Sample records for advanced navigation information

  1. Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.

    ERIC Educational Resources Information Center

    Air Training Command, Randolph AFB, TX.

    This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…

  2. Developing Navigation Competencies to Care for Older Rural Adults with Advanced Illness.

    PubMed

    Duggleby, Wendy; Robinson, Carole A; Kaasalainen, Sharon; Pesut, Barbara; Nekolaichuk, Cheryl; MacLeod, Roderick; Keating, Norah C; Santos Salas, Anna; Hallstrom, Lars K; Fraser, Kimberly D; Williams, Allison; Struthers-Montford, Kelly; Swindle, Jennifer

    2016-06-01

    Navigators help rural older adults with advanced illness and their families connect to needed resources, information, and people to improve their quality of life. This article describes the process used to engage experts - in rural aging, rural palliative care, and navigation - as well as rural community stakeholders to develop a conceptual definition of navigation and delineate navigation competencies for the care of this population. A discussion paper on the important considerations for navigation in this population was developed followed by a four-phased Delphi process with 30 expert panel members. Study results culminated in five general navigation competencies for health care providers caring for older rural persons and their families at end of life: provide patient/family screening; advocate for the patient/family; facilitate community connections; coordinate access to services and resources; and promote active engagement. Specific competencies were also developed. These competencies provide the foundation for research and curriculum development in navigation.

  3. Benefits assessment of advanced public transportation systems (APTS)

    DOT National Transportation Integrated Search

    1996-07-01

    This report documents work performed under FTA's Advance Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techno...

  4. Advanced public transportation system deployment in the United States

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  5. Benefits assessment of advanced public transportation system technologies, update 2000

    DOT National Transportation Integrated Search

    This report was performed under the Federal Transit Administration's (FTA) Advanced Public Transportation Systems (APTS) Program. This program focuses on the development and demonstration of innovative advanced navigation, information and communicati...

  6. Advanced public transportation systems : the state of the art update 2000

    DOT National Transportation Integrated Search

    2000-12-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, communication, information, computer...

  7. Advanced public transportation systems : the state of the art

    DOT National Transportation Integrated Search

    1991-03-01

    This report documents one of the early initiatives of UMTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communi...

  8. Advanced public transportation systems : the state of the art update of 1998

    DOT National Transportation Integrated Search

    1998-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, computer, and communica...

  9. Advanced Public Transportation Systems Deployment in the United States. Update, January 1999

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  10. Advanced public transportation systems deployment in the United States : update, January 1999

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advances navigation, information, and communication techn...

  11. The ADVANCE project : formal evaluation of the targeted deployment. Volume 2

    DOT National Transportation Integrated Search

    1997-01-01

    This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...

  12. The ADVANCE project : formal evaluation of the targeted deployment. Volume 1

    DOT National Transportation Integrated Search

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an in-vehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-ti...

  13. Advanced public transportation systems: the state of the art, update '92

    DOT National Transportation Integrated Search

    1992-03-01

    This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...

  14. Advanced public transportation systems : the state of the art, update '94

    DOT National Transportation Integrated Search

    1994-01-01

    This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...

  15. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  16. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  17. Connected commercial vehicles-integrated truck project : data acquisition system (DAS) documentation.

    DOT National Transportation Integrated Search

    1996-08-01

    The report documents work performed under the FTA Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication tech...

  18. Los Angeles congestion reduction demonstration (Metro ExpressLanes) program. National evaluation : traffic system data test plan.

    DOT National Transportation Integrated Search

    1997-01-01

    This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...

  19. Binge Eating Disorder

    MedlinePlus

    ... For Reporters Meetings & Workshops Follow Us Home Health Information Weight Management Binge Eating Disorder Related Topics Section Navigation Weight ... at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information ... Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...

  20. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  1. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M

    2018-06-04

    Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.

  2. Freight Advanced Traveler Information System (FRATIS) – Dallas-Fort Worth (DFW) prototype : final report.

    DOT National Transportation Integrated Search

    2015-05-01

    This is the Final Report for the FRATIS Dallas-Fort Worth DFW prototype system. The FRATIS prototype in DFW consisted of the following components: optimization algorithm, terminal wait time, route specific navigation/traffic/weather, and advanced not...

  3. Core areas of practice and associated competencies for nurses working as professional cancer navigators.

    PubMed

    Cook, Sandra; Fillion, Lise; Fitch, Margaret; Veillette, Anne-Marie; Matheson, Tanya; Aubin, Michèle; de Serres, Marie; Doll, Richard; Rainville, François

    2013-01-01

    Fillion et al. (2012) recently designed a conceptual framework for professional cancer navigators describing key functions of professional cancer navigation. Building on this framework, this study defines the core areas of practice and associated competencies for professional cancer navigators. The methods used in this study included: literature review, mapping of navigation functions against practice standards and competencies, and validation of this mapping process with professional navigators, their managers and nursing experts and comparison of roles in similar navigation programs. Associated competencies were linked to the three identified core areas of practice, which are: 1) providing information and education, 2) providing emotional and supportive care, and 3) facilitating coordination and continuity of care. Cancer navigators are in a key position to improve patient and family empowerment and continuity of care. This is an important step for advancing the role of oncology nurses in navigator positions and identifying areas for further research.

  4. Scalability of Findability: Decentralized Search and Retrieval in Large Information Networks

    ERIC Educational Resources Information Center

    Ke, Weimao

    2010-01-01

    Amid the rapid growth of information today is the increasing challenge for people to survive and navigate its magnitude. Dynamics and heterogeneity of large information spaces such as the Web challenge information retrieval in these environments. Collection of information in advance and centralization of IR operations are hardly possible because…

  5. Netscape Communicator 4.5. Volume II: Beyond the Basics. Advanced Searches, Multimedia, and Composing a Web Page.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This second of two guides on Netscape Communicator 4.5 contains six lessons on advanced searches, multimedia, and composing a World Wide Web page. Lesson 1 is a review of the Navigator window, toolbars, and menus. Lesson 2 covers AltaVista's advanced search tips, searching for information excluding certain text, and advanced and nested Boolean…

  6. GPS free navigation inspired by insects through monocular camera and inertial sensors

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Liu, J. G.; Cao, H.; Huang, Y.

    2015-12-01

    Navigation without GPS and other knowledge of environment have been studied for many decades. Advance technology have made sensors more compact and subtle that can be easily integrated into micro and hand-hold device. Recently researchers found that bee and fruit fly have an effectively and efficiently navigation mechanism through optical flow information and process only with their miniature brain. We present a navigation system inspired by the study of insects through a calibrated camera and other inertial sensors. The system utilizes SLAM theory and can be worked in many GPS denied environment. Simulation and experimental results are presented for validation and quantification.

  7. Lay Patient Navigators' Perspectives of Barriers, Facilitators and Training Needs in Initiating Advance Care Planning Conversations With Older Patients With Cancer.

