NASA Astrophysics Data System (ADS)
Xu, Bing; Cheng, Min
2018-06-01
This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.
Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms
Kuiken, Todd A.; Li, Guanglin; Lock, Blair A.; Lipschutz, Robert D.; Miller, Laura A.; Stubblefield, Kathy A.; Englehart, Kevin
2011-01-01
Context Improving the function of prosthetic arms remains a challenge, as access to the neural control information for the arm is lost during amputation. We have developed a surgical technique called targeted muscle reinnervation (TMR) which transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce an electromyogram (EMG) on the surface of the skin that can be measured and used to control prosthetic arms. Objective Assess the performance of TMR upper-limb amputee patients using a pattern-recognition algorithm to decode EMG signals and control prosthetic arm motions. Design Surface EMG signals were recorded on participants and decoded using a pattern-recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm. Participants were instructed to perform various arm movements, and their abilities to control the virtual prosthetic arm were measured. In addition, TMR patients used the same control system to operate advanced arm prosthesis prototypes. Setting This study was conducted between January 2007 and January 2008 at the Rehabilitation Institute of Chicago. Participants This study included five patients with shoulder disarticulation or transhumeral amputations who received TMR surgery between February 2002 and October 2006. It also included five non-amputee (control) participants. Main Outcome Measure Performance metrics measured during virtual arm movements included motion-selection time, motion-completion time, and motion-completion (or `success') rate. Three of the TMR patients were also able to test advanced arm prostheses. Results TMR patients were able to repeatedly perform 10 different elbow, wrist and hand motions with the virtual prosthetic arm. For TMR patients, the average (standard deviation (SD)) motion-selection and motion-completion times for elbow and wrist movements were 0.22 s (0.06) and 1.29 s (0.15), respectively. These times were 0.06 s and 0.21 s longer than the average times of control participants. For TMR patients, the average (SD) motion-selection and motion-completion times for hand-grasp patterns were 0.38 s (0.12) and 1.54 s (0.27), respectively. TMR patients successfully completed an average (SD) of 96.3% (3.8) of elbow and wrist movements and 86.9% (13.9) of hand movements within 5 s, compared to 100% (0) and 96.7% (4.7) completed by controls. Three of the patients were able to demonstrate the use of this control system in advanced prostheses including motorized shoulders, elbows, wrists and hands. Conclusion These results suggest that reinnervated muscles can produce sufficient EMG information to control advanced artificial arms. PMID:19211469
On the design of decoupling controllers for advanced rotorcraft in the hover case
NASA Technical Reports Server (NTRS)
Fan, M. K. H.; Tits, A.; Barlow, J.; Tsing, N. K.; Tischler, M.; Takahashi, M.
1991-01-01
A methodology for design of helicopter control systems is proposed that can account for various types of concurrent specifications: stability, decoupling between longitudinal and lateral motions, handling qualities, and physical limitations of the swashplate motions. This is achieved by synergistic use of analytical techniques (Q-parameterization of all stabilizing controllers, transfer function interpolation) and advanced numerical optimization techniques. The methodology is used to design a controller for the UH-60 helicopter in hover. Good results are achieved for decoupling and handling quality specifications.
NASA Technical Reports Server (NTRS)
Feather, J. B.; Joshi, D. S.
1981-01-01
Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.
Kinematics and Dynamics of Motion Control Based on Acceleration Control
NASA Astrophysics Data System (ADS)
Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro
The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.
Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung
2018-03-05
In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.
Studies of human dynamic space orientation using techniques of control theory
NASA Technical Reports Server (NTRS)
Young, L. R.
1974-01-01
Studies of human orientation and manual control in high order systems are summarized. Data cover techniques for measuring and altering orientation perception, role of non-visual motion sensors, particularly the vestibular and tactile sensors, use of motion cues in closed loop control of simple stable and unstable systems, and advanced computer controlled display systems.
Success Stories in Control: Nonlinear Dynamic Inversion Control
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2010-01-01
NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system`s cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27{pi}.« less
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan.
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27[pi].« less
Motion-mode energy method for vehicle dynamics analysis and control
NASA Astrophysics Data System (ADS)
Zhang, Nong; Wang, Lifu; Du, Haiping
2014-01-01
Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
NASA Technical Reports Server (NTRS)
Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.
2014-01-01
The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.
NASA Astrophysics Data System (ADS)
Pritykin, F. N.; Nebritov, V. I.
2018-01-01
The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.
Mauser, Stanislas; Burgert, Oliver
2014-01-01
There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.
Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea
NASA Astrophysics Data System (ADS)
Tang, Kai; Zhu, Ren-chuan; Miao, Guo-ping; Fan, Ju
2014-08-01
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
New virtual laboratories presenting advanced motion control concepts
NASA Astrophysics Data System (ADS)
Goubej, Martin; Krejčí, Alois; Reitinger, Jan
2015-11-01
The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
Advanced Respiratory Motion Compensation for Coronary MR Angiography
Henningsson, Markus; Botnar, Rene M.
2013-01-01
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
Advances in Enterprise Control. AEC Proceedings, November 15-16, 1999/San Diego, California
1999-11-16
structure of tropical termite mounds. 2.3. Mechanisms that each agent deposits one unit of pheromone per unit time and that a proportion 0 < E < 1 of the...Stubberud 137 Section 4: Distributed and Agent-Based Strategies 149 Synthetic Pheromones for Distributed Motion Control by H. Van Dyke Parunak and...Computer Engineering, June, 1994. 147 148 Section 4 Distributed and Agent-Based Strategies 149 150 Synthetic Pheromones for Distributed Motion
An approach to high speed ship ride quality simulation
NASA Technical Reports Server (NTRS)
Malone, W. L.; Vickery, J. M.
1975-01-01
The high speeds attained by certain advanced surface ships result in a spectrum of motion which is higher in frequency than that of conventional ships. This fact along with the inclusion of advanced ride control features in the design of these ships resulted in an increased awareness of the need for ride criteria. Such criteria can be developed using data from actual ship operations in varied sea states or from clinical laboratory experiments. A third approach is to simulate ship conditions using measured or calculated ship motion data. Recent simulations have used data derived from a math model of Surface Effect Ship (SES) motion. The model in turn is based on equations of motion which have been refined with data from scale models and SES of up to 101 600-kg (100-ton) displacement. Employment of broad band motion emphasizes the use of the simulators as a design tool to evaluate a given ship configuration in several operational situations and also serves to provide data as to the overall effect of a given motion on crew performance and physiological status.
2010-01-01
Background Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production. Results Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor. Conclusions Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities. PMID:20509968
Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
Ko, Sunho; Nakazawa, Atsushi; Kurose, Yusuke; Harada, Kanako; Mitsuishi, Mamoru; Sora, Shigeo; Shono, Naoyuki; Nakatomi, Hirofumi; Saito, Nobuhito; Morita, Akio
2017-05-01
OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. These 3 modes were defined as follows: 1) the distance between a target point and the tip of the slave manipulator, 2) the distance between the tips of the slave manipulators, and 3) the velocity of the master manipulator. Five test subjects, 2 of whom were neurosurgeons, sutured 0.3-mm artificial blood vessels using the MM-3 neurosurgical robot in each mode. RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.
EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
Yin, Yue H; Fan, Yuan J; Xu, Li D
2012-07-01
Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.
Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion.
Barenholtz, Elan; Tarr, Michael J
2009-05-28
Past research on figure-ground assignment to contours has largely considered static stimuli. Here we report a simple and extremely robust dynamic cue to figural assignment, based on whether the bounding region of a contour is growing larger within the field of view ("advancing") rather than smaller ("receding"). Subjects viewed a straight or jagged contour dividing two colored regions translating behind a virtual aperture and had to report which color they had seen "moving in front", effectively assigning figure to that side of the contour. Across three experiments, subjects showed a strong preference to assign figure such that the bounded contour was advancing. This was true regardless of the direction of motion of the contour and regardless of the initial/ending size of the bounded regions (i.e., the motion cue served to override the conventional cue to figure-ground of smaller area). In a fourth, control experiment, subjects showed no such bias when it was the aperture, rather than the contour, that moved, demonstrating that the effect depends on contour motion and not simply an increase in area. We discuss a possible explanation for this bias as well as the general implications regarding dynamic factors in form perception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beker, M. G., E-mail: M.Beker@Nikhef.nl; Bertolini, A.; Hennes, E.
There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to presentmore » its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.« less
Fundamental limits on beam stability at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, G. A.
1998-06-18
Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less
NASA Astrophysics Data System (ADS)
Seubert, Carl R.
Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.
Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping
2017-08-01
Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Huber, Kerstin C.; Rohlf, Detlef; Loser, Thomas
2014-01-01
Several static and dynamic forced-motion wind tunnel tests have been conducted on a generic unmanned combat air vehicle (UCAV) configuration with a 53deg swept leading edge. These tests are part of an international research effort to assess and advance the state-of-art of computational fluid dynamics (CFD) methods to predict the static and dynamic stability and control characteristics for this type of configuration. This paper describes the dynamic forced motion data collected from two different models of this UCAV configuration as well as analysis of the control surface deflections on the dynamic forces and moments.
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
Evaluation of classifier topologies for the real-time classification of simultaneous limb motions.
Ortiz-Catalan, Max; Branemark, Rickard; Hakansson, Bo
2013-01-01
The prediction of motion intent through the decoding of myoelectric signals has the potential to improve the functionally of limb prostheses. Considerable research on individual motion classifiers has been done to exploit this idea. A drawback with the individual prediction approach, however, is its limitation to serial control, which is slow, cumbersome, and unnatural. In this work, different classifier topologies suitable for the decoding of mixed classes, and thus capable of predicting simultaneous motions, were investigated in real-time. These topologies resulted in higher offline accuracies than previously achieved, but more importantly, positive indications of their suitability for real-time systems were found. Furthermore, in order to facilitate further development, benchmarking, and cooperation, the algorithms and data generated in this study are freely available as part of BioPatRec, an open source framework for the development of advanced prosthetic control strategies.
Slow Orbit Feedback at the ALS Using Matlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.
1999-03-25
The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (f) If the motion is granted, the Board may, if it deems such action to be appropriate, advance the... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... that would result if the motion is not granted; and (4) Incorporate in the motion affidavits to support...
Adaptive Quantum Control of Charge Motion in Semiconductor Heterostructures
NASA Astrophysics Data System (ADS)
Reitze, David
1998-05-01
Quantum control of electronic wavepacket motion and interactions using ultrafast lasers has moved from the conceptual stage to reality, in large part driven by advances in quantum control theory (R. J. Gordon and S. A. Rice, Ann. Rev. Phys. Chem. (1997), in press.) (M. Shapiro and P. Brumer, J. Chem. Soc. Faraday Trans. V93, 1263 (1997).) (D. Neuhauser and H. Rabitz, Acc. Chem. Res. V26, 496 (1993).) and experimental pulse shaping methods (A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science V247, 412 (1990).) (A. Efimov, C. Schaffer, and D. H. Reitze, J. Opt. Soc. Am VB12, 1968 (1995).). Here, we apply these methods to controlling charge motion in semiconductor heterostructures. Control of coherent charge dynamics in heterostructures enjoys an advantage in that spatial potential profiles can be adjusted almost arbitrarily. Thus, control of charge motion can be exerted by tailoring both the temporal and spatial interactions of the charges with the controlling optical and static fields. In this talk, we demonstrate an experimental feedback loop which adaptively shapes fs pulses in a quantum contol pump-probe experiment, apply it to the control of coherent wavepacket motion in DC-biased asymmetric double quantum well(ADQW) structures, and compare to theoretical predictions of quantum control in ADQWs (N. M. Beach, D. H. Reitze, and J. L. Krause, submitted to Opt. Exp.) (J. L. Krause, D. H. Reitze, G. D. Sanders, A. Kuznetsov, and C. J. Stanton, to appear in Phys. Rev. B).
Review of manual control methods for handheld maneuverable instruments.
Fan, Chunman; Dodou, Dimitra; Breedveld, Paul
2013-06-01
By the introduction of new technologies, surgical procedures have been varying from free access in open surgery towards limited access in minimal access surgery. Improving access to difficult-to-reach anatomic sites, e.g. in neurosurgery or percutaneous interventions, needs advanced maneuverable instrumentation. Advances in maneuverable technology require the development of dedicated methods enabling surgeons to stay in direct, manual control of these complex instruments. This article gives an overview of the state-of-the-art in the development of manual control methods for handheld maneuverable instruments. It categorizes the manual control methods in three levels: a) number of steerable segments, b) number of Degrees Of Freedom (DOF), and c) coupling between control motion of the handle and steering motion of the tip. The literature research was completed by using Web of Science, Scopus and PubMed. The study shows that in controlling single steerable segments, direct as well as indirect control methods have been developed, whereas in controlling multiple steerable segments, a gradual shift can be noticed from parallel and serial control to integrated control. The development of multi-segmented maneuverable instruments is still at an early stage, and an intuitive and effective method to control them has to become a primary focus in the domain of minimal access surgery.
State observers and Kalman filtering for high performance vibration isolation systems.
Beker, M G; Bertolini, A; van den Brand, J F J; Bulten, H J; Hennes, E; Rabeling, D S
2014-03-01
There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.
MO-B-201-00: Motion Management in Current Stereotactic Body Radiation Therapy (SBRT) Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less
MO-B-201-01: Overcoming the Challenges of Motion Management in Current Lung SBRT Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C.
The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less
MO-B-201-02: Motion Management for Proton Lung SBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flampouri, S.
The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanicsmore » of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and limitations of each discussed radiation beam control methodology and tumor tacking method; understand the key points in motion management for a high quality SBRT program.« less
Adaptive neural network motion control for aircraft under uncertainty conditions
NASA Astrophysics Data System (ADS)
Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.
2018-02-01
We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.
Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik; Søballe, Kjeld; Mechlenburg, Inger
2015-09-01
During movement tasks, patients with medial compartment knee osteoarthritis use compensatory strategies to minimise the joint load of the affected leg. Movement strategies of the knees and trunk have been investigated, but less is known about movement strategies of the pelvis during advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. 57 patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. Patients had lower leg extension power than controls (20-39 %, P < 0.01) and used greater pelvic range of motion during stair and step ascending and descending (P ≤ 0.03, except for pelvic range of motion in the frontal plane during ascending, P > 0.06). Furthermore, an inverse association (coefficient: -0.03 to -0.04; R (2) = 13-22 %) between leg extension power and pelvic range of motion during stair and step descending was found in the patients. Compared to controls, patients with medial compartment knee osteoarthritis use greater pelvic movements during advanced functional performance tests, particularly when these involve descending tasks. Further studies should investigate if it is possible to alter these movement strategies by an intervention aimed at increasing strength and power for the patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry
This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less
Modeling and Flight Data Analysis of Spacecraft Dynamics with a Large Solar Array Paddle
NASA Technical Reports Server (NTRS)
Iwata, Takanori; Maeda, Ken; Hoshino, Hiroki
2007-01-01
The Advanced Land Observing Satellite (ALOS) was launched on January 24 2006 and has been operated successfully since then. This satellite has the attitude dynamics characterized by three large flexible structures, four large moving components, and stringent attitude/pointing stability requirements. In particular, it has one of the largest solar array paddles. Presented in this paper are flight data analyses and modeling of spacecraft attitude motion induced by the large solar array paddle. On orbit attitude dynamics was first characterized and summarized. These characteristic motions associated with the solar array paddle were identified and assessed. These motions are thermally induced motion, the pitch excitation by the paddle drive, and the role excitation. The thermally induced motion and the pitch excitation by the paddle drive were modeled and simulated to verify the mechanics of the motions. The control law updates implemented to mitigate the attitude vibrations are also reported.
Boundary Avoidance Tracking for Instigating Pilot Induced Oscillations
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Hardy, Gordon H.; Leonard, Michael W.; Weinstein, Michael
2013-01-01
In order to advance research in the area of pilot induced oscillations, a reliable method to create PIOs in a simulated environment is necessary. Using a boundary avoidance tracking task, researchers performing an evaluation of control systems were able to create PIO events in 42% of cases using a nominal aircraft, and 91% of cases using an aircraft with reduced actuator rate limits. The simulator evaluation took place in the NASA Ames Vertical Motion Simulator, a high-fidelity motion-based simulation facility.
Saltzman, Charles L; Hillis, Stephen L; Stolley, Mary P; Anderson, Donald D; Amendola, Annunziato
2012-06-06
Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome.
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Models for the Effects of G-seat Cuing on Roll-axis Tracking Performance
NASA Technical Reports Server (NTRS)
Levison, W. H.; Mcmillan, G. R.; Martin, E. A.
1984-01-01
Including whole-body motion in a flight simulator improves performance for a variety of tasks requiring a pilot to compensate for the effects of unexpected disturbances. A possible mechanism for this improvement is that whole-body motion provides high derivative vehicle state information whic allows the pilot to generate more lead in responding to the external disturbances. During development of motion simulating algorithms for an advanced g-cuing system it was discovered that an algorithm based on aircraft roll acceleration producted little or no performance improvement. On the other hand, algorithms based on roll position or roll velocity produced performance equivalent to whole-body motion. The analysis and modeling conducted at both the sensory system and manual control performance levels to explain the above results are described.
Advanced computer architecture specification for automated weld systems
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Oyama, Shintaro; Shimoda, Shingo; Alnajjar, Fady S K; Iwatsuki, Katsuyuki; Hoshiyama, Minoru; Tanaka, Hirotaka; Hirata, Hitoshi
2016-01-01
Background: For mechanically reconstructing human biomechanical function, intuitive proportional control, and robustness to unexpected situations are required. Particularly, creating a functional hand prosthesis is a typical challenge in the reconstruction of lost biomechanical function. Nevertheless, currently available control algorithms are in the development phase. The most advanced algorithms for controlling multifunctional prosthesis are machine learning and pattern recognition of myoelectric signals. Despite the increase in computational speed, these methods cannot avoid the requirement of user consciousness and classified separation errors. "Tacit Learning System" is a simple but novel adaptive control strategy that can self-adapt its posture to environment changes. We introduced the strategy in the prosthesis rotation control to achieve compensatory reduction, as well as evaluated the system and its effects on the user. Methods: We conducted a non-randomized study involving eight prosthesis users to perform a bar relocation task with/without Tacit Learning System support. Hand piece and body motions were recorded continuously with goniometers, videos, and a motion-capture system. Findings: Reduction in the participants' upper extremity rotatory compensation motion was monitored during the relocation task in all participants. The estimated profile of total body energy consumption improved in five out of six participants. Interpretation: Our system rapidly accomplished nearly natural motion without unexpected errors. The Tacit Learning System not only adapts human motions but also enhances the human ability to adapt to the system quickly, while the system amplifies compensation generated by the residual limb. The concept can be extended to various situations for reconstructing lost functions that can be compensated.
Boatwright, John; Jacobson, Muriel L.
1982-01-01
The strong ground motions radiated by earthquake faulting are controlled by the dynamic characteristics of the faulting process. Although this assertion seems self-evident, seismologists have only recently begun to derive and test quantitative relations between common measures of strong ground motion and the dynamic characteristics of faulting. Interest in this problem has increased dramatically in past several years, however, resulting in a number of important advances. The research presented in this workshop is a significant part of this scientific development. Watching this development occur through the work of many scientists is exciting; to be able to gather a number of these scientists together in one workshop is a remarkable opportunity.
Targeted Muscle Reinnervation for Transradial Amputation: Description of Operative Technique.
Morgan, Emily N; Kyle Potter, Benjamin; Souza, Jason M; Tintle, Scott M; Nanos, George P
2016-12-01
Targeted muscle reinnervation (TMR) is a revolutionary surgical technique that, together with advances in upper extremity prostheses and advanced neuromuscular pattern recognition, allows intuitive and coordinated control in multiple planes of motion for shoulder disarticulation and transhumeral amputees. TMR also may provide improvement in neuroma-related pain and may represent an opportunity for sensory reinnervation as advances in prostheses and haptic feedback progress. Although most commonly utilized following shoulder disarticulation and transhumeral amputations, TMR techniques also represent an exciting opportunity for improvement in integrated prosthesis control and neuroma-related pain improvement in patients with transradial amputations. As there are no detailed descriptions of this technique in the literature to date, we provide our surgical technique for TMR in transradial amputations.
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.
Efficient Computation Of Manipulator Inertia Matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1991-01-01
Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.
NASA Technical Reports Server (NTRS)
Bose, S. C.; Parris, B. L.
1977-01-01
Motion system drive philosophy and corresponding real-time software have been developed for the purpose of simulating the characteristics of a typical synergistic Six-Post Motion System (SPMS) on the Flight Simulator for Advanced Aircraft (FSAA) at NASA-Ames which is a non-synergistic motion system. This paper gives a brief description of these two types of motion systems and the general methods of producing motion cues of the FSAA. An actuator extension transformation which allows the simulation of a typical SPMS by appropriate drive washout and variable position limiting is described.
