the sample. The system can supply not only single band images in the visible range, but also spectrum curve of random pixel of sample image. This system can be widely used in various fields of biomedicine, clinical medicine, material science and microelectronics. PMID:22250515

  14. Tagging and Purifying Proteins to Teach Molecular Biology and Advanced Biochemistry

    ERIC Educational Resources Information Center

    Roecklein-Canfield, Jennifer A.; Lopilato, Jane

    2004-01-01

    Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a…

  15. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  16. Diagnosis by Endoscopy and Advanced Imaging of Barrett's Neoplasia.

    PubMed

    Swager, Anne-Fré; Curvers, Wouter L; Bergman, Jacques J

    2016-01-01

    Evaluation of patients with Barrett's esophagus (BE) using dye-based chromoendoscopy, optical chromoendoscopy, autofluorescence imaging, or confocal laser endomicroscopy does not significantly increase the number of patients with a diagnosis of early neoplasia compared with high-definition white light endoscopy (HD-WLE) with random biopsy analysis. These newer imaging techniques are not more effective in standard surveillance of patients with BE because the prevalence of early neoplasia is low and HD-WLE with random biopsy analysis detects most cases of neoplasia. The evaluation and treatment of patients with BE and early stage neoplasia should be centralized in tertiary referral centers, where procedures are performed under optimal conditions, by expert endoscopists. Lesions that require resection are almost always detected by HD-WLE, although advanced imaging techniques can detect additional flat lesions. However, these are of limited clinical significance because they are effectively eradicated by ablation therapy. No endoscopic imaging technique can reliably assess submucosal or lymphangio invasion. Endoscopic resection of early stage neoplasia in patients with BE is important for staging and management. Optical chromoendoscopy can also be used to evaluate lesions before endoscopic resection and in follow-up after successful ablation therapy. PMID:27573768

  17. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  18. Microwave Imaging for Breast Cancer Detection: Advances in Three–Dimensional Image Reconstruction

    PubMed Central

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2013-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2Dtechniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three–dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH. PMID:22255641

  19. Recent advances in the molecular diagnostics of gastric cancer

    PubMed Central

    Kanda, Mitsuro; Kodera, Yasuhiro

    2015-01-01

    Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined. PMID:26379391

  20. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms

    PubMed Central

    Mooney, Michael A.; Simon, Elias D.; Little, Andrew S.

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  1. Volumetric feature extraction and visualization of tomographic molecular imaging.

    PubMed

    Bajaj, Chandrajit; Yu, Zeyun; Auer, Manfred

    2003-01-01

    Electron tomography is useful for studying large macromolecular complex within their cellular context. The associate problems include crowding and complexity. Data exploration and 3D visualization of complexes require rendering of tomograms as well as extraction of all features of interest. We present algorithms for fully automatic boundary segmentation and skeletonization, and demonstrate their applications in feature extraction and visualization of cell and molecular tomographic imaging. We also introduce an interactive volumetric exploration and visualization tool (Volume Rover), which encapsulates implementations of the above volumetric image processing algorithms, and additionally uses efficient multi-resolution interactive geometry and volume rendering techniques for interactive visualization. PMID:14643216

  2. Advances in infrared and imaging fibres for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; McNamara, Pam; Marcel, Jackie; Jovanovic, Nemanja

    2006-06-01

    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme2. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on fluoride glasses. Fluoride glasses have a particularly wide transparent region from the UV through to around 7μm, whereas silica fibres, commonly used in astronomy, only transmit out to about 2μm. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the fluoride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.

  3. Advances in Light-based Imaging of Three-Dimensional Cellular Ultrastructure

    PubMed Central

    Kanchanawong, Pakorn; Waterman, Clare M.

    2012-01-01

    Visualization methods are key to gaining insights into cellular structure and function. Since diffraction has long confined optical microscopes to a resolution no better than hundreds of nanometers, the observation of ultrastructural features has traditionally been the domain of electron microscopes (EM). In the past decade, however, advances in super-resolution fluorescence microscopy have considerably expanded the capability of light-based imaging techniques. Advantages of fluorescent labeling such as high sensitivity, specificity, and multichannel capability, can now be exploited to dissect ultrastructural features of cells. With recent methods capable of imaging specific proteins with a resolution on the order of a few tens of nanometers in 3-dimensions, this has made it possible to elucidate the molecular organization of many complex cellular structures. PMID:22209239

  4. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  5. Molecular imaging with surface-enhanced CARS on nanostructures

    NASA Astrophysics Data System (ADS)

    Steuwe, Christian; Kaminski, Clemens F.; Baumberg, Jeremy J.; Mahajan, Sumeet

    2012-03-01

    Strongly localized electromagnetic fields in the vicinity of nanoparticles and nanogaps greatly enhance spectroscopic signals near them such as in surface-enhanced Raman spectroscopy (SERS). In this work we combine this plasmonic surface enhancement with coherent anti-Stokes Raman spectroscopy (CARS) on reproducible nanostructured surfaces. Surface-enhanced CARS (SECARS) gives rise to very strong enhancements and we find that an enhancement of ~105 can be obtained over standard CARS. Using our nanostructured surfaces, we demonstrate strong correlation between plasmon resonances and surface-enhanced CARS intensities. Furthermore, fast imaging of molecular monolayers is performed. Our work paves the way for reliable single molecule Raman spectroscopy and fast molecular imaging on plasmonic surfaces.

  6. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor.

    PubMed

    Schröder, Leif; Lowery, Thomas J; Hilty, Christian; Wemmer, David E; Pines, Alexander

    2006-10-20

    A magnetic resonance approach is presented that enables high-sensitivity, high-contrast molecular imaging by exploiting xenon biosensors. These sensors link xenon atoms to specific biomolecular targets, coupling the high sensitivity of hyperpolarized nuclei with the specificity of biochemical interactions. We demonstrated spatial resolution of a specific target protein in vitro at micromolar concentration, with a readout scheme that reduces the required acquisition time by >3300-fold relative to direct detection. This technique uses the signal of free hyperpolarized xenon to dramatically amplify the sensor signal via chemical exchange saturation transfer (CEST). Because it is approximately 10,000 times more sensitive than previous CEST methods and other molecular magnetic resonance imaging techniques, it marks a critical step toward the application of xenon biosensors as selective contrast agents in biomedical applications. PMID:17053143

  7. Tau PET: the next frontier in molecular imaging of dementia.

    PubMed

    Xia, Chenjie; Dickerson, Bradford C

    2016-09-01

    We have arrived at an exciting juncture in dementia research: the second major pathological hallmark of Alzheimer's disease (AD)-tau-can now be seen for the first time in the living human brain. The major proteinopathies in AD include amyloid-β plaques and neurofibrillary tangles (NFTs) made of hyperphosphorylated paired helical filament (PHF) tau. Since its advent more than a decade ago, amyloid PET imaging has revolutionized the field of dementia research, enabling more confident diagnosis of the likely pathology in patients with a variety of clinical dementia syndromes, paving the way for the identification of people with preclinical or prodromal AD pathology, and serving as a minimally invasive molecular readout in clinical trials of putative disease-modifying interventions. Now that we are on the brink of a second revolution in molecular imaging in dementia, it is worth considering the likely potential impact of this development on the field. PMID:27334648

  8. [Therapeutic consequences of molecular biology advances in oncology].

    PubMed

    Bauvet, F; Awada, A; Gil, T; Hendlisz, A

    2009-01-01

    This review article presents the improvements made in the field of molecular biology in oncology and their diagnostic and therapeutic consequences. As an illustration, three types of tumors for which these projections strongly modified the management will be used as a basis in this article: breast cancer, kidney cancer and colorectal cancer. Indeed, the last years, new prognostic factors (natural evolution of a specific patient's tumor) and predictive factors (prediction of the responsiveness to anticancer therapies) have emerged for these tumors. In addition, a better comprehension of the mechanisms implied in the development of cancers allowed the advent of many molecular-targeted therapies, which constitute a true revolution in oncology. PMID:19211361

  9. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  10. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    PubMed Central

    Ahmed, Rafay; Oborski, Matthew J; Hwang, Misun; Lieberman, Frank S; Mountz, James M

    2014-01-01

    Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas. PMID:24711712

  11. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  12. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  13. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma.