    PubMed

    Niranjan, Soumya J; Huang, Chao-Hui S; Dionne-Odom, J Nicholas; Halilova, Karina I; Pisu, Maria; Drentea, Patricia; Kvale, Elizabeth A; Bevis, Kerri S; Butler, Thomas W; Partridge, Edward E; Rocque, Gabrielle B

    2018-04-01

    Respecting Choices is an evidence-based model of facilitating advance care planning (ACP) conversations between health-care professionals and patients. However, the effectiveness of whether lay patient navigators can successfully initiate Respecting Choices ACP conversations is unknown. As part of a large demonstration project (Patient Care Connect [PCC]), a cohort of lay patient navigators underwent Respecting Choices training and were tasked to initiate ACP conversations with Medicare beneficiaries diagnosed with cancer. This article explores PCC lay navigators' perceived barriers and facilitators in initiating Respecting Choices ACP conversations with older patients with cancer in order to inform implementation enhancements to lay navigator-facilitated ACP. Twenty-six lay navigators from 11 PCC cancer centers in 4 states (Alabama, George, Tennessee, and Florida) completed in-depth, one-on-one semistructured interviews between June 2015 and August 2015. Data were analyzed using a thematic analysis approach. This evaluation identifies 3 levels-patient, lay navigator, and organizational factors in addition to training needs that influence ACP implementation. Key facilitators included physician buy-in, patient readiness, and navigators' prior experience with end-of-life decision-making. Lay navigators' perceived challenges to initiating ACP conversations included timing of the conversation and social and personal taboos about discussing dying. Our results suggest that further training and health system support are needed for lay navigators playing a vital role in improving the implementation of ACP among older patients with cancer. The lived expertise of lay navigators along with flexible longitudinal relationships with patients and caregivers may uniquely position this workforce to promote ACP.

  8. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  9. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  10. Foundations of Neuromorphic Computing

    DTIC Science & Technology

    2013-05-01

    make informed decisions quicker than our adversaries. 2.0 INTRODUCTION The increasing resolution and speed of today’s advanced sensor ...limited information about the location, access to global positioning satellite information (GPS) to aid in navigation is impeded, and communications...more autonomous capability. This is where neuromorphic computing and other bio -inspired technologies for SWaP constrained environments can play a

  11. The Global Positioning System: Theory and operation

    NASA Astrophysics Data System (ADS)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  12. 33 CFR 203.71 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Policy. 203.71 Section 203.71 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance Measures § 203.71 Policy. Advance...

  13. 33 CFR 203.71 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Policy. 203.71 Section 203.71 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance Measures § 203.71 Policy. Advance...

  14. 33 CFR 203.71 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Policy. 203.71 Section 203.71 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance Measures § 203.71 Policy. Advance...

  15. 33 CFR 203.71 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Policy. 203.71 Section 203.71 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance Measures § 203.71 Policy. Advance...

  16. 33 CFR 203.71 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Policy. 203.71 Section 203.71 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance Measures § 203.71 Policy. Advance...

  17. Project Longshot: A mission to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    West, Curtis; Chamberlain, Sally; Pagan, Neftali; Stevens, Robert

    1989-01-01

    Project Longshot, an exercise in the Advanced Design Program for Space, had as its destination Alpha Centauri, the closest star system to our own solar system. Alpha Centauri, a trinary star system, is 4.34 light years from earth. Although Project Longshot is impossible based on existing technologies, areas that require further investigation in order to make this feat possible are identified. Three areas where advances in technology are needed are propulsion, data processing for autonomous command and control functions, and reliability. Propulsion, possibly by antimatter annihilation; navigation and navigation aids; reliable hardware and instruments; artificial intelligence to eliminate the need for command telemetry; laser communication; and a reliable, compact, and lightweight power system that converts energy efficiently and reliably present major challenges. Project Longshot promises exciting advances in science and technology and new information concerning the universe.

  18. Advanced Traveler Information Systems and Commercial Vehicle Operations Components of the Intelligent Transportation Systems: Head-up Displays and Driver Attention for Navigation Information

    DOT National Transportation Integrated Search

    1998-03-01

    Since the initial development of prototype automotive head-up displays (HUDs), there has been a concern that the presence of the HUD image may interfere with the driving task and negatively impact driving performance. The overall goal of this experim...

  19. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment

    PubMed Central

    Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé

    2015-01-01

    Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments. PMID:27019593

  20. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment.

    PubMed

    Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé

    2015-01-01

    Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.

  1. Advance (Advanced Driver and Vehicle Advisory Navigation ConcEpt) Project: Insights and Achievements Compendium

    DOT National Transportation Integrated Search

    1996-10-23

    ADVANCE (Advanced Driver and Vehicle Advisory Navigation ConcEpt) was a public/private partnership developed by the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Nor...

  2. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    PubMed

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.

  3. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

    PubMed Central

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-01-01

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832

  4. [Application of computer-assisted 3D imaging simulation for surgery].

    PubMed

    Matsushita, S; Suzuki, N

    1994-03-01

    This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.

  5. A Virtual Map to Support People Who Are Blind in Navigation through Real Spaces

    ERIC Educational Resources Information Center

    Lahav, Orly; Schloerb, David W.; Kumar, Siddarth; Srinivasan, Mandayam A.

    2011-01-01

    Most of the spatial information needed by sighted people to construct cognitive maps of spaces is gathered through the visual channel. Unfortunately, people who are blind lack the ability to collect the required spatial information in advance. The use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on…

  6. Driver response to the TetraStar Navigation Assistance System by age and sex

    DOT National Transportation Integrated Search

    1997-07-01

    This study is part of the evaluation of the FAST-TRAC operational test of an Intelligent Transportation System (ITS) in Michigan and is concerned with user perceptions and behaviors with Advanced Traveler Information Systems (ATIS). The use and perce...

  7. 33 CFR 117.40 - Advance notice for drawbridge opening.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the advanced notice for the drawbridge will be added to subpart B of this part. [USCG-2001-10881... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Advance notice for drawbridge... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.40 Advance notice for...

  8. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

    NASA Astrophysics Data System (ADS)

    Evennou, Frédéric; Marx, François

    2006-12-01

    This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.

  9. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  10. Publications about Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Publications about Products USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center

  11. USNO Scientific Colloquia - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Navigation Tour Information USNO Scientific Colloquia Info USNO Scientific Colloquia Time and Place: Unless departure. Add additional time prior to arriving at the colloquium for issuance of a visitors badge and

  12. Building a Navigation System to Reduce Cancer Disparities in Urban Black Older Adults

    PubMed Central

    Bone, Lee; Edington, Kristen; Rosenberg, Jessica; Wenzel, Jennifer; Garza, Mary A.; Klein, Catherine; Schmitt, Lisa; Ford, Jean G.

    2014-01-01

    Background Although cancer outcomes have improved in recent decades, substantial disparities by race, ethnicity, income and education persist. Increasingly, patient navigation services are demonstrating success in improving cancer detection, treatment and care and in reducing cancer health disparities. To advance progress in developing patient navigation programs, extensive descriptions of each component of the program must be made available to researchers and health service providers. Objective To describe the components of a patient navigation program designed to improve cancer screening based on informed decision-making on cancer screening and cancer treatment services among predominantly Black older adults in Baltimore City. Methods A community-academic participatory approach was used to develop a patient navigation program in Baltimore, Maryland. The components of the patient navigation system included the development of a community academic (advisory) committee (CAC); recruitment and selection of community health workers (CHWs)/navigators and supervisory staff; initial training and continuing education of the CHWs/navigators; and evaluation of CHWs/navigators. The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board. Conclusions The incorporation of community-based participatory research (CPBR) principles into each facet of this patient navigation program facilitated the attainment of the intervention’s objectives. This patient navigation program successfully delivered cancer navigation services to 1302 urban Black older adults. Appropriately recruited, selected and trained CHWs monitored by an experienced supervisor and investigators are the key elements in a patient navigation program. This model has the potential to be adapted by research and health service providers. PMID:23793252

  13. 33 CFR 115.70 - Advance approval of bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Advance approval of bridges. 115... BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.70 Advance approval of bridges. (a) The General Bridge Act of 1946 requires the approval of the location and plans of bridges prior...

