Science.gov

Sample records for advanced mri techniques

  1. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  2. Brain development in preterm infants assessed using advanced MRI techniques.

    PubMed

    Tusor, Nora; Arichi, Tomoki; Counsell, Serena J; Edwards, A David

    2014-03-01

    Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.

  3. Advanced MRI Techniques in the Evaluation of Complex Cystic Breast Lesions

    PubMed Central

    Popli, Manju Bala; Gupta, Pranav; Arse, Devraj; Kumar, Pawan; Kaur, Prabhjot

    2016-01-01

    OBJECTIVE The purpose of this research work was to evaluate complex cystic breast lesions by advanced MRI techniques and correlating imaging with histologic findings. METHODS AND MATERIALS In a cross-sectional design from September 2013 to August 2015, 50 patients having sonographically detected complex cystic lesions of the breast were included in the study. Morphological characteristics were assessed. Dynamic contrast-enhanced MRI along with diffusion-weighted imaging and MR spectroscopy were used to further classify lesions into benign and malignant categories. All the findings were correlated with histopathology. RESULTS Of the 50 complex cystic lesions, 32 proved to be benign and 18 were malignant on histopathology. MRI features of heterogeneous enhancement on CE-MRI (13/18), Type III kinetic curve (13/18), reduced apparent diffusion coefficient (18/18), and tall choline peak (17/18) were strong predictors of malignancy. Thirteen of the 18 lesions showed a combination of Type III curve, reduced apparent diffusion coefficient value, and tall choline peak. CONCLUSIONS Advanced MRI techniques like dynamic imaging, diffusion-weighted sequences, and MR spectroscopy provide a high level of diagnostic confidence in the characterization of complex cystic breast lesion, thus allowing early diagnosis and significantly reducing patient morbidity and mortality. From our study, lesions showing heterogeneous contrast enhancement, Type III kinetic curve, diffusion restriction, and tall choline peak were significantly associated with malignant complex cystic lesions of the breast. PMID:27330299

  4. Beyond whole-body imaging: advanced imaging techniques of PET/MRI.

    PubMed

    Barnwell, James; Raptis, Constantine A; McConathy, Jonathan E; Laforest, Richard; Siegel, Barry A; Woodard, Pamela K; Fowler, Kathryn

    2015-02-01

    PET/MRI is a hybrid imaging modality that is gaining clinical interest with the first Food and Drug Administration-approved simultaneous imaging system recently added to the clinical armamentarium. Several advanced PET/MRI applications, such as high-resolution anatomic imaging, diffusion-weighted imaging, motion correction, and cardiac imaging, show great potential for clinical use. The purpose of this article is to highlight several advanced PET/MRI applications through case examples and review of the current literature.

  5. Advances in Musculoskeletal MRI – Technical Considerations

    PubMed Central

    Shapiro, Lauren; Harish, Monica; Hargreaves, Brian; Staroswiecki, Ernesto; Gold, Garry

    2012-01-01

    The technology of musculoskeletal MRI imaging is advancing at a dramatic rate. MR imaging is now done at medium and higher field strengths with more specialized surface coils and with more variable pulse sequences and post processing techniques than ever before. These numerable technical advances are advantageous as they lead to an increased signal to noise ratio and increased variety of soft tissue contrast options. However, at the same time they potentially produce more imaging artifacts when compared with past techniques. Substantial technical advances have considerable clinical challenges in musculoskeletal radiology such as postoperative patient imaging, cartilage mapping, and molecular imaging. In this review, we consider technical advances in hardware and software of musculoskeletal MR imaging along with their clinical applications. PMID:22987756

  6. The PRESTO technique for fMRI.

    PubMed

    van Gelderen, P; Duyn, J H; Ramsey, N F; Liu, G; Moonen, C T W

    2012-08-15

    In the early days of BOLD fMRI, the acquisition of T(2)(*) weighted data was greatly facilitated by rapid scan techniques such as EPI. The latter, however, was only available on a few MRI systems that were equipped with specialized hardware that allowed rapid switching of the imaging gradients. For this reason, soon after the invention of fMRI, the scan technique PRESTO was developed to make rapid T(2)(*) weighted scanning available on standard clinical scanners. This method combined echo shifting, which allows for echo times longer than the sequence repetition time, with acquisition of multiple k-space lines per excitation. These two concepts were combined in order to achieve a method fast enough for fMRI, while maintaining a sufficiently long echo time for optimal contrast. PRESTO has been primarily used for 3D scanning, which minimized the contribution of large vessels due to inflow effects. Although PRESTO is still being used today, its appeal has lessened somewhat due to increased gradient performance of modern MRI scanners. Compared to 2D EPI, PRESTO may have somewhat reduced temporal stability, which is a disadvantage for fMRI that may not outweigh the advantage of reduced inflow effects provided by 3D scanning. In this overview, the history of the development of the PRESTO is presented, followed by a qualitative comparison with EPI. PMID:22245350

  7. Quantitative MRI techniques of cartilage composition

    PubMed Central

    Matzat, Stephen J.; van Tiel, Jasper; Gold, Garry E.

    2013-01-01

    Due to aging populations and increasing rates of obesity in the developed world, the prevalence of osteoarthritis (OA) is continually increasing. Decreasing the societal and patient burden of this disease motivates research in prevention, early detection of OA, and novel treatment strategies against OA. One key facet of this effort is the need to track the degradation of tissues within joints, especially cartilage. Currently, conventional imaging techniques provide accurate means to detect morphological deterioration of cartilage in the later stages of OA, but these methods are not sensitive to the subtle biochemical changes during early disease stages. Novel quantitative techniques with magnetic resonance imaging (MRI) provide direct and indirect assessments of cartilage composition, and thus allow for earlier detection and tracking of OA. This review describes the most prominent quantitative MRI techniques to date—dGEMRIC, T2 mapping, T1rho mapping, and sodium imaging. Other, less-validated methods for quantifying cartilage composition are also described—Ultrashort echo time (UTE), gagCEST, and diffusion-weighted imaging (DWI). For each technique, this article discusses the proposed biochemical correlates, as well its advantages and limitations for clinical and research use. The article concludes with a detailed discussion of how the field of quantitative MRI has progressed to provide information regarding two specific patient populations through clinical research—patients with anterior cruciate ligament rupture and patients with impingement in the hip. While quantitative imaging techniques continue to rapidly evolve, specific challenges for each technique as well as challenges to clinical applications remain. PMID:23833729

  8. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  9. [Multiparametric MRI. The role of MRI techniques in the diagnosis, staging and follow up of prostate cancer].

    PubMed

    Vilanova, Joan C; Luna-Alcalá, Antonio; Boada, Maria; Barceló, Joaquim

    2015-04-01

    The current diagnosis of prostate cancer based on PSA values and systematic biopsy has limitations in its efficacy of detection and staging. Technical advances on imaging over the last decade, mainly MRI, enable improvements in the strategy of prostate cancer management in diagnosis, staging, follow up and therapy monitoring. MRI enables the combination of morphological (T2 sequences) and, at the same time, functional information by means of the application of sequences such as spectroscopy (SMRI), diffusion and dynamic intravenous contrast (CMRI) in the same study, giving the multiparametric MRI (mpMRI). Currently, it is not necessary to apply all sequences to obtain an mpMR study of optimal efficacy, so that a time shorter than 30 minutes is enough to obtain the necessary information depending on the clinical indication. The main clinical indications of prostatic MRI are a) local, regional or distance staging; b) Detection or guide for diagnostic biopsy for clinical risk suspicion or negative result in previous biopsies; c) active surveillance; and d) therapeutic monitoring. Furthermore, one of the most relevant features of prostate cancer, and a challenge for the mpMRI techniques is to be able to differentiate aggressive and non-significant neoplasias (latent). This update tries to review the current role of mpMRI in the management of prostate cancer using in combination the anatomical (T2) and functional (SMRI, DMRI and CMRI) information. We also describe the European prostate mpMRI guidelines, PI-RADS (Prostate imaging reporting data System). PMID:25948803

  10. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils.

  11. Multiresolution segmentation technique for spine MRI images

    NASA Astrophysics Data System (ADS)

    Li, Haiyun; Yan, Chye H.; Ong, Sim Heng; Chui, Cheekong K.; Teoh, Swee H.

    2002-05-01

    In this paper, we describe a hybrid method for segmentation of spinal magnetic resonance imaging that has been developed based on the natural phenomenon of stones appearing as water recedes. The candidate segmentation region corresponds to the stones with characteristics similar to that of intensity extrema, edges, intensity ridge and grey-level blobs. The segmentation method is implemented based on a combination of wavelet multiresolution decomposition and fuzzy clustering. First thresholding is performed dynamically according to local characteristic to detect possible target areas, We then use fuzzy c-means clustering in concert with wavelet multiscale edge detection to identify the maximum likelihood anatomical and functional target areas. Fuzzy C-Means uses iterative optimization of an objective function based on a weighted similarity measure between the pixels in the image and each of c cluster centers. Local extrema of this objective function are indicative of an optimal clustering of the input data. The multiscale edges can be detected and characterized from local maxima of the modulus of the wavelet transform while the noise can be reduced to some extent by enacting thresholds. The method provides an efficient and robust algorithm for spinal image segmentation. Examples are presented to demonstrate the efficiency of the technique on some spinal MRI images.

  12. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  13. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  14. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  15. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  16. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  17. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  18. Techniques in Advanced Language Teaching.

    ERIC Educational Resources Information Center

    Ager, D. E.

    1967-01-01

    For ease of presentation, advanced grammar teaching techniques are briefly considered under the headings of structuralism (belief in the effectiveness of presenting grammar rules) and contextualism (belief in the maximum use by students of what they know in the target language). The structuralist's problem of establishing a syllabus is discussed…

  19. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  20. Cine MRI of swallowing in patients with advanced oral or oropharyngeal carcinoma: a feasibility study.

    PubMed

    Kreeft, Anne Marijn; Rasch, Coen R N; Muller, Sara H; Pameijer, Frank A; Hallo, Eeke; Balm, Alfons J M

    2012-06-01

    Treatment of oral and oropharyngeal cancer may cause dysphagia. Purpose is to examine whether cine magnetic resonance imaging (MRI) yields additional information compared to standard examination in the evaluation of posttreatment dysphagia and mobility of oral and oropharyngeal structures. Thirty-four cine MRIs were made in 23 patients with advanced oral and oropharyngeal cancer, consisting of an MR image every 800 ms during swallowing which is compared to videofluoroscopy and quality of life questionnaires. A scoring system was applied to assess mobility on cine MR and videofluoroscopy leading to a score ranging from 9 to 17. Cine MRI of the swallowing in a midsagittal plane visualized the tumor (if located in the same plane), important anatomic structures and surgical reconstructions. Posttreatment mobility on cine MRI and videofluoroscopy was significantly diminished compared to pretreatment, mean pretreatment cine MRI score was 10.8 and posttreatment 12.4 (p = 0.017). Impaired mobility on cine MRI was significantly correlated to more swallowing problems (Spearman's correlation coefficient 0.73, p = 0.04), on videofluoroscopy not. Cine MRI is a promising new technique as an adjunct to standard examinations for evaluation of swallowing in patients with oral and oropharyngeal cancer. Cine MRI directly visualizes the dynamics of swallowing and allows evaluation of pre- and posttreatment differences. Abnormal findings are significantly correlated with subjective swallowing complaints of patients.

  1. Advances in wound debridement techniques.

    PubMed

    Nazarko, Linda

    2015-06-01

    Dead and devitalised tissue interferes with the process of wound healing. Debridement is a natural process that occurs in all wounds and is crucial to healing; it reduces the bacterial burden in a wound and promotes effective inflammatory responses that encourage the formation of healthy granulation tissue (Wolcott et al, 2009). Wound care should be part of holistic patient care. Recent advances in debridement techniques include: biosurgery, hydrosurgery, mechanical debridement, and ultrasound. Biosurgery and mechanical debridement can be practiced by nonspecialist nurses and can be provided in a patient's home, thus increasing the patient's access to debridement therapy and accelerating wound healing.

  2. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  3. Current imaging techniques in rheumatology: MRI, scintigraphy and PET

    PubMed Central

    Sudoł-Szopińska, Iwona; Ćwikła, Jarosław B.

    2013-01-01

    Summary The first-line imaging technique for diagnosis inflammation in musculo-skeletal organs in rheumatoid arthritis (RA) is planar X-ray examination, which was for many years the first and the only single tool for RA diagnostics and response evaluation. Today, in the era of more aggressive RA treatment, ultrasound examination (US) and magnetic resonance imaging (MRI) are also frequently used. US is used to detect early signs of inflammation within the soft tissue. MRI allows to assess the soft tissue and bone marrow involvement in case of inflammation and/or infection. MRI is capable of detecting more inflammatory lesions and erosions than US, X-ray, or CT. Standard scintigraphy plays a crucial role, and data from positron emission tomography (PET) are also promising. These functional imaging techniques are used in detection of inflammation and/or infection in case of ambiguous results being obtained by other techniques or at other clinics. In patients with RA, scintigraphy plays a key role in the differential diagnosis of hip, knee, etc. endoprosthesis disorders, including mechanical or septic loosening. PMID:24115960

  4. A MRI-CT prostate registration using sparse representation technique

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Jani, Ashesh B.; Rossi, Peter J.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    Purpose: To develop a new MRI-CT prostate registration using patch-based deformation prediction framework to improve MRI-guided prostate radiotherapy by incorporating multiparametric MRI into planning CT images. Methods: The main contribution is to estimate the deformation between prostate MRI and CT images in a patch-wise fashion by using the sparse representation technique. We assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. Specifically, there are two stages in our proposed framework, i.e., the training stage and the application stage. In the training stage, each prostate MR images are carefully registered to the corresponding CT images and all training MR and CT images are carefully registered to a selected CT template. Thus, we obtain the dense deformation field for each training MR and CT image. In the application stage, for registering a new subject MR image with the same subject CT image, we first select a small number of key points at the distinctive regions of this subject CT image. Then, for each key point in the subject CT image, we extract the image patch, centered at the underlying key point. Then, we adaptively construct the coupled dictionary for the underlying point where each atom in the dictionary consists of image patches and the respective deformations obtained from training pair-wise MRI-CT images. Next, the subject image patch can be sparsely represented by a linear combination of training image patches in the dictionary, where we apply the same sparse coefficients to the respective deformations in the dictionary to predict the deformation for the subject MR image patch. After we repeat the same procedure for each subject CT key point, we use B-splines to interpolate a dense deformation field, which is used as the initialization to allow the registration algorithm estimating the remaining small segment of deformations from MRI to CT image

  5. Advanced techniques of laser telemetry

    NASA Astrophysics Data System (ADS)

    Donati, S.; Gilardini, A.

    The relationships which govern a laser telemeter; noise sources; and measurement accuracy with pulsed and sinusoidal intensity modulation techniques are discussed. Developments in telemetry instrumention and optical detection are considered. Meteorological interferometers, geodimeters, and military telemeters are described. Propagation attenuation and signal to noise ratios are treated. It is shown that accuracy depends on the product of measurement time and received power. The frequency scanning technique of CW and long pulse telemetry; multifrequency techniques; pulse compression; and vernier technique are outlined.

  6. Splitting advancement genioplasty: a new genioplasty technique.

    PubMed

    Celik, M; Tuncer, S; Büyükçayir, I

    1999-08-01

    A new genioplasty technique has been described and performed on 16 patients since 1995. The technique has been developed to avoid some undesired results of the current osseous genioplasty techniques and to achieve a more natural appearance in advancement genioplasty. According to the authors' technique, a rectangular part of the outer table of the mentum is split away from the mandible, and is advanced and fixated to the mandible. This technique can be used for advancement cases but not for reduction genioplasty. This technique was performed on 16 patients with only minor complications, including one case of wound dehiscence, one hematoma, and one case of osteomyelitis, which was managed with systemic antibiotic therapy. Aesthetic results were found to be satisfactory according to an evaluation by the authors. When the results were evaluated using pre- and postoperative photos, lip position and projection of the mentum were found to be natural in shape appearance. During the late postoperative period, the new bone formation between the advanced segment and the mandible was demonstrated radiographically. Advantages of the technique include having more contact surfaces for bony healing, a natural position of the lower lip, more natural projection of the mentum, tridimensional movement of the mentum, and improvement in the soft tissue of the neck. The disadvantages of the technique are the potential risk of infection due to dead space from the advancement, manipulation problems during surgery, and possible mental nerve injury. Splitting advancement genioplasty was found to be a useful technique for advancement genioplasty. Splitting advancement genioplasty is a more physiological osteotomy technique than most of osseous genioplasty techniques. PMID:10454320

  7. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  8. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  9. Advanced techniques in abdominal surgery.

    PubMed Central

    Monson, J R

    1993-01-01

    Almost every abdominal organ is now amenable to laparoscopic surgery. Laparoscopic appendicectomy is a routine procedure which also permits identification of other conditions initially confused with an inflamed appendix. However, assessment of appendiceal inflammation is more difficult. Almost all colonic procedures can be performed laparoscopically, at least partly, though resection for colonic cancer is still controversial. For simple patch repair of perforated duodenal ulcers laparoscopy is ideal, and inguinal groin hernia can be repaired satisfactorily with a patch of synthetic mesh. Many upper abdominal procedures, however, still take more time than the open operations. These techniques reduce postoperative pain and the incidence of wound infections and allow a much earlier return to normal activity compared with open surgery. They have also brought new disciplines: surgeons must learn different hand-eye coordination, meticulous haemostasis is needed to maintain picture quality, and delivery of specimens may be problematic. The widespread introduction of laparoscopic techniques has emphasised the need for adequate training (operations that were straight-forward open procedures may require considerable laparoscopic expertise) and has raised questions about trainee surgeons acquiring adequate experience of open procedures. Images FIG 9 p1347-a p1347-b p1349-a p1350-a p1350-b PMID:8257893

  10. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    SciTech Connect

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

  11. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentationa

    PubMed Central

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-01-01

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B1 inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both

  12. Advanced prosthetic techniques for below knee amputations.

    PubMed

    Staats, T B

    1985-02-01

    Recent advances in the evaluation of the amputation stump, the materials that are available for prosthetic application, techniques of improving socket fit, and prosthetic finishings promise to dramatically improve amputee function. Precision casting techniques for providing optimal fit of the amputation stump using materials such as alginate are described. The advantages of transparent check sockets for fitting the complicated amputation stump are described. Advances in research that promise to provide more functional prosthetic feet and faster and more reliable socket molding are the use of CAD-CAM (computer aided design-computer aided manufacturing) and the use of gait analysis techniques to aid in the alignment of the prosthesis after socket fitting. Finishing techniques to provide a more natural appearing prosthesis are described. These advances will gradually spread to the entire prosthetic profession.

  13. Advanced sialoendoscopy techniques, rare findings, and complications.

    PubMed

    Nahlieli, Oded

    2009-12-01

    This article presents and discusses advanced minimally invasive sialoendoscopy and combined methods: endoscopy, endoscopic-assisted techniques, and external-lithotripsy combined procedures. It also presents rare situations and complications encountered during sialoendoscopic procedures. Sialoendoscopy is a relatively novel technique, which adds significant new dimensions to the surgeon's armamentarium for management of inflammatory salivary gland diseases. Because of the rapid development in minimally invasive surgical techniques, surgeons are capable of more facilely treating complicated inflammatory and obstructive conditions of the salivary glands.

  14. Understanding Brain Injury and Neurodevelopmental Disabilities in the Preterm Infant: The Evolving Role of Advanced MRI

    PubMed Central

    Mathur, Amit M.; Neil, Jeffrey J.; Inder, Terrie E.

    2010-01-01

    The high incidence of neurodevelopmental disability in premature infants requires continued efforts at understanding the underlying microstructural changes in the brain that cause this perturbation in normal development. Magnetic resonance imaging (MRI) methods offer great potential to fulfill this need. Serial MR imaging and the application of newer analysis techniques such as, diffusion tensor imaging (DTI), volumetric MR analysis, cortical surface analysis, functional connectivity (fcMRI) and diffusion tractography, provide important insights into the trajectory of brain development in the premature infant and the impact of injury on this developmental trajectory. While some of these imaging techniques are currently available in the research setting only, other measures such as DTI and brain metric measures can be used clinically. MR imaging also has enormous potential to be used as a surrogate, short-term outcome measure in clinical studies evaluating new therapeutic interventions of neuroprotection of the developing brain. In this article we review the current status of these advanced MR imaging techniques. PMID:20109973

  15. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques.

    PubMed

    Tsolaki, Evangelia; Kousi, Evanthia; Svolos, Patricia; Kapsalaki, Efthychia; Theodorou, Kyriaki; Kappas, Constastine; Tsougos, Ioannis

    2014-04-28

    In recent years, advanced magnetic resonance imaging (MRI) techniques, such as magnetic resonance spectroscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic problems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical decision support systems (CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually increased. Hence, the purpose of the current review article is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be introduced into intelligent systems to significantly improve their diagnostic specificity and clinical application.

  16. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  17. Advances in functional and structural imaging of the human lung using proton MRI.

    PubMed

    Miller, G Wilson; Mugler, John P; Sá, Rui C; Altes, Talissa A; Prisk, G Kim; Hopkins, Susan R

    2014-12-01

    The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed

  18. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  19. Multi-slice MRI with the dynamic multi-coil technique.

    PubMed

    Juchem, Christoph; Nahhass, Omar M; Nixon, Terence W; de Graaf, Robin A

    2015-11-01

    To date, spatial encoding for MRI is based on linear X, Y and Z field gradients generated by dedicated X, Y and Z wire patterns. We recently introduced the dynamic multi-coil technique (DYNAMITE) for the generation of magnetic field shapes for biomedical MR applications from a set of individually driven localized coils. The benefits for B0 magnetic field homogenization have been shown, as well as proof of principle of radial and algebraic MRI. In this study the potential of DYNAMITE MRI is explored further and the first multi-slice MRI implementation in which all gradient fields are purely DYNAMITE based is presented. The obtained image fidelity is shown to be virtually identical to that of a conventional MRI system with dedicated X, Y and Z gradient coils. Comparable image quality is a milestone towards the establishment of fully functional DYNAMITE MRI (and shim) systems.

  20. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  1. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. PMID:23757180

  2. Safety and Technique of Ferumoxytol Administration for MRI

    PubMed Central

    Vasanawala, Shreyas S.; Nguyen, Kim-Lien; Hope, Michael D.; Bridges, Mellena D.; Hope, Thomas A.; Reeder, Scott B.; Bashir, Mustafa R.

    2016-01-01

    Ferumoxytol is an ultrasmall superparamagnetic iron oxide agent marketed for the treatment of anemia. There has been increasing interest in its properties as an MRI contrast agent as well as greater awareness of its adverse event profile. This mini-review summarizes the current state of knowledge of the risks of ferumoxytol and methods of administration. PMID:26890830

  3. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.

  4. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  5. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  6. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  7. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems.

    PubMed

    Neu, Thomas R; Manz, Bertram; Volke, Frank; Dynes, James J; Hitchcock, Adam P; Lawrence, John R

    2010-04-01

    Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.

  8. Pediatric whole-body MRI: A review of current imaging techniques and clinical applications.

    PubMed

    Davis, Joseph T; Kwatra, Neha; Schooler, Gary R

    2016-10-01

    There are many congenital, neoplastic, inflammatory, and infectious processes in the pediatric patient for which whole-body imaging may be of benefit diagnostically and prognostically. With recent improvements in magnetic resonance imaging (MRI) hardware and software and resultant dramatically reduced scan times, imaging of the whole body with MRI has become a much more practicable technique in children. Whole-body MRI can provide a high level of soft tissue and skeletal detail while avoiding the exposure to ionizing radiation inherent to computed tomography and nuclear medicine imaging techniques. This article reviews the more common current whole-body MRI techniques in children and the primary pathologies for which this imaging modality may be most useful to the radiologists and referring clinicians. J. MAGN. RESON. IMAGING 2016;44:783-793.

  9. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  10. MRI compatibility of robot actuation techniques--a comparative study.

    PubMed

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  11. Advanced AE Techniques in Composite Materials Research

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been successfully used to evaluate damage mechanisms in laboratory testing of composite coupons. An example is presented in which the initiation of transverse matrix cracking was monitored. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite specimens or structures, the effects of modal wave propagation over larger distances and through structural complexities must be well characterized and understood. To demonstrate these effects, measurements of the far field, peak amplitude attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels are discussed. These measurements demonstrated that the flexural mode attenuation is dominated by dispersion effects. Thus, it is significantly affected by the thickness of the composite plate. Furthermore, the flexural mode attenuation can be significantly larger than that of the extensional mode even though its peak amplitude consists of much lower frequency components.

  12. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  13. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  14. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  15. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution

  16. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  17. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI

    PubMed Central

    Joo, Ijin; Lee, Jeong Min

    2016-01-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  18. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

    PubMed

    Joo, Ijin; Lee, Jeong Min

    2016-02-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  19. MRI

    MedlinePlus

    MRI does not use ionizing radiation. No side effects from the magnetic fields and radio waves have been reported. The most common type of contrast (dye) used is gadolinium. It is very safe. Allergic reactions rarely ...