    PubMed

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  14. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  15. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    SciTech Connect

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  16. Recent Advances in the Molecular Characterization of Sweetpotato Begomoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although sweetpotato leaf curl disease has been observed on sweetpotato in Japan and Taiwan since 1985, molecular characterization of sweetpotato begomoviruses has only been conducted in recent years. In the U.S., two begomoviruses, Sweet potato leaf curl virus (SPLCV) and Sweet potato leaf curl Ge...

  17. Technical advances in molecular simulation since the 1980s.

    PubMed

    Field, Martin J

    2015-09-15

    This review describes how the theory and practice of molecular simulation have evolved since the beginning of the 1980s when the author started his career in this field. The account is of necessity brief and subjective and highlights the changes that the author considers have had significant impact on his research and mode of working. PMID:25772387

  18. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  19. The Effectiveness of Advance Organizers on the Signification of Poetic Images

    ERIC Educational Resources Information Center

    Bayat, Nihat

    2007-01-01

    Advance organizers activate the most suitable schema to learn new material. Poetic images are signified in schemata and the elements which are not expressed may be called by advance organizers. The purpose of this investigation is to discern the effectiveness of advance organizers on the signification of poetic images. Pretest-posttest…

  20. Recent advances in the molecular diagnosis of tuberculosis.

    PubMed

    Su, Wei-Juin

    2002-12-01

    To date, the diagnosis of tuberculosis has not improved significantly and still relies heavily on staining and culture of sputum or other clinical specimens which were developed more than 100 years ago. Staining does not differentiate tuberculosis from other mycobacterial infections, and culture requires at least 4 to 8 weeks. These are the major problems faced by tuberculosis control programs. In response to this demand, new rapid diagnostic methods are urgently sought. In recent years, much hope has been laid on the development of molecular techniques in the routine tuberculosis laboratory. This review concentrates on 4 techniques that are increasingly used in clinical laboratories: polymerase chain reaction to detect mycobacterial DNA in clinical specimens, nucleic acid probes to identify culture, restriction fragment length polymorphism analysis to compare strains for epidemiologic purposes, and genetic-base susceptibility testing methods for rapid detection of drug resistance. Finally, the increase in the use of clinically-useful molecular biological techniques that affect turnaround time, length of stay, and patient outcome, and reduce overall hospitalization costs will continue until universal standardization for molecular diagnostic procedures are provided. At present, conventional methods should not be replaced by novel methods until the latter are shown to be of equal or greater sensitivity, specificity, reliability, and user-friendliness. However, it is expected that the newly developed molecular techniques will complement our armamentarium of diagnostic tools in the detection of tuberculosis. It is also expected that clinical protocols based on molecular methods will increase the chances for cure by selecting the most appropriate treatment and improving the quality of life of tuberculosis patients. PMID:12542245

  1. Advances in ultrasound imaging for congenital malformations during early gestation

    PubMed Central

    Rayburn, William F.; Jolley, Jennifer A.; Simpson, Lynn L.

    2015-01-01

    With refinement in ultrasound technology, detection of fetal structural abnormalities has improved and there have been detailed reports of the natural history and expected outcomes for many anomalies. The ability to either reassure a high-risk woman with normal intrauterine images or offer comprehensive counseling and offer options in cases of strongly suspected lethal or major malformations has shifted prenatal diagnoses to the earliest possible gestational age. When indicated, scans in early gestation are valuable in accurate gestational dating. Stricter sonographic criteria for early nonviability guard against unnecessary intervention. Most birth defects are without known risk factors, and detection of certain malformations is possible in the late first trimester. The best time for a standard complete fetal and placental scan is 18–20 weeks. In addition, certain soft anatomic markers provide clues to chromosomal aneuploidy risk. Maternal obesity and multifetal pregnancies are now more common and further limit early gestation visibility. Other advanced imaging techniques during early gestation in select cases of suspected malformations include fetal echocardiography and magnetic resonance imaging. PMID:25820190

  2. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects

    PubMed Central

    Bittersohl, Bernd; Hosalkar, Harish S.; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined. PMID:26258129

  3. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects.

    PubMed

    Bittersohl, Bernd; Hosalkar, Harish S; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined. PMID:26258129

  4. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis

    PubMed Central

    Chowdhury, R; Ganeshan, B; Irshad, S; Lawler, K; Eisenblätter, M; Milewicz, H; Rodriguez-Justo, M; Miles, K; Ellis, P; Groves, A; Punwani, S

    2014-01-01

    Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the clinical translation of this has lagged behind advances in research. Although significant advancements in oncological management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have the potential role as a non-invasive biomarker for guiding the treatment algorithm. PMID:24597512

  5. AXIOM: advanced X-ray imaging of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Sembay, Steve F.; Eastwood, Jonathan P.; Sibeck, David G.; Abbey, Tony A.; Brown, Patrick; Carter, Jenny A.; Carr, Chris M.; Forsyth, Colin; Kataria, Dhiren; Kemble, Steve; Milan, Steve E.; Owen, Chris J.; Peacocke, Lisa; Read, Andy M.; Coates, Andrew J.; Collier, Michael R.; Cowley, Stan W. H.; Fazakerley, Andrew N.; Fraser, George W.; Jones, Geraint H.; Lallement, Rosine; Lester, Mark; Porter, F. Scott; Yeoman, Tim K.

    2012-04-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose `AXIOM: Advanced X-ray Imaging of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth-Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  6. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  7. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  8. Deep-UV biological imaging by lanthanide ion molecular protection

    PubMed Central

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2015-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  9. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  10. Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification.

    PubMed

    Toczek, Jakub; Meadows, Judith L; Sadeghi, Mehran M

    2016-01-01

    Selection of patients for abdominal aortic aneurysm repair is currently based on aneurysm size, growth rate, and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, for example, inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in abdominal aortic aneurysm morbidity and mortality. (18)F-fluorodeoxyglucose-positron emission tomography and ultrasmall superparamagnetic particles of iron oxide magnetic resonance imaging are 2 novel approaches to abdominal aortic aneurysm imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (eg, integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of abdominal aortic aneurysm and show great potential for clinical translation. PMID:26763279

  11. Deep-UV biological imaging by lanthanide ion molecular protection.

    PubMed

    Kumamoto, Yasuaki; Fujita, Katsumasa; Smith, Nicholas Isaac; Kawata, Satoshi

    2016-01-01

    Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. PMID:26819825

  12. Photoacoustic molecular imaging for in vivo liver iron quantitation

    NASA Astrophysics Data System (ADS)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  13. Molecular underpinnings of corneal angiogenesis: advances over the past decade.

    PubMed

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A; Hussein, Heba; Abd El-Baky, Nawal

    2016-01-01

    The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis. PMID:27275438

  14. Pathological and Molecular Advances in Pediatric Low Grade Astrocytoma

    PubMed Central

    Rodriguez, Fausto J.; Lim, Kah Suan; Bowers, Daniel; Eberhart, Charles G.

    2013-01-01

    Pediatric low grade astrocytomas are the commonest brain tumors in children. They sometimes have similar microscopic and clinical features, making accurate diagnosis difficult. For patients whose tumors are in locations that do not permit full resection, or those with an intrinsically aggressive biology, more effective therapies are required. Until recently, little was known about the molecular changes that drive the initiation and growth of pilocytic and other low grade astrocytomas beyond the association of a minority of cases, primarily in the optic nerve, with neurofibromatosis type 1. Over the last several years, a wide range of studies have implicated the BRAF oncogene and other members of this signaling cascade in the pathobiology of pediatric low grade astrocytoma. In this review, we attempt to summarize this rapidly developing field, and discuss the potential for translating our growing molecular knowledge into improved diagnostic and prognostic biomarkers and new targeted therapies. PMID:23121055

  15. Recent advances in the molecular design of synthetic vaccines

    NASA Astrophysics Data System (ADS)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  16. Polycystic liver diseases: advanced insights into the molecular mechanisms

    PubMed Central

    Perugorria, Maria J.; Masyuk, Tatyana V.; Marin, Jose J.; Marzioni, Marco; Bujanda, Luis; LaRusso, Nicholas F.; Banales, Jesus M.