2013-08-26
USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER Dan Negrut NVIDIA CUDA...USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER 5a. CONTRACT NUMBER W911NF-11-F...University of Parma, Italy • Drs. Paramsothy Jayakumar & David Lamb, US Army TARDEC • Mihai Anitescu, University of Chicago & Argonne National Lab
Activity-Dependence of Synaptic Vesicle Dynamics
Forte, Luca A.
2017-01-01
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function. PMID:28954868
WE-G-213CD-06: Implementation of Real-Time Tumor Tracking Using Robotic Couch.
Buzurovic, I; Yu, Y; Podder, T
2012-06-01
The purpose of this study was to present a novel method for real- time tumor tracking using a commercially available robotic treatment couch, and to evaluate tumor tracking accuracy. Commercially available robotic couches are capable of positioning patients with high level of accuracy; however, currently there is no provision for compensating tumor motion using these systems. Elekta's existing commercial couch (PreciseTM Table) was used without changing its design. To establish the real-time couch motion for tracking, a novel control system was developed and implemented. The tabletop could be moved in horizontal plane (laterally and longitudinally) using two Maxon-24V motors with gearbox combination. Vertical motion was obtained using robust 70V-Rockwell Automation motor. For vertical motor position sensing, we used Model 755A-Accu- Coder encoder. Two Baumer-ITD_01_4mm shaft encoders were used for the lateral and longitudinal motions of the couch. Motors were connected to the Advance Motion Controls (AMC) amplifiers: for the vertical motion, motor AMC-20A20-INV amplifier was used, and two AMC-Z6A8 amplifiers were applied for the lateral and longitudinal couch motions. The Galil DMC-4133 controller was connected to standard PC computer using USB port. The system had two independent power supplies: Galil PSR-12- 24-12A, 24vdc power supply with diodes for controller and 24vdc motors and amplifiers, and Galil-PS300W72 72vdc power supply for vertical motion. Control algorithms were developed for position and velocity adjustment. The system was tested for real-time tracking in the range of 50mm in all 3 directions (superior-inferior, lateral, anterior- posterior). Accuracies were 0.15, 0.20, and 0.18mm, respectively. Repeatability of the desired motion was within ± 0.2mm. Experimental results of couch tracking show feasibility of real-time tumor tracking with high level of accuracy (within sub-millimeter range). This tracking technique potentially offers a simple and effective method to minimize healthy tissues irradiation.Acknowledgement: Study supported by Elekta,Ltd. Study supported by Elekta, Ltd. © 2012 American Association of Physicists in Medicine.
Digital Motion Imagery, Interoperability Challenges for Space Operations
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2012-01-01
With advances in available bandwidth from spacecraft and between terrestrial control centers, digital motion imagery and video is becoming more practical as a data gathering tool for science and engineering, as well as for sharing missions with the public. The digital motion imagery and video industry has done a good job of creating standards for compression, distribution, and physical interfaces. Compressed data streams can easily be transmitted or distributed over radio frequency, internet protocol, and other data networks. All of these standards, however, can make sharing video between spacecraft and terrestrial control centers a frustrating and complicated task when different standards and protocols are used by different agencies. This paper will explore the challenges presented by the abundance of motion imagery and video standards, interfaces and protocols with suggestions for common formats that could simplify interoperability between spacecraft and ground support systems. Real-world examples from the International Space Station will be examined. The paper will also discuss recent trends in the development of new video compression algorithms, as well likely expanded use of Delay (or Disruption) Tolerant Networking nodes.
Development of advanced control schemes for telerobot manipulators
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1991-01-01
To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed.
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
Commercializing a U.S. piezoceramic linear motor
NASA Astrophysics Data System (ADS)
Diehl, Rick W.
2000-06-01
A small low-cost piezoceramic linear motor has been developed in the US and is being commercialized by EDO Corporation, working with a leading motion control OEM and with a prominent US corporate research laboratory. First generation motor design has emphasized high displacement at up to 200mm per second velocity with 3.5 Newtons force with high resolution, short time constant and a 15 volt power supply at a cost of less than 100 dollars. Motor dimensions of 30 by 50 by 4 mm allow broad configuration choices, al hidden within the motion control slide. The EDO approach was to build on its core competence in high reliability electroceramic material engineering and production, and to use a strategy of back-integrating, or outsourcing of recent advances outside Edo in piezoceramics, while forward- integrating into specific emerging applications known intimately by the OEM in the market. The strategy provided design focus that has led to a cost-effective advance in 'solid-state actuation and control'. This is considered a classic case of successful industrial integration of an enabling technology across organizations in order to access the needed mix of technology for development of an innovative and competitive solution.
Open control/display system for a telerobotics work station
NASA Technical Reports Server (NTRS)
Keslowitz, Saul
1987-01-01
A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.
Physics-Based Robot Motion Planning in Dynamic Multi-Body Environments
2010-05-10
be actuated by external influences and interactions, such as being carried or pushed. Foreign-controlled bodies are actively actuated, but by external...from the action space A. How this action is generated can strongly influence the overall behavior and performance of our planner and will be discussed in...evolving game-state and unpredictable player -input), an animator cannot manually adjust these controls in advance. The planning approaches introduced in
Distributed power and control actuation in the thoracic mechanics of a robotic insect.
Finio, Benjamin M; Wood, Robert J
2010-12-01
Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.
Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1984-01-01
Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Chest Wall Motion during Speech Production in Patients with Advanced Ankylosing Spondylitis
ERIC Educational Resources Information Center
Kalliakosta, Georgia; Mandros, Charalampos; Tzelepis, George E.
2007-01-01
Purpose: To test the hypothesis that ankylosing spondylitis (AS) alters the pattern of chest wall motion during speech production. Method: The pattern of chest wall motion during speech was measured with respiratory inductive plethysmography in 6 participants with advanced AS (5 men, 1 woman, age 45 plus or minus 8 years, Schober test 1.45 plus or…
Feasibility study of a procedure to detect and warn of low level wind shear
NASA Technical Reports Server (NTRS)
Turkel, B. S.; Kessel, P. A.; Frost, W.
1981-01-01
A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.
Advanced control concepts. [trim solution for space shuttle
NASA Technical Reports Server (NTRS)
Hutton, M. F.; Friedland, B.
1973-01-01
The selection of a trim solution that provides the space shuttle with the highest level of performance and dynamic control in the presense of wind disturbances and bias torques due to misalignment of rocket engines is described. It was determined that engine gimballing is insufficient to provide control to trim the vehicle for headwind and sidewind disturbances, and that it is necessary to use aerodynamic surfaces in conjunction with engine gimballing to achieve trim. The algebraic equations for computing the trim solution were derived from the differential equations describing the motion of the vehicle by substituting the desired trim conditions. The general problem of showing how the trim equations are derived from the equations of motion and the mathematical forms of the performance criterion is discussed in detail, along with the general equations for studying the dynamic response of the trim solution.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... named the following respondents: VisionTek Products LLC (``VisionTek'') of Inverness, Illinois; uPI Semiconductor Corp. (``uPI'') of Taiwan; Sapphire Technology Limited (``Sapphire'') of Hong Kong; Advanced Micro...'') initial determination (``ID'') granting uPI's and Sapphire's joint motion to terminate the investigation...
A demonstration of motion base design alternatives for the National Advanced Driving Simulator
NASA Technical Reports Server (NTRS)
Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony
1992-01-01
A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.
Development of support system to handle ultrasound probe by coordinated motion with medical robot.
Masuda, Kohji; Takachi, Yuuki; Urayama, Yasuhiro; Yoshinaga, Takashi
2011-01-01
We have developed a support system using our ultrasound diagnosis robot, which is able to support manual handling of ultrasound probe in echography to alleviate fatigue of examiner. This system realizes a coordinated motion according to the motion of the probe, which is hold by the robot and is moved by an examiner. We have established four kinds of situations, which are initial fixation, coordinate motions with/without contact on the body surface, and automatic chase motion of an internal organ. The system recognizes when the examiner grasps the ultrasound probe by 6-axis force sensor and touches it on body surface by processing echograms. Not only unskilled examiners but also a professional sonographer have evaluated the performance of the system after elucidating multiple parameters for compliance control and self-weight and moment compensation of the probe. As the results, this system has the potential to be able to support advanced diagnosis for conventional echography.
Bounded Kalman filter method for motion-robust, non-contact heart rate estimation
Prakash, Sakthi Kumar Arul; Tucker, Conrad S.
2018-01-01
The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. PMID:29552419
New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients
Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju
2014-01-01
MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115
Application of virtual reality graphics in assessment of concussion.
Slobounov, Semyon; Slobounov, Elena; Newell, Karl
2006-04-01
Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.
Cell motion predicts human epidermal stemness
Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki
2015-01-01
Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083
NASA Astrophysics Data System (ADS)
Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.
2017-06-01
The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.
Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe
2017-01-01
Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379
Manufacturing implementation of off-line programming for the Space Shuttle Main Engines
NASA Technical Reports Server (NTRS)
Sliwinski, K. E.; Pierson, B. L.; Anderson, R. R.; Guthmiller, W. A.
1989-01-01
An account is given of the efforts made to implement an off-line programming (OLP) system for a gas tungsten arc welding robot in actual manufacturing operations, namely those involved in the manufacture of the SSMEs. In conjunction with a real-time sensor control system, the OLP constitutes the Advanced Robotic Welding System, or 'AROWS'. OLP's task is to develop a robot-motion path without the initial use of the robot to 'teach' the characteristics of such motion; actual process parameters are recorded by OLP and correlated with the position along the weld.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Use of the flight simulator in the design of a STOL research aircraft.
NASA Technical Reports Server (NTRS)
Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.
1972-01-01
Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.
Concept design and cluster control of advanced space connectable intelligent microsatellite
NASA Astrophysics Data System (ADS)
Wang, Xiaohui; Li, Shuang; She, Yuchen
2017-12-01
In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, D; Kang, S; Kim, D
2016-06-15
Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by amore » 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm{sup 3} tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm{sup 3} tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm{sup 3} tumor, the tumor motion was larger than the 90 cm{sup 3} tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
2011-11-01
RX-TY-TR-2011-0096-01) develops a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica...01 summarizes the development of a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica
Radiographic and Thermal Testing, Aviation Quality Control (Advanced): 9227.02.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This unit of instruction deals with the study of X-ray and Gamma Ray Radiographic Testing and infra-red thermal testing of specimens without destruction. Theory and principles are covered in detail. Many known samples are used as standards and considerable laboratory and field use of this equipment is involved. Motion picture films and color…
Numerical considerations on control of motion of nanoparticles using scattering field of laser light
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2017-05-01
Most of optical manipulation techniques proposed so far depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories; however, it is still challenging to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates a speckle pattern which consists of random interference speckle grains with well-defined statistical properties. In the present study, we numerically investigate the motion of a Brownian particle suspended in water under the illumination of a speckle pattern. Particle-captured time and size of particle-captured area are quantitatively estimated in relation to an optical force and a speckle diameter to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.
Challenges of extreme load hexapod design and modularization for large ground-based telescopes
NASA Astrophysics Data System (ADS)
Gloess, Rainer; Lula, Brian
2010-07-01
The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.
Motion Analysis System for Instruction of Nihon Buyo using Motion Capture
NASA Astrophysics Data System (ADS)
Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko
The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.
ADVANCED DESIGNS OF MAGNETIC JACK-TYPE CONTROL ROD DRIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, J.N.
1959-11-01
The magnetic jack is a device for positioning the control rods In a nuclear reactor, especially in a reactor containing water under pressure. Magnetic actuation precludes the need for shaft seals and eliminates the problems associated with mechanisms operating in water. It consists of a pressure shell, four sets of external stationary magnet coils (hold, grip, lift, pull down), and one Internal moving part (ammature) that impants linear motion to a cluster of rods. (W.L.H.)
Lead-Lag Control for Helicopter Vibration and Noise Reduction
NASA Technical Reports Server (NTRS)
Gandhi, Farhan
1995-01-01
As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators. Both schemes cause an increase in pitch link loads. Trailing Edge Flap (TEF) deployment can also used to generate unsteady aerodynamic forces and moments that counter the original vibratory loads, and thereby reduce rotor vibrations. While the vibrations absorbers, HHC, IBC, and TEF concepts discussed above attempt to reduce the vibratory loads, they do not specifically address the phenomena causing the vibrations at high advance ratios. One passive method that attempts to directly alleviate compressibility and stall, instead of reducing the ensuing vibrations, is the use of advanced tip designs. Taper, sweep, anhedral, and the manipulation of other geometric properties of the blade tips can reduce the severity of stall and compressibility effects , as well as reduce rotor power. A completely different approach to solve these problems is the tiltrotor configuration. As the forward velocity of the aircraft increases, the rotors, in this case, are tilted forward until they are perpendicular to the flow and act as propellers. This eliminates the edgewise flow encountered by conventional rotors and circumvents all the problems associated with flow asymmetry. However, the success involves a tremendous increase in cost and complexity of the aircraft. Another possible approach that has been proposed for the alleviation of vibratory loads at high forward flight speeds involves the use of controlled lead-lag motions to reduce the asymmetry in flow. A correctly phased 1/rev controlled lag motion could be introduced such that it produces a backward velocity on the advancing side and a forward velocity on the retreating side, to delay compressibility effects and stall to a higher advance ratio. Using a large enough lead-lag amplitude, the tip velocities could be reduced to levels encountered in hover. This concept was examined by two groups in the 1950's and early 1960's. In the United States, the Research Labs Division of United Aircraft developed a large lead-lag motion rotor, meant to achieve lag motion amplitudes up to 45 degrees. In order to reduce the required actuation force, the blade hinges were moved to 40% of the blade radius to increase the rotating lag frequency to approximately 1/rev. The blade hinges were redesigned to produce a flap-lag coupling so the large flapwise aerodynamic loads could be exploited to actuate the blades in the lag direction. A wind tunnel test of this rotor concept revealed actuation and blade motion scheduling problems. The project was eventually discontinued due to these problems and high blade stresses. Around the same time, at Boelkow in Germany, a similar lead-lag rotor program was conducted under the leadership of Hans Derschmidt. Here, too, the blade hinges were moved outboard to 34% radius to reduce the actuation loads. The main difference between this and the United Aircraft program was the use of a mechanical actuation scheme with maximum lead-lag motions of 400. This program was also discontinued for unclear reasons. The present study is directed toward conducting a comprehensive analytical examination to evaluate the effectiveness of controlled lead-lag motions in reducing vibratory hub loads and increasing maximum flight speed. Since both previous studies on this subject were purely experimental, only a limited data set and physical understanding of the problem was obtained. With the currently available analytical models and computational resources, the present effort is geared toward developing an in-depth physical understanding of the precise underlying mechanisms by which vibration reduction may be achieved. Additionally, in recognition of the fact that large amplitude lead-lag motions would - (i) be difficult to implement, and (ii) produce very large blade stresses; the present study examines the potential of only moderate-to-small lead-lag motions for reduction of vibratory hub loads. Using such an approach, the emphasis is not on eliminating the periodic variations in tangential velocity at the blade tip, but at best reducing these variations slightly so that compressibility and stall are delayed to slightly higher advance ratios. This study was conducted in two steps. In the first step, a hingeless helicopter rotor was modeled using rigid blades undergoing flap-lag-torsion rotations about spring restrained hinges and bearings. This model was then modified by separating the lead-lag degree of freedom into two components, a free and a prescribed motion. Using this model, a parametric study of the effect of phase and amplitude of a prescribed lead-lag motion on hub vibration was conducted. The data gathered was analyzed to obtain an understanding of the basic physics of the problem and show the capability of this method to reduce vibration and expand the flight envelope. In the second half of the study, the similar analysis was conducted using an elastic blade model to confirm the effects predicted by the simpler model.
Hybrid Quantum Systems with Trapped Charged Particles
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Leibfried, Dietrich; Simmonds, Raymond; Wineland, Dave
We will review a joint effort by the Ion Storage Group and the Advanced Microwave Photonics Group at NIST (Boulder, CO) to design a hybrid system that interfaces charged particles with macroscopic high-Q resonators. We specifically consider coupling trapped charges to superconducting LC resonators, the mechanical modes of Silicon-Nitride membranes, and piezo-electric materials. We aim to achieve the strong coupling regime, where a single quantum of motion of the trapped charge can be coherently exchanged with harmonic motion of the macroscopic entity (electrical and/or mechanical). These kind of devices could potentially take advantage of both macroscopic control techniques and the long quantum coherence of its trapped charged particles.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
Rehabilitation of flexor and extensor tendon injuries in the hand: current updates.
Howell, Julianne W; Peck, Fiona
2013-03-01
In recent years, a significant amount of research in the field of tendon injury in the hand has contributed to advances in both surgical and rehabilitation techniques. The introduction of early motion has improved tendon healing, reduced complications, and enhanced final outcomes. There is overwhelming evidence to show that carefully devised rehabilitation programs are critical to achieving favourable outcomes. Whatever the type, or level, of flexor or extensor injury, the ultimate goal of both the surgeon and therapist is to protect the repair, modify peritendinous adhesions, promote optimal tendon excursion and preserve joint motion. Early tendon motion regimens are initiated at surgery or within 5 days post repair. Intra-operative information from the surgeon to the therapist is vital to the choice of splint protected position to reduce repair rupture/gap forces, and to commencement of active, or splint controlled, motion for tendon excursion. Decisions should align with the phases of healing, the clinician's observations, frequent range of motion measurements and patient input. Clinical concepts pertinent to early motion rehabilitation decisions are presented by zone of injury for both flexor and extensor tendons during the early phases of healing. Copyright © 2013. Published by Elsevier Ltd.
Sensor Suits for Human Motion Detection
2006-02-18
published (b) Papers published in peer-reviewed journals (1) Shunji Moromugi, Y. Koujina, Seigo Ariki, Akira Okamoto, Takayuki Tanaka, Maria Q...of ISOT2005 (9) Seok-Hwan Kim, Shunji Moromugi and Takakazu Ishimatsu, (2004). "Development of advanced walking assist system employing stiffness...sensor", Proceedings of 19th International Conference on Control, Automation and Systems, Bangkok, Thailand, pp.1638-1641. (10) Shunji Moromugi
Brian V. Smithers; Malcolm P. North; Constance I. Millar; Andrew M. Latimer
2017-01-01
In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will...
Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)
NASA Technical Reports Server (NTRS)
Gates, R. M.; Jantz, R. E.
1974-01-01
A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.
Tracking 3-D body motion for docking and robot control
NASA Technical Reports Server (NTRS)
Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.
1987-01-01
An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, Leonard
1994-01-01
During the last phase of the project, emphasis has changed to flexible space robotics, by mutual agreement between Dr. R. C. Montgomery, NASA Technical Officer, and the Principal Investigator. Significant advances have been achieved over the period covered by this report. Research has been concerned with two main subjects: (1) the maneuvering and control of freely floating flexible space robots, and (2) the development of a theory for the motion of flexible multibody systems. Work on the first subject has resulted in two papers, both of them concerned with planar maneuvers. The first is concerned with the maneuvering and delivery of a payload to a certain point and in a certain orientation in space. The second is concerned with the docking maneuver with a target whose motion is not known a priori. Both papers will appear in the 'Journal of Guidance, Control, and Dynamics.' The second subject is concerned with the development of hybrid (ordinary and partial) differential equations for the three dimensional motion of flexible multibody systems, a subject of vital interest in flexible space robotics. The paper will appear in the 'Journal of Guidance, Control and Dynamics' in an issue dedicated to the memory of Lawrence W. Taylor, Jr. Abstracts and copies of the papers are hereby included.
SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission
NASA Astrophysics Data System (ADS)
Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve
2006-06-01
This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.
Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania
2017-12-01
The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p < 0.05). For CN, a significant difference was found in one error metric (p < 0.05). The greatest difference between the performances of the two groups occurred for BO. Qualitative analysis of the instrument trajectory revealed that experts performed more delicate movements compared to novices. Subjects' ratings on the feedback questionnaire highlighted the training value of the system. This study provides evidence regarding the potential use of the Leap Motion controller for assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and development of advanced training scenarios on current Leap Motion controller.
Handling Qualities of Large Rotorcraft in Hover and Low Speed
NASA Technical Reports Server (NTRS)
Malpica, Carlos; Theodore, Colin R.; Lawrence , Ben; Blanken, Chris L.
2015-01-01
According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.
Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.; Cork, C.
2011-01-01
GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. PMID:21822343
Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task.