  20. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques.

    PubMed

    Pannek, Kerstin; Guzzetta, Andrea; Colditz, Paul B; Rose, Stephen E

    2012-10-01

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. PMID:22903761

  1. Advances in nanodiagnostic techniques for microbial agents.

    PubMed

    Syed, Muhammad Ali

    2014-01-15

    Infectious diseases account for millions of sufferings and deaths in both developing as well as developed countries with a substantial economic loss. Massive increase in world population and international travel has facilitated their spread from one part of the world to other areas, making them one of the most significant global health risks. Furthermore, detection of bioterrorism agents in water, food and environmental samples as well traveler's baggage is a great challenge of the time for security purpose. Prevention strategies against infectious agents demand rapid and accurate detection and identification of the causative agents with highest sensitivity which should be equally available in different parts of the globe. Similarly, rapid and early diagnosis of infectious diseases has always been indispensable for their prompt cure and management, which has stimulated scientists to develop highly sophisticated techniques over centuries and the efforts continue unabated. Conventional diagnostic techniques are time consuming, tedious, expensive, less sensitive, and unsuitable for field situations. Nanodiagnostic assays have been promising for early, sensitive, point-of-care and cost-effective detection of microbial agents. There has been an explosive research in this area of science in last two decades yielding highly fascinating results. This review highlights some of the advancements made in the field of nanotechnology based assays for microbial detection since 2005 along with providing the basic understanding. PMID:24012709

  2. Advanced techniques in current signature analysis

    SciTech Connect

    Smith, S.F.; Castleberry, K.N.

    1992-03-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and an be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors ({approximately}3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed ({approximately}20 Hz) and high-frequency vibrational information (>1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable ``smart`` CSA instrumentation in the next several years. 3 refs.

  3. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  4. Rapid brain MRI acquisition techniques at ultra-high fields.

    PubMed

    Setsompop, Kawin; Feinberg, David A; Polimeni, Jonathan R

    2016-09-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study.

    PubMed

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-12-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging.

  6. Intracranial Vessel Wall MRI: An Emerging Technique With a Multitude of Uses.

    PubMed

    Schaafsma, Joanna D; Mikulis, David J; Mandell, Daniel M

    2016-04-01

    Intracranial vessel wall magnetic resonance imaging (VW-MRI) can be a useful diagnostic technique in patients with ischemic stroke and subarachnoid hemorrhage. Unlike conventional vascular imaging that depicts only the vessel lumen, VW-MRI allows visualization of pathology in the arterial wall itself. The ability to image the arterial wall is useful, as many pathological processes reside within the wall and only secondarily affect the lumen. In this review, we will present 6 clinical uses for intracranial wall imaging to highlight the versatility of this technique.

  7. Endorectal MRI of Prostate Cancer: Incremental Prognostic Importance of Gross Locally Advanced Disease

    PubMed Central

    Muglia, Valdair F.; Westphalen, Antonio C.; Wang, Zhen J.; Kurhanewicz, John; Carroll, Peter R.; Coakley, Fergus V.

    2013-01-01

    OBJECTIVE The purpose of this study was to determine the frequency and incremental prognostic importance of gross locally advanced disease seen at endorectal MRI in patients with prostate cancer. MATERIALS AND METHODS We retrospectively identified the cases of all patients with biopsy-proven prostate cancer who underwent pretreatment endorectal MRI over a 6-year period (n = 1777). Three experienced radiologists identified by consensus patients with gross locally advanced disease, defined as unequivocal extracapsular extension or unequivocal seminal vesicle invasion. Outcome among these patients was compared with that in a control group without gross locally advanced disease matched by D'Amico risk stratification. RESULTS Sixty-six of 1777 (3.7%) patients had gross locally advanced disease. One of 1085 (0.1%) patients had low-risk disease, 25 of 489 (5.1%) had intermediate-risk disease, and 40 of 203 (19.7%) had high-risk disease. Follow-up data were available for 44 of these 66 patients. During a median follow-up period of 79 months, biochemical failure and metastasis had developed in 17 and 6 of these 44 patients compared with 9 and none of the 65 patients in the control group (p < 0.001). CONCLUSION Almost 4% of patients with prostate cancer, particularly those with intermediate- and high-risk disease, have gross locally advanced disease at endorectal MRI and have a significantly worse prognosis than matched controls. These patients may be candidates for more aggressive treatment. PMID:22109291

  8. Imaging techniques: MRI illuminated by γ-rays

    NASA Astrophysics Data System (ADS)

    Bowtell, Richard

    2016-09-01

    A technique that combines magnetic resonance with nuclear medicine has been used to image the distribution of a radioactive tracer, potentially opening up a powerful and innovative approach to medical imaging. See Letter p.652

  9. Cost Analysis of MRI Services in Iran: An Application of Activity Based Costing Technique

    PubMed Central

    Bayati, Mohsen; Mahboub Ahari, Alireza; Badakhshan, Abbas; Gholipour, Mahin; Joulaei, Hassan

    2015-01-01

    Background: Considerable development of MRI technology in diagnostic imaging, high cost of MRI technology and controversial issues concerning official charges (tariffs) have been the main motivations to define and implement this study. Objectives: The present study aimed to calculate the unit-cost of MRI services using activity-based costing (ABC) as a modern cost accounting system and to fairly compare calculated unit-costs with official charges (tariffs). Materials and Methods: We included both direct and indirect costs of MRI services delivered in fiscal year 2011 in Shiraz Shahid Faghihi hospital. Direct allocation method was used for distribution of overhead costs. We used micro-costing approach to calculate unit-cost of all different MRI services. Clinical cost data were retrieved from the hospital registering system. Straight-line method was used for depreciation cost estimation. To cope with uncertainty and to increase the robustness of study results, unit costs of 33 MRI services was calculated in terms of two scenarios. Results: Total annual cost of MRI activity center (AC) was calculated at USD 400,746 and USD 532,104 based on first and second scenarios, respectively. Ten percent of the total cost was allocated from supportive departments. The annual variable costs of MRI center were calculated at USD 295,904. Capital costs measured at USD 104,842 and USD 236, 200 resulted from the first and second scenario, respectively. Existing tariffs for more than half of MRI services were above the calculated costs. Conclusion: As a public hospital, there are considerable limitations in both financial and administrative databases of Shahid Faghihi hospital. Labor cost has the greatest share of total annual cost of Shahid Faghihi hospital. The gap between unit costs and tariffs implies that the claim for extra budget from health providers may not be relevant for all services delivered by the studied MRI center. With some adjustments, ABC could be implemented in MRI

  10. Advances in procedural techniques--antegrade.

    PubMed

    Wilson, William; Spratt, James C

    2014-05-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  11. Neurogenic thoracic outlet syndrome: current diagnostic criteria and advances in MRI diagnostics.

    PubMed

    Magill, Stephen T; Brus-Ramer, Marcel; Weinstein, Philip R; Chin, Cynthia T; Jacques, Line

    2015-09-01

    Neurogenic thoracic outlet syndrome (nTOS) is caused by compression of the brachial plexus as it traverses from the thoracic outlet to the axilla. Diagnosing nTOS can be difficult because of overlap with other complex pain and entrapment syndromes. An nTOS diagnosis is made based on patient history, physical exam, electrodiagnostic studies, and, more recently, interpretation of MR neurograms with tractography. Advances in high-resolution MRI and tractography can confirm an nTOS diagnosis and identify the location of nerve compression, allowing tailored surgical decompression. In this report, the authors review the current diagnostic criteria, present an update on advances in MRI, and provide case examples demonstrating how MR neurography (MRN) can aid in diagnosing nTOS. The authors conclude that improved high-resolution MRN and tractography are valuable tools for identifying the source of nerve compression in patients with nTOS and can augment current diagnostic modalities for this syndrome.

  12. Recent advances in MRI technology: Implications for image quality and patient safety

    PubMed Central

    Sobol, Wlad T.

    2012-01-01

    Recent advances in MRI technology are presented, with emphasis on how this new technology impacts clinical operations (better image quality, faster exam times, and improved throughput). In addition, implications for patient safety are discussed with emphasis on the risk of patient injury due to either high local specific absorption rate (SAR) or large cumulative energy doses delivered during long exam times. Patient comfort issues are examined as well. PMID:23961024

  13. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  14. Recent advancements in diffusion MRI for investigating cortical development after preterm birth—potential and pitfalls

    PubMed Central

    Dudink, J.; Pieterman, K.; Leemans, A.; Kleinnijenhuis, M.; van Cappellen van Walsum, A. M.; Hoebeek, F. E.

    2015-01-01

    Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the developing brain, but did cause significantly impaired dendritic growth and synapse formation alongside a disturbed development of neuronal connectivity as measured using diffusion magnetic resonance imaging (dMRI). When using more advanced acquisition settings such as high-angular resolution diffusion imaging (HARDI), more advanced reconstruction methods can be applied to investigate the cortical microstructure with higher levels of detail. Recent advances in dMRI acquisition and analysis have great potential to contribute to a better understanding of neuronal connectivity impairment in preterm birth. We will review the current understanding of abnormal preterm cortical development, novel approaches in dMRI, and the pitfalls in scanning vulnerable preterm infants. PMID:25653607

  15. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. PMID:26264565

  16. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  17. Simulation of concomitant magnetic fields on fast switched gradient coils used in advanced application of MRI

    NASA Astrophysics Data System (ADS)

    Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.

    2012-10-01

    The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.

  18. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury.

    PubMed

    van de Looij, Yohan; Dean, Justin M; Gunn, Alistair J; Hüppi, Petra S; Sizonenko, Stéphane V

    2015-10-01

    Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.

  19. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  20. Advances in laparoscopic urologic surgery techniques.

    PubMed

    Abdul-Muhsin, Haidar M; Humphreys, Mitchell R

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  1. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques.

    PubMed

    Daftari, Inder k; Aghaian, Elsa; O'Brien, Joan M; Dillon, William; Phillips, Theodore L

    2005-11-01

    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights < or = 3 mm. A small intraobserver variation with a mean of (-0.22 +/- 4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm3

  2. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  3. Advanced optical imaging techniques for neurodevelopment.

    PubMed

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-12-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy.

  4. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  5. Advanced ultrasonic techniques for local tumor hyperthermia.

    PubMed

    Lele, P P

    1989-05-01

    Scanned, intensity-modulated, focused ultrasound (SIMFU) presently is the modality of choice for localized, controlled heating of deep as well as superficial tumors noninvasively. With the present SIMFU system, it was possible to heat 88 per cent of deep tumors up to 12 cm in depth and 15 cm in diameter, to 43 degrees C in 3 to 4 minutes. The infiltrative tumor margins could be heated to the desired therapeutic temperature. The temperature outside the treatment field fell off sharply. Excellent objective responses were obtained without local or systemic toxicity. Multiinstitutional clinical trials of local hyperthermia by this promising technique are clearly warranted.

  6. Air pollution monitoring by advanced spectroscopic techniques.

    PubMed

    Hodgeson, J A; McClenny, W A; Hanst, P L

    1973-10-19

    The monitoring requirements related to air pollution are many and varied. The molecules of concern differ greatly in their chemical and physical properties, in the nature of their environment, and in their concentration ranges. Furthermore, the application may have specific requirements such as rapid response time, ultrasensitivity, multipollutant capability, or capability for remote measurements. For these reasons, no single spectroscopic technique appears to offer a panacea for all monitoring needs. Instead we have attempted to demonstrate in the above discussion that, regardless of the difficulty and complexity of the monitoring problems, spectroscopy offers many tools by which such problems may be solved.

  7. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation

    PubMed Central

    Park, Ah Young

    2016-01-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients. PMID:27587958

  8. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation.

    PubMed

    Park, Ah Young; Seo, Bo Kyoung

    2016-01-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients. PMID:27587958

  9. A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques.

    PubMed

    Uma Vetri Selvi, G; Nadarajan, R

    2015-12-01

    Compression techniques are vital for efficient storage and fast transfer of medical image data. The existing compression techniques take significant amount of time for performing encoding and decoding and hence the purpose of compression is not fully satisfied. In this paper a rapid 4-D lossy compression method constructed using data rearrangement, wavelet-based contourlet transformation and a modified binary array technique has been proposed for functional magnetic resonance imaging (fMRI) images. In the proposed method, the image slices of fMRI data are rearranged so that the redundant slices form a sequence. The image sequence is then divided into slices and transformed using wavelet-based contourlet transform (WBCT). In WBCT, the high frequency sub-band obtained from wavelet transform is further decomposed into multiple directional sub-bands by directional filter bank to obtain more directional information. The relationship between the coefficients has been changed in WBCT as it has more directions. The differences in parent–child relationships are handled by a repositioning algorithm. The repositioned coefficients are then subjected to quantization. The quantized coefficients are further compressed by modified binary array technique where the most frequently occurring value of a sequence is coded only once. The proposed method has been experimented with fMRI images the results indicated that the processing time of the proposed method is less compared to existing wavelet-based set partitioning in hierarchical trees and set partitioning embedded block coder (SPECK) compression schemes [1]. The proposed method could also yield a better compression performance compared to wavelet-based SPECK coder. The objective results showed that the proposed method could gain good compression ratio in maintaining a peak signal noise ratio value of above 70 for all the experimented sequences. The SSIM value is equal to 1 and the value of CC is greater than 0.9 for all

  10. Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Aguilar, Carlos; Westman, Eric; Muehlboeck, J-Sebastian; Mecocci, Patrizia; Vellas, Bruno; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Lovestone, Simon; Spenger, Christian; Simmons, Andrew; Wahlund, Lars-Olof

    2013-05-30

    Automated structural magnetic resonance imaging (MRI) processing pipelines and different multivariate techniques are gaining popularity for Alzheimer's disease (AD) research. We used four supervised learning methods to classify AD patients and controls (CTL) and to prospectively predict the conversion of mild cognitive impairment (MCI) to AD from baseline MRI data. A total of 345 participants from the AddNeuroMed cohort were included in this study; 116 AD patients, 119 MCI patients and 110 CTL individuals. High resolution sagittal 3D MP-RAGE datasets were acquired and MRI data were processed using FreeSurfer. We explored the classification ability of orthogonal projections to latent structures (OPLS), decision trees (Trees), artificial neural networks (ANN) and support vector machines (SVM). Applying 10-fold cross-validation demonstrated that SVM and OPLS were slightly superior to Trees and ANN, although not statistically significant for distinguishing between AD and CTL. The classification experiments resulted in up to 83% sensitivity and 87% specificity for the best techniques. For the prediction of conversion of MCI patients at baseline to AD at 1-year follow-up, we obtained an accuracy of up to 86%. The value of the multivariate models derived from the classification of AD vs. CTL was shown to be robust and efficient in the identification of MCI converters.

  11. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  12. Advanced automated char image analysis techniques

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Char morphology is an important characteristic when attempting to understand coal behavior and coal burnout. In this study, an augmented algorithm has been proposed to identify char types using image analysis. On the basis of a series of image processing steps, a char image is singled out from the whole image, which then allows the important major features of the char particle to be measured, including size, porosity, and wall thickness. The techniques for automated char image analysis have been tested against char images taken from ICCP Char Atlas as well as actual char particles derived from pyrolyzed char samples. Thirty different chars were prepared in a drop tube furnace operating at 1300{sup o}C, 1% oxygen, and 100 ms from 15 different world coals sieved into two size fractions (53-75 and 106-125 {mu}m). The results from this automated technique are comparable with those from manual analysis, and the additional detail from the automated sytem has potential use in applications such as combustion modeling systems. Obtaining highly detailed char information with automated methods has traditionally been hampered by the difficulty of automatic recognition of individual char particles. 20 refs., 10 figs., 3 tabs.

  13. MRI for Assessing Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer Using DCE-MR and DW-MR Data Sets: A Preliminary Report.

    PubMed

    Petrillo, Mario; Fusco, Roberta; Catalano, Orlando; Sansone, Mario; Avallone, Antonio; Delrio, Paolo; Pecori, Biagio; Tatangelo, Fabiana; Petrillo, Antonella

    2015-01-01

    To evaluate MRI for neoadjuvant therapy response assessment in locally advanced rectal cancer (LARC) using dynamic contrast enhanced-MRI (DCE-MRI) and diffusion weighted imaging (DWI), we have compared magnetic resonance volumetry based on DCE-MRI (V(DCE)) and on DWI (V(DWI)) scans with conventional T2-weighted volumetry (V(C)) in LARC patients after neoadjuvant therapy. Twenty-nine patients with LARC underwent MR examination before and after neoadjuvant therapy. A manual segmentation was performed on DCE-MR postcontrast images, on DWI (b-value 800 s/mm(2)), and on conventional T2-weighted images by two radiologists. DCE-MRI, DWI, and T2-weigthed volumetric changes before and after treatment were evaluated. Nonparametric sample tests, interobserver agreement, and receiver operating characteristic curve (ROC) were performed. Diagnostic performance linked to DCE-MRI volumetric change was superior to T2-w and DW-MRI volumetric changes performance (specificity 86%, sensitivity 93%, and accuracy 93%). Area Under ROC (AUC) of V(DCE) was greater than AUCs of V(C) and V(DWI) resulting in an increase of 15.6% and 11.1%, respectively. Interobserver agreement between two radiologists was 0.977, 0.864, and 0.756 for V(C), V(DCE), and V(DWI), respectively. V(DCE) seems to be a promising tool for therapy response assessment in LARC. Further studies on large series of patients are needed to refine technique and evaluate its potential value. PMID:26413528

  14. MRI for Assessing Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer Using DCE-MR and DW-MR Data Sets: A Preliminary Report

    PubMed Central

    Petrillo, Mario; Fusco, Roberta; Catalano, Orlando; Sansone, Mario; Avallone, Antonio; Delrio, Paolo; Pecori, Biagio; Tatangelo, Fabiana; Petrillo, Antonella

    2015-01-01

    To evaluate MRI for neoadjuvant therapy response assessment in locally advanced rectal cancer (LARC) using dynamic contrast enhanced-MRI (DCE-MRI) and diffusion weighted imaging (DWI), we have compared magnetic resonance volumetry based on DCE-MRI (V(DCE)) and on DWI (V(DWI)) scans with conventional T2-weighted volumetry (V(C)) in LARC patients after neoadjuvant therapy. Twenty-nine patients with LARC underwent MR examination before and after neoadjuvant therapy. A manual segmentation was performed on DCE-MR postcontrast images, on DWI (b-value 800 s/mm2), and on conventional T2-weighted images by two radiologists. DCE-MRI, DWI, and T2-weigthed volumetric changes before and after treatment were evaluated. Nonparametric sample tests, interobserver agreement, and receiver operating characteristic curve (ROC) were performed. Diagnostic performance linked to DCE-MRI volumetric change was superior to T2-w and DW-MRI volumetric changes performance (specificity 86%, sensitivity 93%, and accuracy 93%). Area Under ROC (AUC) of V(DCE) was greater than AUCs of V(C) and V(DWI) resulting in an increase of 15.6% and 11.1%, respectively. Interobserver agreement between two radiologists was 0.977, 0.864, and 0.756 for V(C), V(DCE), and V(DWI), respectively. V(DCE) seems to be a promising tool for therapy response assessment in LARC. Further studies on large series of patients are needed to refine technique and evaluate its potential value. PMID:26413528

  15. Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.

  16. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  17. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  18. Foundations of advanced magnetic resonance imaging.

    PubMed

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B; Krueger, Gunnar; Moseley, Michael E; Glover, Gary H

    2005-04-01

    During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now-within a few minutes-acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths.

  19. Determination of arterial input function in dynamic susceptibility contrast MRI using group independent component analysis technique

    NASA Astrophysics Data System (ADS)

    Chen, Sharon; Liu, Ho-Ling; Yang, Yihong; Hsu, Yuan-Yu; Chuang, Keh-Shih

    2006-12-01

    Quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) requires the determination of the arterial input function (AIF). The segmentation of surrounding tissue by manual selection is error-prone due to the partial volume artifacts. Independent component analysis (ICA) has the advantage in automatically decomposing the signals into interpretable components. Recently group ICA technique has been applied to fMRI study and showed reduced variance caused by motion artifact and noise. In this work, we investigated the feasibility and efficacy of the use of group ICA technique to extract the AIF. Both simulated and in vivo data were analyzed in this study. The simulation data of eight phantoms were generated using randomized lesion locations and time activity curves. The clinical data were obtained from spin-echo EPI MR scans performed in seven normal subjects. Group ICA technique was applied to analyze data through concatenating across seven subjects. The AIFs were calculated from the weighted average of the signals in the region selected by ICA. Preliminary results of this study showed that group ICA technique could not extract accurate AIF information from regions around the vessel. The mismatched location of vessels within the group reduced the benefits of group study.

  20. Laparoscopic ureteral reimplantation: a simplified dome advancement technique.

    PubMed

    Lima, Guilherme C; Rais-Bahrami, Soroush; Link, Richard E; Kavoussi, Louis R

    2005-12-01

    Laparoscopic Boari flap reimplantation has been used to treat long distal ureteral strictures. This technique requires extensive bladder mobilization and complex intracorporeal suturing. This demonstrates a novel laparoscopic bladder dome advancement approach for ureteral reimplantation. This technique obviates the need for bladder pedicle dissection and simplifies the required suturing.

  1. Evaluation of Advanced Retrieval Techniques in an Experimental Online Catalog.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Discusses subject searching problems in online library catalogs; explains advanced information retrieval (IR) techniques; and describes experiments conducted on a test collection database, CHESHIRE (California Hybrid Extended SMART for Hypertext and Information Retrieval Experimentation), which was created to evaluate IR techniques in online…

  2. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  3. The emerging role of advanced neuroimaging techniques for brain metastases.

    PubMed

    Nowosielski, Martha; Radbruch, Alexander

    2015-06-01

    Brain metastases are an increasingly encountered and frightening manifestation of systemic cancer. More effective therapeutic strategies for the primary tumor are resulting in longer patient survival on the one hand while on the other, better brain tumor detection has resulted from increased availability and development of more precise brain imaging methods. This review focuses on the emerging role of functional neuroimaging techniques; magnetic resonance imaging (MRI) as well as positron emission tomography (PET), in establishing diagnosis, for monitoring treatment response with an emphasis on new targeted as well as immunomodulatory therapies and for predicting prognosis in patients with brain metastases.

  4. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  5. Breast MRI in Community Practice: Equipment and Imaging Techniques at Facilities in the Breast Cancer Surveillance Consortium (BCSC)

    PubMed Central

    DeMartini, Wendy B.; Ichikawa, Laura; Yankaskas, Bonnie C.; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D.; Lehman, Constance D.

    2010-01-01

    Purpose MRI is increasingly used for detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. This study evaluated equipment and acquisition techniques used by community facilities across the U.S., including compliance with minimum standards by the American College of Radiology Imaging Network (ACRIN) 6667 Trial and the European Society of Breast Imaging (EUSOBI). Methods Breast Cancer Surveillance Consortium (BCSC) facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness and timing of initial post-contrast sequence. Results were tallied and percentages of facilities meeting ACRIN and EUSOBI standards were calculated Results From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5T field strength was 94% and of a dedicated breast coil was 100%. Eight-three percent of acquisitions used bilateral post-contrast technique and 78% used slice thickness <= 3 mm. Timing of initial post-contrast sequences ranged from 58 seconds to eight minutes 30 seconds, with 63% meeting recommendations for completion within four minutes. Conclusions Nearly all surveyed facilities met ACRIN and EUSOBI standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for timing of initial post-contrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high quality breast MRI. PMID:21040870

  6. A novel high temporal resolution phase contrast MRI technique for measuring mitral valve flows

    NASA Astrophysics Data System (ADS)

    Voorhees, Abram; Bohmann, Katja; McGorty, Kelly Anne; Wei, Timothy; Chen, Qun

    2005-11-01

    Mitral valve flow imaging is inherently difficult due to valve plane motion and high blood flow velocities, which can range from 200 cm/s to 700 cm/s under regurgitant conditions. As such, insufficient temporal resolution has hampered imaging of mitral valve flows using magnetic resonance imaging (MRI). A novel phase contrast MRI technique, phase contrast using phase train imaging (PCPTI), has been developed to address the high temporal resolution needs for imaging mitral valve flows. The PCPTI sequence provides the highest temporal resolution to-date (6 ms) for measuring in-plane and through-plane flow patterns, with each velocity component acquired in a separate breathhold. Tested on healthy human volunteers, comparison to a conventional retrogated PC-FLASH cine sequence showed reasonable agreement. Results from a more rigorous validation using digital particle image velocimetry technique will be presented. The technique will be demonstrated in vitro using a physiological flow phantom and a St. Jude Medical Masters Series prosthetic valve.

  7. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  8. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  9. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  10. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  11. Bi-maxillary advancement surgery: Technique, indications and results.