  14. 33 CFR 115.70 - Advance approval of bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Advance approval of bridges. 115... BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.70 Advance approval of bridges. (a) The General Bridge Act of 1946 requires the approval of the location and plans of bridges prior...

  15. Leap Second Announcement - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › Leap Second Announcement USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center Publications

  16. Earth Orientation - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation USNO Logo USNO Navigation Earth Orientation Products GPS -based Products VLBI-based Products EO Information Center Publications about Products Software Info Earth

  17. Visualization and interaction tools for aerial photograph mosaics

    NASA Astrophysics Data System (ADS)

    Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António

    1997-05-01

    This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.

  18. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.

  19. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390

  20. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  1. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less

  2. Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition

    NASA Astrophysics Data System (ADS)

    Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro

    This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.

  3. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2017-12-09

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  4. Evaluation of a Novel Conjunctive Exploratory Navigation Interface for Consumer Health Information: A Crowdsourced Comparative Study

    PubMed Central

    Cui, Licong; Carter, Rebecca

    2014-01-01

    Background Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. Objective This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). Methods We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Results Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (P<.001). Wilcoxon signed-rank test (one-tailed) between A and B showed that A was significantly easier than B (P<.001). Paired t tests (one-tailed) between A and C showed A was significantly easier than C (P<.001). Participant responses on the preferred search modes showed that 47.8% (43/90) participants preferred A, 25.6% (23/90) preferred B, 24.4% (22/90) preferred C. Participant comments on the preferred search modes indicated that CENI was easy to use, provided better organization of health questions by topics, allowed users to narrow down to the most relevant contents quickly, and supported the exploratory navigation by non-experts or those unsure how to initiate their search. Conclusions We presented a novel conjunctive exploratory navigation interface for consumer health information retrieval and navigation. Crowdsourcing permitted a carefully designed comparative search-interface evaluation to be completed in a timely and cost-effective manner with a relatively large number of participants recruited anonymously. Accounting for possible biases, our study has shown for the first time with crowdsourcing that the combination of exploratory navigation and lookup search is more effective than lookup search alone. PMID:24513593

  5. Evaluation of a novel Conjunctive Exploratory Navigation Interface for consumer health information: a crowdsourced comparative study.

    PubMed

    Cui, Licong; Carter, Rebecca; Zhang, Guo-Qiang

    2014-02-10

    Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (P<.001). Wilcoxon signed-rank test (one-tailed) between A and B showed that A was significantly easier than B (P<.001). Paired t tests (one-tailed) between A and C showed A was significantly easier than C (P<.001). Participant responses on the preferred search modes showed that 47.8% (43/90) participants preferred A, 25.6% (23/90) preferred B, 24.4% (22/90) preferred C. Participant comments on the preferred search modes indicated that CENI was easy to use, provided better organization of health questions by topics, allowed users to narrow down to the most relevant contents quickly, and supported the exploratory navigation by non-experts or those unsure how to initiate their search. We presented a novel conjunctive exploratory navigation interface for consumer health information retrieval and navigation. Crowdsourcing permitted a carefully designed comparative search-interface evaluation to be completed in a timely and cost-effective manner with a relatively large number of participants recruited anonymously. Accounting for possible biases, our study has shown for the first time with crowdsourcing that the combination of exploratory navigation and lookup search is more effective than lookup search alone.

  6. Context Aware Recommendations in the Course Enrolment Process Based on Curriculum Guidelines

    ERIC Educational Resources Information Center

    Ajanovski, Vangel V.

    2013-01-01

    This research is a part of an ongoing project for development of an integrated student information system, aiming to incorporate self-adaptivity, personalization and social navigation, both in the overall management of university processes, and throughout the course work. In this paper the focus is on the advancement of the existing course…

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Activities in space communication, radio navigation, radio science, and ground-based astronomy are reported. Advanced systems for the Deep Space Network and its Ground-Communications Facility are discussed including station control and system technology. Network sustaining as well as data and information systems are covered. Studies of geodynamics, investigations of the microwave spectrum, and the search for extraterrestrial intelligence are reported.

  8. 33 CFR 203.72 - Eligibility criteria and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Eligibility criteria and procedures. 203.72 Section 203.72 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance...

  9. 33 CFR 203.72 - Eligibility criteria and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Eligibility criteria and procedures. 203.72 Section 203.72 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance...

  10. 33 CFR 203.72 - Eligibility criteria and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Eligibility criteria and procedures. 203.72 Section 203.72 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Advance...

  11. An Evaluation of Detect and Avoid Displays for UAS: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Pack, Jessica; Shively, Jay; Draper, Mark H.

    2015-01-01

    The pilot-in-the-loop Detect-and-Avoid (DAA) task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays.

  12. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  13. Real-time adaptive off-road vehicle navigation and terrain classification

    NASA Astrophysics Data System (ADS)

    Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat

    2013-05-01

    We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the au­tonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.

  14. 33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., vessels requiring inspection. 401.79 Section 401.79 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY... Reports § 401.79 Advance notice of arrival, vessels requiring inspection. Every vessel shall provide at... reinspection of the ship is required. [70 FR 12973, Mar. 17, 2005] ...

  15. Build a better mouse: directly-observed issues in computer use for adults with SMI.

    PubMed

    Black, Anne C; Serowik, Kristin L; Schensul, Jean J; Bowen, Anne M; Rosen, Marc I

    2013-03-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed.

  16. Build a Better Mouse: Directly-Observed Issues in Computer Use for Adults with SMI

    PubMed Central

    Black, Anne C.; Serowik, Kristin L.; Schensul, Jean J.; Bowen, Anne M.; Rosen, Marc I.

    2014-01-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed. PMID:22711454

  17. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  18. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  19. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  20. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  1. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  2. Proceedings of the Sixth Integrated Communications, Navigation and Surveillance (ICNS) Conference & Workshop 2006

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise (Compiler)

    2006-01-01

    The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  3. Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2004-01-01

    The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  4. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  5. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    PubMed

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  6. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  7. The Relationships between Navigational Patterns and Informational Processing Styles of Hypermedia Users.

    ERIC Educational Resources Information Center

    Lee, Mi Jar; Harvey, Francis A.

    This study investigated the relationships between hypermedia users' information processing styles and navigational patterns. Three aspects of navigational patterns were investigated: navigational depth patterns that reveal how comprehensively users access; navigational path patterns that display what sequences users follow; and navigational method…

  8. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Advance notice of transfer. 156...

  9. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Advance notice of transfer. 156...

  10. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Advance notice of transfer. 156...

  11. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Advance notice of transfer. 156...

  12. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Advance notice of transfer. 156...

  13. Traveller Information System for Heterogeneous Traffic Condition: A Case Study in Thiruvananthapuram City, India

    NASA Astrophysics Data System (ADS)

    Satyakumar, M.; Anil, R.; Sreeja, G. S.