    2015-01-01

    Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated. PMID:25266109

  17. Molecular underpinnings of corneal angiogenesis: advances over the past decade

    PubMed Central

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A.; Hussein, Heba; Abd El-Baky, Nawal

    2016-01-01

    The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis. PMID:27275438

  18. Label-free, multiplexed, molecular sensing and imaging by stamping SERS

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Shih, Wei-Chuan

    2015-03-01

    Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique, where Raman scattering is boosted primarily by enhanced electric field due to localized surface plasmon resonance (LSPR). With advances in nanofabrication techniques, SERS has attracted great attention for label-free molecular sensing and imaging. However, the practical use of SERS has often encountered an inherent issues regarding a molecule transfer step where target molecules need to be within the close proximity of a SERS-active surface by either mixing with nanoparticles or coating onto surface-bound nanostructures. To address this issue, we have developed stamping surface-enhanced Raman spectroscopy (S-SERS) for label-free, multiplexed, molecular sensing and large-area, high-resolution molecular imaging on a flexible, non-plasmonic surface without solution-phase molecule transfer. In this technique, a polydimethylsiloxane (PDMS) thin film and nanoporous gold disk SERS substrate play the roles as molecule carrier and Raman signal enhancer, respectively. After stamping the SERS substrate onto the PDMS film, SERS measurements can be directly taken from the "sandwiched" target molecules. The performance of S-SERS is evaluated by the detection of Rhodamine 6G (R6G), urea, and its mixture with acetaminophen (APAP), in physiologically relevant concentration range, along with corresponding SERS spectroscopic maps. S-SERS features simple sample preparation, low cost, and high reproducibility, which could lead to SERS-based sensing and imaging for point-of-care and forensics applications.

  19. Molecular diagnosis of endemic and invasive mycoses: advances and challenges.

    PubMed

    Gómez, Beatriz L

    2014-01-01

    The diagnosis of endemic and invasive fungal disease remains challenging. Molecular techniques for identification of fungi now play a significant and growing role in clinical mycology and offer distinct advantages as they are faster, more sensitive and more specific. The aim of this mini-review is to provide an overview of the state of the art of molecular diagnosis of endemic and invasive fungal diseases, and to emphasize the challenges and current need for standardization of the different methods. The European Aspergillus PCR Initiative (EAPCRI) has made significant progress in developing a standard for Aspergillus polymerase chain reaction (PCR), but recognizes that the process will not be finished until clinical utility has been established in formal and extensive clinical trials. Similar efforts should be implemented for the diagnosis of the other mycoses in order to fully validate the current methods or reinforce the need to design new ones. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24252827

  20. VIIRS Nighttime Lights: Advances in Satellite Low-Light Imaging

    NASA Astrophysics Data System (ADS)

    Hsu, F.; Baugh, K.; Elvidge, C.; Zhizhin, M. N.

    2013-12-01

    The Soumi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) represents a major advance in low-light imaging over previous data sources. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA's NGDC Earth Observation Group created the first global VIIRS nighttime lights composite product by adapting their algorithms to process these new data. Compositing nighttime data involves combining only high quality data components over a period of time to improve sensitivity and coverage. Flag image were compiled to describe image quality. The initial flag categories included: daytime, twilight, stray light, non-zero lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data included in the nighttime lights composite is defined as not having any of these attributes present. After the initial adaptation of heritage OLS algorithms, the authors sought to improve the sharpness of lights in the composite by adding additional flag categories. These include a refined VIIRS cloud mask, a mask based on cloud optical thickness, and a ranking of sharpness of light.. The VIIRS cloud mask, which is a JPSS retained intermediate product cloud mask (IICMO) is refined to reject the misclassification of hot sources like gas flares as cloud. Another JPSS retained intermediate product, cloud optical thickness, also provides valuable information about the clarity of atmosphere. The authors also implemented a sharp light detector to further characterize the quality of light for each pixel. Results of compositing multiple months in 2013 using these new flag categories are presented to demonstrate the improvements in nighttime lights composite quality.

  1. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging

    PubMed Central

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E.; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  2. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging.

    PubMed

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von Zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  3. Therapeutic Evaluation of microRNAs by Molecular Imaging

    PubMed Central

    Sekar, Thillai V.; Mohanram, Ramkumar Kunga; Foygel, Kira; Paulmurugan, Ramasamy

    2013-01-01

    MicroRNAs (miRNAs) function as regulatory molecules of gene expression with multifaceted activities that exhibit direct or indirect oncogenic properties, which promote cell proliferation, differentiation, and the development of different types of cancers. Because of their extensive functional involvement in many cellular processes, under both normal and pathological conditions such as various cancers, this class of molecules holds particular interest for cancer research. MiRNAs possess the ability to act as tumor suppressors or oncogenes by regulating the expression of different apoptotic proteins, kinases, oncogenes, and other molecular mechanisms that can cause the onset of tumor development. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a large number of oncogenic factors, and therefore are anticipated to be highly efficacious. Given their unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics for a variety of cancers. More than thousand miRNAs have been identified to date, and their molecular mechanisms and functions are well studied. Furthermore, they are established as compelling therapeutic targets in a variety of cellular complications. However, the notion of using them as therapeutic tool was proposed only recently, given that modern imaging methods are just beginning to be deployed for miRNA research. In this review, we present a summary of various molecular imaging methods, which are instrumental in revealing the therapeutic potential of miRNAs, especially in various cancers. Imaging methods have recently been developed for monitoring the expression levels of miRNAs and their target genes by fluorescence-, bioluminescence- and chemiluminescence-based imaging techniques. Mature miRNAs bind to the untranslated regions (UTRs) of the target mRNAs and regulate target genes expressions. This concept has been used for the development of fluorescent reporter

  4. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  5. Torsional tapping atomic force microscopy for molecular resolution imaging of soft matter

    NASA Astrophysics Data System (ADS)

    Hobbs, Jamie; Mullin, Nic

    2012-02-01

    Despite considerable advances in image resolution on challenging, soft systems, a method for obtaining molecular resolution on `real' samples with significant surface roughness has remained elusive. Here we will show that a relatively new technique, torsional tapping AFM (TTAFM), is capable of imaging with resolution down to 3.7 Angrstrom on the surface of `bulk' polymer films [1]. In TTAFM T-shaped cantilevers are driven into torsional oscillation. As the tip is offset from the rotation axis this provides a tapping motion. Due to the high frequency and Q of the oscillation and relatively small increase in spring constant, improved cantilever dynamics and force sensitivity are obtained. As the tip offset from the torsional axis is relatively small (typically 25 microns), the optical lever sensitivity is considerably improved compared to flexural oscillation. Combined these give a reduction in noise floor by a factor of 12 just by changing the cantilever geometry. The ensuing low noise allows the use of ultra-sharp `whisker' tips with minimal blunting. As the cantilevers remain soft in the flexural axis, the force when imaging with error is also reduced, further protecting the tip. We will show that this combination allows routine imaging of the molecular structure of semicrystalline polymer films, including chain folds, loose loops and tie-chains in polyethylene, and the helical conformation of polypropylene within the crystal, using a standard, commercial AFM. [4pt] [1] N Mullin, JK Hobbs, PRL 107, 197801 (2011)

  6. Photoacoustic molecular imaging of ferritin as a reporter gene

    NASA Astrophysics Data System (ADS)

    Ha, S.; Carson, A.; Kim, K.