    PubMed

    Olivi, Pierre; Garcia, Claude

    2014-06-01

    Esthetic analysis of the face in some patients presenting a dental Class II can reveal the need for maxillo-mandibular advancement surgery. In these cases, mandibular advancement alone would provide a result which was satisfactory from the occlusal viewpoint but esthetically displeasing. Using bi-maxillary advancement, the impact of nasal volume is reduced and the nasolabial relationship is corrected. The sub-mandibular length is increased, thus creating a better-defined cervico-mental angle. This treatment technique involving a prior mandibular procedure has the advantage of restoring patients' dental occlusion while optimizing their facial esthetics.

  12. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  13. Advanced image reconstruction strategies for 4D prostate DCE-MRI: steps toward clinical practicality

    NASA Astrophysics Data System (ADS)

    Stinson, Eric G.; Borisch, Eric A.; Froemming, Adam T.; Kawashima, Akira; Young, Phillip M.; Warndahl, Brent A.; Grimm, Roger C.; Manduca, Armando; Riederer, Stephen J.; Trzasko, Joshua D.

    2015-09-01

    Dynamic contrast-enhanced (DCE) MRI is an important tool for the detection and characterization of primary and recurring prostate cancer. Advanced reconstruction strategies (e.g., sparse or low-rank regression) provide improved depiction of contrast dynamics and pharmacokinetic parameters; however, the high computation cost of reconstructing 4D (3D+time, 50+ frames) datasets typically inhibits their routine clinical use. Here, a novel alternating direction method-of-multipliers (ADMM) optimization strategy is described that enables these methods to be executed in ∠5 minutes, and thus within the standard clinical workflow. After overviewing the mechanics of this approach, high-performance implementation strategies will be discussed and demonstrated through clinical cases.

  14. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    SciTech Connect

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-06-15

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  15. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  16. Intraoperative MRI and functional mapping.

    PubMed

    Gasser, Thomas; Szelenyi, Andrea; Senft, Christian; Muragaki, Yoshihiro; Sandalcioglu, I Erol; Sure, Ulrich; Nimsky, Christopher; Seifert, Volker

    2011-01-01

    The integration of functional and anatomical data into neuronavigation is an established standard of care in many neurosurgical departments. Yet, this method has limitations as in most cases the data are acquired prior to surgery. Due to brain-shift the accurate presentation of functional as well as anatomical structures declines in the course of surgery. In consequence, the acquisition of information during surgery about the brain's current functional state is of specific interest. The advancement of imaging technologies (e.g. fMRI, MEG, Intraoperative Optical Intrinsic Signal Imaging--IOIS) and neurophysiological techniques and the advent of intraoperative MRI all had a major impact on neurosurgery. The combination of modalities such as neurophysiology and intraoperative MRI (ioMRI), as well as the acquisition of functional MRI during surgery (ifMRI) are in the focus of this work. Especially the technical aspects and safety issues are elucidated.

  17. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  18. MRI technique for the snapshot imaging of quantitative velocity maps using RARE.

    PubMed

    Shiko, G; Sederman, A J; Gladden, L F

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  19. MRI technique for the snapshot imaging of quantitative velocity maps using RARE

    NASA Astrophysics Data System (ADS)

    Shiko, G.; Sederman, A. J.; Gladden, L. F.

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  20. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  1. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  2. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI

    PubMed Central

    Martin, Allan R.; Aleksanderek, Izabela; Cohen-Adad, Julien; Tarmohamed, Zenovia; Tetreault, Lindsay; Smith, Nathaniel; Cadotte, David W.; Crawley, Adrian; Ginsberg, Howard; Mikulis, David J.; Fehlings, Michael G.

    2015-01-01

    Background A recent meeting of international imaging experts sponsored by the International Spinal Research Trust (ISRT) and the Wings for Life Foundation identified 5 state-of-the-art MRI techniques with potential to transform the field of spinal cord imaging by elucidating elements of the microstructure and function: diffusion tensor imaging (DTI), magnetization transfer (MT), myelin water fraction (MWF), MR spectroscopy (MRS), and functional MRI (fMRI). However, the progress toward clinical translation of these techniques has not been established. Methods A systematic review of the English literature was conducted using MEDLINE, MEDLINE-in-Progress, Embase, and Cochrane databases to identify all human studies that investigated utility, in terms of diagnosis, correlation with disability, and prediction of outcomes, of these promising techniques in pathologies affecting the spinal cord. Data regarding study design, subject characteristics, MRI methods, clinical measures of impairment, and analysis techniques were extracted and tabulated to identify trends and commonalities. The studies were assessed for risk of bias, and the overall quality of evidence was assessed for each specific finding using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Results A total of 6597 unique citations were identified in the database search, and after full-text review of 274 articles, a total of 104 relevant studies were identified for final inclusion (97% from the initial database search). Among these, 69 studies utilized DTI and 25 used MT, with both techniques showing an increased number of publications in recent years. The review also identified 1 MWF study, 11 MRS studies, and 8 fMRI studies. Most of the studies were exploratory in nature, lacking a priori hypotheses and showing a high (72%) or moderately high (20%) risk of bias, due to issues with study design, acquisition techniques, and analysis methods. The acquisitions for each

  3. Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients

    PubMed Central

    Ciritsis, Alexander; Truhn, Daniel; Hansen, Nienke L.; Otto, Jens; Kuhl, Christiane K.; Kraemer, Nils A.

    2016-01-01

    Object In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI) and a post-processing susceptibility gradient mapping algorithm (SGM) for visualization of iron loaded mesh implants in patients. Material and Methods Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm²) and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm²) with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists. Results On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely “sufficient”. Conclusion Both “positive contrast” techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient. PMID:27192201

  4. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  5. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  6. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  7. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  8. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    PubMed Central

    Mastropasqua, Rodolfo; Agnifili, Luca; Mattei, Peter A.; Caulo, Massimo; Fasanella, Vincenzo; Navarra, Riccardo; Mastropasqua, Leonardo; Marchini, Giorgio

    2015-01-01

    Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR) techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity) may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible. PMID:26167474

  9. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  10. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  11. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes

    PubMed Central

    Yue, James J.; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  12. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes.

    PubMed

    Yue, James J; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  13. [Research progress of techniques of 7 T MRI system in brain imaging].

    PubMed

    Lin, Lan; Hao, Dongmei; Bai, Yanping; Gao, Hongjian; Wu, Shuicai

    2013-10-01

    7 T high field magnetic resonance imaging (MRI) provides a useful tool for microscopic spatial resolution visualizing anatomy. In addition, it enables the observation and analysis of tissue metabolism and function. 7 T MRI is now developing fast both in its technology and in its potential prospective medical applications. This review introduces current applications and possible future developments of the 7 T MRI in the field of human brain imaging for clinical studies and practices.

  14. The origins of bioethics: advances in resuscitations techniques.

    PubMed

    Niebroj, L

    2008-12-01

    During the last years there has been an increasing interest in meta-bioethical issues. This turn in the research focus is regarded as a sign of the maturation of bioethics as a distinct area of an academic inquiry. The role of historic-philosophical reflection is often emphasized. It should be noted that there is a rather common agreement that the future of bioethics lies in the critical reflection on its past, in particular, on the very origins of this discipline. Sharing Caplan's opinion, advances in medicine technologies, especially the introduction of respirators and artificial heart machines, is considered as one of the main issues that started bioethics. Using methods of historical as well as meta-ethical research, this article aims at describing the role of advances in resuscitation techniques in the emergence of bioethics and at exploring how bioethical reflection has been shaped by technological developments. A brief historical analysis permits to say that there is a close bond between the emergence of bioethics and the introduction of sophisticated resuscitation technologies into medical practice. The meta-ethical reflection reveals that advances in resuscitation techniques not only initiated bioethics in the second half of the 20(th) century but influenced its evolution by (i) posing a question of justice in health care, (ii) altering commonly accepted ontological notions of human corporeality, and (iii) reconsidering the very purpose of medicine.

  15. Indications and general techniques for lasers in advanced operative laparoscopy.

    PubMed

    Dorsey, J H

    1991-09-01

    Lasers are but one of the several energy delivery systems used by the operative laparoscopist in the performance of advanced operative laparoscopy. Safety is a key factor in the selection of a laser because the tissue damage produced by this instrument is absolutely predictable. The surgeon must be totally familiar with the chosen wavelength and its tissue reaction if this safety factor is to be realized. Other instruments complement the use of lasers in advanced operative laparoscopy, and without thorough knowledge of all available techniques and instruments, the operative laparoscopist will not achieve the full potential of this specialty. It is beyond the scope of this issue on gynecologic laser surgery to present all of the useful nonlaser techniques. Suffice it to say that we often use laser, loop ligature, sutures, hemoclips, bipolar electricity, hydrodissection, and endocoagulation during the course of a day in the operating room and sometimes during one case. As enthusiasm for advanced operative laparoscopy grows and endoscopic capability increases, more complicated and prolonged surgical feats are reported. Radical hysterectomy and lymphadenectomy have been performed by the laparoscopic route, and endoscopic management of ovarian tumors also has been reported. At this moment, these must be viewed as "show and tell" procedures unsupported by statistics to demonstrate any advantage (or disadvantage) when compared with conventional surgical methods. The time required of advanced operative laparoscopy for any given procedure is certainly an important factor. Prolonged operative and anesthesia time certainly can negate the supposed benefit of small incisions and minimally invasive surgery. What goes on inside the abdomen is certainly the most important part of advanced operative laparoscopy. Good surgeons must recognize their own limitations and the limitations of available technology. The operative laparoscopist must know when to quit and institute a

  16. Realistic simulation of artefacts in diffusion MRI for validating post-processing correction techniques.

    PubMed

    Graham, Mark S; Drobnjak, Ivana; Zhang, Hui

    2016-01-15

    In this paper we demonstrate a simulation framework that enables the direct and quantitative comparison of post-processing methods for diffusion weighted magnetic resonance (DW-MR) images. DW-MR datasets are employed in a range of techniques that enable estimates of local microstructure and global connectivity in the brain. These techniques require full alignment of images across the dataset, but this is rarely the case. Artefacts such as eddy-current (EC) distortion and motion lead to misalignment between images, which compromise the quality of the microstructural measures obtained from them. Numerous methods and software packages exist to correct these artefacts, some of which have become de-facto standards, but none have been subject to rigorous validation. In the literature, improved alignment is assessed using either qualitative visual measures or quantitative surrogate metrics. Here we introduce a simulation framework that allows for the direct, quantitative assessment of techniques, enabling objective comparisons of existing and future methods. DW-MR datasets are generated using a process that is based on the physics of MRI acquisition, which allows for the salient features of the images and their artefacts to be reproduced. We apply this framework in three ways. Firstly we assess the most commonly used method for artefact correction, FSL's eddy_correct, and compare it to a recently proposed alternative, eddy. We demonstrate quantitatively that using eddy_correct leads to significant errors in the corrected data, whilst eddy is able to provide much improved correction. Secondly we investigate the datasets required to achieve good correction with eddy, by looking at the minimum number of directions required and comparing the recommended full-sphere acquisitions to equivalent half-sphere protocols. Finally, we investigate the impact of correction quality by examining the fits from microstructure models to real and simulated data. PMID:26549300

  17. Realistic simulation of artefacts in diffusion MRI for validating post-processing correction techniques.

    PubMed

    Graham, Mark S; Drobnjak, Ivana; Zhang, Hui

    2016-01-15

    In this paper we demonstrate a simulation framework that enables the direct and quantitative comparison of post-processing methods for diffusion weighted magnetic resonance (DW-MR) images. DW-MR datasets are employed in a range of techniques that enable estimates of local microstructure and global connectivity in the brain. These techniques require full alignment of images across the dataset, but this is rarely the case. Artefacts such as eddy-current (EC) distortion and motion lead to misalignment between images, which compromise the quality of the microstructural measures obtained from them. Numerous methods and software packages exist to correct these artefacts, some of which have become de-facto standards, but none have been subject to rigorous validation. In the literature, improved alignment is assessed using either qualitative visual measures or quantitative surrogate metrics. Here we introduce a simulation framework that allows for the direct, quantitative assessment of techniques, enabling objective comparisons of existing and future methods. DW-MR datasets are generated using a process that is based on the physics of MRI acquisition, which allows for the salient features of the images and their artefacts to be reproduced. We apply this framework in three ways. Firstly we assess the most commonly used method for artefact correction, FSL's eddy_correct, and compare it to a recently proposed alternative, eddy. We demonstrate quantitatively that using eddy_correct leads to significant errors in the corrected data, whilst eddy is able to provide much improved correction. Secondly we investigate the datasets required to achieve good correction with eddy, by looking at the minimum number of directions required and comparing the recommended full-sphere acquisitions to equivalent half-sphere protocols. Finally, we investigate the impact of correction quality by examining the fits from microstructure models to real and simulated data.

  18. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  19. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  20. A prospective fMRI-based technique for localising the epileptogenic zone in presurgical evaluation of epilepsy.

    PubMed

    Hunyadi, Borbála; Tousseyn, Simon; Dupont, Patrick; Van Huffel, Sabine; De Vos, Maarten; Van Paesschen, Wim

    2015-06-01

    There is growing evidence for the benefits of simultaneous EEG-fMRI as a non-invasive localising tool in the presurgical evaluation of epilepsy. However, many EEG-fMRI studies fail due to the absence of interictal epileptic discharges (IEDs) on EEG. Here we present an algorithm which makes use of fMRI as sole modality to localise the epileptogenic zone (EZ). Recent studies using various model-based or data-driven fMRI analysis techniques showed that it is feasible to find activation maps which are helpful in the detection of the EZ. However, there is lack of evidence that these techniques can be used prospectively, due to (a) their low specificity, (b) selecting multiple activation maps, or (c) a widespread epileptic network indicated by the selected maps. In the current study we present a method based on independent component analysis and a cascade of classifiers that exclusively detects a single map related to interictal epileptic brain activity. In order to establish the sensitivity and specificity of the proposed method, it was evaluated on a group of 18 EEG-negative patients with a single well-defined EZ and 13 healthy controls. The results show that our method provides maps which correctly indicate the EZ in several (N=4) EEG-negative cases but at the same time maintaining a high specificity (92%). We conclude that our fMRI-based approach can be used in a prospective manner, and can extend the applicability of fMRI to EEG-negative cases.

  1. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  2. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer

    PubMed Central

    Liu, Guo-Chen; Zhang, Xu; Xie, E.; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-01-01

    Abstract Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy. Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed. Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively. The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative. PMID:26632714

  3. Three-dimensional dosimetry of TomoTherapy by MRI-based polymer gel technique.

    PubMed

    Watanabe, Yoichi; Gopishankar, N

    2010-09-14

    Verification of the dose calculation model and the software used for treatment planning is an important step for accurate radiation delivery in radiation therapy. Using BANG3 polymer gel dosimeter with a 3 Tesla magnetic resonance imaging (MRI) scanner, we examined the accuracy of TomoTherapy treatment planning and radiation delivery. We evaluated one prostate treatment case and found the calculated three-dimensional (3D) dose distributions agree with the measured 3D dose distributions with an exception in the regions where the dose was much smaller (25% or less) than the maximum dose (2.5 Gy). The analysis using the gamma-index (3% dose difference and 3 mm distance-to-agreement) for a volume of 12 cm × 11 cm × 9 cm containing the planning target volume showed that the gamma values were smaller than unity for 53% of the voxels. Our measurement protocol and analysis tools can be easily applied to the evaluation of other newer complex radiation delivery techniques, such as intensity-modulated arc therapy, with a reasonably low financial investment.

  4. Acceleration and motion-correction techniques for high-resolution intravascular MRI

    PubMed Central

    Hegde, Shashank Sathyanarayana; Zhang, Yi; Bottomley, Paul A.

    2014-01-01

    Purpose High-resolution intravascular (IV) MRI is susceptible to degradation from physiological motion and requires high frame-rates for true endoscopy. Traditional cardiac-gating techniques compromise efficiency by reducing the effective scan rate. Here we test whether compressed sensing (CS) reconstruction and ungated motion-compensation employing projection shifting, could provide faster motion-suppressed, IVMRI. Theory and Methods CS reconstruction is developed for under-sampled Cartesian and radial imaging using a new IVMRI-specific cost function to effectively increase imaging speed. A new motion correction method is presented wherein individual IVMRI projections are shifted based on the IVMRI detector's intrinsic amplitude and phase properties. The methods are tested at 3T in fruit, human vessel specimens, and a rabbit aorta in vivo. Images are compared using Structural-Similarity and ‘Spokal-Variation’ indices. Results Although some residual artifacts persisted, CS acceleration and radial motion compensation strategies reduced motion artefact in vitro and in vivo, allowing effective accelerations of up to eightfold at 200-300μm resolution. Conclusion 3T IVMRI detectors are well-suited to CS and motion correction strategies based on their intrinsic radially-sparse sensitivity profiles and high signal-to-noise ratios. While benefits of faster free-breathing high-resolution IVMRI and reduced motion sensitivity are realized, there are costs to spatial resolution, and some motion artifacts may persist. PMID:25163750

  5. BASIC PRINCIPLES AND CONCEPTS UNDERLYING RECENT ADVANCES IN MRI OF THE DEVELOPING BRAIN

    PubMed Central

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-01-01

    Over the last decade, magnetic resonance imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences and 3T field strength magnets allow high quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfusion and volumetric MR imaging. These techniques provide quantitative assessment and novel insight of both brain development and brain injury in the immature brain. Knowledge of normal developmental changes in quantitative MR values is also essential to interpret pathologic cases. PMID:20109968

  6. Recent advances in UHV techniques for particle accelerators

    SciTech Connect

    M. G. Rao

    1995-01-01

    The ultrahigh vacuum (UHV) requirements for storage rings and accelerators, and the development of the science and technology of UHV for particle accelerators and magnetic fusion devices have been recently reviewed by N.B. Mistry and H.F. Dylla respectively. In this paper, the latest developments in the advancement of UHV techniques for the vacuum integrity of Continuous Electron Beam Accelerator Facility (CEBAF) and for successfully dealing with the synchrotron radiation related beam line vacuum problem encountered in the design of the SSC are reviewed: the review includes developments in extreme sensitivity He leak detection technique based on the dynamic adsorption and desorption of He, operation of ionization gauges at Lhe temperatures, metal sponges for the effective cryopumping of H{sup 2} and He to pressures better than 10{sup -14} torr, and low cost and high He sensitivity RGA's. The details of a new extreme sensitivity He leak detector system are also discussed here.

  7. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  8. Advanced bronchoscopic techniques in diagnosis and staging of lung cancer.

    PubMed

    Zaric, Bojan; Stojsic, Vladimir; Sarcev, Tatjana; Stojanovic, Goran; Carapic, Vladimir; Perin, Branislav; Zarogoulidis, Paul; Darwiche, Kaid; Tsakiridis, Kosmas; Karapantzos, Ilias; Kesisis, Georgios; Kougioumtzi, Ioanna; Katsikogiannis, Nikolaos; Machairiotis, Nikolaos; Stylianaki, Aikaterini; Foroulis, Christophoros N; Zarogoulidis, Konstantinos

    2013-09-01

    The role of advanced brochoscopic diagnostic techniques in detection and staging of lung cancer has steeply increased in recent years. Bronchoscopic imaging techniques became widely available and easy to use. Technical improvement led to merging in technologies making autofluorescence or narrow band imaging incorporated into one bronchoscope. New tools, such as autofluorescence imagining (AFI), narrow band imaging (NBI) or fuji intelligent chromo endoscopy (FICE), found their place in respiratory endoscopy suites. Development of endobronchial ultrasound (EBUS) improved minimally invasive mediastinal staging and diagnosis of peripheral lung lesions. Linear EBUS proven to be complementary to mediastinoscopy. This technique is now available in almost all high volume centers performing bronchoscopy. Radial EBUS with mini-probes and guiding sheaths provides accurate diagnosis of peripheral pulmonary lesions. Combining EBUS guided procedures with rapid on site cytology (ROSE) increases diagnostic yield even more. Electromagnetic navigation technology (EMN) is also widely used for diagnosis of peripheral lesions. Future development will certainly lead to new improvements in technology and creation of new sophisticated tools for research in respiratory endoscopy. Broncho-microscopy, alveoloscopy, optical coherence tomography are some of the new research techniques emerging for rapid technological development.

  9. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  10. Delineation of extensor tendon of the hand by MRI: usefulness of "soap-bubble" mip processing technique.

    PubMed

    Tsujimoto, Yumiko; Ryoke, Koji; Yamagami, Nobuo; Uchio, Yuji; Tanaka, Shigeko

    2015-01-01

    To evaluate the capability of the "Soap-Bubble" maximum intensity projection (MIP) processing technique in visualisation of extensor tendons of the hand, 36 intact subjects and seven patients with surgically confirmed extensor tendon rupture were examined. Three-dimensional T1-weighted turbo spin echo (3DT1TFE) MRI was performed using a sensitivity encoding flex coil, followed by Soap-Bubble MIP processing. For patients with extensor tendon ruptures, MRI findings and intraoperative findings were compared. As results, with only 3DT1TFE sequence, the entire extensor tendons that run along the arch of the hand were not shown on one image, but were visualised with addition of Soap-Bubble MIP. Although delineation of the extensor pollicis longus was poor in 27/43 subjects, it was much improved by the combination of water-suppression technique. MRI findings and intraoperative findings agreed in all patients. Soap-Bubble MIP processing with addition of water-suppression technique is considered useful for visualising the extensor tendons of the hand.

  11. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  12. Neurocysticercosis: evaluation with advanced magnetic resonance techniques and atypical forms.

    PubMed

    do Amaral, Lázaro Luís Faria; Ferreira, Rafael Martins; da Rocha, Antônio José; Ferreira, Nelson Paes Diniz Fortes

    2005-04-01

    Neurocysticercosis (NCC) is the most common helminthic infection of the central nervous system, but its diagnosis remains difficult. The purpose of this article is to perform a critical analysis of the literature and show our experience in the evaluation of NCC. We discuss the advanced MR technique applications such as diffusion and perfusion-weighted imaging, spectroscopy, cisternography with FLAIR, and supplemental O2 and 3D-CISS. The typical manifestations of NCC are described; emphasis is given to the unusual presentations. The atypical forms of neurocysticercosis were divided into: intraventricular, subarachnoid, spinal, orbital, and intraparenchymatous. Special attention was also given to reactivation of previously calcified lesions and neurocysticercosis associated with mesial temporal sclerosis.

  13. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  14. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  15. A technique to reduce motion artifact for externally triggered cine-MRI(EC-MRI) based on detecting the onset of the articulated word with spectral analysis.

    PubMed

    Shimada, Yasuhiro; Nishimoto, Hironori; Kochiyama, Takanori; Fujimoto, Ichiro; Mano, Hiroaki; Masaki, Shinobu; Murase, Kenya

    2012-01-01

    One issue in externally triggered cine-magnetic resonance imaging (EC-MRI) for the dynamic observation of speech organs is motion artifact in the phase-encoding direction caused by unstable repetitions of speech during data acquisition. We propose a technique to reduce such artifact by rearranging the k-space data used to reconstruct MR images based on the analysis of recorded speech sounds. We recorded the subject's speech sounds during EC-MRI and used post hoc acoustical processing to reduce scanning noise and detect the onset of each utterance based on analysis of the recorded sounds. We selected each line of k-space from several data acquisition sessions and rearranged them to reconstruct a new series of dynamic MR images according to the analyzed time of utterance onset. Comparative evaluation showed significant reduction in motion artifact signal in the dynamic MR images reconstructed by the proposed method. The quality of the reconstructed images was sufficient to observe the dynamic aspects of speech production mechanisms.

  16. Multiple advanced surgical techniques to treat acquired seminal duct obstruction

    PubMed Central

    Jiang, Hong-Tao; Yuan, Qian; Liu, Yu; Liu, Zeng-Qin; Zhou, Zhen-Yu; Xiao, Ke-Feng; Yang, Jiang-Gen

    2014-01-01

    The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery) for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months). Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12) semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml−1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51), and the patency rate and natural pregnancy rate were 89.4% (42/47) and 38.1% (16/42), respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved. PMID:25337841

  17. A novel anthropomorphic flow phantom for the quantitative evaluation of prostate DCE-MRI acquisition techniques

    NASA Astrophysics Data System (ADS)

    Knight, Silvin P.; Browne, Jacinta E.; Meaney, James F.; Smith, David S.; Fagan, Andrew J.