Shia, Victor; Moore, Talia Yuki; Holmes, Patrick; Bajcsy, Ruzena; Vasudevan, Ram
2018-04-27
The ability to quantitatively measure stability is essential to ensuring the safety of locomoting systems. While the response to perturbation directly reflects the stability of a motion, this experimental method puts human subjects at risk. Unfortunately, existing indirect methods for estimating stability from unperturbed motion have been shown to have limited predictive power. This paper leverages recent advances in dynamical systems theory to accurately estimate the stability of human motion without requiring perturbation. This approach relies on kinematic observations of a nominal Sit-to-Stand motion to construct an individual-specific dynamic model, input bounds, and feedback control that are then used to compute the set of perturbations from which the model can recover. This set, referred to as the stability basin, was computed for 14 individuals, and was able to successfully differentiate between less and more stable Sit-to-Stand strategies for each individual with greater accuracy than existing methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.
Nooij, Suzanne A E; Groen, Eric L
2011-05-01
Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.
Droplet sliding on inclined superhydrophobic surfaces: the effect of anisotropic contact line
NASA Astrophysics Data System (ADS)
Jiang, Youhua; Cao, Lile; Guo, Zongqi; Choi, Chang-Hwan
2017-11-01
Although the effects of solid structures on droplet retention on superhydrophobic surfaces have been studied extensively, the investigation has been restricted to the sessile droplets on horizontal surfaces where the contact line motions are axisymmetric or isotropic (either advancing or receding). In the droplet retention on inclined surfaces, the contact line motions are asymmetric or anisotropic; the advancing and receding motions coexist. In this study, we investigate the correlation between the droplet boundary pinning and the surface morphology on inclined superhydrophobic surfaces. The evolution of the droplet contact angle and width show contrary behaviors between pillar- and pore-structured surfaces due to the distinctive microscopic contact line motions. Therefore, the visualizations of the contact line motions at different locations of the boundary on inclined superhydrophobic surfaces are performed and the averaged contact line density of the boundary is quantified. The result shows that the droplet retentive force monotonously increase with the increase in contact line density, regardless of the surface morphological types, dimensions, or the direction of contact line motion (advancing, receding, or both). The result indicates that the droplet retentive force on superhydrophobic surfaces is mainly determined by the contact line density, regardless of the isotropy of the contact line.
Rotorcraft flying qualities improvement using advanced control
NASA Technical Reports Server (NTRS)
Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.
1993-01-01
We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
Cost-effective (gaming) motion and balance devices for functional assessment: Need or hype?
Bonnechère, B; Jansen, B; Van Sint Jan, S
2016-09-06
In the last decade, technological advances in the gaming industry have allowed the marketing of hardware for motion and balance control that is based on technological concepts similar to scientific and clinical equipment. Such hardware is attractive to researchers and clinicians for specific applications. However, some questions concerning their scientific value and the range of future potential applications have yet to be answered. This article attempts to present an objective analysis about the pros and cons of using such hardware for scientific and clinical purposes and calls for a constructive discussion based on scientific facts and practical clinical requests that are emerging from application fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
An ignition key for atomic-scale engines
NASA Astrophysics Data System (ADS)
Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.
2012-10-01
A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.
Thermally triggered polyrotaxane translational motion helps proton transfer.
Ge, Xiaolin; He, Yubin; Liang, Xian; Wu, Liang; Zhu, Yuan; Yang, Zhengjin; Hu, Min; Xu, Tongwen
2018-06-12
Synthetic polyelectrolytes, capable of fast transporting protons, represent a challenging target for membrane engineering in so many fields, for example, fuel cells, redox flow batteries, etc. Inspired by the fast advance in molecular machines, here we report a rotaxane based polymer entity assembled via host-guest interaction and prove that by exploiting the thermally triggered translational motion (although not in a controlled manner) of mechanically bonded rotaxane, exceptionally fast proton transfer can be fulfilled at an external thermal input. The relative motion of the sulfonated axle to the ring in rotaxane happens at ~60 °C in our cases and because of that a proton conductivity (indicating proton transfer rate) of 260.2 mS cm -1 , which is much higher than that in the state-of-the-art Nafion, is obtained at a relatively low ion-exchange capacity (representing the amount of proton transfer groups) of 0.73 mmol g -1 .
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
NASA Technical Reports Server (NTRS)
Aiken, E. W.
1980-01-01
A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
NASA Astrophysics Data System (ADS)
Culp, Robert D.; Lewis, Robert A.
1989-05-01
Papers are presented on advances in guidance, navigation, and control; guidance and control storyboard displays; attitude referenced pointing systems; guidance, navigation, and control for specialized missions; and recent experiences. Other topics of importance to support the application of guidance and control to the space community include concept design and performance test of a magnetically suspended single-gimbal control moment gyro; design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station; the Circumstellar Imaging Telescope Image Motion Compensation System providing ultra-precise control on the Space Station platform; pinpointing landing concepts for the Mars Rover Sample Return mission; and space missile guidance and control simulation and flight testing.
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
Current driven dynamics of magnetic domain walls in permalloy nanowires
NASA Astrophysics Data System (ADS)
Hayashi, Masamitsu
The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
A new six-degree-of-freedom force-reflecting hand controller for space telerobotics
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe
1990-01-01
A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.
Ionic imbalance induced self-propulsion of liquid metals
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh
2016-01-01
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954
Ionic imbalance induced self-propulsion of liquid metals.
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh
2016-08-04
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.
Ionic imbalance induced self-propulsion of liquid metals
NASA Astrophysics Data System (ADS)
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh
2016-08-01
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.
Robotics-based synthesis of human motion.
Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S
2009-01-01
The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.
Image-guided positioning and tracking.
Ruan, Dan; Kupelian, Patrick; Low, Daniel A
2011-01-01
Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems accounting for patient and institute specifics and to embrace advances in knowledge and new technologies subsequent to the publication of this article.
Faithful conversion of propagating quantum information to mechanical motion
NASA Astrophysics Data System (ADS)
Reed, A. P.; Mayer, K. H.; Teufel, J. D.; Burkhart, L. D.; Pfaff, W.; Reagor, M.; Sletten, L.; Ma, X.; Schoelkopf, R. J.; Knill, E.; Lehnert, K. W.
2017-12-01
The motion of micrometre-sized mechanical resonators can now be controlled and measured at the fundamental limits imposed by quantum mechanics. These resonators have been prepared in their motional ground state or in squeezed states, measured with quantum-limited precision, and even entangled with microwave fields. Such advances make it possible to process quantum information using the motion of a macroscopic object. In particular, recent experiments have combined mechanical resonators with superconducting quantum circuits to frequency-convert, store and amplify propagating microwave fields. But these systems have not been used to manipulate states that encode quantum bits (qubits), which are required for quantum communication and modular quantum computation. Here we demonstrate the conversion of propagating qubits encoded as superpositions of zero and one photons to the motion of a micromechanical resonator with a fidelity in excess of the classical bound. This ability is necessary for mechanical resonators to convert quantum information between the microwave and optical domains or to act as storage elements in a modular quantum information processor. Additionally, these results are an important step towards testing speculative notions that quantum theory may not be valid for sufficiently massive systems.
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.
She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico
2018-02-01
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.
2012-07-01
does not display a currently valid OMB control number. 1. REPORT DATE JUL 2012 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE...bottom right). ............................................................... 5 Figure 3- 2 A standard approach to mitigating sensor positioning...within the yellow enclosure. ........................ 8 Figure 3-5 A comparison of the actual ( 2 -D motion, pen trace on paper) versus the computed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Robert; McConnell, Elizabeth
Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.
Motion Versus Fixed Distraction of the Joint in the Treatment of Ankle Osteoarthritis
Saltzman, Charles L.; Hillis, Stephen L.; Stolley, Mary P.; Anderson, Donald D.; Amendola, Annunziato
2012-01-01
Background: Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. Methods: We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Results: Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Conclusion: Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome. Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. PMID:22637202
29 CFR 18.42 - Expedited proceedings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, prehearing conferences, and the...
29 CFR 2570.156 - Expedited proceedings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, discovery schedules, prehearing...
29 CFR 2570.156 - Expedited proceedings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, discovery schedules, prehearing...
29 CFR 2570.156 - Expedited proceedings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, discovery schedules, prehearing...
29 CFR 18.42 - Expedited proceedings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, prehearing conferences, and the...
29 CFR 2570.156 - Expedited proceedings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, discovery schedules, prehearing...
29 CFR 2570.156 - Expedited proceedings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, discovery schedules, prehearing...
29 CFR 18.42 - Expedited proceedings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, prehearing conferences, and the...
29 CFR 18.42 - Expedited proceedings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or the administrative law judge assigned, all parties to the proceeding in which the motion is filed... motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may advance pleading schedules, prehearing conferences, and the...
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin
2017-01-07
Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
Overview of research in progress at the Center of Excellence
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1993-01-01
The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.
1977-04-01
System by System Variable Interactions Across All Maneuvers ... .......... 23 11 Field of View by Motion Interaction Cell Means for Takeoff...23 12 Motion by Field :f View Interaction Cell Means for GCA ..... ................. 24 13 Motion by FOV Interaction Mc--n Ratings for the...GCA and Takeoff Maneuvers ... ....... 24 14 Motion by G.Seat Interaction Cell Means for Takeoff ...... ................... 25 15 Motion by G.Seat
NASA Astrophysics Data System (ADS)
Hariharan, Harishwaran; Aklaghi, Nima; Baker, Clayton A.; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha
2016-04-01
In spite of major advances in biomechanical design of upper extremity prosthetics, these devices continue to lack intuitive control. Conventional myoelectric control strategies typically utilize electromyography (EMG) signal amplitude sensed from forearm muscles. EMG has limited specificity in resolving deep muscle activity and poor signal-to-noise ratio. We have been investigating alternative control strategies that rely on real-time ultrasound imaging that can overcome many of the limitations of EMG. In this work, we present an ultrasound image sequence classification method that utilizes spatiotemporal features to describe muscle activity and classify motor intent. Ultrasound images of the forearm muscles were obtained from able-bodied subjects and a trans-radial amputee while they attempted different hand movements. A grid-based approach is used to test the feasibility of using spatio-temporal features by classifying hand motions performed by the subjects. Using the leave-one-out cross validation on image sequences acquired from able-bodied subjects, we observe that the grid-based approach is able to discern four hand motions with 95.31% accuracy. In case of the trans-radial amputee, we are able to discern three hand motions with 80% accuracy. In a second set of experiments, we study classification accuracy by extracting spatio-temporal sub-sequences the depict activity due to the motion of local anatomical interfaces. Short time and space limited cuboidal sequences are initially extracted and assigned an optical flow behavior label, based on a response function. The image space is clustered based on the location of cuboids and features calculated from the cuboids in each cluster. Using sequences of known motions, we extract feature vectors that describe said motion. A K-nearest neighbor classifier is designed for classification experiments. Using the leave-one-out cross validation on image sequences for an amputee subject, we demonstrate that the classifier is able to discern three important hand motions with an accuracy of 93.33% accuracy, 91-100% precision and 80-100% recall rate. We anticipate that ultrasound imaging based methods will address some limitations of conventional myoelectric sensing, while adding advantages inherent to ultrasound imaging.
JPRS Report, Science & Technology, USSR: Space.
1988-08-17
Half-life, years Specific Heat Release W/hr Plutonium-238 87.5 0.46 Curium-244 18.4 2.8 Curium-242 0.45 120 Polonium - 210 0.38 144 Polonium - 210 ...ASTRONOMICHESKIY ZHURNAL, Vol 14 No 3, Mar 88] 17 Relativistic Effects in Motion and Observations of Artificial Earth Satellites. I. Relativistic...Historical Survey of Biosatellites [V. B. Pishchik, ZEMLYA I VSELENNAYA, No 2, Mar-Apr 88] 35 Advances in Controlling Effects of Weightlessness on
Engineering hurdles in contact and intraocular lens lathe design: the view ahead
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Keller, John R.; Ball, Gary A.
1994-05-01
Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.
Stance controlled knee flexion improves stimulation driven walking after spinal cord injury
2013-01-01
Background Functional neuromuscular stimulation (FNS) restores walking function after paralysis from spinal cord injury via electrical activation of muscles in a coordinated fashion. Combining FNS with a controllable orthosis to create a hybrid neuroprosthesis (HNP) has the potential to extend walking distance and time by mechanically locking the knee joint during stance to allow knee extensor muscle to rest with stimulation turned off. Recent efforts have focused on creating advanced HNPs which couple joint motion (e.g., hip and knee or knee and ankle) to improve joint coordination during swing phase while maintaining a stiff-leg during stance phase. Methods The goal of this study was to investigate the effects of incorporating stance controlled knee flexion during loading response and pre-swing phases on restored gait. Knee control in the HNP was achieved by a specially designed variable impedance knee mechanism (VIKM). One subject with a T7 level spinal cord injury was enrolled and served as his own control in examining two techniques to restore level over-ground walking: FNS-only (which retained a stiff knee during stance) and VIKM-HNP (which allowed controlled knee motion during stance). The stimulation pattern driving the walking motion remained the same for both techniques; the only difference was that knee extensor stimulation was constant during stance with FNS-only and modulated together with the VIKM to control knee motion during stance with VIKM-HNP. Results Stance phase knee angle was more natural during VIKM-HNP gait while knee hyperextension persisted during stiff-legged FNS-only walking. During loading response phase, vertical ground reaction force was less impulsive and instantaneous gait speed was increased with VIKM-HNP, suggesting that knee flexion assisted in weight transfer to the leading limb. Enhanced knee flexion during pre-swing phase also aided flexion during swing, especially when response to stimulation was compromised. Conclusions These results show the potential advantages of incorporating stance controlled knee flexion into a hybrid neuroprosthesis for walking. The addition of such control to FNS driven walking could also enable non-level walking tasks such as uneven terrain, slope navigation and stair descent where controlled knee flexion during weight bearing is critical. PMID:23826711
Advanced Motion Compensation Methods for Intravital Optical Microscopy
Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph
2013-01-01
Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405
A review of the latest guidelines for NIBP device validation.
Alpert, Bruce S; Quinn, David E; Friedman, Bruce A
2013-12-01
The current ISO Standard is accepted as the National Standard in almost every industrialized nation. An overview of the most recently adopted standards is provided. Standards writing groups including the Advancement of Medical Instrumentation Sphygmomanometer Committee and ISO JWG7 are working to expand standardized evaluation methods to include the evaluation of devices intended for use in environments where motion artifact is common. An Association for the Advancement of Medical Instrumentation task group on noninvasive blood pressure measurement in the presence of motion artifact has published a technical information report containing research and standardized methods for the evaluation of blood pressure device performance in the presence of motion artifact.
NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)
1994-01-01
Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.
Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques
NASA Astrophysics Data System (ADS)
Somov, Yevgeny
2014-12-01
Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov function method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.
The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies
NASA Astrophysics Data System (ADS)
Routh, Edward John
2013-03-01
Preface; 1. Moving axes and relative motion; 2. Oscillations about equilibrium; 3. Oscillations about a state of motion; 4. Motion of a body under no forces; 5. Motion of a body under any forces; 6. Nature of the motion given by linear equations and the conditions of stability; 7. Free and forced oscillations; 8. Determination of the constants of integration in terms of the initial conditions; 9. Calculus of finite differences; 10. Calculus of variations; 11. Precession and nutation; 12. Motion of the moon about its centre; 13. Motion of a string or chain; 14. Motion of a membrane; Notes.
NASA Technical Reports Server (NTRS)
Fletcher, Jay W.; Chen, Robert T. N.; Strasilla, Eric; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Modern rotorcraft flight control system designs which promise to yield high vehicle response bandwidth and good gust rejection can benefit from the use of rotor-state feedbacks. The measurement of main rotor blade motions is also desirable to validate and improve rotorcraft simulation models, to identify high-order linear flight dynamics models, to provide rotor system health monitoring; during flight test, and to provide for correlation with acoustic measurements from wind tunnel and flight tests. However, few attempts have been made to instrument a flight vehicle in this manner, and no previous system has had the robustness and accuracy required for these diverse applications. A rotor blade motion measurement and estimation system has been developed by NASA and the U.S. Army for use on the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) helicopter. RASCAL is a UH-60 Blackhawk which is being modified at Ames Research Center in a phased development program for use in flight dynamics and controls, navigation, airspace management, and rotorcraft human factors research. The aircraft will feature a full-authority, digital, fly-by-wire research flight control system; a coupled ring laser gyro, differential GPS based navigation system; a stereoscopic color wide field of view helmet, mounted display; programmable panel mounted displays; and advanced navigation sensors. The rotor blade motion system is currently installed for data acquisition only, but will be integrated with the research flight control system when it is installed later this year.
Woo, Kevin L; Rieucau, Guillaume
2008-07-01
The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.
Description and detection of burst events in turbulent flows
NASA Astrophysics Data System (ADS)
Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.
2018-04-01
A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Communication: Creation of molecular vibrational motions via the rotation-vibration coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk
2015-06-14
Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less
NASA Technical Reports Server (NTRS)
Hartley, Tom T. (Editor)
1987-01-01
Recent advances in control-system design and simulation are discussed in reviews and reports. Among the topics considered are fast algorithms for generating near-optimal binary decision programs, trajectory control of robot manipulators with compensation of load effects via a six-axis force sensor, matrix integrators for real-time simulation, a high-level control language for an autonomous land vehicle, and a practical engineering design method for stable model-reference adaptive systems. Also addressed are the identification and control of flexible-limb robots with unknown loads, adaptive control and robust adaptive control for manipulators with feedforward compensation, adaptive pole-placement controllers with predictive action, variable-structure strategies for motion control, and digital signal-processor-based variable-structure controls.
Fusing human and machine skills for remote robotic operations
NASA Technical Reports Server (NTRS)
Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.
1991-01-01
The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.
Advances in colloidal manipulation and transport via hydrodynamic interactions.
Martínez-Pedrero, F; Tierno, P
2018-06-01
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming. Copyright © 2018 Elsevier Inc. All rights reserved.
Shapes of Bubbles and Drops in Motion.
ERIC Educational Resources Information Center
O'Connell, James
2000-01-01
Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)
2012-01-01
The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such variation dictates a comprehensive and patient-specific incorporation of motion management strategies into PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and adaptive image-guided radiotherapy delivery techniques. PMID:23369522
Effects of Visual Propioceptive Cue Conflicts on Human Tracking Performance
1977-06-01
maintain adequate iwifommsie it *a necessaty for the Subjects to dusregaril sensations of motion. The results rewaead that the conditions of...discussions. Dr. George L. Smith served as the Graduate School Representative on the comittee. The research reported herein was conducted at the Advanced...where no motion cues art . provided or when Motion cues are inappropriate to actual flight conditions. The latter (i.e., inappropriate motion) has
Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
Ortiz-Catalan, Max; Håkansson, Bo; Brånemark, Rickard
2014-07-01
The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.
Probabilistic seismic demand analysis using advanced ground motion intensity measures
Tothong, P.; Luco, N.
2007-01-01
One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.
NASA Astrophysics Data System (ADS)
Weifeng, Xie; Chenglei, Fan; Chunli, Yang; Sanbao, Lin
2018-02-01
Ultrasonic-wave-assisted gas metal arc welding (U-GMAW) is a new, advanced arc welding method that uses an ultrasonic wave emitted from an ultrasonic radiator above the arc. However, it remains unclear how the ultrasonic wave affects the metal droplet, hindering further application of U-GMAW. In this paper, an improved U-GMAW system was used and its superiority was experimentally demonstrated. Then a series of experiments were designed and performed to study how the ultrasonic wave affects droplet transfer, including droplet size, velocity, and motion trajectory. The behavior of droplet transfer was observed in high-speed images. The droplet transfer is closely related to the distribution of the acoustic field, determined by the ultrasonic current. Moreover, by analyzing the variably accelerated motion of the droplet, the acoustic control of the droplet transfer was intuitively demonstrated. Finally, U-GMAW was successfully used in vertical-up and overhead welding experiments, showing that U-GMAW is promising for use in welding in all positions.
The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.
Ballantyne, Garth H; Moll, Fred
2003-12-01
The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2017-04-01
Optical manipulation techniques proposed so far almost depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories, however, it is still a challenging work to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates speckles which are random interference patterns with well-defined statistical properties. In the present study, we numerically investigate the motion of a particle in a flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation to a flow velocity and a speckle contrast to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.
NASA Astrophysics Data System (ADS)
Tuan, Le Anh; Lee, Soon-Geul
2018-03-01
In this study, a new mathematical model of crawler cranes is developed for heavy working conditions, with payload-lifting and boom-hoisting motions simultaneously activated. The system model is built with full consideration of wind disturbances, geometrical nonlinearities, and cable elasticities of cargo lifting and boom luffing. On the basis of this dynamic model, three versions of sliding mode control are analyzed and designed to control five system outputs with only two inputs. When used in complicated operations, the effectiveness of the controllers is analyzed using analytical investigation and numerical simulation. Results indicate the effectiveness of the control algorithms and the proposed dynamic model. The control algorithms asymptotically stabilize the system with finite-time convergences, remaining robust amid disturbances and parametric uncertainties.