    2012-02-01

    Spectral analysis of photoacoustic (PA) molecular imaging (PMI) of ferritin expressed in human melanoma cells (SK-24) was performed in vitro. Ferritin is a ubiquitously expressed protein which stores iron that can be detected by PA imaging, allowing ferritin to act as a reporter gene. To over-express ferritin, SK-24 cells were co-transfected with plasmid expressing Heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using LipofectamineTM 2000. Non-transfected SK-24 cells served as a negative control. Fluorescent imaging of EGFP confirmed transfection and transgene expression in co-transfected cells. To detect iron accumulation in SK-24 cells, a focused high frequency ultrasonic transducer (60 MHz, f/1.5), synchronized to a pulsed laser (<20mJ/cm2), was used to scan the PA signal from 680 nm to 950 nm (in 10 nm increments) from the surface of the 6-well culturing plate. PA signal intensity from H-FT transfected SK-24 cells was not different from that of non-transfected SK-24 cells at wavelengths less than 770 nm, but was over 4 dB higher than non-transfected SK-24 cells at 850 ~ 950 nm. Fluorescent microscopy indicates significant accumulation of ferritin in H-FT transfected SK-24 cells, with little ferritin expression in non-transfected SK-24 cells. The PA spectral analysis clearly differentiates transfected SK-24 cells from nontransfected SK-24 cells with significantly increased iron signal at 850 ~ 950 nm, and these increased signals were associated with transfection of H-FT plasmid. As such, the feasibility of ferritin as a reporter gene for PMI has been demonstrated in vitro. The use of ferritin as a reporter gene represents a new concept for PA imaging, and may provide various opportunities for molecular imaging and basic science research.

  7. A targeted molecular probe for colorectal cancer imaging

    NASA Astrophysics Data System (ADS)

    Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.

  8. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  9. Aortic Stenosis, a Left Ventricular Disease: Insights from Advanced Imaging.

    PubMed

    Badiani, Sveeta; van Zalen, Jet; Treibel, Thomas A; Bhattacharyya, Sanjeev; Moon, James C; Lloyd, Guy

    2016-08-01

    Aortic stenosis (AS) is the most common primary valve disorder in the elderly with an increasing prevalence. It is increasingly clear that it is also a disease of the left ventricle (LV) rather than purely the aortic valve. The transition from left ventricular hypertrophy to fibrosis results in the eventual adverse effects on systolic and diastolic function. Appropriate selection of patients for aortic valve intervention is crucial, and current guidelines recommend aortic valve replacement in severe AS with symptoms or in asymptomatic patients with left ventricular ejection fraction (LVEF) <50 %. LVEF is not a sensitive marker and there are other parameters used in multimodality imaging techniques, including longitudinal strain, exercise stress echo and cardiac MRI that may assist in detecting subclinical and subtle LV dysfunction. These findings offer potentially better ways to evaluate patients, time surgery, predict recovery and potentially offer targets for specific therapies. This article outlines the pathophysiology behind the LV response to aortic stenosis and the role of advanced multimodality imaging in describing it. PMID:27384950

  10. Recent advances in molecular biology of parasitic viruses.

    PubMed

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses. PMID:25019235

  11. Recent advances in PET imaging for evaluation of Parkinson's disease.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2010-08-01

    Parkinson's disease (PD) consists of loss of pigmented dopamine-secreting neurons in the pars compacta of the midbrain substantia nigra. These neurons project to the striatum (putamen and caudate nucleus) and their loss leads to alterations in the activity of the neural circuits that regulate movement. In a simplified model, two dopamine pathways are involved: the direct pathway, which is mediated through facilitation of the D(1) receptors, and the indirect pathway through D(2) receptors (inhibitory). Positron emission tomography (PET) tracers to image the presynaptic sites of the dopaminergic system include 6-[(18)F]FDOPA and 6-[(18)F]FMT, [(11)C]dihydrotetrabenazine, [(11)C]nomifensine and various radiolabelled cocaine derivatives. Postsynaptically, for the dopamine D(1) subtype the most commonly used ligands are [(11)C]SCH 23390 or [(11)C]NNC 112 and for the D(2) subtype [(11)C]raclopride, [(11)C]MNPA and [(18)F]DMFP. PET is a sensitive and specific non-invasive molecular imaging technique that may be helpful for evaluation of PD and its differential diagnosis from other parkinsonian syndromes. PMID:20107789

  12. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. PMID:25802466

  13. Snapshot imaging of postpulse transient molecular alignment revivals

    NASA Astrophysics Data System (ADS)

    Loriot, V.; Tehini, R.; Hertz, E.; Lavorel, B.; Faucher, O.

    2008-07-01

    Laser induced field-free alignment of linear molecules is investigated by using a single-shot spatial imaging technique. The measurements are achieved by femtosecond time-resolved optical polarigraphy (FTOP). Individual alignment revivals recorded at high resolution in CO2 , as well as simultaneous observation of several alignment revivals produced within the rotational period of the O2 molecule are reported. The data are analyzed with a theoretical model describing the alignment experienced by each molecule standing within the interaction region observed by the detector. The temporal dynamics, intensity dependence, and degree of alignment are measured and compared with the awaited results. The technique is simple and can be easily implemented in a large class of molecular samples. Improvement to extend the performance of the method is discussed. The reported study is a decisive step toward feedback optimization and optimal control of field-free molecular alignment.

  14. Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology

    PubMed Central

    Yu, Shaobin; Zhu, Ling; Shen, Qiang; Bai, Xue; Di, Xuhui

    2015-01-01

    Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level. PMID:25861156

  15. Advances in Tumor Screening, Imaging, and Avatar Technologies for High-Grade Serous Ovarian Cancer

    PubMed Central

    Ohman, Anders W.; Hasan, Noor; Dinulescu, Daniela M.

    2014-01-01

    The majority of high-grade serous ovarian carcinoma cases are detected in advanced stages when treatment options are limited. Surgery is less effective at eradicating the disease when it is widespread, resulting in high rates of disease relapse and chemoresistance. Current screening techniques are ineffective for early tumor detection and consequently, BRCA mutations carriers, with an increased risk for developing high-grade serous ovarian cancer, elect to undergo risk-reducing surgery. While prophylactic surgery is associated with a significant reduction in the risk of cancer development, it also results in surgical menopause and significant adverse side effects. The development of efficient early-stage screening protocols and imaging technologies is critical to improving the outcome and quality of life for current patients and women at increased risk. In addition, more accurate animal models are necessary in order to provide relevant in vivo testing systems and advance our understanding of the disease origin and progression. Moreover, both genetically engineered and tumor xenograft animal models enable the preclinical testing of novel imaging techniques and molecularly targeted therapies as they become available. Recent advances in xenograft technologies have made possible the creation of avatar mice, personalized tumorgrafts, which can be used as therapy testing surrogates for individual patients prior to or during treatment. High-grade serous ovarian cancer may be an ideal candidate for use with avatar models based on key characteristics of the tumorgraft platform. This review explores multiple strategies, including novel imaging and screening technologies in both patients and animal models, aimed at detecting cancer in the early-stages and improving the disease prognosis. PMID:25478323

  16. MALDI mass spectrometric imaging meets "omics": recent advances in the fruitful marriage.

    PubMed

    Crecelius, A C; Schubert, U S; von Eggeling, F

    2015-09-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context. The applications of MALDI MSI in the field of large-scale mass spectrometric studies, which are typically denoted by the suffix "omics", are steadily increasing. This is because, on the one hand, technical advances regarding sample collection and preparation, matrix application, instrumentation, and data processing have enhanced the molecular specificity and sensitivity of MALDI MSI; on the other hand, the focus of the "omics" community has moved from establishing an inventory of certain compound classes to exploring their spatial distribution to gain novel insights. Thus, the aim of this mini-review is twofold, to display the state-of-the-art in terms of technical aspects in MALDI MSI and to highlight selected applications in the last two years, which either have significantly advanced a certain "omics" field or have introduced a new one through pioneering efforts. PMID:26161715

  17. Luminescent Nanomaterials for Molecular-Specific Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Zvyagin, Andrei Vasilyevich; Song, Zhen; Nadort, Annemarie; Sreenivasan, Varun Kumaraswamy Annayya; Deyev, Sergey Mikhailovich