    2016-10-01

    A novel anthropomorphic flow phantom device has been developed, which can be used for quantitatively assessing the ability of magnetic resonance imaging (MRI) scanners to accurately measure signal/concentration time-intensity curves (CTCs) associated with dynamic contrast-enhanced (DCE) MRI. Modelling of the complex pharmacokinetics of contrast agents as they perfuse through the tumour capillary network has shown great promise for cancer diagnosis and therapy monitoring. However, clinical adoption has been hindered by methodological problems, resulting in a lack of consensus regarding the most appropriate acquisition and modelling methodology to use and a consequent wide discrepancy in published data. A heretofore overlooked source of such discrepancy may arise from measurement errors of tumour CTCs deriving from the imaging pulse sequence itself, while the effects on the fidelity of CTC measurement of using rapidly-accelerated sequences such as parallel imaging and compressed sensing remain unknown. The present work aimed to investigate these features by developing a test device in which ‘ground truth’ CTCs were generated and presented to the MRI scanner for measurement, thereby allowing for an assessment of the DCE-MRI protocol to accurately measure this curve shape. The device comprised a four-pump flow system wherein CTCs derived from prior patient prostate data were produced in measurement chambers placed within the imaged volume. The ground truth was determined as the mean of repeat measurements using an MRI-independent, custom-built optical imaging system. In DCE-MRI experiments, significant discrepancies between the ground truth and measured CTCs were found for both tumorous and healthy tissue-mimicking curve shapes. Pharmacokinetic modelling revealed errors in measured K trans, v e and k ep values of up to 42%, 31%, and 50% respectively, following a simple variation of the parallel imaging factor and number of signal averages in the acquisition

  18. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  19. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  20. [Total body MRI in early detection of bone metastasis and its indication in comparison to bone scan and other imaging techniques].

    PubMed

    Luna, Antonio; Vilanova, Joan C; Alcalá Mata, Lidia

    2015-04-01

    Bone metastases are a recognized prognostic factor in patients with prostate cancer. Currently, Tc99 bone scan is the most frequently used imaging technique for their detection, showing a high sensitivity but a limited specificity. Thus, new morphological and mainly functional imaging techniques based on PET and MRI, or hybrid techniques such as PET-CT or PET-MRI have been introduced to improve metastases detection, estimation of total tumor load and for therapeutic monitoring. In this clinical scenario, total body MRI has arisen as a very promising technique in detection and therapeutic monitoring of bone metastases of prostate cancer, because it neither uses ionizing radiation nor needs the administration of contrast media. The incorporation of MR diffusion to the morphologic total body MRI protocols provides functional information, improving the sensitivity in oncological lesions detection in general and osteolytic bone metastases of PCa in particular. Its integration in protocols with morphological sequences and its quantification through ADC maps enables us to better understand metastatic bone disease patterns and their changes with different therapies. Total body D MRI enables the early classification of the response to treatment with evident advantages over other imaging techniques and the purely morphological approach with MRI. In any case, prospective and cost-effectiveness studies are necessary to establish the role of total-body D MRI in the management of patients with PCa.

  1. The improvement of ICA with projection technique in multitask fMRI data analysis

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chen, Kewei; Yao, Li; Long, Zhiying

    2010-03-01

    The existence of the potential non-independency between task-related components in multi-task functional magnetic resonance imaging (fMRI) studies limits the general application of Independent Component Analysis (ICA) method. The ICA with projection (ICAp) method proposed by Long (2009, HBM) demonstrated its capacity to solve the interaction among task-related components of multi-task fMRI data. The basic idea of projection is to remove the influence of the uninteresting tasks through projection in order to extract one interesting task-related component. However, both the stimulus paradigm of each task and the homodynamic response function (HRF) are essential for the projection. Due to the noises in the data and the variability of the HRF across the voxels and subjects, the ideal time course of each task for projection would be deviant from the true value, which might worsen the ICAp results. In order to make the time courses for projection closer to the true value, the iterative ICAp is proposed in this study. The iterative ICAp is based on the assumption that the task-related time courses extracted from the fMRI data by ICAp is more approximate to the true value than the ideal reference function. Simulated experiment proved that both the spatial detection power and the temporal accuracy of time course were increased for each task-related component. Moreover, the results of the real two-task fMRI data were also improved by the iterative ICAp method.

  2. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Chang, Yeun-Chung; Huang, Chiun-Sheng; Liu, Yi-Jui; Chen, Jyh-Horng; Lu, Yen-Shen; Tseng, Wen-Yih I.

    2004-08-01

    The aim of this study was to evaluate angiogenic compositions and tumour response in the course of neoadjuvant chemotherapy in patients with locally advanced breast cancer (LABC) using dynamic contrast-enhanced (DCE) MRI. Thirteen patients with LABC underwent serial DCE MRI during the course of chemotherapy. DCE MRI was quantified using a two-compartment model on a pixel-by-pixel basis. Analysis of parametric histograms of amplitude, exchange rate kout and peak enhancement over the whole tumour was performed. The distribution patterns of histograms were correlated with the tumour response. Initial kurtosis and standard deviation of amplitude before chemotherapy correlated with tumour response, r = 0.63 and r = 0.61, respectively. Comparing the initial values with the values after the first course of chemotherapy, tumour response was associated with a decrease in standard deviation of amplitude (r = 0.79), and an increase in kurtosis and a decrease in standard deviation of kout (r = 0.57 and 0.57, respectively). Comparing the initial values with the values after completing the chemotherapy, tumours with better response were associated with an increase in kurtosis (r = 0.62), a decrease in mean (r = 0.84) and standard deviation (r = 0.77) of amplitude, and a decrease in mean of peak enhancement (r = 0.71). Our results suggested that tumours with better response tended to alter their internal compositions from heterogeneous to homogeneous distributions and a decrease in peak enhancement after chemotherapy. Serial analyses of parametric histograms of DCE MRI-derived angiogenic parameters are potentially useful to monitor the response of angiogenic compositions of a tumour throughout the course of chemotherapy, and might predict tumour response early in the course.

  3. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  4. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted. PMID:27483933

  5. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted.

  6. The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the Advanced Multimodality Image Guided Operating suite

    PubMed Central

    Zaidi, Hasan A.; De Los Reyes, Kenneth; Barkhoudarian, Garni; Litvack, Zachary N.; Bi, Wenya Linda; Rincon-Torroella, Jordina; Mukundan, Srinivasan; Dunn, Ian F.; Laws, Edward R.

    2016-01-01

    Objective Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. Methods The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. Results Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). Conclusions Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined. PMID:26926058

  7. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  8. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  9. Achieving miniature sensor systems via advanced packaging techniques

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Bobier, Kevin; Demmin, Jeffrey

    2005-05-01

    Demands for miniaturized networked sensors that can be deployed in large quantities dictate that the packages be small and cost effective. In order to accomplish these objectives, system developers generally apply advanced packaging techniques to proven systems. A partnership of Nova Engineering and Tessera begins with a baseline of Nova's Unattended Ground Sensors (UGS) technology and utilizes Tessera's three-dimensional (3D) Chip-Scale Packaging (CSP), Multi-Chip Packaging (MCP), and System-in-Package (SIP) innovations to enable novel methods for fabricating compact, vertically integrated sensors utilizing digital, RF, and micro-electromechanical systems (MEMS) devices. These technologies, applied to a variety of sensors and integrated radio architectures, enable diverse multi-modal sensing networks with wireless communication capabilities. Sensors including imaging, accelerometers, acoustical, inertial measurement units, and gas and pressure sensors can be utilized. The greatest challenge to high density, multi-modal sensor networks is the ability to test each component prior to integration, commonly called Known Good Die (KGD) testing. In addition, the mix of multi-sourcing and high technology magnifies the challenge of testing at the die level. Utilizing Tessera proprietary CSP, MCP, and SIP interconnection methods enables fully testable, low profile stacking to create multi-modal sensor radios with high yield.

  10. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  11. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  12. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  13. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants.

  14. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  15. Algorithm for quantifying advanced carotid artery atherosclerosis in humans using MRI and active contours

    NASA Astrophysics Data System (ADS)

    Adams, Gareth; Vick, G. W., III; Bordelon, Cassius; Insull, William; Morrisett, Joel

    2002-05-01

    A new algorithm for measuring carotid artery volumes and estimating atherosclerotic plaque volumes from MRI images has been developed and validated using pressure-perfusion-fixed cadaveric carotid arteries. Our method uses an active contour algorithm with the generalized gradient vector field force as the external force to localize the boundaries of the artery on each MRI cross-section. Plaque volume is estimated by an automated algorithm based on estimating the normal wall thickness for each branch of the carotid. Triplicate volume measurements were performed by a single observer on thirty-eight pairs of cadaveric carotid arteries. The coefficient of variance (COV) was used to quantify measurement reproducibility. Aggregate volumes were computed for nine contiguous slices bounding the carotid bifurcation. The median (mean +/- SD) COV for the 76 aggregate arterial volumes was 0.93% (1.47% +/- 1.52%) for the lumen volume, 0.95% (1.06% +/- 0.67%) for the total artery volume, and 4.69% (5.39% +/- 3.97%) for the plaque volume. These results indicate that our algorithm provides repeatable measures of arterial volumes and a repeatable estimate of plaque volume of cadaveric carotid specimens through analysis of MRI images. The algorithm also significantly decreases the amount of time necessary to generate these measurements.

  16. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  17. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  18. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  19. Functional MRI and Outcome in Traumatic Coma

    PubMed Central

    Giacino, Joseph T.; Wu, Ona

    2013-01-01

    Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial-spin labeled (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI and ASL and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation. PMID:23881623

  20. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  1. Visual exploratory analysis of DCE-MRI data in breast cancer based on novel nonlinear dimensional data reduction techniques

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Anke; Lespinats, Sylvain; Steinbrücker, Frank; Saalbach, Axel; Schlossbauer, Thomas; Barbu, Adrian

    2009-04-01

    Visualization of multi-dimensional data sets becomes a critical and significant area in modern medical image processing. To analyze such high dimensional data, novel nonlinear embedding approaches become increasingly important to show dependencies among these data in a two- or three-dimensional space. This paper investigates the potential of novel nonlinear dimensional data reduction techniques and compares their results with proven nonlinear techniques when applied to the differentiation of malignant and benign lesions described by high-dimensional data sets arising from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Two important visualization modalities in medical imaging are presented: the mapping on a lower-dimensional data manifold and the image fusion.

  2. Recent advances in biosensor techniques for environmental monitoring.

    PubMed

    Rogers, K R

    2006-05-24

    Biosensors for environmental applications continue to show advances and improvements in areas such as sensitivity, selectivity and simplicity. In addition to detecting and measuring specific compounds or compound classes such as pesticides, hazardous industrial chemicals, toxic metals, and pathogenic bacteria, biosensors and bioanalytical assays have been designed to measure biological effects such as cytotoxicity, genotoxicity, biological oxygen demand, pathogenic bacteria, and endocrine disruption effects. This article is intended to discuss recent advances in the area of biosensors for environmental applications.

  3. Advanced Millimeter-Wave Security Portal Imaging Techniques

    SciTech Connect

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  4. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging.

    PubMed

    Kim, Jinsuh; Wu, Yin; Guo, Yingkun; Zheng, Hairong; Sun, Phillip Zhe

    2015-01-01

    Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly detects dilute labile protons via bulk water signal changes following selective saturation of exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved owing to contributions from multiple domains, including the development of CEST mathematical models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system that underlies the apparent CEST-weighted effect, however, is complex. The experimentally measurable CEST effect depends not only on parameters such as CEST agent concentration, pH and temperature, but also on relaxation rate, magnetic field strength and more importantly, experimental parameters including repetition time, RF irradiation amplitude and scheme, and image readout. Thorough understanding of the underlying CEST system using qCEST analysis may augment the diagnostic capability of conventional imaging. In this review, we provide a concise explanation of CEST acquisition methods and processing algorithms, including their advantages and limitations, for optimization and quantification of CEST MRI experiments. PMID:25641791

  5. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI.

    PubMed

    Gao, Ying; Goodnough, Candida L; Erokwu, Bernadette O; Farr, George W; Darrah, Rebecca; Lu, Lan; Dell, Katherine M; Yu, Xin; Flask, Chris A

    2014-08-01

    Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.

  6. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  7. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  8. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  9. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  10. New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images

    PubMed Central

    Ferguson, Karen J.; Chappell, Francesca M.; Wardlaw, Joanna M.

    2010-01-01

    Objective Brain tissue segmentation by conventional threshold-based techniques may have limited accuracy and repeatability in older subjects. We present a new multispectral magnetic resonance (MR) image analysis approach for segmenting normal and abnormal brain tissue, including white matter lesions (WMLs). Methods We modulated two 1.5T MR sequences in the red/green colour space and calculated the tissue volumes using minimum variance quantisation. We tested it on 14 subjects, mean age 73.3 ± 10 years, representing the full range of WMLs and atrophy. We compared the results of WML segmentation with those using FLAIR-derived thresholds, examined the effect of sampling location, WML amount and field inhomogeneities, and tested observer reliability and accuracy. Results FLAIR-derived thresholds were significantly affected by the location used to derive the threshold (P = 0.0004) and by WML volume (P = 0.0003), and had higher intra-rater variability than the multispectral technique (mean difference ± SD: 759 ± 733 versus 69 ± 326 voxels respectively). The multispectral technique misclassified 16 times fewer WMLs. Conclusion Initial testing suggests that the multispectral technique is highly reproducible and accurate with the potential to be applied to routinely collected clinical MRI data. Electronic supplementary material The online version of this article (doi:10.1007/s00330-010-1718-6) contains supplementary material, which is available to authorized users. PMID:20157814

  11. Delineation of Gross Tumor Volume (GTV) for Radiation Treatment Planning of Locally Advanced Rectal Cancer Using Information From MRI or FDG-PET/CT: A Prospective Study

    SciTech Connect

    Braendengen, Morten; Hansson, Karl; Radu, Calin; Siegbahn, Albert; Jacobsson, Hans; Glimelius, Bengt

    2011-11-15

    Purpose: Accurate delineation of target volumes is important to maximize radiation dose to the tumor and minimize it to nontumor tissue. Computed tomography (CT) and magnetic resonance imaging (MRI) are standard imaging modalities in rectal cancer. The aim was to explore whether functional imaging with F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET), combined with CT (FDG-PET/CT) gives additional information to standard pretreatment evaluation and changes the shape and size of the gross tumor volume (GTV). Methods and Materials: From 2007 to 2009, 77 consecutive patients with locally advanced rectal cancer were prospectively screened for inclusion in the study at two university hospitals in Sweden, and 68 patients were eligible. Standard GTV was delineated using information from clinical examination, CT, and MRI (GTV-MRI). Thereafter, a GTV-PET was defined in the fused PET-CT, and the target volume delineations were compared for total volume, overlap, and mismatch. Pathologic uptake suspect of metastases was also registered. Results: The median volume of GTV-MRI was larger than that of GTV-PET: 111 cm{sup 3} vs. 87 cm{sup 3} (p < 0.001). In many cases, the GTV-MRI contained the GTV defined on the PET/CT images as subvolumes, but when a GTV total was calculated after the addition of GTV-PET to GTV-MRI, the volume increased, with median 11% (range, 0.5-72%). New lesions were seen in 15% of the patients for whom PET/CT was used. Conclusions: FDG-PET/CT facilitates and adds important information to the standard delineation procedure of locally advanced rectal cancer, mostly resulting in a smaller GTV, but a larger total GTV using the union of GTV-MRI and GTV-PET. New lesions were sometimes seen, potentially changing the treatment strategy.

  12. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  13. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques

    PubMed Central

    Oedit, Amar; Ramautar, Rawi; Hankemeier, Thomas

    2016-01-01

    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid‐liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre‐concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012–November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed. PMID:26864699

  14. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  15. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI

    PubMed Central

    Tozer, Daniel J; Schmierer, Klaus; Chard, Declan T; Anderson, Valerie M; Altmann, Daniel R; Miller, David H; Wheeler-Kingshott, Claudia AM

    2013-01-01

    Background: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. Objective: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. Methods: We obtained conventional PDw and T2w images from 10 patients with relapsing–remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Results: Our study’s ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. Conclusion: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished. PMID:23037551

  16. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  17. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  18. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  19. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  20. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  1. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  2. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  3. Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics.

    PubMed

    Ngen, Ethel J; Bar-Shir, Amnon; Jablonska, Anna; Liu, Guanshu; Song, Xiaolei; Ansari, Roxana; Bulte, Jeff W M; Janowski, Miroslaw; Pearl, Monica; Walczak, Piotr; Gilad, Assaf A

    2016-09-01

    Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically. PMID:27398883

  4. Single Molecule Techniques for Advanced in situ Hybridization

    SciTech Connect

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E

    2003-02-03

    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  5. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  6. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  7. Advanced imaging techniques in the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma

    PubMed Central

    Yang, Ke; Zhang, Xiao-Ming; Yang, Lin; Xu, Hao; Peng, Juan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization (TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusion-weighted magnetic resonance imaging (MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusion-weighted imaging, blood oxygen level-dependent MRI, positron emission tomography (PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed. PMID:27239110

  8. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  9. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-01-01

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions. PMID:27645770

  10. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  11. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion.

  12. What advances in microscopy are required for combined MRI and optical functional brain imaging? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kleinfeld, David

    2016-03-01

    This overview talk will focus on forward-looking scientific needs and physical limits to images of neuronal processes. The challenge in nervous systems is that the basic unit for "switching" events in the nervous system occurs on the one micrometer scale of synaptic spines, while computations involve communication between individual neurons across the full expanse of cortex, which is ten millimeters for mouse cortex. I will address hoped-for advances in optical microscopy, within the context of existing and proposed contrast mechanisms of neuronal function, that span the four orders of magnitude of length scales for neuronal processing

  13. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  14. Further fMRI Validation of the Visual Half Field Technique as an Indicator of Language Laterality: A Large-Group Analysis

    ERIC Educational Resources Information Center

    Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc

    2011-01-01

    The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…

  15. Advances in dental veneers: materials, applications, and techniques.

    PubMed

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  16. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  17. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  18. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  19. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  20. Advanced microscopy techniques resolving complex precipitates in steels

    NASA Astrophysics Data System (ADS)

    Saikaly, W.; Soto, R.; Bano, X.; Issartel, C.; Rigaut, G.; Charaï, A.

    1999-06-01

    Scanning electron microscopy as well as analytical transmission electron microscopy techniques such as high resolution, electron diffraction, energy dispersive X-ray spectrometry (EDX), parallel electron energy loss spectroscopy (PEELS) and elemental mapping via a Gatan Imaging Filter (GIF) have been used to study complex precipitation in commercial dual phase steels microalloyed with titanium. Titanium nitrides, titanium carbosulfides, titanium carbonitrides and titanium carbides were characterized in this study. Both carbon extraction replicas and thin foils were used as sample preparation techniques. On both the microscopic and nanometric scales, it was found that a large amount of precipitation occurred heterogeneously on already existing inclusions/precipitates. CaS inclusions (1 to 2 μm), already present in liquid steel, acted as nucleation sites for TiN precipitating upon the steel's solidification. In addition, TiC nucleated on existing smaller TiN (around 30 to 50 nm). Despite the complexity of such alloys, the statistical analysis conducted on the non-equilibrium samples were found to be in rather good agreement with the theoretical equilibrium calculations. Heterogeneous precipitation must have played a role in bringing these results closer together.

  1. Comparison of three advanced chromatographic techniques for cannabis identification.

    PubMed

    Debruyne, D; Albessard, F; Bigot, M C; Moulin, M

    1994-01-01

    The development of chromatography technology, with the increasing availability of easier-to-use mass spectrometers combined with gas chromatography (GC), the use of diode-array or programmable variable-wavelength ultraviolet absorption detectors in conjunction with high-performance liquid chromatography (HPLC), and the availability of scanners capable of reading thin-layer chromatography (TLC) plates in the ultraviolet and visible regions, has made for easier, quicker and more positive identification of cannabis samples that standard analytical laboratories are occasionally required to undertake in the effort to combat drug addiction. At laboratories that do not possess the technique of GC combined with mass spectrometry, which provides an irrefutable identification, the following procedure involving HPLC or TLC techniques may be used: identification of the chromatographic peaks corresponding to each of the three main cannabis constituents-cannabidiol (CBD), delta-9-tetrahydrocannabinol (delta-9-THC) and cannabinol (CBN)-by comparison with published data in conjunction with a specific absorption spectrum for each of those constituents obtained between 200 and 300 nm. The collection of the fractions corresponding to the three major cannabinoids at the HPLC system outlet and the cross-checking of their identity in the GC process with flame ionization detection can further corroborate the identification and minimize possible errors due to interference.

  2. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  3. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  4. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  5. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol.

  6. MRI of the cranial nerves--more than meets the eye: technical considerations and advanced anatomy.

    PubMed

    Casselman, Jan; Mermuys, Koen; Delanote, Joost; Ghekiere, Johan; Coenegrachts, Kenneth

    2008-05-01

    Magnetic resonance (MR) imaging is the method of choice to evaluate the cranial nerves. Although the skull base foramina can be seen on CT, the nerves themselves can only be visualized in detail on MR. To see the different segments of nerves I to XII, the right sequences must be used. Detailed clinical information is needed by the radiologist so that a tailored MR study can be performed. In this article, MR principles for imaging of the cranial nerves are discussed. The basic anatomy of the cranial nerves and the cranial nerve nuclei as well as their central connections are discussed and illustrated briefly. The emphasis is on less known or more advanced extra-axial anatomy, illustrated with high-resolution MR images.

  7. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained

  8. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  9. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  10. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  11. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  12. Phase stability in fMRI time series: effect of noise regression, off-resonance correction and spatial filtering techniques.

    PubMed

    Hagberg, Gisela E; Bianciardi, Marta; Brainovich, Valentina; Cassara, Antonino Mario; Maraviglia, Bruno

    2012-02-15

    Although the majority of fMRI studies exploit magnitude changes only, there is an increasing interest regarding the potential additive information conveyed by the phase signal. This integrated part of the complex number furnished by the MR scanners can also be used for exploring direct detection of neuronal activity and for thermography. Few studies have explicitly addressed the issue of the available signal stability in the context of phase time-series, and therefore we explored the spatial pattern of frequency specific phase fluctuations, and evaluated the effect of physiological noise components (heart beat and respiration) on the phase signal. Three categories of retrospective noise reduction techniques were explored and the temporal signal stability was evaluated in terms of a physiologic noise model, for seven fMRI measurement protocols in eight healthy subjects at 3T, for segmented CSF, gray and white matter voxels. We confirmed that for most processing methods, an efficient use of the phase information is hampered by the fact that noise from physiological and instrumental sources contributes significantly more to the phase than to the magnitude instability. Noise regression based on the phase evolution of the central k-space point, RETROICOR, or an orthonormalized combination of these were able to reduce their impact, but without bringing phase stability down to levels expected from the magnitude signal. Similar results were obtained after targeted removal of scan-to-scan variations in the bulk magnetic field by the dynamic off-resonance in k-space (DORK) method and by the temporal off-resonance alignment of single-echo time series technique (TOAST). We found that spatial high-pass filtering was necessary, and in vivo a Gaussian filter width of 20mm was sufficient to suppress physiological noise and bring the phase fluctuations to magnitude levels. Stronger filters brought the fluctuations down to levels dictated by thermal noise contributions, and for 62

  13. Silicon and germanium crystallization techniques for advanced device applications

    NASA Astrophysics Data System (ADS)

    Liu, Yaocheng

    Three-dimensional architectures are believed to be one of the possible approaches to reduce interconnect delay in integrated circuits. Metal-induced crystallization (MIC) can produce reasonably high-quality Si crystals with low-temperature processing, enabling the monolithic integration of multilevel devices and circuits. A two-step MIC process was developed to make single-crystal Si pillars on insulator by forming a single-grain NiSi2 template in the first step and crystallizing the amorphous Si by NiSi2-mediated solid-phase epitaxy (SPE) in the second step. A transmission electron microscopy study clearly showed the quality improvement over the traditional MIC process. Another crystallization technique developed is rapid melt growth (RMG) for the fabrication of Ge crystals and Ge-on-insulator (GeOI) substrates. Ge is an important semiconductor with high carrier mobility and excellent optoelectronic properties. GeOI substrates are particularly desired to achieve high device performances and to solve the process problems traditionally associated with bulk Ge wafers. High-quality Ge crystals and GeOI structures were grown on Si substrates using the novel rapid melt growth technique that integrates the key elements in Czochralski growth---seeding, melting, epitaxy and defect necking. Growth velocity and nucleation rate were calculated to determine the RMG process window. Self-aligned microcrucibles were created to hold the Ge liquid during the RMG annealing. Material characterization showed a very low defect density in the RMG GeOI structures. The Ge films are relaxed, with their orientations controlled by the Si substrates. P-channel MOSFETs and p-i-n photodetectors were fabricated with the GeOI substrates. The device properties are comparable to those obtained with bulk Ge wafers, indicating that the RMG GeOI substrates are well suited for device fabrication. A new theory, growth-induced barrier lowering (GIBL), is proposed to understand the defect generation in

  14. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  15. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  16. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  17. Recent advances in techniques for tsetse-fly control*

    PubMed Central

    MacLennan, K. J. R.