Robotic NDE inspection of advanced solid rocket motor casings
NASA Technical Reports Server (NTRS)
Mcneelege, Glenn E.; Sarantos, Chris
1994-01-01
The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.
Ličev, Lačezar; Krumnikl, Michal; Škuta, Jaromír; Babiuch, Marek; Farana, Radim
2014-03-04
This paper describes the advances in the development and subsequent testing of an imaging device for three-dimensional ultrasound measurement of atherosclerotic plaque in the carotid artery. The embolization from the atherosclerotic carotid plaque is one of the most common causes of ischemic stroke and, therefore, we consider the measurement of the plaque as extremely important. The paper describes the proposed hardware for enhancing the standard ultrasonic probe to provide a possibility of accurate probe positioning and synchronization with the cardiac activity, allowing the precise plaque measurements that were impossible with the standard equipment. The synchronization signal is derived from the output signal of the patient monitor (electrocardiogram (ECG)), processed by a microcontroller-based system, generating the control commands for the linear motion moving the probe. The controlling algorithm synchronizes the movement with the ECG waveform to obtain clear images not disturbed by the heart activity.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-02-01
Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.
Wide area Hyperspectral Motion Imaging
2017-02-03
LEXINGTON, MASSACHUSETTS 02420-9108 (781) 981-1343 3 February 2017 TO: FROM: Dr. Joseph Lin (joseph.lin@ll.mit.edu), Advanced Imager ...Technology SUBJECT: Wide-area Hyperspectral Motion Imaging Introduction Wide-area motion imaging (WAMI) has received increased attention in...fielded imaging spectrometers use either dispersive or interferometric techniques. A dispersive spectrometer uses a grating or prism to disperse the
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorikov, A. F., E-mail: afshorikov@mail.ru
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminalmore » approach process with incomplete information and give a general scheme for its solving.« less
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginovska-Pangovska, Bojana; Raugei, Simone; Shaw, Wendy J.
2016-08-02
Protons are used throughout the biological world for a number of functions, from charge balance to energy carriers. Metalloenzymes use protons as energy carriers and control proton movement both temporally and spatially. Despite the interest and need for controlled proton movement in other systems, the scientific community has not been able to develop extensive general rules for developing synthetic proton pathways. In part this is due to the challenging nature of studying these large and complex molecules experimentally, although experiments have gleaned extensive critical insight. While computational methods are also challenging because of the large size of the molecules, theymore » have been critical in advancing our knowledge of proton movement through pathways, but even further, they have advanced our knowledge in how protonation and proton movement is correlated with large and small scale molecular motions and electron movement. These studies often complement experimental studies but provide insight and depth simply not possible in many cases in the absence of theory. In this chapter, we will discuss advances and methods used in understanding proton movement in hydrogenases.« less
Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Whiteis, Peter G.; Mello, Melinda J.
2012-09-01
EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.
EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes
2017-02-01
Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.
Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2016-01-01
Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.
Recent advances of rearing cabinet instrumentation and control system for insect stock culture
NASA Astrophysics Data System (ADS)
Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made
2017-01-01
Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.
Motion of a liquid bridge between nonparallel surfaces.
Ataei, Mohammadmehdi; Tang, Tian; Amirfazli, Alidad
2017-04-15
Bulk motion of a liquid bridge between two nonparallel identical solid surfaces undergoing multiple loading cycles (compressing and stretching) was investigated numerically and experimentally. The effects of the following governing parameters were studied: the dihedral angle between the two surfaces (ψ), the amount of compressing and stretching (Δh), and wettability parameters i.e. the advancing contact angle (θ a ) and Contact Angle Hysteresis (CAH). Experiments were done using various combinations of ψ, Δh and on surfaces with different wettabilities to understand the effect of each parameter individually. Additionally, a numerical model using Surface Evolver software was developed to augment the experimental data and extract information about the shape of the bridge. An empirical function was proposed and validated to calculate the minimum amount of Δh needed to initiate the bulk motion (i.e. to overcome the initial lag of the motion in response to the compressing of the bridge), at a given dihedral angle ψ. The effect of governing parameters on magnitude and precision of the motion was investigated. The magnitude of the motion was found to be increased by increasing ψ and Δh, and/or by decreasing θ a and CAH. We demonstrated the possibility of modulating the precision of the motion with θ a . Additionally, it was shown that the magnitude of the motion (in one loading cycle) increases after each loading cycle, if the contact lines depin only on the narrower side of the bridge during compressing and only on the wider side during stretching (asymmetric depinning). Whereas, depinning on both sides of the bridge (symmetric depinning) reduced the magnitude of bridge motion in each cycle under cyclic loading. A larger ψ was found to convert symmetric depinning into asymmetric depinning. These findings not only enhance the understanding of bridge motion between nonparallel surfaces, but also are beneficial in controlling magnitude, precision, and lag of the motion in practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Smart portable rehabilitation devices.
Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan
2005-07-12
The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved.
Smart portable rehabilitation devices
Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan
2005-01-01
Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Conclusion Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved. PMID:16011801
a New Golf-Swing Robot Model Utilizing Shaft Elasticity
NASA Astrophysics Data System (ADS)
Suzuki, S.; Inooka, H.
1998-10-01
The performance of golf clubs and balls is generally evaluated by using golf-swing robots that conventionally have two or three joints with completely interrelated motion. This interrelation allows the user of this robot to specify only the initial posture and swing velocity of the robot and therefore the swing motion of this type of robot cannot be subtly adjusted to the specific characteristics of individual golf clubs. Consequently, golf-swing robots cannot accurately emulate advanced golfers, and this causes serious problems for the evaluation of golf club performance. In this study, a new golf-swing robot that can adjust its motion to both a specified value of swing velocity and the specific characteristics of individual golf clubs was analytically investigated. This robot utilizes the dynamic interference force produced by its swing motion and by shaft vibration and can therefore emulate advanced golfers and perform highly reliable evaluations of golf clubs.
Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru
2007-01-01
Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.
Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, Yevgeny, E-mail: e-somov@mail.ru
Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov functionmore » method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.« less
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
Attitude control/momentum management and payload pointing in advanced space vehicles
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.
NASA Astrophysics Data System (ADS)
Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid
2018-05-01
In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.
Integration of advanced teleoperation technologies for control of space robots
NASA Technical Reports Server (NTRS)
Stagnaro, Michael J.
1993-01-01
Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
Advanced Networks in Motion Mobile Sensorweb
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.
2011-01-01
Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.
Validation results of specifications for motion control interoperability
NASA Astrophysics Data System (ADS)
Szabo, Sandor; Proctor, Frederick M.
1997-01-01
The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.
Using EMG to anticipate head motion for virtual-environment applications
NASA Technical Reports Server (NTRS)
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-01-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Using EMG to anticipate head motion for virtual-environment applications.
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-06-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Advanced patient transfer assist device with intuitive interaction control.
Humphreys, Heather C; Choi, Young Mi; Book, Wayne J
2017-10-24
This research aims to improve patient transfers by developing a new type of advanced robotic assist device. It has multiple actuated degrees of freedom and a powered steerable base to maximize maneuverability around obstacles. An intuitive interface and control strategy allows the caregiver to simply push on the machine in the direction of desired patient motion. The control integrates measurements of both force and proximity to mitigate any potential large collision forces and provides operators information about obstacles with a form of haptic feedback. Electro-hydraulic pump controlled actuation provides high force density for the actuation. Nineteen participants performed tests to compare transfer operations (transferring a 250-lb mannequin between a wheelchair, chair, bed, and floor) and interaction control of a prototype device with a commercially available patient lift. The testing included a time study of the transfer operations and subjective rating of device performance. The results show that operators perform transfer tasks significantly faster and rate performance higher using the prototype patient transfer assist device than with a current market patient lift. With further development, features of the new patient lift can help facilitate patient transfers that are safer, easier, and more efficient for caregivers.
Cömert, Alper; Hyttinen, Jari
2015-05-15
With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced impedance change were caused by the electrode motion and contained the same frequency components as the applied electrode motion pattern. We found that stabilizing the skin around the electrode using an electrode structure that manages to successfully distribute the force and movement to an area beyond the borders of the electrical contact area reduces the motion artifact when compared to structures that are the same size as the electrode area.
NASA Astrophysics Data System (ADS)
Zheng, Taixiong
2005-12-01
A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.
Colloidal crystal grain boundary formation and motion
Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.
2014-01-01
The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760
Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment
Kim, Ikhwan; Kim, Taehyoun
2015-01-01
Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407
Comparisons of several aerodynamic methods for application to dynamic loads analyses
NASA Technical Reports Server (NTRS)
Kroll, R. I.; Miller, R. D.
1976-01-01
The results of a study are presented in which the applicability at subsonic speeds of several aerodynamic methods for predicting dynamic gust loads on aircraft, including active control systems, was examined and compared. These aerodynamic methods varied from steady state to an advanced unsteady aerodynamic formulation. Brief descriptions of the structural and aerodynamic representations and of the motion and load equations are presented. Comparisons of numerical results achieved using the various aerodynamic methods are shown in detail. From these results, aerodynamic representations for dynamic gust analyses are identified. It was concluded that several aerodynamic methods are satisfactory for dynamic gust analyses of configurations having either controls fixed or active control systems that primarily affect the low frequency rigid body aircraft response.
Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems
NASA Astrophysics Data System (ADS)
Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.
2011-12-01
The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.
DOT National Transportation Integrated Search
2014-01-01
A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 29.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 29... Accommodations § 29.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
14 CFR 27.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 27... Accommodations § 27.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they... collective pitch control, must operate with a sense of motion which corresponds to the effect on the...
Kuchin, I; Starov, V
2015-05-19
A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr < θ < θa, which are different from the unique equilibrium contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe < θ < θa or θr < θ < θe, respectively. This "microscopic" motion almost abruptly becomes fast "macroscopic" advancing or receding motion after the contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.
Kim, Hoyeon; Cheang, U. Kei
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016
Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.
Contrast gain control in first- and second-order motion perception.
Lu, Z L; Sperling, G
1996-12-01
A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.
Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Mobertz, Xander R. I.
2017-01-01
The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.
... to-side • Tubing exercises in all motions (pain free) • Toe raises (advanced) • Hops – start forward and back, short hops (advanced) • Weights – Heavy tubing or cuff weights (advanced) JOINT POSITION (REGAINING BALANCE) • Standing with eyes closed – partial squats and side-to-side shifts • One-legged stand ...
Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations
NASA Astrophysics Data System (ADS)
Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.
2017-12-01
A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.
1985-01-01
Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
Schoenlein, Robert [Deputy Director, Advanced Light Source
2017-12-09
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenlein, Robert
2009-07-07
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
Schoenlein, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS), Materials Sciences Division and Chemical Sciences Division
2018-05-07
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
Technological advances in radiotherapy for cervical cancer.
Walsh, Lorraine; Morgia, Marita; Fyles, Anthony; Milosevic, Michael
2011-09-01
To discuss the important technological advances that have taken place in the planning and delivery of both external beam radiotherapy and brachytherapy for patients with locally advanced cervical cancer, and the implications for improved clinical outcomes. Technological advances in external beam radiation treatment and brachytherapy for patients with cervical cancer allow more precise targeting of tumour and relative sparing of surrounding normal organs and tissues. Early evidence is emerging to indicate that these advances will translate into improvements in tumour control and reduced side effects. However, there are patient, tumour and treatment-related factors that can detract from these benefits. Foremost among these is complex, unpredictable and sometimes dramatic internal tumour and normal organ motion during treatment. The focus of current research and clinical development is on tracking internal anatomic change in individual patients and adapting treatment plans as required to assure that optimal tumour coverage and normal tissue sparing is maintained at all times. The success of this approach will depend on clear definitions of target volumes, high resolution daily soft tissue imaging, and new software tools for rapid contouring, treatment planning and quality assurance. Radiation treatment of locally advanced cervical cancer is evolving rapidly, driven by advances in technology, towards more individualized patient care that has the potential to substantially improve clinical outcomes.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
NASA Technical Reports Server (NTRS)
Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.
2002-01-01
A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar
NASA Astrophysics Data System (ADS)
Stedronsky, Richard
2014-05-01
The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.
The Application of Leap Motion in Astronaut Virtual Training
NASA Astrophysics Data System (ADS)
Qingchao, Xie; Jiangang, Chao
2017-03-01
With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.
Li, Jiaqian; Zhou, Xiaofeng; Li, Jing; Che, Lufeng; Yao, Jun; McHale, Glen; Chaudhury, Manoj K.; Wang, Zuankai
2017-01-01
The last two decades have witnessed an explosion of interest in the field of droplet-based microfluidics for their multifarious applications. Despite rapid innovations in strategies to generate small-scale liquid transport on these devices, the speed of motion is usually slow, the transport distance is limited, and the flow direction is not well controlled because of unwanted pinning of contact lines by defects on the surface. We report a new method of microscopic liquid transport based on a unique topological structure. This method breaks the contact line pinning through efficient conversion of excess surface energy to kinetic energy at the advancing edge of the droplet while simultaneously arresting the reverse motion of the droplet via strong pinning. This results in a novel topological fluid diode that allows for a rapid, directional, and long-distance transport of virtually any kind of liquid without the need for an external energy input. PMID:29098182
Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation
NASA Astrophysics Data System (ADS)
Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter
1996-01-01
The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.
NASA Astrophysics Data System (ADS)
Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka
A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.
ERIC Educational Resources Information Center
Bartlett, Albert A.
1984-01-01
Defines frame of reference for the analysis of motion in a moving car, discussing the interaction of the car body, the seat springs, and the passenger when the car goes over a bump. Provides a related, but more advanced, problem with the motion of cars involving angular acceleration. (JM)
Quantifying gait patterns in Parkinson's disease
NASA Astrophysics Data System (ADS)
Romero, Mónica; Atehortúa, Angélica; Romero, Eduardo
2017-11-01
Parkinson's disease (PD) is constituted by a set of motor symptoms, namely tremor, rigidity, and bradykinesia, which are usually described but not quantified. This work proposes an objective characterization of PD gait patterns by approximating the single stance phase a single grounded pendulum. This model estimates the force generated by the gait during the single support from gait data. This force describes the motion pattern for different stages of the disease. The model was validated using recorded videos of 8 young control subjects, 10 old control subjects and 10 subjects with Parkinson's disease in different stages. The estimated force showed differences among stages of Parkinson disease, observing a decrease of the estimated force for the advanced stages of this illness.
Active Brownian motion in a narrow channel
NASA Astrophysics Data System (ADS)
Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.
2014-12-01
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.
Port-of-entry advanced sorting system (PASS) operational test
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
Effects of False Tilt Cues on the Training of Manual Roll Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.
2015-01-01
This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.
Shape-and-behavior encoded tracking of bee dances.
Veeraraghavan, Ashok; Chellappa, Rama; Srinivasan, Mandyam
2008-03-01
Behavior analysis of social insects has garnered impetus in recent years and has led to some advances in fields like control systems, flight navigation etc. Manual labeling of insect motions required for analyzing the behaviors of insects requires significant investment of time and effort. In this paper, we propose certain general principles that help in simultaneous automatic tracking and behavior analysis with applications in tracking bees and recognizing specific behaviors exhibited by them. The state space for tracking is defined using position, orientation and the current behavior of the insect being tracked. The position and orientation are parametrized using a shape model while the behavior is explicitly modeled using a three-tier hierarchical motion model. The first tier (dynamics) models the local motions exhibited and the models built in this tier act as a vocabulary for behavior modeling. The second tier is a Markov motion model built on top of the local motion vocabulary which serves as the behavior model. The third tier of the hierarchy models the switching between behaviors and this is also modeled as a Markov model. We address issues in learning the three-tier behavioral model, in discriminating between models, detecting and in modeling abnormal behaviors. Another important aspect of this work is that it leads to joint tracking and behavior analysis instead of the traditional track and then recognize approach. We apply these principles for tracking bees in a hive while they are executing the waggle dance and the round dance.
Estimating satellite pose and motion parameters using a novelty filter and neural net tracker
NASA Technical Reports Server (NTRS)
Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne
1989-01-01
A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.
iMODS: internal coordinates normal mode analysis server.
López-Blanco, José Ramón; Aliaga, José I; Quintana-Ortí, Enrique S; Chacón, Pablo
2014-07-01
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bennett, Charles R; Kelly, Brian P
2013-08-09
Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU investigations the methodology has potential to overcome conventional follower load limitations, most notably via application outside the sagittal plane. This methodology holds promise for future work aimed at reducing the gap between current in-vitro testing and in-vivo circumstances. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effect of autogenic training and biofeedback on motion sickness tolerance.
Jozsvai, E E; Pigeau, R A
1996-10-01
Motion sickness is characterized by symptoms of vomiting, drowsiness, fatigue and idiosyncratic changes in autonomic nervous system (ANS) responses such as heart rate (HR) and skin temperature (ST). Previous studies found that symptoms of motion sickness are controllable through self-regulation of ANS responses and the best method to teach such control is autogenic-feedback (biofeedback) training. Recent experiments indicated that biofeedback training is ineffective in reducing symptoms of motion sickness or in increasing tolerance to motion. If biofeedback facilitates learning of ANS self-regulation then autogenic training with true feedback (TFB) should lead to better control over ANS responses and better motion tolerance than autogenic training with false feedback (FFB). If there is a relationship between ANS self-regulation and coping with motion stress, a significant correlation should be found between amounts of control over ANS responses and measures of motion tolerance and/or symptoms of motion sickness. There were 3 groups of 6 subjects exposed for 6 weeks to weekly sessions of Coriolis stimulation to induce motion sickness. Between the first and second Coriolis sessions, subjects in the experimental groups received five episodes of autogenic training with either true (group TFB) or false (group FFB) feedback on their HR and ST. The control group (CTL) received no treatment. Subjects learned to control their HR and ST independent of whether they received true or false feedback. Learned control of ST and HR was not related to severity of motion sickness or subject's ability to withstand Coriolis stimulation following treatment. A lack of significant correlation between these variables suggested that subjects were not able to apply their skills of ANS self-regulation in the motion environment, and/ or such skills had little value in reducing symptoms of motion sickness or enhancing their ability to withstand rotations.
Motion Verbs with Goal PPs in the L2 Acquisition of English and Japanese.
ERIC Educational Resources Information Center
Inagaki, Shunji
2001-01-01
Suggests that Japanese learners will learn manner-of-motion verbs with goal prepositional phrases in English from positive feedback. Immediate Japanese learners of English and advanced learners of Japanese were tested using a grammaticality judgment task with pictures. Results support the prediction. (Author/VWL)
Report: CSB’s Public Meeting Announcement Violated The Government in the Sunshine Act
Report #15-P-0304, September 30, 2015.At a public meeting, CSB passed a motion to terminate five investigations on which it had already spent over $800,000 in taxpayer funds without announcing the planned motion in advance, as required by the Sunshine Act.
Advancing Adventure Education Using Digital Motion-Sensing Games
ERIC Educational Resources Information Center
Shih, Ju-Ling; Hsu, Yu-Jen
2016-01-01
This study used the Xbox Kinect and Unity 3D game engine to develop two motion-sensing games in which the participants, in simulated scenarios, could experience activities that are unattainable in real life, become immersed in collaborative activities, and explore the value of adventure education. Adventure Education involves courses that…
Analysis in Motion Initiative – Summarization Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin; Pirrung, Meg; Jasper, Rob
2017-06-22
Analysts are tasked with integrating information from multiple data sources for important and timely decision making. What if sense making and overall situation awareness could be improved through visualization techniques? The Analysis in Motion initiative is advancing the ability to summarize and abstract multiple streams and static data sources over time.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-01-01
Context: Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective: To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design: Randomized controlled trial. Setting: Research laboratory. Patients or Other Participants: A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s): All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s): Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results: Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions: A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257
NASA Astrophysics Data System (ADS)
Phipps, Marja; Capel, David; Srinivasan, James
2014-06-01
Motion imagery capabilities within the Department of Defense/Intelligence Community (DoD/IC) have advanced significantly over the last decade, attempting to meet continuously growing data collection, video processing and analytical demands in operationally challenging environments. The motion imagery tradecraft has evolved accordingly, enabling teams of analysts to effectively exploit data and generate intelligence reports across multiple phases in structured Full Motion Video (FMV) Processing Exploitation and Dissemination (PED) cells. Yet now the operational requirements are drastically changing. The exponential growth in motion imagery data continues, but to this the community adds multi-INT data, interoperability with existing and emerging systems, expanded data access, nontraditional users, collaboration, automation, and support for ad hoc configurations beyond the current FMV PED cells. To break from the legacy system lifecycle, we look towards a technology application and commercial adoption model course which will meet these future Intelligence, Surveillance and Reconnaissance (ISR) challenges. In this paper, we explore the application of cutting edge computer vision technology to meet existing FMV PED shortfalls and address future capability gaps. For example, real-time georegistration services developed from computer-vision-based feature tracking, multiple-view geometry, and statistical methods allow the fusion of motion imagery with other georeferenced information sources - providing unparalleled situational awareness. We then describe how these motion imagery capabilities may be readily deployed in a dynamically integrated analytical environment; employing an extensible framework, leveraging scalable enterprise-wide infrastructure and following commercial best practices.