    Imaging of molecular trafficking in cells and biological tissue aided by molecular-specific fluorescent labeling is very attractive, since it affords capturing the key processes in comprehensive biological context. Several shortcomings of the existing organic dye labeling technology, however, call for development of alternative molecular reporters, with improved photostability, reduced cytotoxicity, and an increased number of controllable surface moieties. Such alternative molecular reporters are represented by inorganic luminescent nanoparticles (NP) whose optical, physical, and chemical properties are discussed on the examples of luminescent nanodiamonds (LND) and upconversion nanoparticles (UCNP). The emission origins of these nanomaterials differ markedly. LND emission results from individual nitrogen-vacancy color-centers in a biocompatible nanodiamond host whose properties can be controlled via size and surface groups. Photophysics of UCNP is governed by the collective, nonlinear excitation transfer processes, resulting in conversion of longer-wavelength excitation to the shorter-wavelength emission. The emission/excitation spectral properties of UCNP falling within the biological tissue transparency window open new opportunities of almost complete suppression of the cell/tissue autofluorescence background. The developed surface of these nanoparticles represents a flexible platform populated with biocompatible surface moieties onto which cargo and targeting biomolecules can be firmly docked through a process called bioconjugation. These bioconjugated modules, e.g., nanodiamond-antibody, (quantum dot)-somatostatin, or (upconversion nanoparticle)-(mini-antibody) can gain admission into the cells by initiating the cell-specific, cell-recognized communication protocol. In this chapter, we aim to demonstrate the whole bottom-up bio-nano-optics approach for optical biological imaging capturing luminescent nanoparticle design, surface activation, and bioconjugation

  18. Recent Advances in Molecular Biology of Thyroid Cancer and Their Clinical Implications

    PubMed Central

    Xing, Mingzhao

    2009-01-01

    Synopsis Thyroid cancer is the most common endocrine malignancy with a rapid rising incidence in recent years. Novel efficient management strategies are increasingly needed for this cancer. Remarkable advances have occurred in recent years in understanding the molecular biology of thyroid cancer. This is reflected in several major biological areas of thyroid cancer, including the molecular alterations for the loss of radioiodine avidity of thyroid cancer, the pathogenic role of the MAP kinase and PI3K/Akt pathways and their related genetic alterations, and the aberrant methylation of functionally important genes in thyroid tumorigenesis and pathogenesis. These exciting advances in molecular biology of thyroid cancer provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for this cancer. PMID:19040974

  19. PET-Based Molecular Imaging in Designing Personalized Management Strategy in Gastroenteropancreatic Neuroendocrine Tumors.

    PubMed

    Basu, Sandip; Ranade, Rohit; Ostwal, Vikas; Shrikhande, Shailesh V

    2016-07-01

    In recent years, PET-based molecular functional imaging has been increasingly used in neuroendocrine tumors for tailoring of treatment strategies to the individual characteristics of each patient. For each particular patient, the relative tracer uptake by the dual-tracer PET imaging approach (with 68Ga-DOTANOC/TATE and 18F-FDG) frequently plays an important role along with the histopathologic tumor grades for selecting the optimal treatment approach for advanced/metastatic cases. Various tumor-specific parameters have resulted in development of such precision-medicine type model in this biologically heterogeneous group of tumors. The traditional advantages of PET/computed tomography in terms of disease staging are also applicable for personalization of management. From the medical oncologist's standpoint, multitracer PET-based information and staging is of significant importance (in addition to the histologic grades) in selecting the appropriate chemotherapy regimen and monitoring response on an individual basis in the course of treatment. PMID:27321028

  20. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents

    PubMed Central

    Palekar, Rohun U; Jallouk, Andrew P; Lanza, Gregory M; Pan, Hua; Wickline, Samuel A

    2015-01-01

    As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease. PMID:26080701

  1. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  2. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology

    PubMed Central

    Rauser, Sandra; Deininger, Sören-Oliver; Höfler, Heinz

    2008-01-01

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the in situ analysis of tissue sections. MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement and enables the acquisition of cellular expression profiles while maintaining the cellular and molecular integrity. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. In this review, we focus on the current state of the art of MALDI-IMS, describe basic technological developments for MALDI-IMS of animal and human tissues, and discuss some recent applications in basic research and in clinical settings. PMID:18618129

  3. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis.

    PubMed

    Dweck, Marc R; Aikawa, Elena; Newby, David E; Tarkin, Jason M; Rudd, James H F; Narula, Jagat; Fayad, Zahi A

    2016-07-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is, therefore, shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression, and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis, and the advantages and challenges posed by these techniques. PMID:27390335

  4. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  5. Multifunctional gold nanostars for molecular imaging and cancer therapy

    PubMed Central

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Register, Janna K.; Vo-Dinh, Tuan

    2015-01-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL), and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy (PDT). This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed. PMID:26322306

  6. The Imaging Probe Development Center and the Production of Molecular Imaging Probes

    PubMed Central

    Griffiths, Gary L

    2008-01-01

    The Imaging Probe Development Center (IPDC), part of the NIH Roadmap for Medical Research Initiative (http://nihroadmap.nih.gov/) recently became fully operational at its newly refurbished laboratories in Rockville, MD. The IPDC (http://nihroadmap.nih.gov/molecularlibraries/ipdc/) is dedicated to the production of known and novel molecular imaging probes, with its services currently being used by the NIH intramural community, although in the future it is intended that the extramural community will also benefit from the IPDC’s resources. The Center has been set up with the belief that molecular imaging, and the probe chemistry that underpins it, will constitute key technologies going forward. As part of the larger molecular libraries and imaging initiative, it is planned that the IPDC will work closely with scientists from the molecular libraries effort. Probes produced at the IPDC include optical, radionuclide and magnetic resonance agents and may encompass any type of contrast agent. As IPDC is a trans-NIH resource it can serve each of the 27 Institutes and Centers that comprise NIH so its influence can be expected to impact widely different subjects and disease conditions spanning biological research. IPDC is expected to play a key part in interdisciplinary collaborative imaging projects and to support translational R&D from basic research through clinical development, for all of the imaging modalities. Examples of probes already prepared or under preparation are outlined to illustrate the breadth of the chemistries undertaken together with a reference outline of the diverse biological applications for which the various probes are intended. PMID:20161829

  7. Update on advances in molecular PET in urological oncology.

    PubMed

    Kitajima, Kazuhiro; Yamamoto, Shingo; Fukushima, Kazuhito; Minamimoto, Ryogo; Kamai, Takao; Jadvar, Hossein

    2016-07-01

    Integrated positron emission tomography/computed tomography (PET/CT) with 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)F-FDG) has emerged as a powerful tool for the combined metabolic and anatomic evaluation of many cancers. In urological oncology, however, the use of (18)F-FDG has been limited by a generally low tumor uptake, and physiological excretion of FDG through the urinary system. (18)F-FDG PET/CT is useful when applied to specific indications in selected patients with urological malignancy. New radiotracers and positron emission tomography/magnetic resonance imaging (PET/MRI) are expected to further improve the performance of PET in uro-oncology. PMID:27222021

  8. Recent advances toward a molecular mechanism of efflux pump inhibition

    PubMed Central

    Opperman, Timothy J.; Nguyen, Son T.