    1967-01-01

    With the advent of modern persistent insecticides, it has become possible to utilize some of the knowledge that has accumulated on the ecology and bionomics of Glossina and to devise more effective techniques for the control and eventual extermination of these species. The present article, based on experience of the tsetse fly problem in Northern Nigeria, points out that the disadvantages of control techniques—heavy expenditure of money and manpower and undue damage to the biosystem—can now largely be overcome by basing the application of insecticides on knowledge of the habits of the particular species of Glossina in a particular environment. Two factors are essential to the success of a control project: the proper selection of sites for spraying (the concept of restricted application) and the degree of persistence of the insecticide used. Reinfestation from within or outside the project area must also be taken into account. These and other aspects are discussed in relation to experience gained from a successful extermination project carried out in the Sudan vegetation zone and from present control activities in the Northern Guinea vegetation zone. PMID:5301739

  18. Advanced pattern-matching techniques for autonomous acquisition

    NASA Astrophysics Data System (ADS)

    Narendra, P. M.; Westover, B. L.

    1981-01-01

    The key objective of this effort is the development of pattern-matching algorithms which can impart autonomous acquisition capability to precision-guided munitions such as Copperhead and Hellfire. Autonomous acquisition through pattern matching holds the promise of eliminating laser designation and enhancing fire power by multiple target prioritization. The pattern-matching approach being developed under this program is based on a symbolic pattern-matching framework, which is suited for the autonomous acquisition scenario. It is based on matching a symbolic representation derived from the two images, and it can accommodate the stringent pattern-matchine criteria established by the scenario: enormous differences in the scene perspective, aspect and range between the two sensors, differences in sensor characteristics and illumination, and scene changes such as target motion and obscuration from one view point ot the other. This report contains a description of an efficient branch-and-bound technique for symbolic pattern matching. Also presented are the results of applying a simulation of the algorithm to pairs of FLIR images of military vehicles in cluttered environments as well as pairs of images from different sensors (FLIR and silicon TV). The computational requirements are analyzed toward real-time implementation, and avenues of future work are recommended.

  19. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  20. A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas

    NASA Astrophysics Data System (ADS)

    Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth

  1. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  2. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  3. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  4. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  5. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  6. Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques.

    PubMed

    Hu, Huaifei; Gao, Zhiyong; Liu, Liman; Liu, Haihua; Gao, Junfeng; Xu, Shengzhou; Li, Wei; Huang, Lu

    2014-01-01

    Segmentation of the left ventricle is very important to quantitatively analyze global and regional cardiac function from magnetic resonance. The aim of this study is to develop a novel algorithm for segmenting left ventricle on short-axis cardiac magnetic resonance images (MRI) to improve the performance of computer-aided diagnosis (CAD) systems. In this research, an automatic segmentation method for left ventricle is proposed on the basis of local binary fitting (LBF) model and dynamic programming techniques. The validation experiments are performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 93.5%, the average perpendicular distance are about 2 mm. The overlapping dice metric is about 0.91. The regression and determination coefficient between the experts and our proposed method on the LV mass is 1.038 and 0.9033, respectively; they are 1.076 and 0.9386 for ejection fraction (EF). The proposed segmentation method shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.

  7. [Our experience with the treatment of high perianal fistulas with the mucosal flap advancement technique].

    PubMed

    Marino, Giuseppe; Greco, Ettore; Gasparrini, Marcello; Romanzi, Aldo; Ottaviani, Maurizio; Nasi, Stefano; Pasquini, Giorgio

    2004-01-01

    The authors present their experience with the treatment of high transphincteric anal fistulas with the mucosal flap advancement technique. This technique, though by no means easy to perform, allows fistulas to be treated in a single surgical session in comparison to the technique in which setone is used or to the less well known transposition techniques, given the same long-term results in terms of continence and recurrence rate. After a brief overview of the problem, from the points of view of both aetiopathogenesis and classification, the principal surgical treatment techniques are described, presenting the results and complications observed in the authors' own case series. PMID:15038659

  8. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  9. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    PubMed Central

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques. PMID:22685332

  10. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  11. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  12. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  13. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  14. CEST MRI reporter genes.

    PubMed

    Liu, Guanshu; Bulte, Jeff W M; Gilad, Assaf A

    2011-01-01

    In recent years, several reporter genes have been developed that can serve as a beacon for non-invasive magnetic resonance imaging (MRI). Here, we provide a brief summary of recent advances in MRI reporter gene technology, as well as detailed "hands-on" protocols for cloning, expression, and imaging of reporter genes based on chemical exchange saturation transfer (CEST).

  15. Softform for facial rejuvenation: historical review, operative techniques, and recent advances.

    PubMed

    Miller, P J; Levine, J; Ahn, M S; Maas, C S; Constantinides, M

    2000-01-01

    The deep nasolabial fold and other facial furrows and wrinkles have challenged the facial plastic surgeon. A variety of techniques have been used in the past to correct these troublesome defects. Advances in the last five years in new materials and design have created a subcutaneous implant that has excellent properties. This article reviews the development and use of Softform facial implant.

  16. Traditional Materials and Techniques Used as Instructional Devices in an Advanced Business Spanish Conversation Class.

    ERIC Educational Resources Information Center

    Valdivieso, Jorge

    Spanish language training at the Thunderbird Graduate School of International Management is discussed, focusing on the instructional materials and classroom techniques used in advanced Spanish conversation classes. While traditional materials (dialogues, dictation, literature, mass media, video- and audiotapes) and learning activities (recitation,…

  17. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  18. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  19. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  20. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  1. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  2. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  3. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  4. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  5. Advances in Functional Neuroanatomy: A Review of Combined DTI and fMRI Studies in Healthy Younger and Older Adults

    PubMed Central

    Bennett, Ilana J.; Rypma, Bart

    2013-01-01

    Structural connections between brain regions are thought to influence neural processing within those regions. It follows that alterations to the quality of structural connections should influence the magnitude of neural activity. The quality of structural connections may also be expected to differentially influence activity in directly versus indirectly connected brain regions. To test these predictions, we reviewed studies that combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) in younger and older adults. By surveying studies that examined relationships between DTI measures of white matter integrity and fMRI measures of neural activity, we identified variables that accounted for variability in these relationships. Results revealed that relationships between white matter integrity and neural activity varied with (1) aging (i.e., positive and negative DTI-fMRI relationships in younger and older adults, respectively) and (2) spatial proximity of the neural measures (i.e., positive and negative DTI-fMRI relationships when neural measures were extracted from adjacent and non-adjacent brain regions, respectively). Together, the studies reviewed here provided support for both of our predictions. PMID:23628742

  6. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    PubMed Central

    Margaritondo, Giorgio; Hwu, Yeukuang; Je, Jung Ho

    2008-01-01

    The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis). By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  7. Development of low-cost test techniques for advancing film cooling technology

    NASA Astrophysics Data System (ADS)

    Soechting, F. O.; Landis, K. K.; Dobrowolski, R.

    1987-06-01

    A program for studying advanced film hole geometries that will provide improved film effectiveness levels relative to those reported in the literature is described. A planar wind tunnel was used to conduct flow visualization studies on different film hole shapes, followed by film effectiveness measurements. The most promising geometries were then tested in a two-dimensional cascade to define the film effectiveness distributions, while duplicating a turbine airfoil curvature, Mach number, and acceleration characteristics. The test techniques are assessed and typical results are presented. It was shown that smoke flow visualization is an excellent low-cost technique for observing film coolant-to-mainstream characteristics and that reusable liquid crystal sheets provide an accurate low-cost technique for measuring near-hole film effectiveness contours. Cascade airfoils constructed using specially developed precision fabrication techniques provided high-quality film effectiveness data.

  8. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  9. Advanced semiconductor diagnosis by multidimensional electron-beam-induced current technique.

    PubMed

    Chen, J; Yuan, X; Sekiguchi, T

    2008-01-01

    We present advanced semiconductor diagnosis by using electron-beam-induced current (EBIC) technique. By varying the parameters such as temperature, accelerating voltage (V(acc)), bias voltage, and stressing time, it is possible to extend EBIC application from conventional defect characterization to advanced device diagnosis. As an electron beam can excite a certain volume even beneath the surface passive layer, EBIC can be effectively employed to diagnose complicated devices with hybrid structure. Three topics were selected to demonstrate EBIC applications. First, the recombination activities of grain boundaries and their interaction with Fe impurity in photovoltaic multicrystalline Si (mc-Si) are clarified by temperature-dependent EBIC. Second, the detection of dislocations between strained-Si and SiGe virtual substrate are shown to overcome the limitation of depletion region. Third, the observation of leakage sites in high-k gate dielectric is demonstrated for the characterization of advanced hybrid device structures.

  10. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  11. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  12. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  13. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  14. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  15. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  16. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  17. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  18. Tailored RF Pulse Modulation for RF Refocussed Variable Flip Angle MRI

    NASA Astrophysics Data System (ADS)

    Shah, Ajit S.; Ortendahl, Douglas A.; Carlson, Joseph W.; Kramer, David M.; Crooks, Larry E.

    1989-05-01

    Advances in Magnetice Resonance Imaging (MRI) techniques have recently made MRI the imaging modality of choice for many applications of clinical imaging. MRI provides the diagnosing clinician a non-invasive method for obtaining soft tissue differentiation with sub-millimeter resolution. Clinical MRI techniques include 3-dimensional imaging, spectroscopic imaging, arterial angiography and cardiac imaging. One MRI technique which has recently gained popularity is a class of protocols known as variable/partial flip angle MRI. Partial flip angle MRI techniques are useful because of their ability to vary contrast between tissues and/or maintain a particular level of contrast with a reduction in acquisition time [1]. Variable flip angle techniques differ from conventional MRI protocols in that the initial RF excitation/rotation pulse is not constrained to a 90 degree rotation of the longitudinal magnetization. Instead, the initial excitation flip angle is calculated to provide improved contrast between two tissues and/or maximize the intensity of a particular tissue. For tissues with reduced TR/T1 ratios, variable flip angle techniques may also be used to increase the image signal to noise within a localized region.

  19. MRI-Guided Delivery of Viral Vectors.

    PubMed

    Salegio, Ernesto A; Bringas, John; Bankiewicz, Krystof S

    2016-01-01

    Gene therapy has emerged as a potential avenue of treatment for many neurological disorders. Technological advances in imaging techniques allow for the monitoring of real-time infusions into the brain of rodents, nonhuman primates, and humans. Here, we discuss the use of magnetic resonance imaging (MRI) as a tool in the delivery of adeno-associated viral (AAV) particles into brain of nonhuman primates.

  20. An improved hybrid MoM/FDTD technique for MRI RF coils modeling using Huygen's equivalent surface method.

    PubMed

    Li, Bing Keong; Liu, Feng; Weber, Ewald; Padhi, Shantanu; Crozier, Stuart

    2007-01-01

    In this work, an improved hybrid MoM/FDTD algorithm for modeling low to ultra high field MRI RF coil/sample interactions has been proposed. In our previous hybrid MoM/FDTD method, the accuracy of modeling MRI RF coils is generally hindered by two major issues, staircasing errors and rough approximation of the coil current distortions by electromagnetic reflections from sample. In view of this, a Huygen's equivalent surface method has been proposed to effectively bridge MoM and FDTD. In the improved hybrid MoM/FDTD algorithm, staircasing errors are eliminated, and most importantly the complex coil/tissue interactions are explicitly accounted for. The accuracy of the improved hybrid MoM/FDTD method is numerically verified with a well established hybrid Green function/MoM solution and also experimentally underpinned with MR images obtained using a prototype rotary phased array head coil.

  1. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  2. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  4. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  5. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  6. DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC

    PubMed Central

    Tao, Xiuli; Wang, Lvhua; Hui, Zhouguang; Liu, Li; Ye, Feng; Song, Ying; Tang, Yu; Men, Yu; Lambrou, Tryphon; Su, Zihua; Xu, Xiao; Ouyang, Han; Wu, Ning

    2016-01-01

    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. PMID:27762331

  7. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  10. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  11. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  12. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2016-09-01

    The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

  13. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  14. New Generation of High Resolution Ultrasonic Imaging Technique for Advanced Material Characterization: Review

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.

    The role of non-destructive material characterization and NDT is changing at a rapid rate, continuing to evolve alongside the dramatic development of novel techniques based on the principles of high-resolution imaging. The modern use of advanced optical, thermal, ultrasonic, laser-ultrasound, acoustic emission, vibration, electro-magnetic, and X-ray techniques, etc., as well as refined measurement and signal/data processing devices, allows for continuous generation of on-line information. As a result real-time process monitoring can be achieved, leading to the more effective and efficient control of numerous processes, greatly improving manufacturing as a whole. Indeed, concurrent quality inspection has become an attainable reality. With the advent of new materials for use in various structures, joints, and parts, however, innovative applications of modern NDT imaging techniques are necessary to monitor as many stages of manufacturing as possible. Simply put, intelligent advance manufacturing is impossible without actively integrating modern non-destructive evaluation into the production system.

  15. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  16. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  17. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.

    PubMed

    Hoque, M Enamul; Chuan, Y Leng; Pashby, Ian

    2012-02-01

    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.

  18. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  19. Whole-body MRI in paediatric oncology.

    PubMed

    Nievelstein, Rutger A J; Littooij, Annemieke S

    2016-05-01

    Imaging plays a crucial role in the diagnosis and follow-up of paediatric malignancies. Until recently, computed tomography (CT) has been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like positron emission tomography and single-photon emission tomography. These later techniques are often combined with CT allowing for simultaneous acquisition of image data on the biological behaviour of tumour, as well as the anatomical localisation and extent of tumour spread. Because of the small but not negligible risk of radiation induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of alternative imaging techniques that do not use ionising radiation. Magnetic resonance imaging (MRI) is a radiation-free imaging tool that allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging (WB-MRI), including functional techniques such as diffusion weighted imaging. In this review, the current status of the technique and major clinical applications of WB-MRI in children with cancer will be discussed.

  20. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  1. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  2. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  3. Arthroscopically assisted Sauvé-Kapandji procedure: an advanced technique for distal radioulnar joint arthritis.

    PubMed

    Luchetti, Riccardo; Khanchandani, Prakash; Da Rin, Ferdinando; Borelli, Pierpaolo P; Mathoulin, Christophe; Atzei, Andrea

    2008-12-01

    Osteoarthritis of distal radioulnar joint (DRUJ) leads to chronic wrist pain, weakness of grip strength, and limitation of motion, all of which affect the quality of life of the patient. Over the years, several procedures have been used for the treatment of this condition; however, this condition still remains a therapeutic challenge for the hand surgeons. Many procedures such as Darrach procedure, Bower procedure, Sauvé-Kapandji procedure, and ulnar head replacement have been used. Despite many advances in wrist arthroscopy, arthroscopy has not been used for the treatment of arthritis of the DRUJ. We describe a novel technique of arthroscopically assisted Sauvé-Kapandji procedure for the arthritis of the DRUJ. The advantages of this technique are its less invasive nature, preservation of the extensor retinaculum, more anatomical position of the DRUJ, faster rehabilitation, and a better cosmesis.

  4. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Technical Reports Server (NTRS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    1992-01-01

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  5. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering. PMID:27640372

  6. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering.

  7. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    SciTech Connect

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  8. Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-06-05

    Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

  9. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.

    PubMed

    Justé, A; Thomma, B P H J; Lievens, B

    2008-09-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. These methods are now increasingly applied in food microbiology as well. This review presents an overview of current community profiling techniques with their (potential) applications in food and food-related ecosystems. We critically assessed both the power and limitations of these techniques and present recent advances in the field of food microbiology attained by their application. It is unlikely that a single approach will be universally applicable for analyzing microbial communities in unknown matrices. However, when screening samples for well-defined species or functions, techniques such as DNA arrays and real-time PCR have the potential to overtake current culture-based methods. Most importantly, molecular methods will allow us to surpass our current culturing limitations, thus revealing the extent and importance of the 'non-culturable' microbial flora that occurs in food matrices and production.

  10. Advanced techniques for array processing. Final report, 1 Mar 89-30 Apr 91

    SciTech Connect

    Friedlander, B.

    1991-05-30

    Array processing technology is expected to be a key element in communication systems designed for the crowded and hostile environment of the future battlefield. While advanced array processing techniques have been under development for some time, their practical use has been very limited. This project addressed some of the issues which need to be resolved for a successful transition of these promising techniques from theory into practice. The main problem which was studied was that of finding the directions of multiple co-channel transmitters from measurements collected by an antenna array. Two key issues related to high-resolution direction finding were addressed: effects of system calibration errors, and effects of correlation between the received signals due to multipath propagation. A number of useful theoretical performance analysis results were derived, and computationally efficient direction estimation algorithms were developed. These results include: self-calibration techniques for antenna arrays, sensitivity analysis for high-resolution direction finding, extensions of the root-MUSIC algorithm to arbitrary arrays and to arrays with polarization diversity, and new techniques for direction finding in the presence of multipath based on array interpolation. (Author)

  11. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  13. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  14. Management of metastatic malignant thymoma with advanced radiation and chemotherapy techniques: report of a rare case.

    PubMed

    D'Andrea, Mark A; Reddy, G Kesava

    2015-02-25

    Malignant thymomas are rare epithelial neoplasms of the anterior superior mediastinum that are typically invasive in nature and have a higher risk of relapse that may ultimately lead to death. Here we report a case of an advanced malignant thymoma that was successfully treated with neoadjuvant chemotherapy followed by surgical resection and subsequently with advanced and novel radiation therapy techniques. A 65-year-old male was diagnosed with a stage IV malignant thymoma with multiple metastatic lesions involving the left peripheral lung and pericardium. Initial neoadjuvant chemotherapy with a cisplatin-based regimen resulted in a partial response allowing the inoperable tumor to become operable. Following surgical resection of the residual disease, the tumor recurred within a year. The patient then underwent a course of targeted three-dimensional intensity modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT). Five years after radiation therapy, the localized soft tissue thickening at the left upper lung anterior pleural space had resolved. Seven years after radiation therapy the tumor mass had completely resolved. No recurrences were seen and the patient is well even 8 years after IMRT/IGRT with a favorable outcome. Chemotherapy with targeted three-dimensional IMRT/IGRT should be considered the primary modality for the management of advanced malignant thymoma patients.

  15. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  16. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  17. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    SciTech Connect

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  18. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  19. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  20. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  1. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  2. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  3. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  4. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  5. Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques.

    PubMed

    Wang, C; Schroeder, F A; Hooker, J M

    2014-04-01

    Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.

  6. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  7. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  8. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  9. Dynamic T1 functional MRI examinations with use of blood pool contrast agent--an approach to optimization of the technique.

    PubMed

    Majos, Agata; Wolak, Tomasz; Sapieha, Michał; Olszycki, Marek; Bogorodzki, Piotr; Stefańczyk, Ludomir

    2011-01-01

    The goal was to optimize dynamic T1 imaging for functional MRI (fMRI) examinations. For each of the 10 healthy subjects T1 3D gradient echo sequence (GRE) sequences were provided immediately after administration of blood pool contrast agent then every 2 h when subjects performed block finger tapings. Dynamic T1 fMRI is sensitive to detect cortical activations up to 6 h after BPCA administration. fMRI should be conducted within 2 h of CA administration, which is enough time for a typical fMRI experiment procedure.

  10. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  11. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences.

    PubMed

    Abe, Kayoko; Ono, Yuko; Yoneyama, Hiroko; Nishina, Yu; Aihara, Yasuo; Okada, Yoshikazu; Sakai, Shuji

    2014-06-01

    CSF imaging using the time-spatial labeling inversion pulse (time-SLIP) technique at 3T magnetic resonance imaging (MRI) was performed to assess cerebrospinal fluid (CSF) dynamics. The study population comprised 15 healthy volunteers and five patients with MR findings showing expansive dilation of the third and lateral ventricles suggesting aqueductal stenosis (AS). Signal intensity changes were evaluated in the tag-labeled CSF, untagged brain parenchyma, and untagged CSF of healthy volunteers by changing of black-blood time-inversion pulse (BBTI). CSF flow from the aqueduct to the third ventricle, the aqueduct to the fourth ventricle, and the foramen of Monro to the lateral ventricle was clearly rendered in all healthy volunteers with suitable BBTI. The travel distance of CSF flow as demonstrated by the time-SLIP technique was compared with the distance between the aqueduct and the fourth ventricle. The distance between the foramen of Monro and the lateral ventricle was used to calculate the CSF flow/distance ratio (CD ratio). The CD ratio at each level was significantly reduced in patients suspected to have AS compared to healthy volunteers. CSF flow was not identified at the aqueductal level in most of the patients. Two patients underwent time-SLIP assessments before and after endoscopic third ventriculostomies (ETVs). CSF flow at the ETV site was confirmed in each patient. With the time-SLIP technique, CSF imaging is sensitive enough to detect kinetic changes in CSF flow due to AS and ETV.

  12. Prostate cancer magnetic resonance imaging (MRI): multidisciplinary standpoint

    PubMed Central

    Li, Liang; Feng, Zhaoyan; Hu, Zhiquan; Wang, Guoping; Yuan, Xianglin; Wang, He; Hu, Daoyu

    2013-01-01

    Prostate cancer is the most common cancer diagnosed in men and a leading cause of death. Accurate assessment is a prerequisite for optimal clinical management and therapy selection of prostate cancer. There are several parameters and nomograms to differentiate between patients with clinically insignificant disease and patients in need of treatment. Magnetic resonance imaging (MRI) is a technique which provides more detailed anatomical images due to high spatial resolution, superior contrast resolution, and multiplanar capability. State-of-the-art MRI techniques, such as diffusion weighted imaging (DWI), MR spectroscopic imaging (MRSI), dynamic contrast enhanced MRI (DCE-MRI), improve interpretation of prostate cancer imaging. In this article, we review the major role of MRI in the advanced management of prostate cancer to noninvasively improve tumor staging, biologic potential, treatment planning, therapy response, local recurrence, and to guide target biopsy for clinical suspected cancer with previous negative biopsy. Finally, future challenges and opportunities in prostate cancer management in the area of functional MRI are discussed as well. PMID:23630657

  13. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  14. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  15. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect

    Borreguero Calvo, Jose M; Campbell, Stuart I; Delaire, Olivier A; Doucet, Mathieu; Goswami, Monojoy; Hagen, Mark E; Lynch, Vickie E; Proffen, Thomas E; Ren, Shelly; Savici, Andrei T; Sumpter, Bobby G

    2014-01-01

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  16. Myelography: modern technique and indications.

    PubMed

    Pomerantz, Stuart R

    2016-01-01

    Myelography describes the instillation of intrathecal contrast media for the imaging evaluation of spinal canal pathology. The technique has evolved with the use of progressively less toxic contrast agents over its 90-year history and the inclusion of advanced image acquisition technology, including both computed tomography (CT) and magnetic resonance imaging (MRI), in addition to plain radiographic projections. The use of myelography for routine evaluation of spinal disease has diminished greatly due to the advent of MRI which has superior soft-tissue contrast and is relatively non-invasive. However, it is still a critical technique for conventional indications, such as spinal stenosis, when MRI is contraindicated or nondiagnostic. It is also recognized as the study of choice for brachial plexus injury, radiation therapy treatment planning, and cerebrospinal fluid (CSF) leak. Modern myelographic procedural technique and a discussion of how it contributes to these current indications will be reviewed in this chapter. PMID:27432666

  17. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival. PMID:23339016

  18. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  19. Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques

    NASA Astrophysics Data System (ADS)

    Hillman, Gilbert R.; Chang, Chih-Wei; Ying, Hao; Kent, T. A.; Yen, John

    1995-05-01

    Analysis of magnetic resonance images (MRI) of the brain permits the identification and measurement of brain compartments. These compartments include normal subdivisions of brain tissue, such as gray matter, white matter and specific structures, and also include pathologic lesions associated with stroke or viral infection. A fuzzy system has been developed to analyze images of animal and human brain, segmenting the images into physiologically meaningful regions for display and measurement. This image segmentation system consists of two stages which include a fuzzy rule-based system and fuzzy c-means algorithm (FCM). The first stage of this system is a fuzzy rule-based system which classifies most pixels in MR images into several known classes and one `unclassified' group, which fails to fit the predetermined rules. In the second stage, this system uses the result of the first stage as initial estimates for the properties of the compartments and applies FCM to classify all the previously unclassified pixels. The initial prototypes are estimated by using the averages of the previously classified pixels. The combined processes constitute a fast, accurate and robust image segmentation system. This method can be applied to many clinical image segmentation problems. While the rule-based portion of the system allows specialized knowledge about the images to be incorporated, the FCM allows the resolution of ambiguities that result from noise and artifacts in the image data. The volumes and locations of the compartments can easily be measured and reported quantitatively once they are identified. It is easy to adapt this approach to new imaging problems, by introducing a new set of fuzzy rules and adjusting the number of expected compartments. However, for the purpose of building a practical fully automatic system, a rule learning mechanism may be necessary to improve the efficiency of modification of the fuzzy rules.

  20. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  1. Imaging of the aortic valve with MRI and CT angiography.