    2017-12-01

    Traffic in Kerala has been growing at a rate of 10-11% every year, resulting severe congestion especially in urban areas. Because of the limitation of spaces it is not always possible to construct new roads. Road users rely on travel time information for journey planning and route choice decisions, while road system managers are increasingly viewing travel time as an important network performance indicator. More recently Advanced Traveler Information Systems (ATIS) are being developed to provide real-time information to roadway users. For ATIS various methodologies have been developed for dynamic travel time prediction. For this work the Kalman Filter Algorithm was selected for dynamic travel time prediction of different modes. The travel time data collected using handheld GPS device were used for prediction. Congestion Index were calculated and Range of CI values were determined according to the percentage speed drop. After prediction using Kalman Filter, the predicted values along with the GPS data was integrated to GIS and using Network Analysis of ArcGIS the offline route navigation guide was prepared. Using this database a program for route navigation based on travel time was developed. This system will help the travelers with pre-trip information.

  14. 33 CFR 52.43 - Requests for further information; submissions of classified, privileged, and sensitive information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Requests for further information; submissions of classified, privileged, and sensitive information. 52.43 Section 52.43 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL BOARD FOR CORRECTION OF MILITARY RECORDS OF THE COAST GUARD Submissions by...

  15. From Marginal Adjustments to Meaningful Change: Rethinking Weapon System Acquisition

    DTIC Science & Technology

    2010-01-01

    phones, digital cameras, Blackberries , GPS navigation systems, Bluetooth headsets, et cetera. To achieve these breakthroughs, businesses accept a greater...informing the detailed design phase—is less valid. For instance, even with advances in computational fl uid dynamics, wind tunnel testing and live fl ight...of Federal Procurement Pol- icy, 2007. Antón, Philip S., Eugene C. Gritton, Richard Mesic, and Paul Steinberg, Wind Tunnel and Propulsion Test

  16. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2013-12-01

    integrating a full glass cockpit and full Communication Navigation Surveillance/Air Traffic Management capability. The glass cockpit will also provide the...hours at a station distance of 200nm Flat Turn Service Ceiling =>25,000 feet above MSL at mission profile =>25,000 feet above MSL at...confidential- ity, non- repudiation, and issuance of an ATO by the DAA (5) Operationally effective information exchanges; and MC- performance and IA

  17. Is Graduate School Really for You? The Whos, Whats, Hows, and Whys of Pursuing a Master's or Ph.D.

    ERIC Educational Resources Information Center

    Seligman, Amanda I.

    2012-01-01

    Landing a job in today's academic job market is no easy feat. Is graduate school the answer? This informed and candid book provides anyone thinking about pursuing an advanced degree--and those who support them--with the inside scoop on what to expect in graduate school. Amanda I. Seligman helps potential students navigate graduate study--not just…

  18. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  19. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  20. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  1. PATIENT NAVIGATION MODERATES EMOTION AND INFORMATION DEMANDS OF CANCER TREATMENT: A QUALITATIVE ANALYSIS

    PubMed Central

    Rousseau, Sally J.; Humiston, Sharon G.; Yosha, Amy; Winters, Paul C.; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin

    2014-01-01

    Purpose Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients’ involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. Methods We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and un-navigated cancer patients. Results Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Conclusions Findings underscore the salience of personal relationships between patients and navigators in meeting patients’ emotional and informational needs. PMID:24890503

  2. Patient navigation moderates emotion and information demands of cancer treatment: a qualitative analysis.

    PubMed

    Rousseau, Sally J; Humiston, Sharon G; Yosha, Amy; Winters, Paul C; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin

    2014-12-01

    Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients' involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and unnavigated cancer patients. Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Findings underscore the salience of personal relationships between patients and navigators in meeting patients' emotional and informational needs.

  3. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  4. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  5. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  6. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  7. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  8. 33 CFR 187.107 - What information must be made available to assist law enforcement officials and what information...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What information must be made available to assist law enforcement officials and what information may be made available? 187.107 Section 187.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL IDENTIFICATION SYSTEM...

  9. Towards ontology-driven navigation of the lipid bibliosphere

    PubMed Central

    Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858

  10. Towards ontology-driven navigation of the lipid bibliosphere.

    PubMed

    Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.

  11. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    NASA Astrophysics Data System (ADS)

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-08-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure.

  12. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  13. Patient Navigation to Improve Cancer Screening in Underserved Populations: Reported Experiences, Opportunities, and Challenges.

    PubMed

    Neal, Chrishanae D; Weaver, Davis T; Raphel, Tiana J; Lietz, Anna P; Flores, Efren J; Percac-Lima, Sanja; Knudsen, Amy B; Pandharipande, Pari V

    2018-04-20

    Our goal is to define patient navigation for an imaging audience, present a focused selection of published experiences with navigation programs for breast and colorectal cancer screening, and expose principal barriers to the success of such programs. Despite numerous advances in the early detection of cancers, many patients still present with advanced disease. A disproportionate number are low-income minority patients who experience worse health outcomes than their white or more financially stable counterparts. Patient navigation, which aims to assist the medically underserved by overcoming specific barriers to care, may represent one solution to narrowing disparities. Related research suggests that in general, patient navigation programs that have addressed breast or colorectal cancer screening have been successful in improving screening rates and timeliness of follow-up care. However, although beneficial, navigation is expensive and may present an unmanageable financial burden for many health care centers. To overcome this challenge, navigation efforts will likely need to target those patients that are most likely to benefit. Further research to identify such patients will be critically important for improving the sustainability of navigation programs, and, in turn, for realizing the benefits of such programs in reducing cancer disparities. Copyright © 2018. Published by Elsevier Inc.

  14. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    PubMed Central

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-01-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe. PMID:27721393

  15. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    NASA Astrophysics Data System (ADS)

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-10-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347-1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe.

  16. The Evolution of Computer-Assisted Total Hip Arthroplasty and Relevant Applications.

    PubMed

    Chang, Jun-Dong; Kim, In-Sung; Bhardwaj, Atul M; Badami, Ramachandra N

    2017-03-01

    In total hip arthroplasty (THA), the accurate positioning of implants is the key to achieve a good clinical outcome. Computer-assisted orthopaedic surgery (CAOS) has been developed for more accurate positioning of implants during the THA. There are passive, semi-active, and active systems in CAOS for THA. Navigation is a passive system that only provides information and guidance to the surgeon. There are 3 types of navigation: imageless navigation, computed tomography (CT)-based navigation, and fluoroscopy-based navigation. In imageless navigation system, a new method of registration without the need to register the anterior pelvic plane was introduced. CT-based navigation can be efficiently used for pelvic plane reference, the functional pelvic plane in supine which adjusts anterior pelvic plane sagittal tilt for targeting the cup orientation. Robot-assisted system can be either active or semi-active. The active robotic system performs the preparation for implant positioning as programmed preoperatively. It has been used for only femoral implant cavity preparation. Recently, program for cup positioning was additionally developed. Alternatively, for ease of surgeon acceptance, semi-active robot systems are developed. It was initially applied only for cup positioning. However, with the development of enhanced femoral workflows, this system can now be used to position both cup and stem. Though there have been substantial advancements in computer-assisted THA, its use can still be controversial at present due to the steep learning curve, intraoperative technical issues, high cost and etc. However, in the future, CAOS will certainly enable the surgeon to operate more accurately and lead to improved outcomes in THA as the technology continues to evolve rapidly.