The dynamics and control of large flexible asymmetric spacecraft
NASA Astrophysics Data System (ADS)
Humphries, T. T.
1991-02-01
This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.
Port-of-entry Advanced Sorting System (PASS) operational test : final report
DOT National Transportation Integrated Search
1998-12-01
In 1992 the Oregon Department of Transportation undertook an operational test of the Port-of-Entry Advanced Sorting System (PASS), which uses a two-way communication automatic vehicle identification system, integrated with weigh-in-motion, automatic ...
Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
Hernández-Montes, Maria del Socorro; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza
2009-01-01
Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. This paper presents advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full-field-of-view characterization of nanometer scale sound-induced displacements of the surface of the TM at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical-research environment to address basic-science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad-frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and cadaveric human samples are shown, and their potential utility discussed. PMID:19566316
Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
NASA Astrophysics Data System (ADS)
Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza
2009-05-01
Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.
Conserved linear dynamics of single-molecule Brownian motion.
Serag, Maged F; Habuchi, Satoshi
2017-06-06
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.; Habuchi, Satoshi
2017-01-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance. PMID:28585925
Conserved linear dynamics of single-molecule Brownian motion
NASA Astrophysics Data System (ADS)
Serag, Maged F.; Habuchi, Satoshi
2017-06-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.
NASA Astrophysics Data System (ADS)
Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.
2017-10-01
This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
The Vestibular System and Human Dynamic Space Orientation
NASA Technical Reports Server (NTRS)
Meiry, J. L.
1966-01-01
The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.
Nonlinear flight control design using backstepping methodology
NASA Astrophysics Data System (ADS)
Tran, Thanh Trung
The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by eliminating the pseudo control transformations. In the second part, the research focuses on nonlinear control design for flight dynamics of aircraft motion. Some assumptions on aerodynamics of the aircraft are addressed to transform full nonlinear flight dynamics into the canonical strict-feedback form. The assumptions are also analyzed, validated, and compared to show the advantages and disadvantages of the design models. With the achieved models, investigation focuses on formulating the backstepping control laws and provides an advanced control algorithm for nonlinear flight dynamics of the aircraft. Experimental and simulation studies are successfully implemented to validate the proposed control method. Advancement of nonlinear backstepping control theory and its application to nonlinear flight control are achieved in the dissertation research.
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
TH-AB-BRB-04: Quality Assurance for Advanced Digital Linac Implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, V.
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point
NASA Astrophysics Data System (ADS)
Zabolotnov, Yu. M.; Lobanov, A. A.
2017-05-01
A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).
Contact control for advanced applications of light weight arms
NASA Technical Reports Server (NTRS)
Book, Wayne J.; Kwon, Dong-Soo
1991-01-01
Many applications of robotic and teleoperated manipulator arms require operation in contact and non-contact regimes. This paper deals with both regimes and the transition between them with special attention given to problems of flexibility in the links and drives. This is referred to as contact control. Inverse dynamics is used to plan the tip motion of the flexible link so that the free motion can stop very near the contact surface without collision due to overshoot. Contact must occur at a very low speed since the high frequency impact forces are too sudden to be affected by any feedback generated torques applied to a joint at the other end of the link. The effect of approach velocity and surface properties are discussed. Force tracking is implemented by commands to the deflection states of the link and the contact force. This enables a natural transition between tip position and tip force control that is not possible when the arm is treated as rigid. The effect of feedback gain, force trajectory, and desired final force are of particular interest and are studied. Experimental results are presented on a one link arm and the system performance in the overall contact task is analyzed. Extension to multi-link cases with potential applications are discussed.
Sideband cooling of micromechanical motion to the quantum ground state.
Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W
2011-07-06
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.
Visual control of flight speed in Drosophila melanogaster.
Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H
2009-04-01
Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.
Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator
NASA Astrophysics Data System (ADS)
Rehmatullah, Faizan
In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.
Vestibular models for design and evaluation of flight simulator motion
NASA Technical Reports Server (NTRS)
Bussolari, S. R.; Sullivan, R. B.; Young, L. R.
1986-01-01
The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.
Gallium arsenide processing elements for motion estimation full-search algorithm
NASA Astrophysics Data System (ADS)
Lopez, Jose F.; Cortes, P.; Lopez, S.; Sarmiento, Roberto
2001-11-01
The Block-Matching motion estimation algorithm (BMA) is the most popular method for motion-compensated coding of image sequence. Among the several possible searching methods to compute this algorithm, the full-search BMA (FBMA) has obtained great interest from the scientific community due to its regularity, optimal solution and low control overhead which simplifies its VLSI realization. On the other hand, its main drawback is the demand of an enormous amount of computation. There are different ways of overcoming this factor, being the use of advanced technologies, such as Gallium Arsenide (GaAs), the one adopted in this article together with different techniques to reduce area overhead. By exploiting GaAs properties, improvements can be obtained in the implementation of feasible systems for real time video compression architectures. Different primitives used in the implementation of processing elements (PE) for a FBMA scheme are presented. As a result, Pes running at 270 MHz have been developed in order to study its functionality and performance. From these results, an implementation for MPEG applications is proposed, leading to an architecture running at 145 MHz with a power dissipation of 3.48 W and an area of 11.5 mm2.
NASA Astrophysics Data System (ADS)
Chakon, Ofir; Or, Yizhar
2017-08-01
Underactuated robotic locomotion systems are commonly represented by nonholonomic constraints where in mixed systems, these constraints are also combined with momentum evolution equations. Such systems have been analyzed in the literature by exploiting symmetries and utilizing advanced geometric methods. These works typically assume that the shape variables are directly controlled, and obtain the system's solutions only via numerical integration. In this work, we demonstrate utilization of the perturbation expansion method for analyzing a model example of mixed locomotion system—the twistcar toy vehicle, which is a variant of the well-studied roller-racer model. The system is investigated by assuming small-amplitude oscillatory inputs of either steering angle (kinematic) or steering torque (mechanical), and explicit expansions for the system's solutions under both types of actuation are obtained. These expressions enable analyzing the dependence of the system's dynamic behavior on the vehicle's structural parameters and actuation type. In particular, we study the reversal in direction of motion under steering angle oscillations about the unfolded configuration, as well as influence of the choice of actuation type on convergence properties of the motion. Some of the findings are demonstrated qualitatively by reporting preliminary motion experiments with a modular robotic prototype of the vehicle.
Do motion controllers make action video games less sedentary? A randomized experiment.
Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram
2012-01-01
Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.
Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment
Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram
2012-01-01
Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959
DOT National Transportation Integrated Search
1999-02-01
Weigh-in-motion (WIM) systems might soon replace the conventional techniques used to enforce : weight restrictions for large vehicles on highways. Currently WIM systems use a piezoelectric : polymer sensor that produces a voltage proportional to an a...
A Study of Brownian Motion Using Light Scattering
ERIC Educational Resources Information Center
Clark, Noel A.; And Others
1970-01-01
Presents an advanced laboratory experiment and lecture demonstration by which the intensity spectrum of light scattered by a suspension of particles in a fluid can be studied. From this spectrum, it is possible to obtain quantitative information about the motion of the particles, including an accurate determination of their diffusion constant.…
The United States Naval Observatory (USNO) - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Orientation Precise Time James M. Gilliss Library News, Tours & Events About Us Info The United States positions and motion of celestial bodies, motions of the Earth, and precise time. USNO provides tailored
Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A
2003-01-01
Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p <.01) for controlling breathing (10.7 +/- 5.6 min) and longer (p <.01) for music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
A Generalized-Compliant-Motion Primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1993-01-01
Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
Sub-block motion derivation for merge mode in HEVC
NASA Astrophysics Data System (ADS)
Chien, Wei-Jung; Chen, Ying; Chen, Jianle; Zhang, Li; Karczewicz, Marta; Li, Xiang
2016-09-01
The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. In this paper, two additional merge candidates, advanced temporal motion vector predictor and spatial-temporal motion vector predictor, are developed to improve motion information prediction scheme under the HEVC structure. The proposed method allows each Prediction Unit (PU) to fetch multiple sets of motion information from multiple blocks smaller than the current PU. By splitting a large PU into sub-PUs and filling motion information for all the sub-PUs of the large PU, signaling cost of motion information could be reduced. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. Simulation results show that 2.4% performance improvement over HEVC can be achieved.
Advances in 4D Treatment Planning for Scanned Particle Beam Therapy — Report of Dedicated Workshops
Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin
2014-01-01
We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue. PMID:24354749
Effectiveness of Immersive Virtual Reality in Surgical Training-A Randomized Control Trial.
Pulijala, Yeshwanth; Ma, Minhua; Pears, Matthew; Peebles, David; Ayoub, Ashraf
2018-05-01
Surgical training methods are evolving with the technological advancements, including the application of virtual reality (VR) and augmented reality. However, 28 to 40% of novice residents are not confident in performing a major surgical procedure. VR surgery, an immersive VR (iVR) experience, was developed using Oculus Rift and Leap Motion devices (Leap Motion, Inc, San Francisco, CA) to address this challenge. Our iVR is a multisensory, holistic surgical training application that demonstrates a maxillofacial surgical technique, the Le Fort I osteotomy. The main objective of the present study was to evaluate the effect of using VR surgery on the self-confidence and knowledge of surgical residents. A multisite, single-blind, parallel, randomized controlled trial (RCT) was performed. The participants were novice surgical residents with limited experience in performing the Le Fort I osteotomy. The primary outcome measures were the self-assessment scores of trainee confidence using a Likert scale and an objective assessment of the cognitive skills. Ninety-five residents from 7 dental schools were included in the RCT. The participants were randomly divided into a study group of 51 residents and a control group of 44. Participants in the study group used the VR surgery application on an Oculus Rift with Leap Motion device. The control group participants used similar content in a standard PowerPoint presentation on a laptop. Repeated measures multivariate analysis of variance was applied to the data to assess the overall effect of the intervention on the confidence of the residents. The study group participants showed significantly greater perceived self-confidence levels compared with those in the control group (P = .034; α = 0.05). Novices in the first year of their training showed the greatest improvement in their confidence compared with those in their second and third year. iVR experiences improve the knowledge and self-confidence of the surgical residents. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
14 CFR 25.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...
14 CFR 25.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...
Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Biscans, S.; Warner, J.; Mittleman, R.; Buchanan, C.; Coughlin, M.; Evans, M.; Gabbard, H.; Harms, J.; Lantz, B.; Mukund, N.; Pele, A.; Pezerat, C.; Picart, P.; Radkins, H.; Shaffer, T.
2018-03-01
Advanced gravitational-wave detectors such as the laser interferometer gravitational-wave observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they measure motion of less than 10‑19 m. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data. An earthquake early-warning system, as well as a prediction model, have been developed to understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by ∼30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.
Energetics in robotic flight at small scales
Kumar, Vijay
2017-01-01
Recent advances in design, sensing and control have led to aerial robots that offer great promise in a range of real-world applications. However, one critical open question centres on how to improve the energetic efficiency of aerial robots so that they can be useful in practical situations. This review paper provides a survey on small-scale aerial robots (i.e. less than 1 m2 area foot print, and less than 3 kg weight) from the point of view of energetics. The paper discusses methods to improve the efficiency of aerial vehicles, and reports on recent findings by the authors and other groups on modelling the impact of aerodynamics for the purpose of building energy-aware motion planners and controllers. PMID:28163880
Energetics in robotic flight at small scales.
Karydis, Konstantinos; Kumar, Vijay
2017-02-06
Recent advances in design, sensing and control have led to aerial robots that offer great promise in a range of real-world applications. However, one critical open question centres on how to improve the energetic efficiency of aerial robots so that they can be useful in practical situations. This review paper provides a survey on small-scale aerial robots (i.e. less than 1 m 2 area foot print, and less than 3 kg weight) from the point of view of energetics. The paper discusses methods to improve the efficiency of aerial vehicles, and reports on recent findings by the authors and other groups on modelling the impact of aerodynamics for the purpose of building energy-aware motion planners and controllers.
Motion control of the rabbit ankle joint with a flat interface nerve electrode.
Park, Hyun-Joo; Durand, Dominique M
2015-12-01
A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.
Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu
2013-04-15
We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less
3-D movies using microprocessor-controlled optoelectronic spectacles
NASA Astrophysics Data System (ADS)
Jacobs, Ken; Karpf, Ron
2012-02-01
Despite rapid advances in technology, 3-D movies are impractical for general movie viewing. A new approach that opens all content for casual 3-D viewing is needed. 3Deeps--advanced microprocessor controlled optoelectronic spectacles--provides such a new approach to 3-D. 3Deeps works on a different principle than other methods for 3-D. 3-D movies typically use the asymmetry of dual images to produce stereopsis, necessitating costly dual-image content, complex formatting and transmission standards, and viewing via a corresponding selection device. In contrast, all 3Deeps requires to view movies in realistic depth is an illumination asymmetry--a controlled difference in optical density between the lenses. When a 2-D movie has been projected for viewing, 3Deeps converts every scene containing lateral motion into realistic 3-D. Put on 3Deeps spectacles for 3-D viewing, or remove them for viewing in 2-D. 3Deeps works for all analogue and digital 2-D content, by any mode of transmission, and for projection screens, digital or analogue monitors. An example using aerial photography is presented. A movie consisting of successive monoscopic aerial photographs appears in realistic 3-D when viewed through 3Deeps spectacles.
Vertical-angle control system in the LLMC
NASA Astrophysics Data System (ADS)
Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei
2000-10-01
A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.
Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.
1991-01-01
The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.
Effects of Different Heave Motion Components on Pilot Pitch Control Behavior
NASA Technical Reports Server (NTRS)
Zaal, Petrus M. T.; Zavala, Melinda A.
2016-01-01
The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.
NASA Technical Reports Server (NTRS)
Brentner, K. S.
1986-01-01
A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.
Propulsion and navigation within the advancing monolayer sheet
Kim, Jae Hun; Serra-Picamal, Xavier; Tambe, Dhananjay T.; Zhou, Enhua H.; Park, Chan Young; Sadati, Monirosadat; Park, Jin-Ah; Krishnan, Ramaswamy; Gweon, Bomi; Millet, Emil; Butler, James P.; Trepat, Xavier; Fredberg, Jeffrey J.
2013-01-01
As a wound heals, or a body plan forms, or a tumor invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge or, paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space. PMID:23793160
Design of a High Resolution Hexapod Positioning Mechanism
NASA Technical Reports Server (NTRS)
Britt, Jamie
2001-01-01
This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.
Design of a High Resolution Hexapod Positioning Mechanism
NASA Technical Reports Server (NTRS)
Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.
Digital Environment for Movement Control in Surgical Skill Training.
Juanes, Juan A; Gómez, Juan J; Peguero, Pedro D; Ruisoto, Pablo
2016-06-01
Intelligent environments are increasingly becoming useful scenarios for handling computers. Technological devices are practical tools for learning and acquiring clinical skills as part of the medical training process. Within the framework of the advanced user interface, we present a technological application using Leap Motion, to enhance interaction with the user in the process of a laparoscopic surgical intervention and integrate the navigation through augmented reality images using manual gestures. Thus, we intend to achieve a more natural interaction with the objects that participate in a surgical intervention, which are augmented and related to the user's hand movements.
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
NASA Astrophysics Data System (ADS)
Kron, T.; Ungureanu, E.; Antony, R.; Hardcastle, N.; Clements, N.; Ukath, J.; Fox, C.; Lonski, P.; Wanigaratne, D.; Haworth, A.
2017-01-01
Stereotactic Ablative Body Radiotherapy (SABR) is an extension of the concepts of Stereotactic Radiosurgery from intracranial procedures to extracranial targets. This brings with it new technological challenges for set-up of a SABR program and continuing quality assurance. Compared with intracranial procedures SABR requires consideration of motion and inhomogeneities and has to deal with a much larger variety of targets ranging from lung to liver, kidney and bone. To meet many of the challenges virtually all advances in modern radiotherapy, such as Intensity Modulated and Image Guided Radiation Therapy (IMRT and IGRT) are used. Considering the few fractions and high doses per fraction delivered to complex targets it is not surprising that patient specific quality control is considered essential for safe delivery. Given the variety of targets and clinical scenarios we employ different strategies for different patients to ensure that the most important aspects of the treatment are appropriately tested, be it steep dose gradients, inhomogeneities or the delivery of dose in the presence of motion. The current paper reviews the different approaches and phantoms utilised at Peter MacCallum Cancer Centre for SABR QA.
The influence of ship motion of manual control skills
NASA Technical Reports Server (NTRS)
Mcleod, P.; Poulton, C.; Duross, H.; Lewis, W.
1981-01-01
The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch, and roll by signals taken from the frigate HMS Avenger at 13 m/s (25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0.024g, mostly between 0.1 and 0.3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea sickness. The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface onboard ship around motion resistant tasks.
Control system and method for payload control in mobile platform cranes
Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.
2002-01-01
A crane control system and method provides a way to generate crane commands responsive to a desired payload motion to achieve substantially pendulation-free actual payload motion. The control system and method apply a motion compensator to maintain a payload in a defined payload configuration relative to an inertial coordinate frame. The control system and method can further comprise a pendulation damper controller to reduce an amount of pendulation between a sensed payload configuration and the defined payload configuration. The control system and method can further comprise a command shaping filter to filter out a residual payload pendulation frequency from the desired payload motion.
Quantum acoustics with superconducting qubits
NASA Astrophysics Data System (ADS)
Chu, Yiwen
2017-04-01
The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.
Nonlinear damping based semi-active building isolation system
NASA Astrophysics Data System (ADS)
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
Capturing Motion and Depth Before Cinematography.
Wade, Nicholas J
2016-01-01
Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.
Estimation of bio-signal based on human motion for integrated visualization of daily-life.
Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko
2007-01-01
This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.
ERIC Educational Resources Information Center
Bylund, Emanuel; Athanasopoulos, Panos
2015-01-01
The encoding of goal-oriented motion events varies across different languages. Speakers of languages without grammatical aspect (e.g., Swedish) tend to mention motion endpoints when describing events (e.g., "two nuns walk to a house") and attach importance to event endpoints when matching scenes from memory. Speakers of aspect languages…
Distance Learning Using Digital Fiber Optics: Applications, Technologies, and Benefits.
ERIC Educational Resources Information Center
Currer, Joanne M.
Distance learning provides special or advanced classes in rural schools where declining population has led to decreased funding and fewer classes. With full-motion video using digital fiber, two or more sites are connected into a two-way, full-motion, video conference. The teacher can see and hear the students, and the students can see and hear…
Possibilities and Implications of Using a Motion-Tracking System in Physical Education
ERIC Educational Resources Information Center
Chow, Jia Yi; Tan, Clara Wee Keat; Lee, Miriam Chang Yi; Button, Chris
2014-01-01
Advances in technology have created new opportunities for enhanced delivery of teaching to improve the acquisition of game skills in physical education (PE). The availability of a motion-tracking system (i.e. the A-Eye), which determines positional information of students in a practice context, might offer a suitable technology to support…
Characterization and control of self-motions in redundant manipulators
NASA Technical Reports Server (NTRS)
Burdick, J.; Seraji, Homayoun
1989-01-01
The presence of redundant degrees of freedom in a manipulator structure leads to a physical phenomenon known as a self-motion, which is a continuous motion of the manipulator joints that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for redundant manipulators is developed in terms of self-motion manifolds. Global characterizations of the self-motion manifolds in terms of their number, geometry, homotopy class, and null space are reviewed using examples. Much previous work in redundant manipulator control has been concerned with the redundancy resolution problem, in which methods are developed to determine, or resolve, the motion of the joints in order to achieve end-effector trajectory control while optimizing additional objective functions. Redundancy resolution problems can be equivalently posed as the control of self-motions. Alternatives for redundancy resolution are briefly discussed.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Brain-machine interfacing control of whole-body humanoid motion
Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun
2014-01-01
We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134
A user-driven treadmill control scheme for simulating overground locomotion.