    PubMed

    Harvey, J J; Hoey, E T D; Ganeshan, A

    2013-12-01

    The aortic valve may be affected by a wide range of congenital and acquired diseases. Echocardiography is the main non-invasive imaging technique for assessing patho-anatomical alterations of the aortic valve and adjacent structures and in many cases is sufficient to establish a diagnosis and/or guide treatment decisions. Recent technological advances in magnetic resonance imaging (MRI) and multidetector computed tomography (MDCT) have enabled these techniques to play a complimentary role in certain clinical scenarios and as such can be useful problem-solving tools. Radiologists should be familiar with the indications, advantages, and limitations of MRI and MDCT in order to advise and direct an appropriate imaging strategy depending upon the clinical scenario. This article reviews the role of MRI and MDCT angiography for assessment of the aortic valve including relevant anatomy, scan acquisition protocols, and post-processing methods. An approach to interpretation and the key imaging features of commonly encountered aortic valvular diseases are discussed.

  2. Recent advances on techniques and theories of feedforward networks with supervised learning

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Klasa, Stan

    1992-07-01

    The rediscovery and popularization of the back propagation training technique for multilayer perceptrons as well as the invention of the Boltzmann Machine learning algorithm has given a new boost to the study of supervised learning networks. In recent years, besides the widely spread applications and the various further improvements of the classical back propagation technique, many new supervised learning models, techniques as well as theories, have also been proposed in a vast number of publications. This paper tries to give a rather systematical review on the recent advances on supervised learning techniques and theories for static feedforward networks. We summarize a great number of developments into four aspects: (1) Various improvements and variants made on the classical back propagation techniques for multilayer (static) perceptron nets, for speeding up training, avoiding local minima, increasing the generalization ability, as well as for many other interesting purposes. (2) A number of other learning methods for training multilayer (static) perceptron, such as derivative estimation by perturbation, direct weight update by perturbation, genetic algorithms, recursive least square estimate and extended Kalman filter, linear programming, the policy of fixing one layer while updating another, constructing networks by converting decision tree classifiers, and others. (3) Various other feedforward models which are also able to implement function approximation, probability density estimation and classification, including various models of basis function expansion (e.g., radial basis functions, restricted coulomb energy, multivariate adaptive regression splines, trigonometric and polynomial bases, projection pursuit, basis function tree, and may others), and several other supervised learning models. (4) Models with complex structures, e.g., modular architecture, hierarchy architecture, and others. (5) A number of theoretical issues involving the universal

  3. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  4. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  5. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  6. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.

    PubMed

    Somorjai, Gabor A; Frei, Heinz; Park, Jeong Y

    2009-11-25

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  7. Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques.

    PubMed

    Chen, Fei; Peldszus, Sigrid; Peiris, Ramila H; Ruhl, Aki S; Mehrez, Renata; Jekel, Martin; Legge, Raymond L; Huck, Peter M

    2014-01-01

    A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study.

  8. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  9. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  10. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  11. Procedural guidance using advance imaging techniques for percutaneous edge-to-edge mitral valve repair.

    PubMed

    Quaife, Robert A; Salcedo, Ernesto E; Carroll, John D

    2014-02-01

    The complexity of structural heart disease interventions such as edge-to edge mitral valve repair requires integration of multiple highly technical imaging modalities. Real time imaging with 3-dimensional (3D) echocardiography is a relatively new technique that first, allows clear volumetric imaging of target structures such as the mitral valve for both pre-procedural diagnosis and planning in patients with degenerative or functional mitral valve regurgitation. Secondly it provides intra-procedural, real-time panoramic volumetric 3D view of structural heart disease targets that facilitates eye-hand coordination while manipulating devices within the heart. X-ray fluoroscopy and RT 3D TEE images are used in combination to display specific targets and movement of catheter based technologies in 3D space. This integration requires at least two different image display monitors and mentally fusing the individual datasets by the operator. Combined display technology such as this, allow rotation and orientation of both dataset perspectives necessary to define targets and guidance of structural disease device procedures. The inherently easy concept of direct visual feedback and eye-hand coordination allows safe and efficient completion of MitraClip procedures. This technology is now merged into a single structural heart disease guidance mode called EchoNavigator(TM) (Philips Medical Imaging Andover, MA). These advanced imaging techniques have revolutionized the field of structural heart disease interventions and this experience is exemplified by a cooperative imaging approach used for guidance of edge-to-edge mitral valve repair procedures.

  12. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  13. MRI-guided biopsies and minimally invasive therapy for prostate cancer

    PubMed Central

    Ghai, Sangeet; Trachtenberg, John

    2015-01-01

    Recent advances in multiparametric magnetic resonance imaging (mp-MRI) have led to a paradigm shift in the diagnosis and management of prostate cancer (PCa). Its sensitivity in detecting clinically significant cancer and the ability to localize the tumor within the prostate gland has opened up discussion on targeted diagnosis and therapy in PCa. Use of mp-MRI in conjunction with prostate-specific antigen followed by targeted biopsy allows for a better diagnostic pathway than transrectal ultrasound (TRUS) biopsy and improves the diagnosis of PCa. Improved detection of PCa by mp-MRI has also opened up opportunities for focal therapy within the organ while reducing the incidence of side-effects associated with the radical treatment methods for PCa. This review discusses the evidence and techniques for in-bore MRI-guided prostate biopsy and provides an update on the status of MRI-guided targeted focal therapy in PCa. PMID:26166964

  14. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels

    2007-01-01

    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615

  15. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model

    PubMed Central

    Vinh, Nguyen Quoc; Naka, Shigeyuki; Cabral, Horacio; Murayama, Hiroyuki; Kaida, Sachiko; Kataoka, Kazunori; Morikawa, Shigehiro; Tani, Tohru

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most intractable and lethal cancers; most cases are diagnosed at advanced stages with underlying liver dysfunction and are frequently resistant to conventional chemotherapy and radiotherapy. The development of tumor-targeting systems may improve treatment outcomes. Nanomedicine platforms are of particular interest for enhancing chemotherapeutic efficiency, and they include polymeric micelles, which enable targeting of multiple drugs to solid tumors, including imaging and therapeutic agents. This allows concurrent diagnosis, targeting strategy validation, and efficacy assessment. We used polymeric micelles containing the T1-weighted magnetic resonance imaging contrast agent gadolinium-diethylenetriaminpentaacetic acid (Gd-DTPA) and the parent complex of the anticancer drug oxaliplatin [(1,2-diaminocyclohexane)platinum(II) (DACHPt)] for simultaneous imaging and therapy in an orthotopic rat model of HCC. The Gd-DTPA/DACHPt-loaded micelles were injected into the hepatic artery, and magnetic resonance imaging performance and antitumor activity against HCC, as well as adverse drug reactions were assessed. After a single administration, the micelles achieved strong and specific tumor contrast enhancement, induced high levels of tumor apoptosis, and significantly suppressed tumor size and growth. Moreover, the micelles did not induce severe adverse reactions and significantly improved survival outcomes in comparison to oxaliplatin or saline controls. Our results suggest that Gd-DTPA/DACHPt-loaded micelles are a promising approach for effective diagnosis and treatment of advanced HCC. PMID:26203241

  16. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  17. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  18. Sensitivity of different MRI-techniques to assess gray matter atrophy patterns in Alzheimer's disease is region-specific.

    PubMed

    Clerx, L; Jacobs, H I L; Burgmans, S; Gronenschild, E H B M; Uylings, H B M; Echávarri, C; Visser, P J; Verhey, F R J; Aalten, P

    2013-11-01

    The present study compares four different structural magnetic resonance imaging techniques used to measure gray matter (GM) atrophy in Alzheimer's disease (AD): manual and automated volumetry, cortical thickness (CT) and voxel-based morphometry (VBM). These techniques are used interchangeably in AD research and thus far it is unclear which technique is superior in detecting abnormalities early in the disease process. 18 healthy participants without any memory impairment, 18 patients with MCI, and 17 patients with mild AD were included and between-group differences were investigated in AD signature regions (areas in the prefrontal cortex (PFC), medial temporal lobe (MTL) and posterior parietal cortex (PPC)). Both manual volumetric measurements and VBM were able to detect GM atrophy in the early stages (differentiation controls and MCI), mainly in the MTL. In the early phase, automated volumetric measurements showed GM differences in the PPC but not in the MTL. In our sample, CT measurements were not sensitive for group differences in the early stages. PFC regions showed abnormalities in the later stages (controls vs AD) when manual volumetric measurements or VBM are employed. Manual volumetric measurements together with VBM are preferred techniques for assessing GM differences showing abnormalities in most of the investigated regions, with a predominance of the MTL in the early phase. Automated FreeSurfer volumetric measurements show similar performances in the early phase, displaying group differences in the PPC but not in MTL regions. Measurements of CT are less sensitive in the MCI stage and its sensitivity is restricted to the MTL and PPC regions in later stages of the disease (AD).

  19. Use of resting state functional MRI to study brain development and injury in neonates

    PubMed Central

    Smyser, Christopher D.; Neil, Jeffrey J.

    2015-01-01

    Advances in methodology have led to expanded application of resting state functional MRI (rs-fMRI) to the study of term and prematurely-born infants during the first years of life, providing fresh insight into the earliest forms of functional cerebral development. In this review, we detail our evolving understanding of the use of rs-fMRI for studying neonates. We initially focus on the biological processes of cortical development related to resting state network development. We then review technical issues principally affecting neonatal investigations, including the effects of subject motion during acquisition and image distortions related to magnetic susceptibility effects. We next summarize the literature in which rs-fMRI is used to study normal brain development during the early postnatal period, the effects of prematurity and the effects of cerebral injury. Finally, we review potential future directions for the field, such as the use of complementary imaging modalities and advanced analysis techniques. PMID:25813667

  20. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images.

    PubMed

    Park, Ja Young; Baek, Myung Ju; Choi, Eun Sook; Woo, Seungtae; Kim, Joo Hyun; Kim, Tae Jeong; Jung, Jae Chang; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2009-11-24

    Paramagnetic ultrasmall gadolinium oxide (Gd(2)O(3)) nanoparticles with particle diameters (d) of approximately 1 nm were synthesized by using three kinds of Gd(III) ion precursors and by refluxing each of them in tripropylene glycol under an O(2) flow. A large longitudinal relaxivity (r(1)) of water proton of 9.9 s(-1) mM(-1) was estimated. As a result, high contrast in vivo T(1) MR images of the brain tumor of a rat were observed. This large r(1) is discussed in terms of the huge surface to volume ratio (S/V) of the ultrasmall gadolinium oxide nanoparticles coupled with the cooperative induction of surface Gd(III) ions for the longitudinal relaxation of a water proton. It is found from the d dependence of r(1) that the optimal range of d for the maximal r(1), which may be used as an advanced T(1) MRI contrast agent, is 1-2.5 nm.

  1. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  2. Advances in turbulent mixing techniques to study microsecond protein folding reactions

    PubMed Central

    Kathuria, Sagar V.; Chan, Alexander; Graceffa, Rita; Nobrega, R. Paul; Matthews, C. Robert; Irving, Thomas C.; Perot, Blair; Bilsel, Osman

    2013-01-01

    Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically-denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10’s of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer (FRET), Circular Dichroism (CD), Small-Angle X-ray Scattering (SAXS), Hydrogen Exchange (HX) followed by Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy (FTIR), has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst-phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, that are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years. PMID:23868289

  3. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  4. MRI of Atherosclerosis: Diagnosis and Monitoring Therapy

    PubMed Central

    Anderson, Justin D.; Kramer, Christopher M.

    2014-01-01

    Summary Atherosclerosis is a prevalent disease affecting millions of Americans. Despite our advances in diagnosis and treatment, atherosclerosis is the leading cause of death in America. High resolution MRI has overcome the limitations of current angiographic techniques and has emerged as a leading noninvasive imaging modality of atherosclerotic disease. Atherosclerosis of the arterial wall of human carotid, aortic, peripheral, and coronary arteries have all been successfully evaluated. In addition, the power of MRI to differentiate the major components of atherosclerotic plaque has been validated. The ability to image the vessel wall and risk stratify atherosclerotic plaque will create management decisions not previously faced and has the potential to change the way atherosclerosis is treated. PMID:17187458

  5. Scaling index method: a novel nonlinear technique for the analysis of high-resolution MRI of human bones

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bohm, Holger; Muller, Dirk; Newitt, David; Majumdar, Sharmila; Rummeny, Ernst; Link, Thomas M.; Rath, Christoph

    2003-05-01

    The scaling index method (SIM) is a novel non-linear technique to extract structural information from arbitrary data sets. The tomographic images of a three dimensional object can be interpreted as a pixel distribution in a four dimensional space. The SIM provides a distribution of pointwise dimensions which characterizes the structural information of images. The SIM is applied to high resolution magnetic resonance images of human spinal and femoral bone specimens IN VITRO in order to derive a 3d non-linear texture measure which is compared to standard 2d morphometric parameters and bone mineral density in the prediction of biomechanical strength of trabecular bone. Our results show that structural non-linear parameters associated with the trabecular substructure of the bone can effectively predict the mechanical properties of trabecular bone in vitro. This indicates that the trabecular architecture contributes substantially to the biomechanical properties of the bone.

  6. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  7. Advanced real-time dynamic scene generation techniques for improved performance and fidelity

    NASA Astrophysics Data System (ADS)

    Bowden, Mark H.; Buford, James A.; Mayhall, Anthony J.

    2000-07-01

    Recent advances in real-time synthetic scene generation for Hardware-in-the-loop (HWIL) testing at the U.S. Army Aviation and Missile Command (AMCOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) improve both performance and fidelity. Modeling ground target scenarios requires tradeoffs because of limited texture memory for imagery and limited main memory for elevation data. High- resolution insets have been used in the past to provide better fidelity in specific areas, such as in the neighborhood of a target. Improvements for ground scenarios include smooth transitions for high-resolution insets to reduce high spatial frequency artifacts at the borders of the inset regions and dynamic terrain paging to support large area databases. Transport lag through the scene generation system, including sensor emulation and interface components, has been dealt with in the past through the use of sub-window extraction from oversize scenes. This compensates for spatial effects of transport lag but not temporal effects. A new system has been developed and used successfully to compensate for a flashing coded beacon in the scene. Other techniques have been developed to synchronize the scene generator with the seeker under test (SUT) and to model atmospheric effects, sensor optic and electronics, and angular emissivity attenuation.

  8. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  9. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Frazin, Richard

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012

  10. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  11. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.

    2010-04-01

    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  12. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    SciTech Connect

    Lumpkin, A.H.

    1993-08-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 {times} 10{sup {minus}9} m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of {approximately}2 {pi} mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces.

  13. Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis.

    PubMed

    Skinner, Nathan P; Kurpad, Shekar N; Schmit, Brian D; Budde, Matthew D

    2015-11-01

    Diffusion-weighted imaging (DWI) is a powerful tool to investigate the microscopic structure of the central nervous system (CNS). Diffusion tensor imaging (DTI), a common model of the DWI signal, has a demonstrated sensitivity to detect microscopic changes as a result of injury or disease. However, DTI and other similar models have inherent limitations that reduce their specificity for certain pathological features, particularly in tissues with complex fiber arrangements. Methods such as double pulsed field gradient (dPFG) and q-vector magic angle spinning (qMAS) have been proposed to specifically probe the underlying microscopic anisotropy without interference from the macroscopic tissue organization. This is particularly important for the study of acute injury, where abrupt changes in the microscopic morphology of axons and dendrites manifest as focal enlargements known as beading. The purpose of this work was to assess the relative sensitivity of DWI measures to beading in the context of macroscopic fiber organization and edema. Computational simulations of DWI experiments in normal and beaded axons demonstrated that, although DWI models can be highly specific for the simulated pathologies of beading and volume fraction changes in coherent fiber pathways, their sensitivity to a single idealized pathology is considerably reduced in crossing and dispersed fibers. However, dPFG and qMAS have a high sensitivity for beading, even in complex fiber tracts. Moreover, in tissues with coherent arrangements, such as the spinal cord or nerve fibers in which tract orientation is known a priori, a specific dPFG sequence variant decreases the effects of edema and improves specificity for beading. Collectively, the simulation results demonstrate that advanced DWI methods, particularly those which sample diffusion along multiple directions within a single acquisition, have improved sensitivity to acute axonal injury over conventional DTI metrics and hold promise for more

  14. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.

    PubMed

    Zotev, Vadim; Phillips, Raquel; Yuan, Han; Misaki, Masaya; Bodurka, Jerzy

    2014-01-15

    Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation in the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results demonstrate the feasibility of simultaneous self-regulation of both hemodynamic (rtfMRI) and electrophysiological (EEG) activities of the human brain. They suggest potential applications of rtfMRI-EEG-nf in the development of novel cognitive neuroscience research paradigms and enhanced cognitive therapeutic approaches for major neuropsychiatric disorders, particularly depression.

  15. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  16. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  17. MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model

    PubMed Central

    Serrao, Eva M; Kettunen, Mikko I; Rodrigues, Tiago B; Dzien, Piotr; Wright, Alan J; Gopinathan, Aarthi; Gallagher, Ferdia A; Lewis, David Y; Frese, Kristopher K; Almeida, Jaime; Howat, William J; Tuveson, David A; Brindle, Kevin M

    2016-01-01

    Objectives Pancreatic cancer (PCa) is treatable by surgery when detected at an early stage. Non-invasive imaging methods able to detect both established tumours and their precursor lesions are needed to select patients for surgery. We investigated here whether pancreatic preneoplasia could be detected prior to the development of invasive cancers in genetically engineered mouse models of PCa using metabolic imaging. Design The concentrations of alanine and lactate and the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) were measured in extracts prepared from the pancreas of animals at different stages of disease progression; from pancreatitis, through tissue with predominantly low-grade and then high-grade pancreatic intraepithelial neoplasia and then tumour. 13C magnetic resonance spectroscopic imaging (13C-MRSI) was used to measure non-invasively changes in 13C labelling of alanine and lactate with disease progression, following injection of hyperpolarised [1-13C]pyruvate. Results Progressive decreases in the alanine/lactate concentration ratio and ALT/LDH activity ratio with disease progression were accompanied by a corresponding decrease in the [1-13C]alanine/[1-13C]lactate signal ratio observed in 13C-MRSI images of the pancreas. Conclusions Metabolic imaging with hyperpolarised [1-13C]pyruvate enables detection and monitoring of the progression of PCa precursor lesions. Translation of this MRI technique to the clinic has the potential to improve the management of patients at high risk of developing PCa. PMID:26347531

  18. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  19. Postpartum Hemorrhage Treated with Gelfoam Slurry Embolization Using the Superselective Technique: Immediate Results and 1-Month MRI Follow-up

    SciTech Connect

    Pellerin, Olivier; Bats, Anne-Sophie; Primio, Massimiliano Di; Palomera-Ricco, Ana; Pinot de Villechenon, Gabrielle; and others

    2013-02-15

    To evaluate the efficacy and safety of superselective embolization of the uterine arteries in a postpartum hemorrhage. Between November 2004 and January 2011, a total of 44 consecutive women (median {+-} standard deviation age 34 {+-} 3 years, range 23-41 years) were referred to our institution for postpartum intractable hemorrhage management. All patients were embolized with a microcatheter that was placed deep into the uterine arteries upstream of the cervical arteries. The embolic agent was a mixture of contrast medium and 5 Multiplication-Sign 5 Multiplication-Sign 5 cm pieces of gelfoam (Gelita-Spon) modified into a gelatin emulsion as follows: rapid mixing through a three-way stopcock with two 2.5-ml syringes. A 1-ml syringe was used for injection. One month after embolization, all patients underwent magnetic resonance imaging and clinical examination. Technical and clinical success was obtained in all cases. Thirty-five patients experienced bleeding related to poor retraction of the uterus, 7 patients because of a tear of the cervix and 2 because of a vaginal hematoma. Pre- and postembolization red blood cell transfusions were (mean {+-} standard deviation [SD]) 6 {+-} 1.2 (range 3-8) U and 2 {+-} 0.7 (range 2-4) U, respectively. One-month magnetic resonance imaging follow-up revealed no sign of ischemic myometrium or necrosis, and no instances of uterine rupture and no pelvic vein thrombosis. Incidental findings included two small intramyometrial hematic collections. All uterine arteries were patent via magnetic resonance angiography. Seventeen patients had concomitant fibroids, all of which appeared hypovascular. This technique permits good, safe clinical results with no marked damage to the uterine arteries or the uterus itself.

  20. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  1. Characterizing tumor changes during neoadjuvant treatment of locally advanced breast cancer patients (LABC) using dynamic-enhanced magnetic resonance imaging (DE-MRI)

    NASA Astrophysics Data System (ADS)

    Craciunescu, Oana I.; Jones, Ellen L.; Blackwell, Kimberly L.; Wong, Terence Z.; Rosen, Eric L.; Vujaskovic, Zeljko; MacFall, James R.; Liotcheva, Vlayka; Lora-Michiels, Michael; Prosnitz, Leonard R.; Samulski, Thaddeus V.; Dewhirst, Mark W.

    2005-04-01

    At Duke University Medical Center, selective LABC patients were treated on a protocol using neoadjuvant Myocet/Paclitaxel (ChT) and HT. With the purpose of generating perfusion/permeability parametric maps and to use gadolinium (Gd) enhancement curves to score and predict response to neoadjuvant treatment, a study was designed to acquire 3 sets of DE-MRI images along the 4 cycles of combined ChT and HT. A T1-weighted three-dimensional fast gradient echo technique was used over 30 minutes following bolus injection of Gd-based contrast agent. Perfusion/permeability maps were generated by fitting the signal intensity to a double exponential curve that generates washin (WiP) and washout (WoP), parameters that are associated with the tumors vascularity/permeability and cellularity. Based on the values of the WiP, the tumors were divided in lowWI (WiP < 100), mediumWI (100 200). During the HT treatments temperatures in the breast were measured invasively via a catheter inserted under CT guidance. Although minimum sampled temperatures give a crude indication of the temperature distribution, several thermal dose metrics were calculated for each of the HT fractions (e.g. T90, T50, T10). As expected, tumors that were more vascularized (i.e. higher WiP) heated less than tumors with low WiP, a degree on average. The adjuvant treatment also changed the shape and inhomogeneity of the perfusion/permeability maps, with dramatic changes after the first fraction in responders. The correlation between the thermal metrics and pathological response will be discussed, as well as possible correlation with other tumor physiology parameters. In conclusion, the Gd-enhancement analysis of DE-MRI images is able to generate information related to the tumor vascularity, permeability and cellularity that can correlate with the tumor's response to the neoadjuvant treatment in general, and to HT in particular. Work supported by a grant from the NCI CA42745.