    2015-01-01

    Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps. PMID:25999939

  9. MOLECULAR ADVANCES IN AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE

    PubMed Central

    Gallagher, Anna Rachel; Germino, Gregory G.; Somlo, Stefan

    2010-01-01

    Autosomal dominant polycystic disease (ADPKD) is the most common form of inherited kidney disease that results renal failure. The understanding the pathogenesis of ADPKD has advanced significantly since the discovery of the two causative genes, PKD1 or PKD2. Dominantly inherited gene mutations followed by somatic second hit mutations inactivating the normal copy of the respective gene result in renal tubular cyst formation that deforms the kidney and eventually impairs its function. The respective gene products, polycystin-1 and polycystin-2, work together in a common cellular pathway. Polycystin-1, a large receptor molecule, forms a receptor-channel complex with polycystin-2, which is a cation channel belonging to the TRP family. Both polycystin proteins have been localized to the primary cilium, a non-motile microtubule based structure that extends from the apical membrane of tubular cells into the lumen. Here we discuss recent insights in the pathogenesis of ADPKD including the genetics of ADPKD, the properties of the respective polycystin proteins, the role of cilia, and some cell signaling pathways that have been implicated in the pathways related to PKD1 and PKD2. PMID:20219615

  10. Progress of Molecular Targeted Therapies for Advanced Renal Cell Carcinoma

    PubMed Central

    Santoni, Matteo; Amantini, Consuelo; Burattini, Luciano; Berardi, Rossana; Santoni, Giorgio; Cascinu, Stefano; Muzzonigro, Giovanni

    2013-01-01

    Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF expression in metastatic renal cell carcinoma (mRCC) is mostly regulated by hypoxia, predominantly via the hypoxia-induced factor (HIF)/Von Hippel-Lindau (VHL) pathway. Advances in our knowledge of VEGF role in tumor angiogenesis, growth, and progression have permitted development of new approaches for the treatment of mRCC, including several agents targeting VEGF and VEGF receptors: tyrosine kinase pathway, serine/threonine kinases, α5β1-integrin, deacetylase, CD70, mammalian target of rapamycin (mTOR), AKT, and phosphatidylinositol 3′-kinase (PI3K). Starting from sorafenib and sunitinib, several targeted therapies have been approved for mRCC treatment, with a long list of agents in course of evaluation, such as tivozanib, cediranib, and VEGF-Trap. Here we illustrate the main steps of tumor angiogenesis process, defining the pertinent therapeutic targets and the efficacy and toxicity profiles of these new promising agents. PMID:24093097

  11. Molecular Targets of Isothiocyanates in Cancer: Recent Advances

    PubMed Central

    Gupta, Parul; Kim, Bonglee; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITC) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anti-cancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of pre-clinical studies, few ITCs have advanced to the clinical phase. Available data from pre-clinical as well as available clinical studies suggests ITCs to be one of the promising anti-cancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer. PMID:24510468

  12. Advances in the Molecular Genetics of Non-syndromic Syndactyly

    PubMed Central

    Deng, Hao; Tan, Ting

    2015-01-01

    Syndactyly, webbing of adjacent digits with or without bony fusion, is one of the most common hereditary limb malformations. It occurs either as an isolated abnormality or as a component of more than 300 syndromic anomalies. There are currently nine types of phenotypically diverse nonsyndromic syndactyly. Non-syndromic syndactyly is usually inherited as an autosomal dominant trait, although the more severe presenting types and subtypes may show autosomal recessive or X-linked pattern of inheritance. The phenotype appears to be not only caused by a main gene, but also dependant on genetic background and subsequent signaling pathways involved in limb formation. So far, the principal genes identified to be involved in congenital syndactyly are mainly involved in the zone of polarizing activity and sonic hedgehog pathway. This review summarizes the recent progress made in the molecular genetics, including known genes and loci responsible for non-syndromic syndactyly, and the signaling pathways those genetic factors involved in, as well as clinical features and animal models. We hope our review will contribute to the understanding of underlying pathogenesis of this complicated disorder and have implication on genetic counseling. PMID:26069458

  13. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers

    PubMed Central

    Koedrith, Preeyaporn; Seo, Young Rok

    2011-01-01

    Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression. PMID:22272150

  14. Advances in molecular-replacement procedures: the REVAN pipeline.

    PubMed

    Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Mazzone, Annamaria

    2015-09-01

    The REVAN pipeline aiming at the solution of protein structures via molecular replacement (MR) has been assembled. It is the successor to REVA, a pipeline that is particularly efficient when the sequence identity (SI) between the target and the model is greater than 0.30. The REVAN and REVA procedures coincide when the SI is >0.30, but differ substantially in worse conditions. To treat these cases, REVAN combines a variety of programs and algorithms (REMO09, REFMAC, DM, DSR, VLD, free lunch, Coot, Buccaneer and phenix.autobuild). The MR model, suitably rotated and positioned, is first refined by a standard REFMAC refinement procedure, and the corresponding electron density is then submitted to cycles of DM-VLD-REFMAC. The next REFMAC applications exploit the better electron densities obtained at the end of the VLD-EDM sections (a procedure called vector refinement). In order to make the model more similar to the target, the model is submitted to mutations, in which Coot plays a basic role, and it is then cyclically resubmitted to REFMAC-EDM-VLD cycles. The phases thus obtained are submitted to free lunch and allow most of the test structures studied by DiMaio et al. [(2011), Nature (London), 473, 540-543] to be solved without using energy-guided programs. PMID:26327375

  15. Radionuclide imaging - A molecular key to the atherosclerotic plaque

    PubMed Central

    Langer, Harald Franz; Haubner, Roland; Pichler, Bernd Juergen; Gawaz, Meinrad

    2008-01-01

    Despite primary and secondary prevention, serious cardiovascular events like unstable angina or myocardial infarction still account for one third of all deaths worldwide. Therefore, identifying individual patients with vulnerable plaques at high risk for plaque rupture is a central challenge in cardiovascular medicine. Several non-invasive techniques, such as MRI, multislice computed tomography and electron beam tomography are currently being tested for their ability to identify such patients by morphological criteria. In contrast, molecular imaging techniques use radiolabeled molecules to detect functional aspects in atherosclerotic plaques by visualizing its biological activity. Based upon the knowledge about the pathophysiology of atherosclerosis, various studies in vitro, in vivo and the first clinical trials have used different tracers for plaque imaging studies, including radioactive labelled lipoproteins, components of the coagulation system, cytokines, mediators of the metalloproteinase system, cell adhesion receptors and even whole cells. This review gives an update on the relevant non-invasive plaque imaging approaches using nuclear imaging techniques to detect atherosclerotic vascular lesions. PMID:18582628

  16. Tumor Functional and Molecular Imaging Utilizing Ultrasound and Ultrasound-Mediated Optical Techniques

    PubMed Central

    Yuan, Baohong; Rychak, Joshua

    2014-01-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques. PMID:23219728

  17. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  18. Development of a calcium-sensing receptor molecular imaging agent

    PubMed Central

    Yusof, Adlina Mohd; Kothandaraman, Shankaran; Zhang, Xiaoli; Saji, Motoyasu; Ringel, Matthew D.; Tweedle, Michael F.; Phay, John E.

    2015-01-01

    Background Calcium-sensing receptor (CaSR) is expressed by parathyroid cells and thyroid C-cells (from which medullary thyroid carcinoma [MTC] is derived). A molecular imaging agent localizing to the CaSR could improve the detection of parathyroids and MTC preoperatively or intraoperatively. We synthesized a novel compound containing a fluorine residue for potential future labeling and demonstrated that the compound inhibited CaSR function in vitro. Methods We synthesized compound M, a derivative of a known calcilytic compound, Calhex-231. Human embryonic kidney cells transfected with green-fluorescent protein-tagged CaSR or control vector were preincubated with compound M before the addition of calcium. Immunoblotting for total mitogen-activated protein kinase (MAPK: ERK1/2), activated MAPK (phosphorylated ERK1/2), and glyceraldehyde 3-phosphate dehydrogenase was performed. Results Synthesis of compound M was confirmed by mass spectrometry. Inhibition of the MAPK signaling pathway by compound M was demonstrated in a dose-dependent manner by a decrease in phosphorylated ERK1/2 with no change in total ERK1/2 levels. Compound M inhibited MAPK signaling slightly better than the parent compound. Conclusion We have developed a novel molecule which demonstrates functional inhibition of CaSR and has a favorable structure for labeling. This compound appears to be appropriate for further development as a molecular imaging tool to enhance the surgical treatment of parathyroid disease and MTC. PMID:24238055

  19. Raman molecular imaging of brain frozen tissue sections.

    PubMed

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins. PMID:25038847

  20. Towards imaging of ultrafast molecular dynamics using FELs

    NASA Astrophysics Data System (ADS)

    Rouzée, A.; Johnsson, P.; Rading, L.; Hundertmark, A.; Siu, W.; Huismans, Y.; Düsterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lépine, F.; Holland, D. M. P.; Schlatholter, T.; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.