Kim, Jonghyun; Stanley, Christopher J; Curatalo, Lindsey A; Park, Hyung-Soon
2012-01-01
Treadmill-based locomotor training should simulate overground walking as closely as possible for optimal skill transfer. The constant speed of a standard treadmill encourages automaticity rather than engagement and fails to simulate the variable speeds encountered during real-world walking. To address this limitation, this paper proposes a user-driven treadmill velocity control scheme that allows the user to experience natural fluctuations in walking velocity with minimal unwanted inertial force due to acceleration/deceleration of the treadmill belt. A smart estimation limiter in the scheme effectively attenuates the inertial force during velocity changes. The proposed scheme requires measurement of pelvic and swing foot motions, and is developed for a treadmill of typical belt length (1.5 m). The proposed scheme is quantitatively evaluated here with four healthy subjects by comparing it with the most advanced control scheme identified in the literature.
Liquid rocket actuators and operators. [in spacecraft control systems
NASA Technical Reports Server (NTRS)
1973-01-01
All the types of actuators and associated operators used in booster, upper stage, and spacecraft propulsion and reaction-control systems except for chemical-explosive actuators and turbine actuators are discussed. Discussion of static and dynamic seals, mechanical transmission of motion, and instrumentation is included to the extent that actuator or operator design is affected. Selection of the optimum actuator configuration is discussed for specific application which require a tradeoff study that considers all the relevant factors: available energy sources, load capacity, stroke, speed of response, leakage limitations, environmental conditions, chemical compatibility, storage life and conditions, size, weight, and cost. These factors are interrelated with overall control-system design evaluations that are beyond the scope of this monograph; however, literature references are cited for a detailed review of the general considerations. Perinent advanced-state-of-the-art design concepts are surveyed briefly.
Management of redundancy in flight control systems using optimal decision theory
NASA Technical Reports Server (NTRS)
1981-01-01
The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.
Real-time MSE measurements for current profile control on KSTAR.
De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J
2012-10-01
To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.
The use of vestibular models for design and evaluation of flight simulator motion
NASA Technical Reports Server (NTRS)
Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.
1989-01-01
Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.
Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.
Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles
2011-01-01
Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.
NASA Technical Reports Server (NTRS)
Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.
1994-01-01
The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.
NASA Astrophysics Data System (ADS)
Xu, Yong; Dong, Wen-Cai
2013-08-01
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
New physical concepts for cell amoeboid motion.
Evans, E
1993-01-01
Amoeboid motion of cells is an essential mechanism in the function of many biological organisms (e.g., the regiment of scavenger cells in the immune defense system of animals). This process involves rapid chemical polymerization (with numerous protein constituents) to create a musclelike contractile network that advances the cell over the surface. Significant progress has been made in the biology and biochemistry of motile cells, but the physical dynamics of cell spreading and contraction are not well understood. The reason is that general approaches are formulated from complex mass, momentum, and chemical reaction equations for multiphase-multicomponent flow with the nontrivial difficulty of moving boundaries. However, there are strong clues to the dynamics that allow bold steps to be taken in simplifying the physics of motion. First, amoeboid cells often exhibit exceptional kinematics, i.e., steady advance and retraction of local fixed-shape patterns. Second, recent evidence has shown that cell projections "grow" by polymerization along the advancing boundary of the cell. Together, these characteristics represent a local growth process pinned to the interfacial contour of a contractile network. As such, the moving boundary becomes tractable, but subtle features of the motion lead to specific requirements for the chemical nature of the boundary polymerization process. To demonstrate these features, simple examples for limiting conditions of substrate interaction (i.e., "strong" and "weak" adhesion) are compared with data from experimental studies of yeast particle engulfment by blood granulocytes and actin network dynamics in fishscale keratocytes. Images FIGURE 2 FIGURE 4 PMID:8494986
New physical concepts for cell amoeboid motion.
Evans, E
1993-04-01
Amoeboid motion of cells is an essential mechanism in the function of many biological organisms (e.g., the regiment of scavenger cells in the immune defense system of animals). This process involves rapid chemical polymerization (with numerous protein constituents) to create a musclelike contractile network that advances the cell over the surface. Significant progress has been made in the biology and biochemistry of motile cells, but the physical dynamics of cell spreading and contraction are not well understood. The reason is that general approaches are formulated from complex mass, momentum, and chemical reaction equations for multiphase-multicomponent flow with the nontrivial difficulty of moving boundaries. However, there are strong clues to the dynamics that allow bold steps to be taken in simplifying the physics of motion. First, amoeboid cells often exhibit exceptional kinematics, i.e., steady advance and retraction of local fixed-shape patterns. Second, recent evidence has shown that cell projections "grow" by polymerization along the advancing boundary of the cell. Together, these characteristics represent a local growth process pinned to the interfacial contour of a contractile network. As such, the moving boundary becomes tractable, but subtle features of the motion lead to specific requirements for the chemical nature of the boundary polymerization process. To demonstrate these features, simple examples for limiting conditions of substrate interaction (i.e., "strong" and "weak" adhesion) are compared with data from experimental studies of yeast particle engulfment by blood granulocytes and actin network dynamics in fishscale keratocytes.
Minimum-variance Brownian motion control of an optically trapped probe.
Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang
2009-10-20
This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic
Model-based control strategies for systems with constraints of the program type
NASA Astrophysics Data System (ADS)
Jarzębowska, Elżbieta
2006-08-01
The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.
Optofluidics incorporating actively controlled micro- and nano-particles
Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2012-01-01
The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925
Motion and Balance. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Motion allows things to get done, to communicate and to travel. But is motion controlled? Students will learn about the universal laws that apply to motion, the forces that cause it and how it is related to balance. They will also discover why motion occurs when forces are out of control and learn more about this interesting concept by viewing…
Conceptual design study for an advanced cab and visual system, volume 2
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.
NASA Astrophysics Data System (ADS)
Okuno, Keisuke; Inamura, Tetsunari
A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.
Time-Domain Terahertz Computed Axial Tomography NDE System
NASA Technical Reports Server (NTRS)
Zimdars, David
2012-01-01
NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.
Zhu, Wenchao; Xu, Xiulin; Hu, Xiufang; An, Meijun
2017-06-01
This article presents the design of a motion control system for seated lower-limb rehabilitation training. The system is composed of lower limb exoskeleton, motor drive circuit, program of motion control, and so forth. The power of lower limbs joints is provided by six motors. The PCI-1240 motion control card is used as the core. This study achieved repetitive rotation training and gait trajectory training of lower limbs joints, of which the velocity, angle and time can be accurately controlled and adjusted. The experimental results showed that the motion control system can meet the requirement of repetitive rehabilitation training for patients with lower limb dysfunction. This article provides a new method to the research of motion control system in rehabilitation training, which can promote industrial automation technique to be used for health care, and conducive to the further study of the rehabilitation robot.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
An open architecture motion controller
NASA Technical Reports Server (NTRS)
Rossol, Lothar
1994-01-01
Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping
2017-10-25
Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
Liao, Rui; Shi, Cun; Wang, Shaoping
2017-01-01
Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392
OCILOW-Wheeled Platform Controls Executable Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, John F.
2005-11-30
The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering and rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keepingmore » internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.« less
Visual motion integration for perception and pursuit
NASA Technical Reports Server (NTRS)
Stone, L. S.; Beutter, B. R.; Lorenceau, J.
2000-01-01
To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Dynamics and control of tethered antennas/reflectors in orbit
NASA Astrophysics Data System (ADS)
Liu, Liangdong; Bainum, Peter M.
The system linear equations for the motion of a tethered shallow spherical shell in orbit with its symmetry axis nominally following the local vertical are developed. The shell roll, yaw, tether out-of-plane swing motion and elastic vibrations are decoupled from the shell and tether in-plane pitch motions and elastic vibrations. The neutral gravity stability conditions for the special case of a constant length rigid tether are given for in-plane motion and out-of-plant motion. It is proved that the in-plane motion of the system could be asymptotically stable based on Rupp's tension control law, for a variable length tether. However, the system simulation results indicate that the transient responses can be improved significantly, especially for the damping of the tether and shell pitch motion, by an optimal feedback control law for the rigid variable length tether model. It is also seen that the system could be unstable when the effect of tether flexibility is included if the control gains are not chosen carefully. The transient responses for three different tension control laws are compared during typical station keeping operations.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.
2000-01-01
The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.
Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System
NASA Astrophysics Data System (ADS)
Isik, Can
An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the dissertation are the description of the computer simulation of Pilot within the hierarchy of IMAS control and the simulated experiments that demonstrate the theoretical work.
Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.
2013-01-01
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292
KALI - An environment for the programming and control of cooperative manipulators
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1988-01-01
A design description is given of a controller for cooperative robots. The background and motivation for multiple arm control are discussed. A set of programming primitives which permit a programmer to specify cooperative tasks are described. Motion primitives specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues are discussed and the authors' implementation briefly described. The relations between programming and control in the case of multiple robots are examined. The allocation of various tasks among a multiprocessor computer is described.
Optimization of motion control laws for tether crawler or elevator systems
NASA Technical Reports Server (NTRS)
Swenson, Frank R.; Von Tiesenhausen, Georg
1988-01-01
Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.
Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion
ERIC Educational Resources Information Center
Pinto, Marcus Benghi
2007-01-01
The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The…
USDA-ARS?s Scientific Manuscript database
Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...
A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.
Noh, Dong K; Lee, Nam G; You, Joshua H
2014-01-01
This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).
Quantum correlations from a room-temperature optomechanical cavity.
Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M
2017-06-23
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Burov, Alexander; Kosenko, Ivan
2018-05-01
Dynamics of a spacecraft with a variable mass distribution in a central field of Newtonian attraction is considered. Using another viewpoint one can regard sufficiently compact formation instead of a spacecraft. This formation can vary distances between its particular spacecrafts thus implementing pulsing motions of the system as a whole. Within the so-called "satellite approximation" the equations of spatial attitude motion are obtained. Rules of the mass redistribution providing prescribed in advance attitude motions are indicated. For classes of relative equilibria previously found and existing under appropriate rules of the mass redistribution, stability study is performed. The investigation splits into two topics: (a) general dynamical consideration for the planar attitude satellite motion with use of the KAM theory; (b) constructing the families of periodic solutions represented by means of convergent series in powers of eccentricity and describing satellite motions emanating from its relative equilibria.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Research and development of a control system for multi axis cooperative motion based on PMAC
NASA Astrophysics Data System (ADS)
Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu
2017-10-01
Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
2018-02-21
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J
2016-01-01
Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.
The choice of speed and clearance for RAS on 3D method
NASA Astrophysics Data System (ADS)
Wang, Jian-Fang; Li, Ji-De; Cai, Xin-Gong
2003-12-01
In this paper, a 3D source distribution technique is used to calculate the coupled motions between two ships which advance in the wave with the same speed. The numerical results of coupled motions for a frigate and a supply ship have a good agreement with the experimental results. Based on the 3D coupled motions of two ships, a spectral analysis is employed to clearly observe the effect of speed, clearance and wave heading on the significant relative motion amplitude (SRMA) of two ships. The method presented in this paper will be helpful to select suitable clearance, speed and wave heading for underway replenishment at sea(RAS).
NASA Technical Reports Server (NTRS)
Alexander, Thomas; Ellis, Stephen R.
2007-01-01
The two topics covered by this symposium were intelligent appearing motion and Virtual Environments (VE). Both of these are broad research areas with enough content to fill large conferences. Their intersection has become important due to conceptual and technological advances enabling the introduction of intelligent appearing motion into Virtual Environments. This union brings new integration challenges and opportunities, some of which were examined at this symposium. This chapter was inspired by the contributions of several of the conference participants, but is not a complete review of all presentations. It will hopefully serve as a basis for formulating a new approach to the understanding of motion within VE
Active Control of Solar Array Dynamics During Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.
2016-01-01
Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.
Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk
NASA Astrophysics Data System (ADS)
Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua
2018-07-01
We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.
A Technique for Rapidly Deploying a Concentration Gradient with Applications to Microgravity
NASA Technical Reports Server (NTRS)
Leslie, Fred; Ramachandran, Narayanan
2000-01-01
The latter half of the last century has seen rapid advancements in semiconductor crystal growth powered by the demand for high performance electronics in myriad applications. The reduced gravity environment of space has also been used for crystal growth tests, especially in instances where terrestrial growth has largely been unsuccessful. While reduced gravity crystal growth affords some control of the gravity parameter, many crystals grown in space, to date, have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. In order to study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received growing interest in recent times. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Results of the ground-based experiments indicate that the concentration distribution is within 3% of the predicted value. Although any range of concentations can be realized, photometric constraints are discussed which impose some limitations on measurements.
Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar
2016-04-01
Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
Butowicz, Courtney M; Acasio, Julian C; Dearth, Christopher L; Hendershot, Brad D
2018-03-26
Persons with lower limb amputation (LLA) walk with altered trunk-pelvic motions. The underlying trunk muscle activation patterns associated with these motions may provide insight into neuromuscular control strategies post LLA and the increased incidence of low back pain (LBP). Eight males with unilateral LLA and ten able-bodied controls (CTR) walked over ground at 1.0 m/s, 1.3 m/s, 1.6 m/s, and self-selected speeds. Trunk muscle onsets/offsets were determined from electromyographic activity of bilateral thoracic (TES) and lumbar (LES) erector spinae. Trunk-pelvic kinematics were simultaneously recorded. There were no differences in TES onset times between groups; however, LLA demonstrated a second TES onset during mid-to-terminal swing (not seen in CTR), and activation for a larger percentage of the gait cycle. LLA (vs. CTR) demonstrated an earlier onset of LES and activation for a larger percentage of the gait cycle at most speeds. LLA walked with increased frontal plane trunk ROM, and a more in-phase inter-segmental coordination at all speeds. These data collectively suggest that trunk neuromuscular control strategies secondary to LLA are driven by functional needs to generate torque proximally to advance the affected limb during gait, though this strategy may have unintended deleterious consequences such as increasing LBP risk over time. Published by Elsevier Ltd.
Impaired Perception of Biological Motion in Parkinson’s Disease
Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice
2016-01-01
Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (p<.001, Cohen’s d=1.22), regardless of stimulus gait type or speed, with a less substantial deficit in object motion perception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927
Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains
NASA Technical Reports Server (NTRS)
Zaal, P. M. T; Pool, D. M.
2014-01-01
In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Keall, P; Poulsen, P
Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Hibberd, Elizabeth E; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B
2014-01-01
Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Cross-sectional study. Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Baseball players had greater glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total-range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most effective programs for softball athletes.
Hibberd, Elizabeth E.; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B.
2014-01-01
Context: Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. Objective: To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Design: Cross-sectional study. Setting: Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Patients or Other Participants: Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Intervention(s): Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Main Outcome Measure(s): Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Results: Baseball players had greater glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Conclusions: Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the athletes adapt to the demands of the sport differently; thus, stretching/strengthening programs designed for baseball may not be the most effective programs for softball athletes. PMID:25098655
NASA Technical Reports Server (NTRS)
Brizzee, K. R.; Ordy, J. M.; Mehler, W. R.
1980-01-01
Twelve young adult squirrel monkeys of the Bolivian subspecies were subjected to continuous counter-clockwise horizontal rotary motion at 25 rpm, together with a sinusoidal vertical excursion of 6 in. every 2 sec (0.5 Hz). Each animal was exposed to this motion regimen for a period of 60 min once each week for three consecutive weeks. Following the third weekly motion test bilateral ablation of the Area Postrema (AP) was performed in eight of the animals by thermal cautery. Two control animals were sham-operated after the third motion test while two additional controls were given the motion tests as noted above but were not operated. The four controls were considered as a single group for statistical analyses of results of the motion tests. After a recovery period of 30 to 40 days, and at a comparable interval in the non-operated controls, each animal was again tested for motion sensitivity for three consecutive weeks. The brains of all of the animals were then fixed by left ventriculal cardiac perfusion with Bouin's fluid and processed for histological evaluation of the bilateral AP ablation in comparison with the control brains. Five of the AP-ablated animals postoperatively were completely refractory to the motion stimuli, two exhibited a decreased number of emetic responses, and one exhibited the same number of responses before and after the AP lesions. The controls exhibited no significant difference in emetic sensitivity on the second series of three weekly tests than on the first series. The results of this investigation appear to be in agreement with the observations of Wang and Chinn in the dog indicating that the integrity of the AP (CTZ) is essential to the emetic response to motion.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2015-01-01
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in percent ratios relative to no prediction for a duty cycle of 80% at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The experiments also confirm that EKF-GPR+ controls the duty cycle with reasonable accuracy.
An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control
ERIC Educational Resources Information Center
Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.
2012-01-01
Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…
Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T
2017-09-01
Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform's range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology.
Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-wei; Chen, Liang-Chia
2006-10-01
This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
On singular and highly oscillatory properties of the Green function for ship motions
NASA Astrophysics Data System (ADS)
Chen, Xiao-Bo; Xiong Wu, Guo
2001-10-01
The Green function used for analysing ship motions in waves is the velocity potential due to a point source pulsating and advancing at a uniform forward speed. The behaviour of this function is investigated, in particular for the case when the source is located at or close to the free surface. In the far field, the Green function is represented by a single integral along one closed dispersion curve and two open dispersion curves. The single integral along the open dispersion curves is analysed based on the asymptotic expansion of a complex error function. The singular and highly oscillatory behaviour of the Green function is captured, which shows that the Green function oscillates with indefinitely increasing amplitude and indefinitely decreasing wavelength, when a field point approaches the track of the source point at the free surface. This sheds some light on the nature of the difficulties in the numerical methods used for predicting the motion of a ship advancing in waves.
Motion and force control of multiple robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth
1992-01-01
This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Sled Control and Safety System
NASA Technical Reports Server (NTRS)
Forrest, L. J.
1982-01-01
Computerized system for controlling motion of linear-track accelerator applied to other automated equipment, such as numerically-controlled machine tools and robot manipulators on assembly lines. System controls motions of sled with sine-wave signal created digitally by microprocessor. Dynamic parameters of sled motion are monitored so sled may be stopped safely if malfunction occurs. Sled is capable of sinusoidal accelerations up to 0.5 g with 125-kg load.
Riboldi, Marco; Gianoli, Chiara; Chirvase, Cezarina I.; Villa, Gaetano; Paganelli, Chiara; Summers, Paul E.; Tagaste, Barbara; Pella, Andrea; Fossati, Piero; Ciocca, Mario; Baroni, Guido; Valvo, Francesca; Orecchia, Roberto
2016-01-01
Particle therapy (PT) has shown positive therapeutic results in local control of locally advanced pancreatic lesions. PT effectiveness is highly influenced by target localization accuracy both in space, since the pancreas is located in proximity to radiosensitive vital organs, and in time as it is subject to substantial breathing‐related motion. The purpose of this preliminary study was to quantify pancreas range of motion under typical PT treatment conditions. Three common immobilization devices (vacuum cushion, thermoplastic mask, and compressor belt) were evaluated on five male patients in prone and supine positions. Retrospective four‐dimensional magnetic resonance imaging data were reconstructed for each condition and the pancreas was manually segmented on each of six breathing phases. A k‐means algorithm was then applied on the manually segmented map in order to obtain clusters representative of the three pancreas segments: head, body, and tail. Centers of mass (COM) for the pancreas and its segments were computed, as well as their displacements with respect to a reference breathing phase (beginning exhalation). The median three‐dimensional COM displacements were in the range of 3 mm. Latero–lateral and superior–inferior directions had a higher range of motion than the anterior–posterior direction. Motion analysis of the pancreas segments showed slightly lower COM displacements for the head cluster compared to the tail cluster, especially in prone position. Statistically significant differences were found within patients among the investigated setups. Hence a patient‐specific approach, rather than a general strategy, is suggested to define the optimal treatment setup in the frame of a millimeter positioning accuracy. PACS number(s): 87.55.‐x, 87.57.nm, 87.61 PMID:27685119
Orbital and angular motion construction for low thrust interplanetary flight
NASA Astrophysics Data System (ADS)
Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.
2016-11-01
Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.