  2. Landslide detection and long-term monitoring in urban area by means of advanced interferometric techniques

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Del Ventisette, Chiara; Liguori, Vincenzo; Casagli, Nicola

    2010-05-01

    This work aims at illustrating the potential of advanced interferometric techniques for detection and long-term monitoring of landslide ground deformations at local scale. Space-born InSAR (Synthetic Aperture Radar Interferometry) has been successfully exploited in recent years to measure ground deformations associated to processes with slow kinematics, such as landslides, tectonic motions, subsidence or volcanic activity, thanks to both the standard single-interferogram approach (centimeter accuracy) and advanced time-series analyses of long temporal radar satellite data stacks (millimeter accuracy), such as Persistent Scatterers Interferometry (PSI) techniques. In order to get a complete overview and an in-depth knowledge of an investigated landslide, InSAR satellite measures can support conventional in situ data. This methodology allows studying the spatial pattern and the temporal evolution of ground deformations, improving the spatial coverage and overcoming issues related to installation of ground-based instrumentation and data acquisition in unstable areas. Here we describe the application of the above-mentioned methodology on the test area of Agrigento, Sicily (Italy), affected by hydrogeological risk. The town is located in Southern Sicily, at edge of the Apennine-Maghrebian thrust belt, on the Plio-Pleistocene and Miocene sediments of the Gela Nappe. Ground instabilities affect the urban area and involve the infrastructures of its NW side, such as the Cathedral, the Seminary and many private buildings. An integration between InSAR analyses and conventional field investigations (e.g. structural damages and fractures surveys) was therefore carried out, to support Regional Civil Protection authorities for emergency management and risk mitigation. The results of InSAR analysis highlighted a general stability of the whole urban area between 1992 and 2007. However, very high deformation rates (up to 10-12 mm/y) were identified in 1992-2000 in the W slope of the

  3. Improving tumour heterogeneity MRI assessment with histograms

    PubMed Central

    Just, N

    2014-01-01

    By definition, tumours are heterogeneous. They are defined by marked differences in cells, microenvironmental factors (oxygenation levels, pH, VEGF, VPF and TGF-α) metabolism, vasculature, structure and function that in turn translate into heterogeneous drug delivery and therapeutic outcome. Ways to estimate quantitatively tumour heterogeneity can improve drug discovery, treatment planning and therapeutic responses. It is therefore of paramount importance to have reliable and reproducible biomarkers of cancerous lesions' heterogeneity. During the past decade, the number of studies using histogram approaches increased drastically with various magnetic resonance imaging (MRI) techniques (DCE-MRI, DWI, SWI etc.) although information on tumour heterogeneity remains poorly exploited. This fact can be attributed to a poor knowledge of the available metrics and of their specific meaning as well as to the lack of literature references to standardised histogram methods with which surrogate markers of heterogeneity can be compared. This review highlights the current knowledge and critical advances needed to investigate and quantify tumour heterogeneity. The key role of imaging techniques and in particular the key role of MRI for an accurate investigation of tumour heterogeneity is reviewed with a particular emphasis on histogram approaches and derived methods. PMID:25268373

  4. Evolving role of MRI in Crohn's disease.

    PubMed

    Yacoub, Joseph H; Obara, Piotr; Oto, Aytekin

    2013-06-01

    MR enterography is playing an evolving role in the evaluation of small bowel Crohn's disease (CD). Standard MR enterography includes a combination of rapidly acquired T2 sequence, balanced steady-state acquisition, and contrast enhanced T1-weighted gradient echo sequence. The diagnostic performance of these sequences has been shown to be comparable, and in some respects superior, to other small bowel imaging modalities. The findings of CD on MR enterography have been well described in the literature. New and emerging techniques such as diffusion-weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), cinematography, and magnetization transfer, may lead to improved accuracy in characterizing the disease. These advanced techniques can provide quantitative parameters that may prove to be useful in assessing disease activity, severity, and response to treatment. In the future, MR enterography may play an increasing role in management decisions for patients with small bowel CD; however, larger studies are needed to validate these emerging MRI parameters as imaging biomarkers. PMID:23712842

  5. Role of MRI in multiple sclerosis I: inflammation and lesions.

    PubMed

    Zivadinov, Robert; Bakshi, Rohit

    2004-01-01

    Conventional magnetic resonance imaging (MRI) can improve accuracy in the diagnosis of multiple sclerosis (MS). Metrics derived from conventional MRI are now routinely used to detect therapeutic effects and extend clinical observations. Hyperintense lesions on T2-weighted MRI scans are related primarily to increased water content and thus cannot distinguish between inflammation, edema, demyelination, Wallerian degeneration, and axonal loss. In addition, T2-weighted and post-contrast images are not sufficiently sensitive to detect occult disease affecting normal appearing gray and white matter. They do not show a reliable correlation with clinical measures of disability and do not provide a complete assessment of therapeutic outcomes. In the past few years a host of advanced MRI techniques and analysis methods have been introduced for the assessment of MS. These MRI techniques appear to have better reliability as surrogate markers for monitoring the pathologic processes that most likely are related to disease activity and clinical progression. They are able to reveal a range of tissue changes that include edema, inflammation, demyelination, axonal loss, and neurodegeneration. Therefore, in a disease with a high degree of longitudinal variability of clinical signs and symptoms within and between patients, and with no current adequate biological markers of disease progression, non-conventional MRI techniques provide a powerful tool to non-invasively study pathological substrates of overt lesions and normal appearing brain tissue. In particular, the use of these techniques is promising in elucidating mechanisms underlying the accumulation of tissue damage, repair and functional reorganization of neural pathways in patients with MS.

  6. [Recent advances of anastomosis techniques of esophagojejunostomy after laparoscopic totally gastrectomy in gastric tumor].

    PubMed

    Li, Xi; Ke, Chongwei

    2015-05-01

    The esophageal jejunum anastomosis of the digestive tract reconstruction techniques in laparoscopic total gastrectomy includes two categories: circular stapler anastomosis techniques and linear stapler anastomosis techniques. Circular stapler anastomosis techniques include manual anastomosis method, purse string instrument method, Hiki improved special anvil anastomosis technique, the transorally inserted anvil(OrVil(TM)) and reverse puncture device technique. Linear stapler anastomosis techniques include side to side anastomosis technique and Overlap side to side anastomosis technique. Esophageal jejunum anastomosis technique has a wide selection of different technologies with different strengths and the corresponding limitations. This article will introduce research progress of laparoscopic total gastrectomy esophagus jejunum anastomosis from both sides of the development of anastomosis technology and the selection of anastomosis technology.

  7. Gauging MRI

    NASA Astrophysics Data System (ADS)

    Herron, Ison; Goodman, Jeremy

    2009-11-01

    Axisymmetric stability of viscous resistive magnetized Couette flow is re-examined, with emphasis on flows that would be hydrodynamically stable according to Rayleigh's criterion: opposing gradients of angular velocity and specific angular momentum. A uniform axial magnetic field permeates the fluid. In this regime, magnetorotational instability (MRI) may occur. It is proved that MRI is suppressed, in fact no instability at all occurs, with insulating boundary conditions, when the magnetic resistivity is sufficiently large. This shows conclusively that small magnetic dissipation is a feature of this instability for all magnetic Prandtl numbers. A criterion is provided for the onset of MRI.

  8. Musculoskeletal MRI.

    PubMed

    Sage, Jaime E; Gavin, Patrick

    2016-05-01

    MRI has the unique ability to detect abnormal fluid content, and is therefore unparalleled in its role of detection, diagnosis, prognosis, treatment planning and follow-up evaluation of musculoskeletal disease. MRI in companion animals should be considered in the following circumstances: a definitive diagnosis cannot be made on radiographs; a patient is nonresponsive to medical or surgical therapy; prognostic information is desired; assessing surgical margins and traumatic and/or infectious joint and bone disease; ruling out subtle developmental or early aggressive bone lesions. The MRI features of common disorders affecting the shoulder, elbow, stifle, carpal, and tarsal joints are included in this chapter.

  9. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    SciTech Connect

    Schalkoff, Robert J.

    1999-06-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology.

  10. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    SciTech Connect

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  11. Advanced remote sensing techniques for forestry applications: an application case in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Yakam-Simen, Francis; Romeijn, Paul P.; Supit, Iwan; Demargne, Louis

    2001-02-01

    12 This paper reports the operational implementation of new techniques for the exploitation of remote sensing data (SAR and optical) in the framework of forestry applications. In particular, we present a new technique for standing timber volume estimation. This technique is based on remote sensing knowledge (SAR and optical synergy) and forestry knowledge (forest structure models), proved fairly accurate. To illustrate the application of these techniques, an operational commercial case study regarding forest concessions in Sarawak is presented. Validation of this technique by comparison of the remote sensing results and the database of the customer has shown that this technique is fairly accurate.

  12. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  13. Microtesla MRI with dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.

    2010-11-01

    Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by 2-4 orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 μT, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5-5.7 mT fields using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as large as -95 for protons and as large as -200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by low-temperature dissolution DNP.

  14. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  15. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was

  16. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  17. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  18. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    SciTech Connect

    Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  19. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    PubMed

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  20. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    PubMed Central

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314

  1. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol.

    PubMed

    Rusbridge, Clare; Long, Sam; Jovanovik, Jelena; Milne, Marjorie; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farqhuar, Robyn G; Fischer, Andrea; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Stein, Veronika M; Tipold, Andrea; Volk, Holger A

    2015-01-01

    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6-7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed. PMID:26319136

  2. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol.

    PubMed

    Rusbridge, Clare; Long, Sam; Jovanovik, Jelena; Milne, Marjorie; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farqhuar, Robyn G; Fischer, Andrea; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Stein, Veronika M; Tipold, Andrea; Volk, Holger A

    2015-08-28

    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6-7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.

  3. Calculation of Radiofrequency Electromagnetic Fields and Their Effects in MRI of Human Subjects

    PubMed Central

    Collins, Christopher M.; Wang, Zhangwei

    2011-01-01

    Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in Magnetic Resonance Imaging (MRI). The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades numerical methods of calculation have been used increasingly to understand the effects of these interactions and aid in engineering better, faster, and safer equipment and methods. As MRI techniques and technology have evolved through the years, so too have the requirements for meaningful interpretation of calculation results. Here we review the basic physics of RF electromagnetics in MRI and discuss a variety of ways RF field calculations are used in MRI in engineering and safety assurance from simple systems and sequences through advanced methods of development for the future. PMID:21381106

  4. The role of diffusion-weighted echo planar MRI in central nervous system infections regarding etiopathogeneses.

    PubMed

    Kıroğlu, Yılmaz; Karabulut, Nevzat; Alkan, Alpay

    2010-12-01

    Neuroimaging constitutes an important component in the diagnosis of the underlying infectious agents in central nervous system (CNS) infections. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS diseases remains a challenge. Conventional magnetic resonance imaging (MRI) is used in routine practice to identify abnormal areas involved in CNS infections. More recent MRI techniques, such as diffusion-weighted imaging (DWI), provide additional helpful information in the assessment of CNS infectious lesions compared with conventional MRI. This pictorial essay summarizes the clinical role of DWI in the demonstration of CNS infections including meningitis, encephalitis and pyogenic infections, and determination of the lesions compared with conventional MRI on the basis of physiopathologic phases of the infections.

  5. [Advancement of colloidal gold chromatographic technique in screening of ochratoxin A].

    PubMed

    Zhou, Wei-lu; Wang, Yu-ting; Kong, Wei-jun; Yang, Mei-hua; Zhao, Ming; Ou-Yang, Zhen

    2015-08-01

    Ochratoxin A (OTA) is a toxic secondary metabolite mainly produced by Aspergillus and Penicillium species, existing in a variety of foodstuffs and Chinese medicines. OTA is difficult to be detected in practice because of the characteristics such as trace amounts, toxicity, existing in complex matrices. In the numerous detection technologies, colloidal gold chromatographic techniques are highly sensitive, specific, cost-effective and user-friendly, and are being used increasingly for OTA screening. Recently, with the development of aptamer technology and its application in chromatographic technique, a newly colloidal gold aptamer chromatographic technique has been developed. This review elaborates the structures and principles of both traditional and newly colloidal gold chromatographic techniques, focuses on newly colloidal gold aptamer chromatographic technique, summarizes and compares their use in rapid detection of OTA. Finally, in order to provide a reference for better research of related work, the development trends of this novel technique are prospected.

  6. Adaptations of advanced safety and reliability techniques to petroleum and other industries

    NASA Technical Reports Server (NTRS)

    Purser, P. E.

    1974-01-01

    The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.

  7. Euromech 260: Advanced non-intrusive experimental techniques in fluid and plasma flows

    NASA Astrophysics Data System (ADS)

    The following topics are discussed: coherent anti-Stokes and elastic Rayleigh scattering; elastic scattering and non linear dynamics; fluorescence; molecular tracking techniques and particle image velocimetry.

  8. MRI in the evaluation of pediatric multiple sclerosis.

    PubMed

    Banwell, Brenda; Arnold, Douglas L; Tillema, Jan-Mendelt; Rocca, Maria A; Filippi, Massimo; Weinstock-Guttman, Bianca; Zivadinov, Robert; Sormani, Maria Pia

    2016-08-30

    MRI plays a pivotal role in the diagnosis of multiple sclerosis (MS) in children, as it does in adults. The presence of multiple lesions in CNS locations commonly affected by MS, along with the presence of both enhancing and nonenhancing lesions, can facilitate a diagnosis of MS at the time of a first attack, whereas the accrual of serial lesions or new clinical attacks over time confirms the diagnosis in patients not meeting such criteria at onset. T2 and enhancing lesion accrual could serve as a primary outcome metric for pediatric MS clinical trials of selected therapies with anti-inflammatory activity in order to facilitate feasible trial size numbers. More-advanced MRI techniques reveal the impact of MS on tissue integrity within both T2-bright and T1-hypointense lesions and regions of normal-appearing tissue. Volumetric MRI analyses quantify the impact of MS on age-expected brain growth, and fMRI reveals activation and resting-state functional connectivity patterns in patients with pediatric MS that differ from those seen in healthy age-matched youth. Such studies are of critical importance because MS onset during childhood may profoundly influence maturing and actively myelinating neural networks. High-field MRI visualizes MS pathology at a near-microscopic level and has the potential to more fully explain mechanisms for cognitive impairment, fatigue, and disability in patients with pediatric MS. PMID:27572868

  9. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    PubMed Central

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  10. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions.

    PubMed

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-09-15

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated. PMID:27563019

  11. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling.

  12. DT-MRI segmentation using graph cuts

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan

    2007-03-01

    An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. In this paper, we extend the interactive multidimensional graph cuts segmentation technique to operate on DT-MRI data by utilizing latest advances in tensor calculus and diffusion tensor dissimilarity metrics. The user interactively selects certain tensors as object ("obj") or background ("bkg") to provide hard constraints for the segmentation. Additional soft constraints incorporate information about both regional tissue diffusion as well as boundaries between tissues of different diffusion properties. Graph cuts are used to find globally optimal segmentation of the underlying 3D DT-MR image among all segmentations satisfying the constraints. We develop a graph structure from the underlying DT-MR image with the tensor voxels corresponding to the graph vertices and with graph edge weights computed using either Log-Euclidean or the J-divergence tensor dissimilarity metric. The topology of our segmentation is unrestricted and both obj and bkg segments may consist of several isolated parts. We test our method on synthetic DT data and apply it to real 2D and 3D MRI, providing segmentations of the corpus callosum in the brain and the ventricles of the heart.

  13. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  14. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  15. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    ERIC Educational Resources Information Center

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  16. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  17. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal. PMID:20136233

  18. Advanced techniques for noise source identification on a large generator unit

    SciTech Connect

    Williams, R.G.D. ); Yang, S.J. )

    1993-03-01

    Power station acoustic noise assessment, which has experienced increased environmental awareness and subsequently more stringent legislation for a number of years, has received and added stimulus due to the recent advent of powerful measurement and analysis techniques including sound intensity and coherence. These experimental techniques are explained and results, for a generator unit, illustrate their value in providing a unique, correlated insight into noise problems. This includes noise quantification, full explanation of site sound pressure level in terms of the various influences and major noise source identification. These techniques are widely applicable and an invaluable aid to any industrial noise problem.

  19. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.

  20. Spinal Cord Segmentation by One Dimensional Normalized Template Matching: A Novel, Quantitative Technique to Analyze Advanced Magnetic Resonance Imaging Data

    PubMed Central

    Cadotte, Adam; Cadotte, David W.; Livne, Micha; Cohen-Adad, Julien; Fleet, David; Mikulis, David; Fehlings, Michael G.

    2015-01-01

    Spinal cord segmentation is a developing area of research intended to aid the processing and interpretation of advanced magnetic resonance imaging (MRI). For example, high resolution three-dimensional volumes can be segmented to provide a measurement of spinal cord atrophy. Spinal cord segmentation is difficult due to the variety of MRI contrasts and the variation in human anatomy. In this study we propose a new method of spinal cord segmentation based on one-dimensional template matching and provide several metrics that can be used to compare with other segmentation methods. A set of ground-truth data from 10 subjects was manually-segmented by two different raters. These ground truth data formed the basis of the segmentation algorithm. A user was required to manually initialize the spinal cord center-line on new images, taking less than one minute. Template matching was used to segment the new cord and a refined center line was calculated based on multiple centroids within the segmentation. Arc distances down the spinal cord and cross-sectional areas were calculated. Inter-rater validation was performed by comparing two manual raters (n = 10). Semi-automatic validation was performed by comparing the two manual raters to the semi-automatic method (n = 10). Comparing the semi-automatic method to one of the raters yielded a Dice coefficient of 0.91 +/- 0.02 for ten subjects, a mean distance between spinal cord center lines of 0.32 +/- 0.08 mm, and a Hausdorff distance of 1.82 +/- 0.33 mm. The absolute variation in cross-sectional area was comparable for the semi-automatic method versus manual segmentation when compared to inter-rater manual segmentation. The results demonstrate that this novel segmentation method performs as well as a manual rater for most segmentation metrics. It offers a new approach to study spinal cord disease and to quantitatively track changes within the spinal cord in an individual case and across cohorts of subjects. PMID:26445367

  1. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  2. Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique

    PubMed Central

    2008-01-01

    Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried, the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique, samples are frozen, fractured and replicated with platinum-carbon as in standard freeze fracture, and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed. PMID:18385807

  3. Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    NASA Astrophysics Data System (ADS)

    Zellweger, Christoph; Emmenegger, Lukas; Firdaus, Mohd; Hatakka, Juha; Heimann, Martin; Kozlova, Elena; Spain, T. Gerard; Steinbacher, Martin; van der Schoot, Marcel V.; Buchmann, Brigitte

    2016-09-01

    Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.

  4. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery.

    PubMed

    Vandana, K R; Prasanna Raju, Y; Harini Chowdary, V; Sushma, M; Vijay Kumar, N

    2014-09-01

    The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared.

  5. An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery

    PubMed Central

    Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N.

    2013-01-01

    The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared. PMID:25161371

  6. Focal Ablation of Prostate Cancer: Four Roles for MRI Guidance

    PubMed Central

    Sommer, Graham; Bouley, Donna; Gill, Harcharan; Daniel, Bruce; Pauly, Kim Butts; Diederich, Christopher

    2014-01-01

    Introduction There is currently a great deal of interest in the possible use of focal therapies for prostate cancer, since such treatments offer the prospect for control or cure of the primary disease with minimal side effects. Many forms of thermal therapy have been proposed for focal ablation of prostate cancer, including laser, high intensity ultrasound and cryotherapy. This review will demonstrate the important roles that MRI guidance can offer to such focal ablation, focusing on the use of high intensity ultrasonic applicators as an example of one promising technique. Materials and Methods Transurethral and interstitial high intensity ultrasonic applicators, designed specifically for ablation of prostate tissue were tested extensively in vivo in a canine model. The roles of MRI in positioning the devices, monitoring prostate ablation, and depicting ablated tissue were assessed using appropriate MRI sequences. Results MRI guidance provides a very effective tool for the positioning of ablative devices in the prostate, and thermal monitoring successfully predicted ablation of prostate tissue when a threshold of 52°C was achieved. Contrast enhanced MRI accurately depicted the distribution of ablated prostate tissue, which is resorbed at 30 days. Conclusions Guidance of thermal therapies for focal ablation of prostate cancer will likely prove critically dependent on MRI functioning in four separate roles. Our studies indicate that in 3 roles: device positioning; thermal monitoring of prostate ablation; and depiction of ablated prostate tissue, MR techniques are highly accurate and likely to be of great benefit in focal prostate cancer ablation. A fourth critical role, identification of cancer within the gland for targeting of thermal therapy, is more problematic at present, but will likely become practical with further technological advances. PMID:23587506

  7. MRI of plants and foods

    NASA Astrophysics Data System (ADS)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  8. Three case reports of the metabolic and electroencephalographic changes during advanced Buddhist meditation techniques.

    PubMed

    Benson, H; Malhotra, M S; Goldman, R F; Jacobs, G D; Hopkins, P J

    1990-01-01

    To examine the extent to which advanced meditative practices might alter body metabolism and the electroencephalogram (EEG), we investigated three Tibetan Buddhist monks living in the Rumtek monastery in Sikkim, India. In a study carried out in February 1988, we found that during the practice of several different meditative practices, resting metabolism (VO2) could be both raised (up to 61%) and lowered (down to 64%). The reduction from rest is the largest ever reported. On the EEG, marked asymmetry in alpha and beta activity between the hemispheres and increased beta activity were present. From these three case reports, we conclude that advanced meditative practices may yield different alterations in metabolism (there are also forms of meditation that increase metabolism) and that the decreases in metabolism can be striking.

  9. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  10. Devising an endoluminal bimodal probe which combines autofluorescence and reflectance spectroscopy with high resolution MRI for early stage colorectal cancer diagnosis: technique, feasibility and preliminary in-vivo (rabbit) results

    NASA Astrophysics Data System (ADS)

    Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.

    2011-07-01

    Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.

  11. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  12. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  13. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  14. Advanced Endovascular Approaches in the Management of Challenging Proximal Aortic Neck Anatomy: Traditional Endografts and the Snorkel Technique

    PubMed Central

    Quatromoni, Jon G.; Orlova, Ksenia; Foley, Paul J.

    2015-01-01

    Advances in endovascular technology, and access to this technology, have significantly changed the field of vascular surgery. Nowhere is this more apparent than in the treatment of abdominal aortic aneurysms (AAAs), in which endovascular aneurysm repair (EVAR) has replaced the traditional open surgical approach in patients with suitable anatomy. However, approximately one-third of patients presenting with AAAs are deemed ineligible for standard EVAR because of anatomic constraints, the majority of which involve the proximal aneurysmal neck. To overcome these challenges, a bevy of endovascular approaches have been developed to either enhance stent graft fixation at the proximal neck or extend the proximal landing zone to allow adequate apposition to the aortic wall and thus aneurysm exclusion. This article is composed of two sections that together address new endovascular approaches for treating aortic aneurysms with difficult proximal neck anatomy. The first section will explore advancements in the traditional EVAR approach for hostile neck anatomy that maximize the use of the native proximal landing zone; the second section will discuss a technique that was developed to extend the native proximal landing zone and maintain perfusion to vital aortic branches using common, off-the-shelf components: the snorkel technique. While the techniques presented differ in terms of approach, the available clinical data, albeit limited, support the notion that they may both have roles in the treatment algorithm for patients with challenging proximal neck anatomy. PMID:26327748

  15. Advanced Endovascular Approaches in the Management of Challenging Proximal Aortic Neck Anatomy: Traditional Endografts and the Snorkel Technique.

    PubMed

    Quatromoni, Jon G; Orlova, Ksenia; Foley, Paul J

    2015-09-01

    Advances in endovascular technology, and access to this technology, have significantly changed the field of vascular surgery. Nowhere is this more apparent than in the treatment of abdominal aortic aneurysms (AAAs), in which endovascular aneurysm repair (EVAR) has replaced the traditional open surgical approach in patients with suitable anatomy. However, approximately one-third of patients presenting with AAAs are deemed ineligible for standard EVAR because of anatomic constraints, the majority of which involve the proximal aneurysmal neck. To overcome these challenges, a bevy of endovascular approaches have been developed to either enhance stent graft fixation at the proximal neck or extend the proximal landing zone to allow adequate apposition to the aortic wall and thus aneurysm exclusion. This article is composed of two sections that together address new endovascular approaches for treating aortic aneurysms with difficult proximal neck anatomy. The first section will explore advancements in the traditional EVAR approach for hostile neck anatomy that maximize the use of the native proximal landing zone; the second section will discuss a technique that was developed to extend the native proximal landing zone and maintain perfusion to vital aortic branches using common, off-the-shelf components: the snorkel technique. While the techniques presented differ in terms of approach, the available clinical data, albeit limited, support the notion that they may both have roles in the treatment algorithm for patients with challenging proximal neck anatomy.

  16. A numerical technique for calculation of the noise of high-speed propellers with advanced blade geometry

    NASA Technical Reports Server (NTRS)

    Nystrom, P. A.; Farassat, F.

    1980-01-01

    A numerical technique and computer program were developed for the prediction of the noise of propellers with advanced geometry. The blade upper and lower surfaces are described by a curvilinear coordinate system, which was also used to divide the blade surfaces into panels. Two different acoustic formulations in the time domain were used to improve the speed and efficiency of the noise calculations: an acoustic formualtion with the Doppler factor singularity for panels moving at subsonic speeds and the collapsing sphere formulation for panels moving at transonic or supersonic speeds. This second formulation involves a sphere which is centered at the observer position and whose radius decreases at the speed of sound. The acoustic equation consisted of integrals over the curve of intersection for both the sphere and the panels on the blade. Algorithms used in some parts of the computer program are discussed. Comparisons with measured acoustic data for two model high speed propellers with advanced geometry are also presented.