    2013-08-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of atomic fragments resulting from the 400 nm-induced dissociation was measured with a velocity map imaging spectrometer and used to monitor the internuclear distance as the molecule dissociated. By employing the simultaneously recorded in-house timing electro-optical sampling data, the time resolution of the final results could be improved to 300 fs, compared to the inherent 500 fs time-jitter of the FEL pulse. Before dissociation, the Br2 molecules were transiently ‘fixed in space’ using laser-induced alignment. In addition, similar alignment techniques were used on CO2 molecules to allow the measurement of the photoelectron angular distribution (PAD) directly in the molecular frame (MF). Our results on MFPADs in aligned CO2 molecules, together with our investigation of the dissociation dynamics of the Br2 molecules with CEI, show that information about the evolving molecular structure and electronic geometry can be retrieved from such experiments, therefore paving the way towards the study of complex non-adiabatic dynamics in molecules through XUV time-resolved photoion and photoelectron spectroscopy.

  1. Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics

    PubMed Central

    Smith, Bryan A.; Smith, Bradley D.

    2012-01-01

    Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging. PMID:22989049

  2. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  3. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Bregman, Joel; Garcia, Michael; Zhang, W.; Kelley, R.; Kilbourne, C.; Bandler, S.

    2012-09-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe SMBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a microcalorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high-resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arcsec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer- review.

  4. Advances in molecular surveillance of Clostridium difficile in Bulgaria.

    PubMed

    Dobreva, Elina G; Ivanov, Ivan N; Vathcheva-Dobrevska, Rossitza S; Ivanova, Katucha I; Asseva, Galina D; Petrov, Petar K; Kantardjiev, Todor V

    2013-09-01

    The increasing incidence of Clostridium difficile infection (CDI) in Bulgaria has indicated the need to implement better surveillance approaches. The aim of the present work was to improve the current surveillance of CDI in Bulgaria by introducing innovative methods for identification and typing. One hundred and twenty stool samples obtained from 108 patients were studied over 4 years from which 32 C. difficile isolates were obtained. An innovative duplex EvaGreen real-time PCR assay based on simultaneous detection of the gluD and tcdB genes was developed for rapid C. difficile identification. Four toxigenic profiles were distinguished by PCR: A(+)B(+)CDT(-) (53.1 %, 17/32), A(-)B(+)CDT(-) (28.1 %, 9/32), A(+)B(+)CDT(+) (9.4 %, 3/32) and A(-)B(-)CDT(-) (9.4 %, 3/32). PCR ribotyping and multilocus variable number of tandem repeat analysis (MLVA7) were used for molecular characterization of the isolates. In total, nine distinct ribotypes were confirmed and the most prevalent for Bulgarian hospitals was 017 followed by 014/020, together accounting for 44 % of all isolates. Eighteen per cent of the isolates (6/32) did not match any of the 25 reference ribotypes available in this study. Twenty-four MLVA7 genotypes were detected among the clinical C. difficile isolates, distributed as follows: five for 017 ribotype, two for 014/020, 001, 002, 012 and 046 each, and one each for ribotypes 023, 070 and 078. The correlation between the typing methods was significant and allowed the identification of several clonal complexes. These results suggest that most C. difficile cases in the eight Bulgarian hospitals studied were associated with isolates belonging to the outbreak ribotypes 017 and 014/20, which are widely distributed in Europe. The real-time PCR protocol for simultaneous detection of gluD and tcdB proved to be very effective and improved C. difficile identification and confirmation of clinical C. difficile isolates. PMID:23598377

  5. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care

    PubMed Central

    Dhingra, Vandana K; Mahajan, Abhishek; Basu, Sandip

    2015-01-01

    This review focuses on the potential of advanced applications of functional molecular imaging in assessing tumor biology and cellular characteristics with emphasis on positron emission tomography (PET) applications with both 18-fluorodeoxyglucose (FDG) and non-FDG tracers. The inherent heterogeneity of cancer cells with their varied cellular biology and metabolic and receptor phenotypic expression in each individual patient and also intra-and inter-lesionally in the same individual mandates for transitioning from a generalized “same-size-fits-all” approach to personalized medicine in oncology. The past two decades have witnessed improvement of oncological imaging through CT, MR imaging, PET, subsequent movement through hybrid or fusion imaging with PET/CT and single-photon emission computerized tomography (SPECT-CT), and now toward the evolving PET/MR imaging. These recent developments have proven invaluable in enhancing oncology care and have the potential to help image the tumor biology at the cellular level, followed by providing a tailored treatment. Molecular imaging, integrated diagnostics or Radiomics, biology-driven interventional radiology and theranostics, all hold immense potential to serve as a guide to give “start and stop” treatment for a patient on an individual basis. This will likely have substantial impact on both treatment costs and outcomes. In this review, we bring forth the current trends in molecular imaging with established techniques (PET/CT), with particular emphasis on newer molecules (such as amino acid metabolism and hypoxia imaging, somatostatin receptor based imaging, and hormone receptor imaging) and further potential for FDG. An introductory discussion on the novel hybrid imaging techniques such as PET/MR is also made to understand the futuristic trends. PMID:26752813

  6. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.

    PubMed

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C

    2011-03-01

    Medical imaging has seen substantial and rapid technical advances during the past decade, including advances in image acquisition devices, processing and analysis software, and agents to enhance specificity. Traditionally, medical imaging has defined anatomy, but increasingly newer, more advanced, imaging technologies provide biochemical and physiologic information based on both static and dynamic modalities. These advanced technologies are important not only for detecting disease but for characterizing and assessing change of disease with time or therapy. Because of the rapidity of these advances, research to determine the utility of quantitative imaging in either clinical research or clinical practice has not had time to mature. Methods to appropriately develop, assess, regulate, and reimburse must be established for these advanced technologies. Efficient and methodical processes that meet the needs of stakeholders in the biomedical research community, therapeutics developers, and health care delivery enterprises will ultimately benefit individual patients. To help address this, the authors formed a collaborative program-the Quantitative Imaging Biomarker Alliance. This program draws from the very successful precedent set by the Integrating the Healthcare Enterprise effort but is adapted to the needs of imaging science. Strategic guidance supporting the development, qualification, and deployment of quantitative imaging biomarkers will lead to improved standardization of imaging tests, proof of imaging test performance, and greater use of imaging to predict the biologic behavior of tissue and monitor therapy response. These, in turn, confer value to corporate stakeholders, providing incentives to bring new and innovative products to market. PMID:21339352

  7. Clinical applications of recent molecular advances in urologic malignancies: no longer chasing a "mirage"?

    PubMed

    Netto, George J

    2013-05-01

    As our understanding of the molecular events leading to the development and progression of genitourologic malignancies, new markers of detection, prognostication, and therapy prediction can be exploited in the management of these prevalent tumors. The current review discusses the recent advances in prostate, bladder, renal, and testicular neoplasms that are pertinent to the anatomic pathologist. PMID:23574774

  8. Near-infrared dyes for molecular probes and imaging

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Kim, Jun Seok; Crow, Sidney

    2009-02-01

    Near-Infrared (NIR) fluorescence has been used both as an analytical tool as molecular probes and in in vitro or in vivo imaging of individual cells and organs. The NIR region (700-1100 nm) is ideal with regard to these applications due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. NIR dyes are also useful in studying binding characteristics of large biomolecules, such as proteins. Throughout these studies, different NIR dyes have been evaluated to determine factors that control binding to biomolecules, including serum albumins. Hydrophobic character of NIR dyes were increased by introducing alkyl and aryl groups, and hydrophilic moieties e.g., polyethylene glycols (PEG) were used to increase aqueous solubility. Recently, our research group introduced bis-cyanines as innovative NIR probes. Depending on their microenvironment, bis-cyanines can exist as an intramolecular dimer with the two cyanines either in a stacked form, or in a linear conformation in which the two subunits do not interact with each other. In this intramolecular H-aggregate, the chromophore has a low extinction coefficient and low fluorescence quantum yield. Upon addition of biomolecules, the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. Introduction of specific moieties into the NIR dye molecules allows for the development of physiological molecular probes to detect pH, metal ions and other parameters. Examples of these applications include imaging and biomolecule characterizations. Water soluble dyes are expected to be excellent candidates for both in vitro and in vivo imaging of cells and organs.