  17. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  18. Lunar rover navigation concepts

    NASA Astrophysics Data System (ADS)

    Burke, James D.

    1993-01-01

    With regard to the navigation of mobile lunar vehicles on the surface, candidate techniques are reviewed and progress of simulations and experiments made up to now are described. Progress that can be made through precursor investigations on Earth is considered. In the early seventies the problem was examined in a series of relevant tests made in the California desert. Meanwhile, Apollo rovers made short exploratory sorties and robotic Lunokhods traveled over modest distances on the Moon. In these early missions some of the required methods were demonstrated. The navigation problem for a lunar traverse can be viewed in three parts: to determine the starting point with enough accuracy to enable the desired mission; to determine the event sequence required to reach the site of each traverse objective; and to redetermine actual positions enroute. The navigator's first tool is a map made from overhead imagery. The Moon was almost completely photographed at moderate resolution by spacecraft launched in the sixties, but that data set provides imprecise topographic and selenodetic information. Therefore, more advanced orbital missions are now proposed as part of a resumed lunar exploration program. With the mapping coverage expected from such orbiters, it will be possible to use a combination of visual landmark navigation and external radio and optical references (Earth and Sun) to achieve accurate surface navigation almost everywhere on the near side of the Moon. On the far side and in permanently dark polar areas, there are interesting exploration targets where additional techniques will have to be used.

  19. 76 FR 63934 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... the Road, navigation regulations and equipment, routing measures, marine information, diving safety... Road, navigation regulations and equipment, routing measures, marine information, diving safety, and... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0204] Navigation Safety Advisory...

  20. Collective navigation of complex networks: Participatory greedy routing.

    PubMed

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  1. Display Technology: An Annotated Bibliography.

    DTIC Science & Technology

    1973-12-01

    way in even the ’,test cockpit configurations. Why , then, should major changes be expected or sought? One reason for changes in cockpit...be no need for a separate navigator position, even on over- water routes, if the necessary information were displayed to another crew member, e.g. the...Burkowski, R. P., Kornblau, M., and Flint , W. L. Thermo- chromic Displays. Paper presented at NASA symposium on Recent Advances in Displ&y Media held in

  2. A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient Patient Care

    DTIC Science & Technology

    2017-02-01

    for the ever-changing environment of work that must be successfully navigated. The Cooperative Communication System (CCS) is a Health Information...presented a comprehensive picture of the BICU cognitive work , including synchronization on the BICU, the barriers to safe and effective care that...room spared the need to orient participants to an unfamiliar work setting and made it possible to include environmental factors and cues that a

  3. Molecules to maps: tools for visualization and interaction in support of computational biology.

    PubMed

    Kraemer, E T; Ferrin, T E

    1998-01-01

    The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.

  4. The magnetic sense and its use in long-distance navigation by animals.

    PubMed

    Walker, Michael M; Dennis, Todd E; Kirschvink, Joseph L

    2002-12-01

    True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.

  5. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  6. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia.

    PubMed

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

  7. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia

    PubMed Central

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.

    2015-01-01

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745

  8. The fusion of large scale classified side-scan sonar image mosaics.

    PubMed

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  9. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  10. Magnetic navigation and catheter ablation of right atrial ectopic tachycardia in the presence of a hemi-azygos continuation: a magnetic navigation case using 3D electroanatomical mapping.

    PubMed

    Ernst, Sabine; Chun, Julian K R; Koektuerk, Buelent; Kuck, Karl-Heinz

    2009-01-01

    We report on a 63-year-old female patient in whom an electrophysiologic study discovered a hemi-azygos continuation. Using the magnetic navigation system, remote-controlled ablation was performed in conjunction with the 3D electroanatomical mapping system. Failing the attempt to advance a diagnostic catheter from the femoral vein, a diagnostic catheter was advanced via the left subclavian vein into the coronary sinus. The soft magnetic catheter was positioned in the right atrium via the hemi-azygos vein, and 3D mapping demonstrated an ectopic atrial tachycardia. Successful ablation was performed entirely remote controlled. Fluoroscopy time was only 7.1 minutes, of which 45 seconds were required during remote navigation. Remote-controlled catheter ablation using magnetic navigation in conjunction with the electroanatomical mapping system proved to be a valuable tool to perform successful ablation in the presence of a hemi-azygos continuation.

  11. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  12. Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.

    PubMed

    Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H

    2007-06-01

    The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was

  13. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the

  15. Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.

  16. Magnetic Thin Films for Perpendicular Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Hachisu, Takuma; Osaka, Tetsuya

    In the advanced information society of today, information storage technology, which helps to store a mass of electronic data and offers high-speed random access to the data, is indispensable. Against this background, hard disk drives (HDD), which are magnetic recording devices, have gained in importance because of their advantages in capacity, speed, reliability, and production cost. These days, the uses of HDD extend not only to personal computers and network servers but also to consumer electronics products such as personal video recorders, portable music players, car navigation systems, video games, video cameras, and personal digital assistances.

  17. Paediatric patient navigation models of care in Canada: An environmental scan.

    PubMed

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  18. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    PubMed

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  19. The Evolution of Computer-Assisted Total Hip Arthroplasty and Relevant Applications

    PubMed Central

    Kim, In-Sung; Bhardwaj, Atul M.; Badami, Ramachandra N.

    2017-01-01

    In total hip arthroplasty (THA), the accurate positioning of implants is the key to achieve a good clinical outcome. Computer-assisted orthopaedic surgery (CAOS) has been developed for more accurate positioning of implants during the THA. There are passive, semi-active, and active systems in CAOS for THA. Navigation is a passive system that only provides information and guidance to the surgeon. There are 3 types of navigation: imageless navigation, computed tomography (CT)-based navigation, and fluoroscopy-based navigation. In imageless navigation system, a new method of registration without the need to register the anterior pelvic plane was introduced. CT-based navigation can be efficiently used for pelvic plane reference, the functional pelvic plane in supine which adjusts anterior pelvic plane sagittal tilt for targeting the cup orientation. Robot-assisted system can be either active or semi-active. The active robotic system performs the preparation for implant positioning as programmed preoperatively. It has been used for only femoral implant cavity preparation. Recently, program for cup positioning was additionally developed. Alternatively, for ease of surgeon acceptance, semi-active robot systems are developed. It was initially applied only for cup positioning. However, with the development of enhanced femoral workflows, this system can now be used to position both cup and stem. Though there have been substantial advancements in computer-assisted THA, its use can still be controversial at present due to the steep learning curve, intraoperative technical issues, high cost and etc. However, in the future, CAOS will certainly enable the surgeon to operate more accurately and lead to improved outcomes in THA as the technology continues to evolve rapidly. PMID:28316957

  20. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The generated IFC ontology that is base on the commonly accepted IFC (Industry Foundation Classes) standard can be used as the basis of information sharing between buildings, people, and applications. The proposed solution is aiming to facilitate the building navigation in an intuitive and extendable way that is easy to use by end-users and at the same time easy to maintain and manage by building administrators.