A contribution to the expansion of the applicability of electrostatic forces in micro transducers
NASA Astrophysics Data System (ADS)
Schenk, Harald; Conrad, Holger; Gaudet, Matthieu; Uhlig, Sebastian; Kaiser, Bert; Langa, Sergiu; Stolz, Michael; Schimmanz, Klaus
2017-02-01
Electrostatic actuation is highly efficient at micro and nanoscale. However, large deflection in common electrostatically driven MEMS requires large electrode separation and thus high driving voltages. To offer a solution to this problem we developed a novel electrostatic actuator class, which is based on a force-to-stress transformation in the periodically patterned upper layer of a silicon cantilever beam. We report on advances in the development of such electrostatic bending actuators. Several variants of a CMOS compatible and RoHS-directive compliant fabrication processes to fabricate vertical deflecting beams with a thickness of 30 μm are presented. A concept to extend the actuation space towards lateral deflecting elements is introduced. The fabricated and characterized vertical deflecting cantilever beam variants make use of a 0.2 μm electrode gap and achieve deflections of up to multiples of this value. Simulation results based on an FE-model applied to calculate the voltage dependent curvature for various actuator cell designs are presented. The calculated values show very good agreement with the experimentally determined voltage controlled actuation curvatures. Particular attention was paid to parasitic effects induced by small, sub micrometer, electrode gaps. This includes parasitic currents between the two electrode layers. No experimental hint was found that such effects significantly influence the curvature for a control voltage up to 45 V. The paper provides an outlook for the applicability of the technology based on specifically designed and fabricated actuators which allow for a large variety of motion patterns including out-of-plane and in-plane motion as well as membrane deformation and linear motion.
Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
Song, Yu; Guo, Shuxiang; Yin, Xuanchun; Zhang, Linshuai; Hirata, Hideyuki; Ishihara, Hidenori; Tamiya, Takashi
2018-06-20
In this paper, a novel robot-assisted catheter operating system (RCOS) has been proposed as a method to reduce physical stress and X-ray exposure time to physicians during endovascular procedures. The unique design of this system allows the physician to apply conventional bedside catheterization skills (advance, retreat and rotate) to an input catheter, which is placed at the master side to control another patient catheter placed at the slave side. For this purpose, a magnetorheological (MR) fluids-based master haptic interface has been developed to measure the axial and radial motions of an input catheter, as well as to provide the haptic feedback to the physician during the operation. In order to achieve a quick response of the haptic force in the master haptic interface, a hall sensor-based closed-loop control strategy is employed. In slave side, a catheter manipulator is presented to deliver the patient catheter, according to position commands received from the master haptic interface. The contact forces between the patient catheter and blood vessel system can be measured by designed force sensor unit of catheter manipulator. Four levels of haptic force are provided to make the operator aware of the resistance encountered by the patient catheter during the insertion procedure. The catheter manipulator was evaluated for precision positioning. The time lag from the sensed motion to replicated motion is tested. To verify the efficacy of the proposed haptic feedback method, the evaluation experiments in vitro are carried out. The results demonstrate that the proposed system has the ability to enable decreasing the contact forces between the catheter and vasculature.
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
A Programmable System for Motion Control
NASA Technical Reports Server (NTRS)
Nowlin, Brent C.
2003-01-01
The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.
Lee, Kyung-Min; Song, Jin-Myoung; Cho, Jin-Hyoung; Hwang, Hyeon-Shik
2016-01-01
The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.
Anderst, William J.; West, Tyler; Donaldson, William F; Lee, Joon Y.; Kang, James D.
2016-01-01
Study Design A longitudinal study using biplane radiography to measure in vivo intervertebral range of motion (ROM) during dynamic flexion/extension and rotation. Objective To longitudinally compare intervertebral maximal ROM and midrange motion in asymptomatic control subjects and single-level arthrodesis patients. Summary of Background Data In vitro studies consistently report that adjacent segment maximal ROM increases superior and inferior to cervical arthrodesis. Previous in vivo results have been conflicting, indicating that maximal ROM may or may not increase superior and/or inferior to the arthrodesis. There are no previous reports of midrange motion in arthrodesis patients and similar-aged controls. Methods Eight single-level (C5/C6) anterior arthrodesis patients (tested 7±1 months and 28±6 months post-surgery) and six asymptomatic control subjects (tested twice, 58±6 months apart) performed dynamic full ROM flexion/extension and axial rotation while biplane radiographs were collected at 30 images/s. A previously validated tracking process determined three-dimensional vertebral position from each pair of radiographs with sub-millimeter accuracy. The intervertebral maximal ROM and midrange motion in flexion/extension, rotation, lateral bending, and anterior-posterior translation were compared between test dates and between groups. Results Adjacent segment maximal ROM did not increase over time during flexion/extension or rotation movements. Adjacent segment maximal rotational ROM was not significantly greater in arthrodesis patients than in corresponding motion segments of similar-aged controls. C4/C5 adjacent segment rotation during the midrange of head motion and maximal anterior-posterior translation were significantly greater in arthrodesis patients than in the corresponding motion segment in controls on the second test date. Conclusions C5/C6 arthrodesis appears to significantly affect midrange, but not end-range, adjacent segment motions. The effects of arthrodesis on adjacent segment motion may be best evaluated by longitudinal studies that compare maximal and midrange adjacent segment motion to corresponding motion segments of similar-aged controls to determine if the adjacent segment motion is truly excessive. PMID:27831986
Anderst, William J; West, Tyler; Donaldson, William F; Lee, Joon Y; Kang, James D
2016-11-15
A longitudinal study using biplane radiography to measure in vivo intervertebral range of motion (ROM) during dynamic flexion/extension, and rotation. To longitudinally compare intervertebral maximal ROM and midrange motion in asymptomatic control subjects and single-level arthrodesis patients. In vitro studies consistently report that adjacent segment maximal ROM increases superior and inferior to cervical arthrodesis. Previous in vivo results have been conflicting, indicating that maximal ROM may or may not increase superior and/or inferior to the arthrodesis. There are no previous reports of midrange motion in arthrodesis patients and similar-aged controls. Eight single-level (C5/C6) anterior arthrodesis patients (tested 7 ± 1 months and 28 ± 6 months postsurgery) and six asymptomatic control subjects (tested twice, 58 ± 6 months apart) performed dynamic full ROM flexion/extension and axial rotation whereas biplane radiographs were collected at 30 images per second. A previously validated tracking process determined three-dimensional vertebral position from each pair of radiographs with submillimeter accuracy. The intervertebral maximal ROM and midrange motion in flexion/extension, rotation, lateral bending, and anterior-posterior translation were compared between test dates and between groups. Adjacent segment maximal ROM did not increase over time during flexion/extension, or rotation movements. Adjacent segment maximal rotational ROM was not significantly greater in arthrodesis patients than in corresponding motion segments of similar-aged controls. C4/C5 adjacent segment rotation during the midrange of head motion and maximal anterior-posterior translation were significantly greater in arthrodesis patients than in the corresponding motion segment in controls on the second test date. C5/C6 arthrodesis appears to significantly affect midrange, but not end-range, adjacent segment motions. The effects of arthrodesis on adjacent segment motion may be best evaluated by longitudinal studies that compare maximal and midrange adjacent segment motion to corresponding motion segments of similar-aged controls to determine if the adjacent segment motion is truly excessive. 3.
Method to Reduce Target Motion Through Needle-Tissue Interactions.
Oldfield, Matthew J; Leibinger, Alexander; Seah, Tian En Timothy; Rodriguez Y Baena, Ferdinando
2015-11-01
During minimally invasive surgical procedures, it is often important to deliver needles to particular tissue volumes. Needles, when interacting with a substrate, cause deformation and target motion. To reduce reliance on compensatory intra-operative imaging, a needle design and novel delivery mechanism is proposed. Three-dimensional finite element simulations of a multi-segment needle inserted into a pre-existing crack are presented. The motion profiles of the needle segments are varied to identify methods that reduce target motion. Experiments are then performed by inserting a needle into a gelatine tissue phantom and measuring the internal target motion using digital image correlation. Simulations indicate that target motion is reduced when needle segments are stroked cyclically and utilise a small amount of retraction instead of being held stationary. Results are confirmed experimentally by statistically significant target motion reductions of more than 8% during cyclic strokes and 29% when also incorporating retraction, with the same net insertion speed. By using a multi-segment needle and taking advantage of frictional interactions on the needle surface, it is demonstrated that target motion ahead of an advancing needle can be substantially reduced.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.
Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.
Wang, Jane; Ho, Cindy S; Giaschi, Deborah E
2007-01-01
Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.
Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn
2015-01-01
Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (p<0.001). The unstable group also demonstrated increased anterior-posterior joint contact point motion variability for the medial tibiofemoral compartment compared to the control (p=0.03) and stable groups (p=0.03). Interpretation The finding of decreased knee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Vision-based control for flight relative to dynamic environments
NASA Astrophysics Data System (ADS)
Causey, Ryan Scott
The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.
Numerical simulation of human orientation perception during lunar landing
NASA Astrophysics Data System (ADS)
Clark, Torin K.; Young, Laurence R.; Stimpson, Alexander J.; Duda, Kevin R.; Oman, Charles M.
2011-09-01
In lunar landing it is necessary to select a suitable landing point and then control a stable descent to the surface. In manned landings, astronauts will play a critical role in monitoring systems and adjusting the descent trajectory through either supervisory control and landing point designations, or by direct manual control. For the astronauts to ensure vehicle performance and safety, they will have to accurately perceive vehicle orientation. A numerical model for human spatial orientation perception was simulated using input motions from lunar landing trajectories to predict the potential for misperceptions. Three representative trajectories were studied: an automated trajectory, a landing point designation trajectory, and a challenging manual control trajectory. These trajectories were studied under three cases with different cues activated in the model to study the importance of vestibular cues, visual cues, and the effect of the descent engine thruster creating dust blowback. The model predicts that spatial misperceptions are likely to occur as a result of the lunar landing motions, particularly with limited or incomplete visual cues. The powered descent acceleration profile creates a somatogravic illusion causing the astronauts to falsely perceive themselves and the vehicle as upright, even when the vehicle has a large pitch or roll angle. When visual pathways were activated within the model these illusions were mostly suppressed. Dust blowback, obscuring the visual scene out the window, was also found to create disorientation. These orientation illusions are likely to interfere with the astronauts' ability to effectively control the vehicle, potentially degrading performance and safety. Therefore suitable countermeasures, including disorientation training and advanced displays, are recommended.
Collocott, Shirley Jf; Kelly, Edel; Ellis, Richard F
2018-03-01
Early mobilisation protocols after repair of extensor tendons in zone V and VI provide better outcomes than immobilisation protocols. This systematic review investigated different early active mobilisation protocols used after extensor tendon repair in zone V and VI. The purpose was to determine whether any one early active mobilisation protocol provides superior results. An extensive literature search was conducted to identify articles investigating the outcomes of early active mobilisation protocols after extensor tendon repair in zone V and VI. Databases searched were AMED, Embase, Medline, Cochrane and CINAHL. Studies were included if they involved participants with extensor tendon repairs in zone V and VI in digits 2-5 and described a post-operative rehabilitation protocol which allowed early active metacarpophalangeal joint extension. Study designs included were randomised controlled trials, observational studies, cohort studies and case series. The Structured Effectiveness Quality Evaluation Scale was used to evaluate the methodological quality of the included studies. Twelve articles met the inclusion criteria. Two types of early active mobilisation protocols were identified: controlled active motion protocols and relative motion extension splinting protocols. Articles describing relative motion extension splinting protocols were more recent but of lower methodological quality than those describing controlled active motion protocols. Participants treated with controlled active motion and relative motion extension splinting protocols had similar range of motion outcomes, but those in relative motion extension splinting groups returned to work earlier. The evidence reviewed suggested that relative motion extension splinting protocols may allow an earlier return to function than controlled active motion protocols without a greater risk of complication.
Detecting chaos in particle accelerators through the frequency map analysis method.
Papaphilippou, Yannis
2014-06-01
The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.
Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups
NASA Astrophysics Data System (ADS)
Li, Rui; Wang, Shiwei; Peng, Qing
2018-05-01
Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.
Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.
Li, Rui; Wang, Shiwei; Peng, Qing
2018-05-08
Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.
Dieterich, Angela V; Deshon, Louise; Strauss, Geoffrey R; McKay, Jan; Pickard, Christine M
2016-04-01
Controlled laboratory study. The hip abductor muscles are important hip joint stabilizers. Hip joint pain may alter muscle recruitment. Motion-mode (M-mode) ultrasound enables noninvasive measurements of the onset of deep and superficial muscle motion, which is associated with activation onset. To compare (1) the onset of superficial and deep gluteus medius and gluteus minimus muscle motion relative to the instant of peak ground reaction force and (2) the level of swing-phase muscle motion during step-down between subjects with chronic hip pain and controls using M-mode ultrasound. Thirty-five subjects with anterior, nontraumatic hip pain for more than 6 months (mean ± SD age, 54 ± 9 years) and 35 controls (age, 57 ± 7 years) were scanned on the lateral hip of the leading leg during frontal step-down onto a force platform using M-mode ultrasound. Computerized motion detection with the Teager-Kaiser energy operator was applied on the gluteus minimus and the deep and superficial gluteus medius to determine the time lag between muscle motion onset and instant of peak ground reaction force and the level of gluteus minimus motion during the swing phase. Time lags and motion levels were averaged per subject, and t tests were used to determine between-group differences. In participants with hip pain, gluteus minimus motion onset was 103 milliseconds earlier (P = .002) and superficial gluteus medius motion was 70 milliseconds earlier (P = .047) than those in healthy control participants. The level of gluteus minimus swing-phase motion was higher with pain (P = .006). Increased gluteus minimus motion during the swing phase and earlier gluteus minimus and superficial gluteus medius motion in individuals with hip pain suggest an overall increase of muscle activity, possibly a protective behavior.
Differences in kinematic control of ankle joint motions in people with chronic ankle instability.
Kipp, Kristof; Palmieri-Smith, Riann M
2013-06-01
People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cetinkunt, Sabri; Book, Wayne J.
1990-01-01
The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.
Development of a force-reflecting robotic platform for cardiac catheter navigation.
Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung
2010-11-01
Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.
Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp
2012-07-30
Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.
Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu
2018-04-06
Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.
Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas
2017-12-01
Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.
Neural network-based motion control of an underactuated wheeled inverted pendulum model.
Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong
2014-11-01
In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.
Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars
Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho
2015-01-01
In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629
On the Motions of an Oscillating System Under the Influence of Flip-Flop Controls
NASA Technical Reports Server (NTRS)
Fluegge-Lotz, I.; Klotter, K.
1949-01-01
So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
Gyro-Landau fluid models for toroidal geometry
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.
1992-10-01
Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.
Development of Skylab experiment T-013 crew/vehicle disturbances
NASA Technical Reports Server (NTRS)
Conway, B. A.; Woolley, C. T.; Kurzhals, P. R.; Reynolds, R. B.
1972-01-01
A Skylab experiment to determine the characteristics and effects of crew-motion disturbances was developed. The experiment will correlate data from histories of specified astronaut body motions, the disturbance forces and torques produced by these motions, and the resultant spacecraft control system response to the disturbances. Primary application of crew-motion disturbance data will be to the sizing and design of future manned spacecraft control and stabilization systems. The development of the crew/vehicle disturbances experiment is described, and a mathematical model of human body motion which may be used for analysis of a variety of man-motion activities is derived.
The role of numerical simulation for the development of an advanced HIFU system
NASA Astrophysics Data System (ADS)
Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro
2014-10-01
High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.
Local position control: A new concept for control of manipulators
NASA Technical Reports Server (NTRS)
Kelly, Frederick A.
1988-01-01
Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.
NASA Technical Reports Server (NTRS)
Riccio, Gary E.; McDonald, P. Vernon
1998-01-01
The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.
Gait kinematics and kinetics are affected more by peripheral arterial disease than age
Myers, Sara A.; Applequist, Bryon C.; Huisinga, Jessie M.; Pipinos, Iraklis I.; Johanning, Jason M.
2016-01-01
Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals. PMID:27149635
Status of NASA/Army rotorcraft research and development piloted flight simulation
NASA Technical Reports Server (NTRS)
Condon, Gregory W.; Gossett, Terrence D.
1988-01-01
The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.
Propulsion Trade Studies for Spacecraft Swarm Mission Design
NASA Technical Reports Server (NTRS)
Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael
2018-01-01
Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.
The Influence of Motion Cues on Driver-Vehicle Performance in a Simulator
NASA Technical Reports Server (NTRS)
Repa, B. S.; Leucht, P. M.; Wierwille, W. W.
1981-01-01
Four different motion base configurations were studied on driving simulator. Differently responding vehicles were simulated on each motion configurations and the effects of the vehicle characteristics on driver vehicle system performance, driver control activity, and driver opinion ratings of vehicle performance during driving are compared for different motion configurations. Data show that: (1)) the effects of changes in vehicle characteristics on the different objective and subjective measures of driver vehicle performance are not disguised by the lack of physical motion; (2) fixed base simulator can be used to draw inferences despite the lack of motion; (3) the presence of motion tends to reduce path keeping errors and driver control activity; (4) roll and yaw motions are recommended because of their marked influence on driver vehicle performance (5) the importance of motion increases as the driving maneuvers become more extreme.
High speed precision motion strategies for lightweight structures
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1987-01-01
Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
The 3D Human Motion Control Through Refined Video Gesture Annotation
NASA Astrophysics Data System (ADS)
Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.
In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Advanced Techniques for Scene Analysis
2010-06-01
robustness prefers a bigger intergration window to handle larger motions. The advantage of pyramidal implementation is that, while each motion vector dL...labeled SAR images. Now the previous algorithm leads to a more dedicated classifier for the particular target; however, our algorithm trades generality for...accuracy is traded for generality. 7.3.2 I-RELIEF Feature weighting transforms the original feature vector x into a new feature vector x′ by assigning each
NASA Astrophysics Data System (ADS)
Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi
2005-09-01
Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.
Final Report: CNC Micromachines LDRD No.10793
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.
2003-04-01
The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versionsmore » of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.« less
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
Analysis and decoupling control of a permanent magnet spherical actuator.
Zhang, Liang; Chen, Weihai; Liu, Jingmeng; Wu, Xingming
2013-12-01
This paper presents the analysis and decoupling control of a spherical actuator, which is capable of performing three degree-of-freedom motion in one joint. The proposed actuator consists of a rotor with multiple PM (Permanent Magnet) poles in a circle and a stator with circumferential coils in three layers. Based on this actuator design, a decoupling control approach is developed. Unlike existing control methods that each coil is responsible for both the spinning and tilting motion, the proposed control strategy specifies the function of each coil. Specifically, the spinning motion is governed by the middle layer coils with a step control approach; while the tilting motion is regulated by upper and lower coils with a computed torque control method. Experiments have been conducted on the prototype to verify the validity of the design procedure, and the experimental results demonstrate the effectiveness of the analysis and control strategy.
Motion and force control for multiple cooperative manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
NASA Technical Reports Server (NTRS)
Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng
1993-01-01
This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.
ERIC Educational Resources Information Center
Casinghino, Carl
2015-01-01
Teaching advanced video production is an art that requires great sensitivity to the process of providing feedback that helps students to learn and grow. Some students experience difficulty in developing narrative sequences or cause-and-effect strings of motion picture sequences. But when students learn to work collaboratively through the revision…
ERIC Educational Resources Information Center
Dammeyer, Jesper; Koppe, Simo
2013-01-01
Research in social interaction and nonverbal communication among individuals with severe developmental disabilities also includes the study of body movements. Advances in analytical technology give new possibilities for measuring body movements more accurately and reliably. One such advance is the Qualisys Motion Capture System (QMCS), which…
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
Altenbuchner, Amelie; Haug, Sonja; Kretschmer, Rainer; Weber, Karsten
2018-01-01
This preparatory study accelerates an implementation of individualized monitoring and feedback of physical motion using conventional motion trackers in the rehabilitation process of geriatric trauma patients. Regaining mobility is accompanied with improved quality of life in persons of very advanced age recovering from fragility fractures. Quantitative survey of regaining physical mobility provides recommendations for action on how to use motion trackers effectively in a clinical geriatric setting. Method mix of quantitative and qualitative interdisciplinary and mutual complementary research approaches (sociology, health research, philosophy/ethics, medical informatics, nursing science, gerontology and physical therapy). While validating motion tracker use in geriatric traumatology preliminary data are used to develop a target group oriented motion feedback. In addition measurement accuracy of a questionnaire about quality of life of multimorbid geriatric patients (FLQM) is tested. Implementing a new technology in a complex clinical setting needs to be based on a strong theoretical background but will not succeed without careful field testing.