  9. Near Infrared Imaging of Molecular Beacons in Cancers

    NASA Astrophysics Data System (ADS)

    Chance, Britton

    2001-03-01

    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen (< 40μ) scanning of the freeze trapped tumor in order to immobilize the tissue, to increase the fluorescence quantum yield and to limit the penetration of the excitation to a thin superficial layer (< 20μ). Precision milling of layers (> 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects (< 1 mm) is achieved by phased array optical system using 0^O, 180^O 50 MHz modulation of pairs of laser diodes (780 nm) and fluorescence detection (> 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  10. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    SciTech Connect

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  11. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer

    PubMed Central

    Thapar, Roopa; Titus, Mark A

    2015-01-01

    Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer. PMID:25632377

  12. Recent advances in imaging crustal fault zones: a review

    NASA Astrophysics Data System (ADS)

    Yang, Hongfeng

    2015-04-01

    Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the along-strike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume air-gun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.

  13. Radiometric calibration of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Parker, Alexander C.

    1999-09-01

    The radiometric calibration of the Earth Observation 1 Advanced Land Imager (EO-1 ALI) was completed in the Spring of 1999 at Lincoln Laboratory. This calibration was conducted with the ALI as a fully assembled instrument in a thermal vacuum chamber at operation temperatures. The ALI was calibrated radiometrically at the system level from 0 to > 100 percent Earth-equivalent albedo using a combination of internal and external halogen and Xenon lamps attached to a large integrating sphere. Absolute radiometric calibration was achieved by measuring the output of the integrating sphere at each radiance level prior to ALI illumination using a NIST-traceable spectroradiometer. Additional radiometric characterization of this instrument was obtained from data collected using a collimator designed for the spectral calibration of the ALI. In this paper we review the techniques employed during radiometric calibration and present the measured gain, linearity, offset, signal-to- noise ratio and polarization sensitivity of each pixel. The testing result of a novel, in-flight solar calibration technique are also discussed. Finally, the results from a Lincoln Laboratory/Goddard Space Flight Center Landsat transfer radiometric study are presented.

  14. Strategies for molecular imaging dementia and neurodegenerative diseases

    PubMed Central

    Schaller, Bernhard J

    2008-01-01

    Dementia represents a heterogeneous term that has evolved to describe the behavioral syndromes associated with a variety of clinical and neuropathological changes during continuing degenerative disease of the brain. As such, there lacks a clear consensus regarding the neuropsychological and other constituent characteristics associated with various cerebrovascular changes in this disease process. But increasing this knowledge has given more insights into memory deterioration in patients suffering from Alzheimer’s disease and other subtypes of dementia. The author reviews current knowledge of the physiological coupling between cerebral blood flow and metabolism in the light of state-of-the-art-imaging methods and its changes in dementia with special reference to Alzheimer’s disease. Different imaging techniques are discussed with respect to their visualizing effect of biochemical, cellular, and/or structural changes in dementia. The pathophysiology of dementia in advanced age is becoming increasingly understood by revealing the underlying basis of neuropsychological changes with current imaging techniques, genetic and pathological features, which suggests that alterations of (neuro) vascular regulatory mechanisms may lead to brain dysfunction and disease. The current view is that cerebrovascular deregulation is seen as a contributor to cerebrovascular pathologies, such as stroke, but also to neurodegenerative conditions, such as Alzheimer’s disease. The better understanding of these (patho) physiological mechanisms may open an approach to new interventional strategies in dementia to enhance neurovascular repair and to protect neurovascular coupling. PMID:18830391

  15. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    PubMed

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  16. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093

  17. Imaging-Genetics in Autism Spectrum Disorder: Advances, Translational Impact, and Future Directions

    PubMed Central

    Ameis, Stephanie H.; Szatmari, Peter

    2012-01-01

    Autism Spectrum Disorder (ASD) refers to a group of heterogeneous neurodevelopmental disorders that are unified by impairments in reciprocal social communication and a pattern of inflexible behaviors. Recent genetic advances have resolved some of the complexity of the genetic architecture underlying ASD by identifying several genetic variants that contribute to the disorder. Different etiological pathways associated with ASD may converge through effects on common molecular mechanisms, such as synaptogenesis, neuronal motility, and axonal guidance. Recently, with more sophisticated techniques, neuroimaging, and neuropathological studies have provided some consistency of evidence that altered structure, activity, and connectivity within complex neural networks is present in ASD, compared to typically developing children. The imaging-genetics approach promises to help bridge the gap between genetic variation, resultant biological effects on the brain, and production of complex neuropsychiatric symptoms. Here, we review recent findings from the developing field of imaging-genetics applied to ASD. Studies to date have indicated that relevant risk genes are associated with alterations in circuits that mediate socio-emotional, visuo-spatial, and language processing. Longitudinal studies ideally focused on early development, in conjunction with investigation for gene–gene, and gene–environment interactions may move the promise of imaging-genetics in ASD closer to the clinical domain. PMID:22615702

  18. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  19. Molecular Imaging of Metabolic Reprograming in Mutant IDH Cells

    PubMed Central

    Viswanath, Pavithra; Chaumeil, Myriam M.; Ronen, Sabrina M.

    2016-01-01

    Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70–90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an “oncometabolite,” inhibits key α-KG-dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprograming that extends beyond 2-HG production, and this reprograming often differs from what has been previously reported in other cancer types. In this review, we will discuss in detail what is known to date about the metabolic reprograming of mutant IDH cells, and how this reprograming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells, and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo. PMID:27014635

  20. Carbon-Based Nanostructures as Advanced Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Ananta Narayanan, Jeyarama S.

    2011-12-01

    Superparamagnetic carbon-based nanostructures are presented as contrast agents (CAs) for advanced imaging applications such as cellular and molecular imaging using magnetic resonance imaging (MRI). Gadolinium-loaded, ultra-short single-walled carbon nanotubes (gadonanotubes; GNTs) are shown to have extremely high r1 relaxivities (contrast enhancement efficacy), especially at low-magnetic field strengths. The inherent lipophilicity of GNTs provides them the ability to image cells at low magnetic field strength. A carboxylated dextran-coated GNT (GadoDex) has been synthesized and proposed as a new biocompatible high-performance MRI CA. The r1 relaxivity is ca. 20 times greater than for other paramagnetic Gd-based CAs. This enhanced relaxivity for GadoDex is due to the synergistic effects of an increased molecular tumbling time (tauR) and a faster proton exchange rate (taum). GNTs also exhibit very large transverse relaxivities (r2) at high magnetic fields (≥ 3 T). The dependence of the transverse relaxation rates (especially R2*) of labeled cells on GNT concentration offers the possibility to quantify cell population in vivo using R2* mapping. The cell-labeling efficiency and high transverse relaxivities of GNTs has enabled the first non-iron oxide-based single-cell imaging using MRI. The residual metal catalyst particles of SWNT materials also have transverse relaxation properties. All of the SWNT materials exhibit superior transverse relaxation properties. However, purified SWNTs and US-tubes with less residual metal content exhibit better transverse relaxivities (r2), demonstrating the importance of the SWNT structure for enhanced MRI CA performance. A strategy to improve the r1 relaxivity of Gd-CAs by geometrically confining them within porous silicon particles (SiMPs) has been investigated. The enhancement in relaxivity is attributed to the slow diffusion of water molecules through the pores and the increase in the molecular tumbling time of the nanoconstruct