  1. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  2. Characterizing Navigation in Interactive Learning Environments

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive learning environments (ILEs) are increasingly used to support and enhance instruction and learning experiences. ILEs maintain and display information, allowing learners to interact with this information. One important method of interacting with information is navigation. Often, learners are required to navigate through the information…

  3. Demonstration of new data types for use in interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Ondrasik, V. J.; Chao, C. C.; Winn, F. B.; Yip, K. B.; Acton, C. H.; Reinbold, S. J.

    1974-01-01

    Mariner 10 was the first mission which contained many elements of the advanced navigation system which will be used in the late 1970's and 1980's. Preliminary navigation demonstrated were conducted using S/X charged particle calibrations, simultaneous Doppler data, nearly simultaneous range data, and bright object/star imaging data. The results of these demonstrations are very encouraging and a navigation system based upon these data types should be an order of magnitude better than the current system.

  4. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  5. Advanced Navigation Strategies for an Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.

    2011-01-01

    The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.

  6. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  7. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  8. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  9. 33 CFR 155.245 - Damage stability information for inland oil barges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Damage stability information for inland oil barges. 155.245 Section 155.245 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  10. 33 CFR 155.245 - Damage stability information for inland oil barges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Damage stability information for inland oil barges. 155.245 Section 155.245 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  11. 33 CFR 155.240 - Damage stability information for oil tankers and offshore oil barges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Damage stability information for oil tankers and offshore oil barges. 155.240 Section 155.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...

  12. 33 CFR 155.240 - Damage stability information for oil tankers and offshore oil barges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Damage stability information for oil tankers and offshore oil barges. 155.240 Section 155.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...

  13. 33 CFR 155.240 - Damage stability information for oil tankers and offshore oil barges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Damage stability information for oil tankers and offshore oil barges. 155.240 Section 155.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION...

  14. 33 CFR 155.245 - Damage stability information for inland oil barges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Damage stability information for inland oil barges. 155.245 Section 155.245 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...

  15. APTS : advanced public transportation systems program : technical assistance brief

    DOT National Transportation Integrated Search

    1993-01-01

    Advanced Public Transportation Systems, or APTS, are advanced navigation and communication technologies applied to all aspects of public transportation system operations. APTS provides the technology for transportation agencies to make timely transit...

  16. Forecast of the general aviation air traffic control environment for the 1980's

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.

    1976-01-01

    The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.

  17. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  18. Seeking Information Online: The Influence of Menu Type, Navigation Path Complexity and Spatial Ability on Information Gathering Tasks

    ERIC Educational Resources Information Center

    Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre

    2012-01-01

    We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…

  19. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  20. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  2. Advanced public transportation systems deployment in the United States : year 2002 update

    DOT National Transportation Integrated Search

    2003-06-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  3. Advanced public transportation systems deployment in the United States : year 2000 update

    DOT National Transportation Integrated Search

    2002-05-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  4. Advanced public transportation systems deployment in the United States : year 2004 update

    DOT National Transportation Integrated Search

    2005-06-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  5. Advanced Public Transportation Systems Deployment in the United States, Year 2000, Update

    DOT National Transportation Integrated Search

    2002-05-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  6. Implementation and Impact of Patient Lay Navigator-Led Advance Care Planning Conversations.

    PubMed

    Rocque, Gabrielle B; Dionne-Odom, J Nicholas; Sylvia Huang, Chao-Hui; Niranjan, Soumya J; Williams, Courtney P; Jackson, Bradford E; Halilova, Karina I; Kenzik, Kelly M; Bevis, Kerri S; Wallace, Audrey S; Lisovicz, Nedra; Taylor, Richard A; Pisu, Maria; Partridge, Edward E; Butler, Thomas W; Briggs, Linda A; Kvale, Elizabeth A

    2017-04-01

    Advance care planning (ACP) improves alignment between patient preferences for life-sustaining treatment and care received at end of life (EOL). To evaluate implementation of lay navigator-led ACP. A convergent, parallel mixed-methods design was used to evaluate implementation of navigator-led ACP across 12 cancer centers. Data collection included 1) electronic navigation records, 2) navigator surveys (n = 45), 3) claims-based patient outcomes (n = 820), and 4) semistructured navigator interviews (n = 26). Outcomes of interest included 1) the number of ACP conversations completed, 2) navigator self-efficacy, 3) patient resource utilization, hospice use, and chemotherapy at EOL, and 4) navigator-perceived barriers and facilitators to ACP. From June 1, 2014 to December 31, 2015, 50 navigators completed Respecting Choices ® First Steps ACP Facilitator training. Navigators approached 18% of patients (1319/8704); 481 completed; 472 in process; 366 declined. Navigators were more likely to approach African American patients than Caucasian patients (20% vs. 14%, P < 0.001). Significant increases in ACP self-efficacy were observed after training. The mean score for feeling prepared to conduct ACP conversations increased from 5.6/10 to 7.5/10 (P < 0.001). In comparison with patients declining ACP participation (n = 171), decedents in their final 30 days of life who engaged in ACP (n = 437) had fewer hospitalizations (46% vs. 56%, P = 0.02). Key facilitators of successful implementation included physician buy-in, patient readiness, and prior ACP experience; barriers included space limitations, identifying the "right" time to start conversations, and personal discomfort discussing EOL. A navigator-led ACP program was feasible and may be associated with lower rates of resource utilization near EOL. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.

  7. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow.

    PubMed

    Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex

    2007-04-01

    To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.

  8. Advanced Aircrew Display Symposium Proceedings (5th) Held at the Naval Air Test Center, Patuxent, Maryland on 15-16 September 1981

    DTIC Science & Technology

    1981-01-01

    cruisc air combat , etc. These are selected from the keyboard located at the forward end o.f the left console. Tie miscion phase packager of...and brightness test - low ambient phase Color discrimination performance was assessed by a comparative procedure which best reflects the operational...flight information for air to air , air to surface, and navigation phases of the mission. UP FRONT CONTROL (UPC- MASTER fHEAD-UP MASTER DISPLAY

  9. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  10. Determining the Navigational Aids Use on the Internet: The Information Technologies Teacher Candidates' Case

    ERIC Educational Resources Information Center

    Kuzu, Abdullah; Firat, Mehmet

    2010-01-01

    The Internet users who fail to cope with navigation may generally face various problems such as disorientation, distraction, low motivation and abandonment of information retrieval. Therefore, navigational aids are frequently used in today's Web browsers and Web sites to help users navigate on the Internet. However, it is asserted that…

  11. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  12. TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.

    A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.

  13. All Source Sensor Integration Using an Extended Kalman Filter

    DTIC Science & Technology

    2012-03-22

    Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 All...Positioning System . . . . . . . . . . . . . . . . . . 1 ASPN All Source Positioning Navigation . . . . . . . . . . . . . . 2 DARPA Defense Advanced...equations are developed for sensor preprocessed mea- 1 surements, and these navigation equations are not dependent upon the integrating filter. That is

  14. From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2012-01-01

    Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737

  15. A navigation system for the visually impaired an intelligent white cane.

    PubMed

    Fukasawa, A Jin; Magatani, Kazusihge

    2012-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  16. Issues in symbol design for electronic displays of navigation information

    DOT National Transportation Integrated Search

    2004-10-24

    An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...