  17. A study on the flip angle for an optimal T1-weighted image based on the 3D-THRIVE MRI technique: Focusing on the detection of a hepatocellular carcinoma (HCC)

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan; Kim, Young-Jae

    2014-04-01

    This study examined the optimal flip angle (FA) for a T1-weighted image in the detection of a hepatocellular carcinoma (HCC). A 3D-T1-weighted high-resolution isotropic volume examination (THRIVE) technique was used to determine the dependence of the signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) on the change in FA. This study targeted 40 liver cancer patients (25 men and 15 women aged 50 to 70 years with a mean age of 60.32 ± 6.2 years) who visited this hospital to undergo an abdominal MRI examination from January to June 2013. A 3.0 Tesla MRI machine (Philips, Medical System, Achieva) and a MRI receiver coil for data reception with a 16-channel multicoil were used in this study. The THRIVE (repetition time (TR): 8.1 ms, echo time (TE): 3.7 ms, matrix: 172 × 172, slice thickness: 4 mm, gap: 2 mm, field of view (FOV): 350 mm, and band width (BW): 380.1 Hz) technique was applied as a pulse sequence. The time required for the examination was 19 seconds, and the breath-hold technique was used. Axial images were obtained at five FAs: 5, 10, 15, 20 and 25°. The signal intensities of the liver, the lesion and the background noise were measured based on the acquired images before the SNR and the CNR were calculated. To evaluate the image at the FA, we used SPSS for Windows ver. 17.0 to conduct a one-way ANOVA test. A Bonferroni test was conducted as a post-hoc test. The SNRs of the hemorrhagic HCC in the 3D-THRIVE technique were 35.50 ± 4.12, 97.00 ± 10.24, 66.09 ± 7.29, 53.84 ± 5.43, and 42.92 ± 5.11 for FAs of 5, 10, 15, 20, and 25°, respectively (p = 0.0430), whereas the corresponding CNRs were 30.50 ± 3.84, 43.00 ± 5.42, 36.54 ± 4.09, 32.30 ± 2.79, and 31.69 ± 3.21 (p = 0.0003). At a small FA of 10, the SNR and the CNR showed the highest values. As the FA was increased, the SNR and the CNR values showed a decreasing tendency. In conclusion, the optimal T1-weighted image FA should be set to 10° to detect a HCC by using the 3D

  18. Advanced Analytical Techniques for the Measurement of Nanomaterials in Food and Agricultural Samples: A Review

    PubMed Central

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2013-01-01

    Abstract Nanotechnology offers substantial prospects for the development of state-of-the-art products and applications for agriculture, water treatment, and food industry. Profuse use of nanoproducts will bring potential benefits to farmers, the food industry, and consumers, equally. However, after end-user applications, these products and residues will find their way into the environment. Therefore, discharged nanomaterials (NMs) need to be identified and quantified to determine their ecotoxicity and the levels of exposure. Detection and characterization of NMs and their residues in the environment, particularly in food and agricultural products, have been limited, as no single technique or method is suitable to identify and quantify NMs. In this review, we have discussed the available literature concerning detection, characterization, and measurement techniques for NMs in food and agricultural matrices, which include chromatography, flow field fractionation, electron microscopy, light scattering, and autofluorescence techniques, among others. PMID:23483065

  19. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  20. Advanced analysis technique for the evaluation of linear alternators and linear motors

    NASA Technical Reports Server (NTRS)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  1. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  2. Image enhancement and advanced information extraction techniques for ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.

    1975-01-01

    The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.

  3. Diagnostic Advances in Multiple Myeloma.

    PubMed

    Barley, Kevin; Chari, Ajai

    2016-04-01

    There have been several advances in the diagnosis of multiple myeloma (MM) in recent years. Serum free light chains have improved the ability to diagnose light chain MM; however, there are still difficulties in the serologic diagnosis of MM in some cases, particularly IgA MM. A novel heavy/light chain assay is able to improve the accuracy of diagnosis in these cases. Free light chains may also improve the diagnosis of extramedullary disease in difficult cases such as disease involving the central nervous system, pleura, or ascites. Advances in imaging such as whole body low-dose computed tomography (CT) whole body magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) have improved sensitivity in identifying lytic bone lesions, which would enable earlier treatment, and monitoring of osseous disease particularly in non- or oligosecretory disease. New techniques such as fused PET/MRI may further enhance the diagnosis of both bone lesions and extramedullary disease.

  4. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    SciTech Connect

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  5. Advanced microprocessor based power protection system using artificial neural network techniques

    SciTech Connect

    Chen, Z.; Kalam, A.; Zayegh, A.

    1995-12-31

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  6. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    PubMed Central

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  7. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  8. Principles and techniques in the design of ADMS+. [advanced data-base management system

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nick; Kang, Hyunchul

    1986-01-01

    'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

  9. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  10. Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xun, Yulong

    1998-08-01

    Computed Tomography (CT) is a modern medical diagnostic technique in which x-ray transmission measurements at numerous angles through the human body are processed by computer to produce cross-sectional pictures of the body. This technique also has found applications in such diverse fields as materials testing, astronomy, microscopy, image processing and oceanography.In this paper, a modification of this technique, using emitted IR or microwave radiation instead of transmitted x-ray radiation, can be applied to satellite radiance measurements taken along the orbital track at various angles. The channels of IR sensors for the CT retrieval are selected from HITRAN Database, and analyzed by Eigen-value analysis. We discuss in detail the effect retrieval result of CT technique form projection-angle. Finally, using the balloon sounding data, the result of CT are compared with the result of conventional method. Because the advantage over conventional remote sensing methods is the additional information acquired by viewing a given point in the atmosphere at several angles as well as several frequencies. The results show that the temperature profiles by CT retrieval are better than the conventional method.

  11. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  12. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  13. Advanced SuperDARN meteor wind observations based on raw time series analysis technique

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

    2009-04-01

    The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

  14. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  15. Transplant related ocular surface disorders: Advanced techniques for ocular surface rehabilitation after ocular complications secondary to hematopoietic stem cell transplantation.

    PubMed

    Stahl, Erin D; Mahomed, Faheem; Hans, Amneet K; Dalal, Jignesh D

    2016-05-01

    HSCT has been linked to the development of an assortment of ocular surface complications with the potential to lead to permanent visual impairment if left untreated or if not treated early in the course of disease. Strategies for therapy include maintenance of lubrication and tear preservation, prevention of evaporation, decreasing inflammation, and providing epithelial support. The ultimate aim of treatment is to prevent permanent ocular sequelae through prompt ophthalmology consultation and the use of advanced techniques for ocular surface rehabilitation. We describe several rehabilitation options of ocular surface complications occurring secondarily during the post-HSCT course.

  16. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  17. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  18. MRI monitoring of high-temperature ultrasound therapy

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan Judson

    More than fifty years ago, it was demonstrated that ultrasound could penetrate deep into tissue and induce a biological response. By focusing the ultrasound beam, localized heating in soft tissue is possible, allowing for a completely non-invasive technique to thermally ablate diseased tissue. Despite many promising results and advances in the last fifty years, widespread clinical implementation of therapeutic heating with ultrasound has not occurred because of the difficulty in guiding and monitoring the procedure. Magnetic resonance imaging (MRI) has been shown capable of monitoring thermal therapies such as focused ultrasound surgery. With MRI, the tumor can be accurately detected and targeted. Temperature-sensitive MRI techniques can be used to guide and monitor the ultrasound therapy. Thermal tissue damage induced by the ultrasound can be imaged. The purpose of this work was to test the use of MRI for guiding and monitoring high temperature ultrasound surgery. MRI-derived thermal imaging, which maps temperature-induced changes in the water proton resonant frequency, was implemented in a series of experiments. The first experiments demonstrated that MRI-derived temperature and thermal dose measurements correctly predict the onset of tissue damage in vivo, while the applied ultrasound power does not. The accuracy of the MRI-derived thermometry during long ultrasound exposures was also verified, and the limit of the technique in light of heating-induced tissue swelling was demonstrated. The accuracy of the thermometry to estimate online the extent of tissue damage was verified at the exposure time limit. Methods for using the temperature information gathered with MRI to estimate the ultrasound treatment parameters were also demonstrated experimentally. Focused ultrasound surgery in tumor models (animal and clinical breast tumor treatments) was shown feasible and demonstrated the need for image guidance. Finally, two new pulse sequences were shown capable of

  19. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  20. Advances in iterative non-uniformity correction techniques for infrared scene projection

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; LaVeigne, Joe; Prewarski, Marcus; Nehring, Brian

    2015-05-01

    Santa Barbara Infrared (SBIR) is continually developing improved methods for non-uniformity correction (NUC) of its Infrared Scene Projectors (IRSPs) as part of its comprehensive efforts to achieve the best possible projector performance. The most recent step forward, Advanced Iterative NUC (AI-NUC), improves upon previous NUC approaches in several ways. The key to NUC performance is achieving the most accurate possible input drive-to-radiance output mapping for each emitter pixel. This requires many highly-accurate radiance measurements of emitter output, as well as sophisticated manipulation of the resulting data set. AI-NUC expands the available radiance data set to include all measurements made of emitter output at any point. In addition, it allows the user to efficiently manage that data for use in the construction of a new NUC table that is generated from an improved fit of the emitter response curve. Not only does this improve the overall NUC by offering more statistics for interpolation than previous approaches, it also simplifies the removal of erroneous data from the set so that it does not propagate into the correction tables. AI-NUC is implemented by SBIR's IRWindows4 automated test software as part its advanced turnkey IRSP product (the Calibration Radiometry System or CRS), which incorporates all necessary measurement, calibration and NUC table generation capabilities. By employing AI-NUC on the CRS, SBIR has demonstrated the best uniformity results on resistive emitter arrays to date.

  1. A standard data set for performance analysis of advanced IR image processing techniques

    NASA Astrophysics Data System (ADS)

    Weiß, A. Robert; Adomeit, Uwe; Chevalier, Philippe; Landeau, Stéphane; Bijl, Piet; Champagnat, Frédéric; Dijk, Judith; Göhler, Benjamin; Landini, Stefano; Reynolds, Joseph P.; Smith, Leslie N.

    2012-06-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance modeling are of limited use for these types of equipment. Several groups have tried to overcome this problem by producing a variety of imagery to assess the impact of advanced signal and image processing. Mostly, this data was taken from classified targets and/ or using classified imager and is thus not suitable for comparison studies between different groups from government, industry and universities. To ameliorate this situation, NATO SET-140 has undertaken a systematic measurement campaign at the DGA technical proving ground in Angers, France, to produce an openly distributable data set suitable for the assessment of fusion, super-resolution, local contrast enhancement, dynamic range compression and image-based NUC algorithm performance. The imagery was recorded for different target / background settings, camera and/or object movements and temperature contrasts. MWIR, LWIR and Dual-band cameras were used for recording and were also thoroughly characterized in the lab. We present a selection of the data set together with examples of their use in the assessment of super-resolution and contrast enhancement algorithms.

  2. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  3. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  4. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  5. Imaging the neural mechanisms of TMS neglect-like bias in healthy volunteers with the interleaved TMS/fMRI technique: preliminary evidence.

    PubMed

    Ricci, Raffaella; Salatino, Adriana; Li, Xingbao; Funk, Agnes P; Logan, Sarah L; Mu, Qiwen; Johnson, Kevin A; Bohning, Daryl E; George, Mark S

    2012-01-01

    Applying a precisely timed pulse of transcranial magnetic stimulation (TMS) over the right posterior parietal cortex (PPC) can produce temporary visuo-spatial neglect-like effects. Although the TMS is applied over PPC, it is not clear what other brain regions are involved. We applied TMS within a functional magnetic resonance imaging (fMRI) scanner to investigate brain activity during TMS induction of neglect-like bias in three healthy volunteers, while they performed a line bisection judgment task (i.e., the landmark task). Single-pulse TMS at 115% of motor threshold was applied 150 ms after the visual stimulus onset. Participants completed two different TMS/fMRI sessions while performing this task: one session while single-pulse TMS was intermittently and time-locked applied to the right PPC and a control session with TMS positioned over the vertex. Perceptual rightward bias was observed when TMS was delivered over the right PPC. During neglect-like behavior, the fMRI maps showed decreased neural activity within parieto-frontal areas, which are often lesioned or dysfunctional in patients with left neglect. Vertex TMS induced behavioral effects compatible with leftward response bias and increased BOLD signal in the left caudate (a site which has been linked to response bias). These results are discussed in relation to recent findings on neural networks subserving attention in space.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  7. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  8. Temperature and pressure measurement techniques for an advanced turbine test facility

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.; Cochran, R. P.

    1980-01-01

    A high pressure, high-temperature turbine test facility constructed for use in turbine cooling research is described. Several recently developed temperature and pressure measuring techniques are used in this facility. The measurement techniques, their status, previous applications and some results are discussed. Noncontact surface temperature measurements are made by optical methods. Radiation pyrometry principles combined with photoelectric scanning are used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components are expected to be handled with an 80 channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft.

  9. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides.

    PubMed

    Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2015-08-15

    The use of organophosphate pesticides (OPs) for pest control in agriculture has caused serious environmental problems throughout the world. OPs are highly toxic with the potential to cause neurological disorders in humans. As the application of OPs has greatly increased in various agriculture activities, it has become imperative to accurately monitor their concentration levels for the protection of ecological systems and food supplies. Although there are many conventional methods available for the detection of OPs, the development of portable sensors is necessary to facilitate routine analysis with more convenience. Some of these potent alternative techniques based on functional materials include fluorescence nanomaterials based sensors, molecular imprinted (MIP) sensors, electrochemical sensors, and biosensors. This review explores the basic features of these sensing approaches through evaluation of their performance. The discussion is extended further to describe the challenges and opportunities for these unique sensing techniques.

  10. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  11. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    SciTech Connect

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  12. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo. PMID:24319285

  13. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo.

  14. Advanced techniques for free-space optical quantum cryptography over water

    NASA Astrophysics Data System (ADS)

    Hill, Alexander D.; Christensen, Bradley; Kwiat, Paul G.

    2016-03-01

    Free-space quantum key distribution (QKD) over water (e.g., ship to ship) may be limited by ship motion and atmospheric effects, such as mode distortion and beam wander due to turbulence. We report on a technique which reduces noise by excluding spatial modes which are less likely to contain QKD signal photons and experimentally demonstrate an improvement in QKD key generation rates in various noise and turbulence regimes.

  15. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  16. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We now have two suites of well-characterized microporous materials including oxides (zeolites and silica gel) and activated carbons from our industrial partner, Air Products in Allentown, PA. Our current work may be divided into three areas: small-angle X-ray scattering (SAXS), adsorption, and NMR.

  17. New radiation techniques for treatment of locally advanced non-small cell lung cancer (NSCLC).

    PubMed

    Silvano, G

    2006-03-01

    Local control is a main step to cure NSCLC because at least 30-40% of patients die for local or regional progression of their disease. Surgery is still the more efficient approach to increase survival but radiation therapy is the only treatment that can cure patients with T1-T2 lesions if they are not suitable for surgery or refuse it. However, doses higher than 60-66 Gy must be given to improve tumor control but doses to the organs at risk (OAR) are the main limit to deliver more than 70 Gy to the planning treatment volume (PTV). The optimal solution would be to 'paint' the dose to the PTV avoiding as possible OARs, but this ballistic precision was not possible till some years ago because of both technology and respiratory movement control. In last ten years many new techniques have been made available for treating NSCLC with radiation more accurately. Some techniques like Intensity Modulated Radiotherapy (IMRT), Image Guided Radiotherapy (IGRT), Stereotactic Radiotherapy can be carried out also with a traditional linear accelerator (LINAC) updated with the new software and hardware, using or not radiopaque markers inside the tumor. On the other hand, a new generation of machines like Cyberknife or Tomotherapy have been especially projected to optimize stereotactic technique and IMRT, respectively, and respiratory gating systems are now disposable from several manufactures. PMID:16608978

  18. VCM-OFDM technique for advanced space communications system with high spectral efficiency

    NASA Astrophysics Data System (ADS)

    Li, Jionghui; Zhou, Qing; Xiong, Weiming; Zhang, Ying; Yao, Chen

    2016-11-01

    The development of precise scientific payloads brings higher demand on the efficiency of space communications system to transmit the increasing volume of scientific data. Aiming to this issue, Orthogonal Frequency Division Multiplexing (OFDM) is chosen for its inherent capability of high-rate data transmission. Further, considering the dynamic link condition due to satellite orbital motion, we propose a new technique which combines Variable Coding Modulation (VCM) with OFDM to enhance the communication link spectral efficiency with required transmission reliability. With VCM-OFDM technique, the channel coding and modulation mode can be variable with time according to the link conditions, in order to fit the link budget curve and maintain a relatively fixed link margin. Hence, link resource waste can be reduced and throughput can be remarkably improved. Considering that OFDM-based systems are sensitive to Doppler shifts/spread, the coding and modulation mode (CODMOD) selection should be optimized subject to this scenario. This paper introduces the architecture of near-earth space data transmission system based on VCM-OFDM technique. The Doppler influence is analyzed through simulation and the CODMOD selection algorithm is discussed. The results prove the high performance on spectral efficiency enhancement of VCM-OFDM by comparison with several existing alternative methods.

  19. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  20. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment.

  1. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  2. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.

  3. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  4. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  5. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  6. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    SciTech Connect

    Schalkoff, R.J.; Geist, R.M.; Dawson, D.M.

    1998-06-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  7. Recent Advances of Portable Multi-Sensor Technique of Volcanic Plume Measurement

    NASA Astrophysics Data System (ADS)

    Shinohara, H.

    2005-12-01

    A technique has been developed to estimate chemical composition volcanic gases based on the measurement of volcanic plumes at distance from a source vent by the use of a portable multi-sensor system consisting a humidity sensor, an SO2 electrochemical sensor and a CO2 IR analyzer (Shinohara, 2005). Since volcanic plume is a mixture of the atmosphere and volcanic gases, the volcanic gas composition can be estimated by subtracting the atmospheric background from the plume data. This technique enabled us to estimate concentration ratios of major volcanic gas species (i.e., H2O, CO2 and SO2) without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Since the portable multi-sensor system was light (~ 5 kg) and small enough to carry in a medium size backpack, we could apply this technique to measure volcanic plumes at summit of various volcanoes including those which require us a tough climbing, such as Villarrica volcano, Chile. We further improved the sensor system and the measurements techniques, including application of LI-840 IR H2O and CO2 analyzer, H2S electrochemical sensor and H2 semi-conductor sensor. Application of the new LI-840 analyzer enabled us to measure H2O concentration in the plume with similar response time with CO2 concentration. The H2S electrochemical sensor of Komyo Co. has a chemical filter to removed SO2 to achieve a low sensitivity (0.1%) to SO2, and we can measure a high SO2/H2S ratio up to 1000. The semi-conductor sensor can measure H2 concentration in the range from the background level in the atmosphere (~0.5 ppm) to ~50 ppm. Response of the H2 sensor is slower (90% response time = ~90 sec) than other sensors in particular in low concentration range, and the measurement is still semi-quantitative with errors up to ±50%. The H2/H2O ratios are quite variable in volcanic gases ranging from less than 10-5 up to 10-1, and the ratio is largely controlled by temperature and pressure condition of the

  8. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    NASA Astrophysics Data System (ADS)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  9. Battlefield MRI

    SciTech Connect

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  10. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  11. Two-Person Technique of Peroral Endoscopic Myotomy for Achalasia with an Advanced Endoscopist and a Thoracic Surgeon: Initial Experience

    PubMed Central

    Jegadeesan, Ramprasad; Navaneethan, Udayakumar; Lopez, Rocio; Murthy, Sudish C.; Raja, Siva

    2016-01-01

    Background and Aims. We initiated peroral endoscopic myotomy (POEM) utilizing a two-person technique with combination of an advanced endoscopist and a thoracic surgeon with complementary skills. Our aim was to determine the feasibility and outcomes in initial 20 patients. Methods. In this observational study, main outcomes measured were therapeutic success in relieving symptoms (Eckardt score < 3), decrease in lower esophageal sphincter (LES) pressures, improvement in emptying on timed barium esophagogram (TBE), and complications. Results. POEM was successful in all 20 patients with a mean operative time of 140.1 + 32.9 minutes. Eckardt symptom scores decreased significantly at two-month follow-up (6.4 + 2.9 versus 0.25 + 0.45, p < 0.001). Both basal and residual LES pressures decreased significantly (28.2 + 14.1 mmHg versus 12.8 + 6.3 and 22.4 + 11.3 versus 6.3 + 3.4 mmHg, p = 0.025 and <0.001, resp.). Barium column height at 5 minutes on TBE reduced from 6.8 + 4.9 cm to 2.3 + 2.9 cm (p = 0.05). Two patients (10%) had mucosal perforations and one had delayed bleeding (5%). Conclusions. Two-person technique of POEM with combination of an advanced endoscopist and a thoracic surgeon is highly successful with low risk of complications.

  12. Two-Person Technique of Peroral Endoscopic Myotomy for Achalasia with an Advanced Endoscopist and a Thoracic Surgeon: Initial Experience

    PubMed Central

    Jegadeesan, Ramprasad; Navaneethan, Udayakumar; Lopez, Rocio; Murthy, Sudish C.; Raja, Siva

    2016-01-01

    Background and Aims. We initiated peroral endoscopic myotomy (POEM) utilizing a two-person technique with combination of an advanced endoscopist and a thoracic surgeon with complementary skills. Our aim was to determine the feasibility and outcomes in initial 20 patients. Methods. In this observational study, main outcomes measured were therapeutic success in relieving symptoms (Eckardt score < 3), decrease in lower esophageal sphincter (LES) pressures, improvement in emptying on timed barium esophagogram (TBE), and complications. Results. POEM was successful in all 20 patients with a mean operative time of 140.1 + 32.9 minutes. Eckardt symptom scores decreased significantly at two-month follow-up (6.4 + 2.9 versus 0.25 + 0.45, p < 0.001). Both basal and residual LES pressures decreased significantly (28.2 + 14.1 mmHg versus 12.8 + 6.3 and 22.4 + 11.3 versus 6.3 + 3.4 mmHg, p = 0.025 and <0.001, resp.). Barium column height at 5 minutes on TBE reduced from 6.8 + 4.9 cm to 2.3 + 2.9 cm (p = 0.05). Two patients (10%) had mucosal perforations and one had delayed bleeding (5%). Conclusions. Two-person technique of POEM with combination of an advanced endoscopist and a thoracic surgeon is highly successful with low risk of complications. PMID:27630977

  13. Sutural distraction osteogenesis (SDO) versus osteotomy distraction osteogenesis (ODO) for midfacial advancement: a new technique and primary clinical report.

    PubMed

    Liu, Chunming; Hou, Min; Liang, Limin; Huang, Xuming; Zhang, Tong; Zhang, Haizhong; Ma, Xiao; Song, Ruyao

    2005-07-01

    A new technique of osteotomy distraction osteogenesis (ODO) and sutural distraction osteogenesis (SDO) by the use of bone-borne traction hooks is presented. The technique of osteotomy plus distraction osteogenesis is suitable for adult patients. The technique of sutural distraction osteogenesis is suitable for young patients, ages 6 through 12 years. The distraction system consists of a face-bow, orthodontic elastics, and bone-borne traction hooks. The bone-borne traction hooks are made of titanium, with two traction hooks running laterally or downwardly. When a Le Fort III osteotomy is needed, bone-borne traction hooks are inserted through the nostrils into a bone hole drilled at the lateral-inferior pyriform aperture. When no osteotomy is needed, only the bone-borne traction hooks are placed. Heavy elastics were used in the technique of osteotomy distraction osteogenesis for Le Fort III osteotomy adult patients, whereas light forces and thus light elastics were used for younger patients. Three adult patients and four children were treated by osteotomy distraction and sutural distraction, respectively. All seven patients with midfacial hypoplasia established a harmonious facial profile and normal occlusal relationships. Radiographic examination showed balanced advancement of the midfacial skeleton. It is suggested that the treatment of midfacial hypoplasia in children by the technique of sutural distraction osteogenesis is to be preferred because of its simplicity and relative noninvasiveness. Thus, the authors suggest that midfacial hypoplasia should be treated at a younger age by this technique, potentially eliminating the need for a Le Fort III osteotomy at an older age.

  14. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  15. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  16. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We will investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties. A special NMR probe will be constructed which will allow the concurrent measurement of NMR properties and adsorption uptake at a variety of temperatures. All samples will be subjected to a suite of conventional'' pore structure analyses. These include nitrogen adsorption at 77 K with BET analysis, CO[sub 2] and CH[sub 4] adsorption at 273 K with D-R (Dubinin-Radushkevich) analysis, helium pycnometry, and small angle X-ray scattering as well as gas diffusion measurements.

  17. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  18. Advanced definition study for the determination of atmospheric ozone using the satellite eclipse technique

    NASA Technical Reports Server (NTRS)

    Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.

    1973-01-01

    A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.

  19. Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics

    NASA Astrophysics Data System (ADS)

    Chien, C. Y.; Chang, Y. J.; Chang, J. E.; Lee, M. S.; Chen, W. Y.; Hsu, T. M.; Li, P. W.

    2010-12-01

    We report a simple and manageable growth method for placing dense three-dimensional Ge quantum dot (QD) arrays in a uniform or a graded size distribution, based on thermally oxidizing stacked poly-SiGe in a layer-cake technique. The QD size and spatial density in each stack can be modulated by conditions of the Ge content in poly-Si1 - xGex, oxidation, and the underlay buffer layer. Size-dependent internal structure, strain, and photoluminescence properties of Ge QDs are systematically investigated. Optimization of the processing conditions could be carried out for producing dense Ge QD arrays to maximize photovoltaic efficiency.

  20. Recent advances in latent print visualization techniques at the U.S. Secret Service

    NASA Astrophysics Data System (ADS)

    Ramotowski, Robert S.; Cantu, Antonio A.; Leben, Deborah A.; Joullie, Madeleine M.; Saunders, George C.

    1997-02-01

    The U.S. Secret Service has been doing and supporting research in several areas of fingerprint visualization. The following is discussed: (1) developing ninhydrin analogues for visualizing latent prints on porous surfaces such as paper (with Dr. Madeleine Joullie, University of Pennsylvania); (2) exploring reflective UV imaging techniques as a no-treatment-required method for visualizing latent prints; (3) optimizing 'gun bluing' methods for developing latent prints on metal surfaces (such as spent cartridges); (4) investigating aqueous metal deposition methods for visualizing latent prints on multiple types of surfaces; and (5) studying methods of transferring latent print residues onto membranes.