Haller, Sven; Monsch, Andreas U; Richiardi, Jonas; Barkhof, Frederik; Kressig, Reto W; Radue, Ernst W
2014-11-01
Motion artifacts are a well-known and frequent limitation during neuroimaging workup of cognitive decline. While head motion typically deteriorates image quality, we test the hypothesis that head motion differs systematically between healthy controls (HC), amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD) and consequently might contain diagnostic information. This prospective study was approved by the local ethics committee and includes 28 HC (age 71.0 ± 6.9 years, 18 females), 15 aMCI (age 67.7 ± 10.9 years, 9 females) and 20 AD (age 73.4 ± 6.8 years, 10 females). Functional magnetic resonance imaging (fMRI) at 3T included a 9 min echo-planar imaging sequence with 180 repetitions. Cumulative average head rotation and translation was estimated based on standard fMRI preprocessing and compared between groups using receiver operating characteristic statistics. Global cumulative head rotation discriminated aMCI from controls [p < 0.01, area under curve (AUC) 0.74] and AD from controls (p < 0.01, AUC 0.73). The ratio of rotation z versus y discriminated AD from controls (p < 0.05, AUC 0.71) and AD from aMCI (p < 0.05, AUC of 0.75). Head motion systematically differs between aMCI/AD and controls. Since motion is not random but convoluted with diagnosis, the higher amount of motion in aMCI and AD as compared to controls might be a potential confounding factor for fMRI group comparisons. Additionally, head motion not only deteriorates image quality, yet also contains useful discriminatory information and is available for free as a "side product" of fMRI data preprocessing.
Plumes do not Exist: Plate Circulation is Confined to Upper Mantle
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2002-12-01
Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.
Quantitative assessment of human motion using video motion analysis
NASA Technical Reports Server (NTRS)
Probe, John D.
1990-01-01
In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.
A retinal code for motion along the gravitational and body axes
Sabbah, Shai; Gemmer, John A.; Bhatia-Lin, Ananya; Manoff, Gabrielle; Castro, Gabriel; Siegel, Jesse K.; Jeffery, Nathan; Berson, David M.
2017-01-01
Summary Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We show that each subtype of direction-selective ganglion cell (DSGC) adjusts its direction preference topographically to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises, or falls. ON-DSGCs and ON-OFF-DSGCs share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Though retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. PMID:28607486
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
NASA Astrophysics Data System (ADS)
Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.-A.
2010-10-01
The retrieval of sea ice motion with the Maximum Cross-Correlation (MCC) method from low-resolution (10-15 km) spaceborne imaging sensors is challenged by a dominating quantization noise as the time span of displacement vectors is shortened. To allow investigating shorter displacements from these instruments, we introduce an alternative sea ice motion tracking algorithm that builds on the MCC method but relies on a continuous optimization step for computing the motion vector. The prime effect of this method is to effectively dampen the quantization noise, an artifact of the MCC. It allows for retrieving spatially smooth 48 h sea ice motion vector fields in the Arctic. Strategies to detect and correct erroneous vectors as well as to optimally merge several polarization channels of a given instrument are also described. A test processing chain is implemented and run with several active and passive microwave imagers (Advanced Microwave Scanning Radiometer-EOS (AMSR-E), Special Sensor Microwave Imager, and Advanced Scatterometer) during three Arctic autumn, winter, and spring seasons. Ice motion vectors are collocated to and compared with GPS positions of in situ drifters. Error statistics are shown to be ranging from 2.5 to 4.5 km (standard deviation for components of the vectors) depending on the sensor, without significant bias. We discuss the relative contribution of measurement and representativeness errors by analyzing monthly validation statistics. The 37 GHz channels of the AMSR-E instrument allow for the best validation statistics. The operational low-resolution sea ice drift product of the EUMETSAT OSI SAF (European Organisation for the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility) is based on the algorithms presented in this paper.
Resolved motion rate and resolved acceleration servo-control of wheeled mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, P.F.; Neuman, C.P.; Carnegie-Mellon Univ., Pittsburgh, PA
1989-01-01
Accurate motion control of wheeled mobile robots (WMRs) is required for their application to autonomous, semi-autonomous and teleoperated tasks. The similarities between WMRs and stationary manipulators suggest that current, successful, model-based manipulator control algorithms may be applied to WMRs. Special characteristics of WMRs including higher-pairs, closed-chains, friction and unactuated and unsensed joints require innovative modeling methodologies. The WMR modeling challenge has been recently overcome, thus enabling the application of manipulator control algorithms to WMRs. This realization lays the foundation for significant technology transfer from manipulator control to WMR control. We apply two Cartesian-space manipulator control algorithms: resolved motion rate (kinematics-based)more » and resolved acceleration (dynamics-based) control to WMR servo-control. We evaluate simulation studies of two exemplary WMRs: Uranus (a three degree-of-freedom WMR constructed at Carnegie Mellon University), and Bicsun-Bicas (a two degree-of-freedom WMR being constructed at Sandia National Laboratories) under the control of these algorithms. Although resolved motion rate servo-control is adequate for the control of Uranus, resolved acceleration servo-control is required for the control of the mechanically simpler Bicsun-Bicas because it exhibits more dynamic coupling and nonlinearities. Successful accurate motion control of these WMRs in simulation is driving current experimental research studies. 18 refs., 7 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Tongue Motion Patterns in Post-Glossectomy and Typical Speakers: A Principal Components Analysis
Stone, Maureen; Langguth, Julie M.; Woo, Jonghye; Chen, Hegang; Prince, Jerry L.
2015-01-01
Purpose In this study, the authors examined changes in tongue motion caused by glossectomy surgery. A speech task that involved subtle changes in tongue-tip positioning (the motion from /i/ to /s/) was measured. The hypothesis was that patients would have limited motion on the tumor (resected) side and would compensate with greater motion on the nontumor side in order to elevate the tongue tip and blade for /s/. Method Velocity fields were extracted from tagged magnetic resonance images in the left, middle, and right tongue of 3 patients and 10 controls. Principal components (PCs) analysis quantified motion differences and distinguished between the subject groups. Results PCs 1 and 2 represented variance in (a) size and independence of the tongue tip, and (b) direction of motion of the tip, body, or both. Patients and controls were correctly separated by a small number of PCs. Conclusions Motion of the tumor slice was different between patients and controls, but the nontumor side of the patients’ tongues did not show excessive or adaptive motion. Both groups contained apical and laminal /s/ users, and 1 patient created apical /s/ in a highly unusual manner. PMID:24023377
Correction And Use Of Jitter In Television Images
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.
1989-01-01
Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraass, B.
2015-06-15
Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less
Rehabilitation of the Ankle After Acute Sprain or Chronic Instability.
Mattacola, Carl G; Dwyer, Maureen K
2002-12-01
OBJECTIVE: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. BACKGROUND: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. RECOMMENDATIONS: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed.
Rehabilitation of the Ankle After Acute Sprain or Chronic Instability
Mattacola, Carl G.; Dwyer, Maureen K.
2002-01-01
Objective: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. Background: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. Recommendations: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed. PMID:12937563
Advanced nursing practice and Newton's three laws of motion.
Sturgeon, David
This article considers the reasons for the development of advanced practice roles among nurses and other healthcare professions. It explores the implications of financial constraints, consumer preferences and the development of new healthcare services on the reorganization of professional boundaries. It makes use of Sir Isaac Newton's three laws of motion to demonstrate how professional development in nursing has taken place in response to a number of external influences and demands. It also considers the significance of skill mix for the nursing profession, in particular the development and likely expansion of the physician assistant role. The application of different professionals and grades within a healthcare team or organization is central to the Government's Agenda for Change proposals and nurses have successfully adopted a number of roles traditionally performed by doctors. Nurses have demonstrated that they are capable of providing high quality care and contributing directly to positive patient outcome. Advanced nursing roles should not only reflect the changing nature of healthcare work, they should also be actively engaged in reconstructing healthcare boundaries.
NASA Astrophysics Data System (ADS)
El-Dabaa, Rana; Abdelmohsen, Sherif
2018-05-01
The challenge in designing kinetic architecture lies in the lack of applying computational design and human computer interaction to successfully design intelligent and interactive interfaces. The use of ‘programmable materials’ as specifically fabricated composite materials that afford motion upon stimulation is promising for low-cost low-tech systems for kinetic facades in buildings. Despite efforts to develop working prototypes, there has been no clear methodological framework for understanding and controlling the behavior of programmable materials or for using them for such purposes. This paper introduces a methodology for evaluating the motion acquired from programmed material – resulting from the hygroscopic behavior of wood – through ‘motion grammar’. Motion grammar typically allows for the explanation of desired motion control in a computationally tractable method. The paper analyzed and evaluated motion parameters related to the hygroscopic properties and behavior of wood, and introduce a framework for tracking and controlling wood as a programmable material for kinetic architecture.
Selected advanced aerodynamic and active control concepts development
NASA Technical Reports Server (NTRS)
1981-01-01
A task for the Energy Efficient Transport program conducted: (1) The design and wind tunnel development of high-aspect-ratio supercritical wings, investigating the cruise speed regime and also high-lift. (2) The preliminary design and evaluation of an aircraft combining a high-aspect-ratio supercritical wing with a winglet. (3) Active Controls: The determination of criteria, configuration, and flying qualities associated with augmented longitudinal stability of a level likely to be acceptable for the next generation transport; and the design of a practical augmentation system. The baseline against which the work was performed and evaluated was the Douglas DC-X-200 twin engine derivative of the DC-10 transport. The supercritical wing development showed that the cruise and buffet requirements could be achieved and that the wing could be designed to realize a sizable advantage over today's technology. Important advances in high lift performance were shown. The design study of an aircraft with supercritical wing and winglet suggested advantages in weight and fuel economy could be realized. The study of augmented stability, conducted with the aid of a motion base simulator, concluded that a negative static margin was acceptable for the baseline unaugmented aircraft.
The Perfect Mate for Safe Fueling
NASA Technical Reports Server (NTRS)
2004-01-01
Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.
An overview of controls research on the NASA Langley Research Center grid
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.
1987-01-01
The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Latif, Norfaneysa Abd; Kassim, Anuar Mohamed; Abidin, Amar Faiz Zainal; Hussien, Sharifah Yuslinda Syed; Aras, Mohd Shahrieel Mohd
2015-05-01
Advanced manufacturing technology made Gantry Crane System (GCS) is one of the suitable heavy machinery transporters and frequently employed in handling with huge materials. The interconnection of trolley movement and payload oscillation has a technical impact which needs to be considered. Once the trolley moves to the desired position with high speed, this will induce undesirable's payload oscillation. This frequent unavoidable load swing causes an efficiency drop, load damages and even accidents. In this paper, a new control strategy of Firefly Algorithm (FA) will be developed to obtain five optimal controller parameters (PID and PD) via Priority-based Fitness Scheme (PFS). Combinations of these five parameters are utilized for controlling trolley movement and minimizing the angle of payload oscillation. This PFS is prioritized based on steady-state error (SSE), overshoot (OS) and settling time (Ts) according to the needs and circumstances. Lagrange equation will be chosen for modeling and simulation will be conducted by using related software. Simulation results show that the proposed control strategy is efficient to control the trolley movement to the desired position and minimize the angle of payload oscillation.
Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak
2016-03-07
Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.
Steering microtubule shuttle transport with dynamically controlled magnetic fields
Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; ...
2016-03-23
Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Ultimately, such an approach could be used to evaluate the MT-kinesin transport system andmore » could serve as the basis for improved lab-on-a-chip technologies based on MT transport.« less
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu
2017-01-01
We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.
Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu
2017-01-01
We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514
NASA Astrophysics Data System (ADS)
Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua
2015-06-01
Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.
14 CFR 29.395 - Control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...
14 CFR 29.395 - Control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...
Altered motor control patterns in whiplash and chronic neck pain.
Woodhouse, Astrid; Vasseljen, Ottar
2008-06-20
Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9 degrees (95% CI; 12.2-15.6) for the WAD group, 17.9 degrees (95% CI; 16.1-19.6) for the chronic neck pain group and 25.9 degrees (95% CI; 23.7-28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor to current pain, but more likely due to long-lasting pain. No group differences were found for kinaesthetic sense.
Altered motor control patterns in whiplash and chronic neck pain
Woodhouse, Astrid; Vasseljen, Ottar
2008-01-01
Background Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6) for the WAD group, 17.9° (95% CI; 16.1–19.6) for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor to current pain, but more likely due to long-lasting pain. No group differences were found for kinaesthetic sense. PMID:18570647
NASA Astrophysics Data System (ADS)
Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro
The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.
Electron beam deflection control system of a welding and surface modification installation
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.
2018-03-01
In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.
Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform
NASA Astrophysics Data System (ADS)
Wang, H. H.; Yuan, Z. H.; Wu, J.
2006-10-01
At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next procedure, we use the transfer matrix of earth reference frame to geographic reference frame to transform the data measured by the magnetic orientation sensors and the gyroscope to the space orientations, then the PC104 controller use the space orientations value as feedback to complete revises.
Astrometry - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You is the branch of astronomy concerned with the determination of positions, proper motions, and
Advancing the dual reciprocating drill design for efficient planetary subsurface exploration
NASA Astrophysics Data System (ADS)
Pitcher, Craig
Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be further optimised.
Design and development of a motion compensator for the RSRA main rotor control
NASA Technical Reports Server (NTRS)
Jeffrey, P.; Huber, R.
1979-01-01
The RSRA, an experimental helicopter, is equipped with an active isolation system that allows the transmission to move relative to the fuselage. The purpose of the motion compensator is to prevent these motions from introducing unwanted signals to the main rotor control. A motion compensator concept was developed that has six-degree-of-freedom capability. The mechanism was implemented on RSRA and its performance verified by ground and flight tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.
2017-06-21
Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Neural correlates of coherent and biological motion perception in autism.
Koldewyn, Kami; Whitney, David; Rivera, Susan M
2011-09-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.
Neural correlates of coherent and biological motion perception in autism
Koldewyn, Kami; Whitney, David; Rivera, Susan M.
2011-01-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323
Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.; Scrivner, C.W.; Worden, C.B.
1999-01-01
Rapid (3-5 minutes) generation of maps of instrumental ground-motion and shaking intensity is accomplished through advances in real-time seismographic data acquisition combined with newly developed relationships between recorded ground-motion parameters and expected shaking intensity values. Estimation of shaking over the entire regional extent of southern California is obtained by the spatial interpolation of the measured ground motions with geologically based frequency and amplitude-dependent site corrections. Production of the maps is automatic, triggered by any significant earthquake in southern California. Maps are now made available within several minutes of the earthquake for public and scientific consumption via the World Wide Web; they will be made available with dedicated communications for emergency response agencies and critical users.
Betatron motion with coupling of horizontal and vertical degrees of freedom
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. A. Bogacz; V. A. Lebedev
2002-11-21
The Courant-Snyder parameterization of one-dimensional linear betatron motion is generalized to two-dimensional coupled linear motion. To represent the 4 x 4 symplectic transfer matrix the following ten parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which have a meaning similar to the Courant-Snyder parameterization. Such a parameterization works equally well for weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid and the second order moments are related to the eigen-vectors.more » Corresponding equations can be useful in interpreting tracking results and experimental data.« less
A Unified Approach to Motion Control of Motion Robots
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper presents a simple on-line approach for motion control of mobile robots made up of a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots, such as rover-mounted manipulators and to holonomic mobile robots such as tracked robots or compound manipulators. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation.
Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.
Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki
2015-01-01
As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.
Analysis in Motion Initiative – Human Machine Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie
As computers and machines become more pervasive in our everyday lives, we are looking for ways for humans and machines to work more intelligently together. How can we help machines understand their users so the team can do smarter things together? The Analysis in Motion Initiative is advancing the science of human machine intelligence — creating human-machine teams that work better together to make correct, useful, and timely interpretations of data.
Visually guided control of movement in the context of multimodal stimulation
NASA Technical Reports Server (NTRS)
Riccio, Gary E.
1991-01-01
Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
2016-09-01
Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less
Microswimmers - From Single Particle Motion to Collective Behavior
NASA Astrophysics Data System (ADS)
Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.
2016-11-01
Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
Vestibulo-ocular reflex and motion sickness in figure skaters.
Tanguy, Sébastien; Quarck, Gaëlle; Etard, Olivier; Gauthier, Antoine; Denise, Pierre
2008-12-01
In order to determine the effect of figure skating on the functional plasticity of the vestibular system, we quantified vestibulo-ocular reflex (VOR) and motion sickness (MS) intensity in 11 female figure skaters and 11 matched control subjects. Vestibular stimulation consisted of three cycles of sinusoidal rotation (0.025 Hz, +/-60 degrees /s) and two velocity steps of 60 degrees /s (acceleration 60 degrees /s(2)). Nauseogenic stimulation consisted of a constant velocity (60 degrees /s) off vertical axis rotation (OVAR) using a 15 degrees tilt angle. Subjective sickness symptoms were rated immediately after OVAR with the Pensacola diagnostic index. During sinusoidal stimulations, the skaters' VOR, as compared with that of the controls, demonstrates a gain that is 27% lower (0.44 +/- 0.12 vs. 0.58 +/- 0.10; P < 0.01) and a phase advance (10 +/- 12 degrees vs. -0.3 +/- 6.4 degrees ; P < 0.05). During velocity steps, the VOR gain is 32% lower among the skaters (0.52 +/- 0.14 vs. 0.71 +/- 0.12; P < 0.01), but there is no difference in time constant (10.8 +/- 1.8 s vs. 10.5 +/- 2.7 s; P = 0.78). Nauseogenic stimulation evokes significantly less MS in figure skaters than in control subjects (2.8 +/- 2.8 vs. 16.2 +/- 13.7; P < 0.01). Quantitative alterations in VOR parameters observed in figure skaters probably result from vestibular habituation induced by repeated unusual stimulations when practicing figure skating.
Advanced interactive display formats for terminal area traffic control
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.
1995-01-01
The basic design considerations for perspective Air Traffic Control displays are described. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. The MVPS system is based on indirect manipulation of the viewing parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of screen. This arrangement has been chosen, in order to preserve the correspondence between the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer generated scene. Current, ongoing efforts deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the Air Traffic Control scene can be viewed, for a given traffic situation.
Chui, Toco Y. P.; Dubow, Michael; Pinhas, Alexander; Shah, Nishit; Gan, Alexander; Weitz, Rishard; Sulai, Yusufu N.; Dubra, Alfredo; Rosen, Richard B.
2014-01-01
Recent advances to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled finer in vivo assessment of the human retinal microvasculature. AOSLO confocal reflectance imaging has been coupled with oral fluorescein angiography (FA), enabling simultaneous acquisition of structural and perfusion images. AOSLO offset pinhole (OP) imaging combined with motion contrast post-processing techniques, are able to create a similar set of structural and perfusion images without the use of exogenous contrast agent. In this study, we evaluate the similarities and differences of the structural and perfusion images obtained by either method, in healthy control subjects and in patients with retinal vasculopathy including hypertensive retinopathy, diabetic retinopathy, and retinal vein occlusion. Our results show that AOSLO OP motion contrast provides perfusion maps comparable to those obtained with AOSLO FA, while AOSLO OP reflectance images provide additional information such as vessel wall fine structure not as readily visible in AOSLO confocal reflectance images. AOSLO OP offers a non-invasive alternative to AOSLO FA without the need for any exogenous contrast agent. PMID:24761299
Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds.
Wright, W Geoffrey
2014-01-01
Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed.
Interaction of arch type and footwear on running mechanics.
Butler, Robert J; Davis, Irene S; Hamill, Joseph
2006-12-01
Running shoes are designed to accommodate various arch types to reduce the risk of lower extremity injuries sustained during running. Yet little is known about the biomechanical changes of running in the recommended footwear that may allow for a reduction in injuries. To evaluate the effects of motion control and cushion trainer shoes on running mechanics in low- and high-arched runners. Controlled laboratory study. Twenty high-arched and 20 low-arched recreational runners (>10 miles per week) were recruited for the study. Three-dimensional kinematic and kinetics were collected as subjects ran at 3.5 ms(-1) +/- 5% along a 25-m runway. The motion control shoe evaluated was the New Balance 1122, and the cushioning shoe evaluated was the New Balance 1022. Repeated-measures analyses of variance were used to determine if low- and high-arched runners responded differently to motion control and cushion trainer shoes. A significant interaction was observed in the instantaneous loading rate such that the low-arched runners had a lower instantaneous loading rate in the motion control condition, and the high-arched runners had a lower instantaneous loading rate in the cushion trainer condition. Significant main effects for shoe were observed for peak positive tibial acceleration, peak-to-peak tibial acceleration, mean loading rate, peak eversion, and eversion excursion. These results suggest that motion control shoes control rearfoot motion better than do cushion trainer shoes. In addition, cushion trainer shoes attenuate shock better than motion control shoes do. However, with the exception of instantaneous loading rate, these benefits do not differ between arch type. Running footwear recommendations should be based on an individual's running mechanics. If a mechanical analysis is not available, footwear recommendations can be based empirically on the individual's arch type.
1996-05-01
Systems 17 Motion Bases Upgraded Aero Misc > Contact Info • AMC, Lt Col Letica , Phone (618) 256-5696 L8 Upgrade Flow Plan Advance Planning Briefing...Projected Schedule: FY 05 > Requirement Document: AMMP >• Projected Program Size: ? < $40M > Funding Status/Stability: > POCs: • AMC, Lt Col Letica