  17. Navigating manuscript assessment: The new practitioner's guide to primary literature peer review.

    PubMed

    Smith, Devlin V; Stokes, Laura B; Marx, Kayleigh; Aitken, Samuel L

    2018-01-01

    For pharmacists, the first years after graduation are spent developing their knowledge base, advancing as a practitioner, and honing their abilities as healthcare providers and drug information experts. New practitioners encounter many challenges during this time, which for many include publishing original research or reviewing manuscripts for colleagues and medical journals. Inexperience navigating the publication process, from submission to receipt of (and response to) peer review commentary, is often cited as a major barrier to timely publication of resident and new practitioner research. Serving as a peer reviewer in turn provides the new practitioner with insight on this process and can be an enlightening experience used to garner confidence in subsequently submitting their own formal manuscripts. A number of publications describing steps for peer review are available, however, many of these articles address more experienced reviewers or critique the peer review process itself. No definitive resource exists for new pharmacy practitioners interested in developing their peer review skills. The information presented in this summative guide should be used in conjunction with practice opportunities to help new practitioners develop proficiency at peer review.

  18. [The operating room of the future].

    PubMed

    Broeders, I A; Niessen, W; van der Werken, C; van Vroonhoven, T J

    2000-01-29

    Advances in computer technology will revolutionize surgical techniques in the next decade. The operating room (OR) of the future will be connected with a laboratory where clinical specialists and researchers prepare image-guided interventions and explore the possibilities of these techniques. The virtual reality is linked to the actual situation in the OR with the aid of navigation instruments. During complicated operations the images prepared preoperatively will be corrected during the operation on the basis of the information obtained peroperatively. MRI currently offers maximal possibilities for image-guided surgery of soft tissues. Simpler techniques such as fluoroscopy and echography will become increasingly integrated in computer-assisted peroperative navigation. The development of medical robot systems will make possible microsurgical procedures by the endoscopic route. Tele-manipulation systems will also play a part in the training of surgeons. Design and construction of the OR will be adapted to the surgical technology, and include an information and control unit where preoperative and peroperative data come together and from where the surgeon operates the instruments. Concepts for the future OR should be regularly adjusted to allow for new surgical technology.

  19. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.

  20. 33 CFR 169.205 - What types of ships are required to transmit LRIT information (position reports)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What types of ships are required to transmit LRIT information (position reports)? 169.205 Section 169.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range...

  1. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  2. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position errors never exceeded 16 cm during these field tests.

  3. [First clinical experience with extended planning and navigation in an interventional MRI unit].

    PubMed

    Moche, M; Schmitgen, A; Schneider, J P; Bublat, M; Schulz, T; Voerkel, C; Trantakis, C; Bennek, J; Kahn, T; Busse, H

    2004-07-01

    To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared with that of 36 procedures using the scanner's standard navigation. In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. The presented system combines the advantage of intraoperative MRI with established visualization, planning, and real time capabilities of neuronavigation and can be efficiently applied in a broad range of non-neurosurgical interventions.

  4. Cognitive Navigation: Toward a Biological Basis for Instructional Design.

    ERIC Educational Resources Information Center

    Tripp, Steven

    2001-01-01

    Discusses cognitive navigation, cognitive maps and online learning, and the role of the hippocampus in navigation. Topics include brain research in animal and human studies; types of memory; human navigation, including land navigation and information navigation; instructional strategies; tree maps of curriculum structure; cognitive complexity; and…

  5. The development of a white cane which navigates the visually impaired.

    PubMed

    Shiizu, Yuriko; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2007-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines, RFID tags and an intelligent white cane. In our system, some colored marking tapes are set on along the walking route. These lines are called navigation line. And also RFID tags are set on this line at each landmark point. The intelligent white cane can sense a color of navigation line and receive tag information. By vibration of white cane, the system informs the visually impaired that he/she is walking along the navigation line. At the landmark point, the system also notifies area information to him/her by pre-recorded voice. Ten normal subjects who were blind folded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the area information system was good. Therefore, we have concluded that our system will be extremely valuable in supporting the activities of the visually impaired.

  6. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  7. 33 CFR 66.05-30 - Notice to Mariners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 66.05-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-30 Notice to Mariners. (a) To improve public safety, the District Commander may publish information concerning State aids to navigation...

  8. 33 CFR 66.05-30 - Notice to Mariners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 66.05-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-30 Notice to Mariners. (a) To improve public safety, the District Commander may publish information concerning State aids to navigation...

  9. 33 CFR 66.05-30 - Notice to Mariners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 66.05-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-30 Notice to Mariners. (a) To improve public safety, the District Commander may publish information concerning State aids to navigation...

  10. 33 CFR 66.05-30 - Notice to Mariners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 66.05-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-30 Notice to Mariners. (a) To improve public safety, the District Commander may publish information concerning State aids to navigation...

  11. 33 CFR 66.05-30 - Notice to Mariners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 66.05-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-30 Notice to Mariners. (a) To improve public safety, the District Commander may publish information concerning State aids to navigation...

  12. 77 FR 35406 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ..., including navigated patient data intake, VR-12 health status, patient navigator survey, patient navigator... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Agency Information Collection Activities: Submission for OMB Review; Comment Request Periodically, the Health...

  13. Navigation concepts for MR image-guided interventions.

    PubMed

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  14. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  15. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  16. Perception-action relationships reconsidered in light of spatial display instruments

    NASA Technical Reports Server (NTRS)

    Shebilske, Wayne L.

    1989-01-01

    Spatial display instruments convey information about both the identity and the location of objects in order to assist surgeons, astronauts, pilots, blind individuals, and others in identification, remote manipulations, navigation, and obstacle avoidance. Scientists believe that these instruments have not reached their full potential and that progress toward new applications, including the possibility of restoring sight to the blind, will be accelerated by advancing the understanding of perceptual processes. This stimulating challenge to basic researchers was advanced by Paul Bach-Y-Rita (1972) and by the National Academy of Science (1986) report on Electronic Aids for the Blind. Although progress has been made, new applications of spatial display instruments in medicine, space, aviation, and rehabilitation await improved theoretical and empirical foundations.

  17. Advancing Reflectrometry

    DTIC Science & Technology

    2013-05-21

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Reflectometry , a microwave remote sensing technique to extract geophysical data from scattered satellite...transmissions, was first demonstrated using Global Navigation Satellite System (GNSS) reflections. Recently, reflectometry has been extended to digital...potential missions. a 15. SUBJECT TERMS Reflectometry , Ocean Winds, Global Navigation Satellites, Communication Satellites 16. SECURITY

  18. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence time for Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking, respectively. Moreover, the misleading information is about 2 % for all navigation phases that is considered less safe is not in immediate danger because the horizontal position error is less than the navigation alert limits.

  19. Advanced Respiratory Motion Compensation for Coronary MR Angiography

    PubMed Central

    Henningsson, Markus; Botnar, Rene M.

    2013-01-01

    Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271

  20. Determining navigability of terrain using point cloud data.

    PubMed

    Cockrell, Stephanie; Lee, Gregory; Newman, Wyatt

    2013-06-01

    This paper presents an algorithm to identify features of the navigation surface in front of a wheeled robot. Recent advances in mobile robotics have brought about the development of smart wheelchairs to assist disabled people, allowing them to be more independent. These robots have a human occupant and operate in real environments where they must be able to detect hazards like holes, stairs, or obstacles. Furthermore, to ensure safe navigation, wheelchairs often need to locate and navigate on ramps. The algorithm is implemented on data from a Kinect and can effectively identify these features, increasing occupant safety and allowing for a smoother ride.

  1. Synthetic vision in the cockpit: 3D systems for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  2. Dr Google Is Here to Stay but Health Care Professionals Are Still Valued: An Analysis of Health Care Consumers' Internet Navigation Support Preferences.

    PubMed

    Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne

    2017-06-14

    The Internet offers great opportunities for consumers to be informed about their health. However, concerns have been raised regarding its impact on the traditional health consumer-health professional relationship. Our recent survey of 400 Australian adults identified that over half of consumers required some form of navigational support in locating appropriate Web-based health information. We propose that support provided by health professionals would be preferred by consumers; this preference is regardless of whether consumers have a need for navigational support. Secondary analysis of the survey dataset is presented here to quantify consumer-reported support preferences and barriers when navigating Web-based health information. We aimed to quantitatively identify consumers' support preferences for locating Web-based health information and their barriers when navigating Web-based health information. We also aimed to compare such preferences and barriers between consumers identified as needing and not needing support when locating Web-based health information. Chi-square (χ 2 ) tests identified whether each listed support preference differed between subgroups of consumers classified as needing (n=205, 51.3%) or not needing (n=195, 48.8%) navigational support; degree of association, via phi coefficient (φ) tests, were also considered to ascertain the likely practical significance of any differences. This was repeated for each listed barrier. Free-text responses regarding additional support preferences were descriptively analyzed and compared with the quantitative findings to provide a richer understanding of desired support for health information searches. Of the 400 respondents, the most preferred mode of navigational support was involvement of health professionals; this was reported by participants identified as needing and not needing navigational support. While there was a significant difference between groups, the degree of association was small (χ 2 1 [N=400]=13.2; P<.001; φ=.18). Qualitative data from the free-text responses supported consumers' desire for health professional involvement. The two most commonly reported barriers when navigating desired Web-based health information were (1) volume of available information and (2) inconsistency of information between sources; these were reported by participants with and without a need for navigational support. While participants identified with a need for navigational support were more likely to report volume (χ 2 1 [N=387]= 4.40; P=.04; φ=.11) and inconsistency of information (χ 2 1 [N=387]= 16.10, P<.001, φ=.20) as barriers, the degrees of association were small to moderate. Despite concerns in the literature that the popularity of the Internet could compromise the health consumer-health professional relationship, our findings suggest the contrary. Our findings showed that health professionals were found to be the most commonly preferred mode of navigational support, even among consumers classified as not needing navigational support. Further research into how health professionals could assist consumers with Web-based health information seeking could strengthen the health consumer-health professional relationship amidst the growing use of "Dr Google." ©Kenneth Lee, Kreshnik Hoti, Jeffery David Hughes, Lynne Emmerton. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 14.06.2017.

  3. Dr Google Is Here to Stay but Health Care Professionals Are Still Valued: An Analysis of Health Care Consumers’ Internet Navigation Support Preferences

    PubMed Central

    Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne

    2017-01-01

    Background The Internet offers great opportunities for consumers to be informed about their health. However, concerns have been raised regarding its impact on the traditional health consumer-health professional relationship. Our recent survey of 400 Australian adults identified that over half of consumers required some form of navigational support in locating appropriate Web-based health information. We propose that support provided by health professionals would be preferred by consumers; this preference is regardless of whether consumers have a need for navigational support. Secondary analysis of the survey dataset is presented here to quantify consumer-reported support preferences and barriers when navigating Web-based health information. Objective We aimed to quantitatively identify consumers’ support preferences for locating Web-based health information and their barriers when navigating Web-based health information. We also aimed to compare such preferences and barriers between consumers identified as needing and not needing support when locating Web-based health information. Methods Chi-square (χ2) tests identified whether each listed support preference differed between subgroups of consumers classified as needing (n=205, 51.3%) or not needing (n=195, 48.8%) navigational support; degree of association, via phi coefficient (φ) tests, were also considered to ascertain the likely practical significance of any differences. This was repeated for each listed barrier. Free-text responses regarding additional support preferences were descriptively analyzed and compared with the quantitative findings to provide a richer understanding of desired support for health information searches. Results Of the 400 respondents, the most preferred mode of navigational support was involvement of health professionals; this was reported by participants identified as needing and not needing navigational support. While there was a significant difference between groups, the degree of association was small (χ21 [N=400]=13.2; P<.001; φ=.18). Qualitative data from the free-text responses supported consumers’ desire for health professional involvement. The two most commonly reported barriers when navigating desired Web-based health information were (1) volume of available information and (2) inconsistency of information between sources; these were reported by participants with and without a need for navigational support. While participants identified with a need for navigational support were more likely to report volume (χ21 [N=387]= 4.40; P=.04; φ=.11) and inconsistency of information (χ21 [N=387]= 16.10, P<.001, φ=.20) as barriers, the degrees of association were small to moderate. Conclusions Despite concerns in the literature that the popularity of the Internet could compromise the health consumer-health professional relationship, our findings suggest the contrary. Our findings showed that health professionals were found to be the most commonly preferred mode of navigational support, even among consumers classified as not needing navigational support. Further research into how health professionals could assist consumers with Web-based health information seeking could strengthen the health consumer-health professional relationship amidst the growing use of “Dr Google.” PMID:28615156

  4. Construct and face validity of a virtual reality-based camera navigation curriculum.

    PubMed

    Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J

    2012-10-01

    Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P < 0.05). In the individual modules, coordination required 13.3 attempts for novices, 4.2 for intermediates, and 1.7 for the advanced group (P < 0.05). Target visualization required 19.3 attempts for novices, 13.2 for intermediates, and 8.2 for the advanced group (P < 0.05). Participants believe that training improves camera handling skills (95%), is relevant to surgery (95%), and is a valid training tool (93%). Graphics (98%) and realism (93%) were highly regarded. The VR-based camera navigation curriculum demonstrates construct and face validity for our training population. Camera navigation simulation may be a valuable tool that can be integrated into training protocols for residents and medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  6. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches

    PubMed Central

    Snyder, Hannah R.; Miyake, Akira; Hankin, Benjamin L.

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  7. What have we learned about intelligent transportation systems? Chapter 5, What have we learned about advanced public transportation systems?

    DOT National Transportation Integrated Search

    1995-12-01

    THE PURPOSE OF THE STUDY REPORTED HERE WAS TO EXAMINE WHETHER AGE AND SPATIAL ABILITY ARE FACTORS THAT INFLUENCE A DRIVER'S ABILITY TO NAVIGATE AND TO USE NAVIGATIONAL DISPLAYS. THESE FACTORS WERE EXAMINED BECAUSE PREVIOUS RESEARCH SUGGESTS THAT SPAT...

  8. Remote controlled robot assisted cardiac navigation: feasibility assessment and validation in a porcine model.

    PubMed

    Ganji, Yusof; Janabi-Sharifi, Farrokh; Cheema, Asim N

    2011-12-01

    Despite the recent advances in catheter design and technology, intra-cardiac navigation during electrophysiology procedures remains challenging. Incorporation of imaging along with magnetic or robotic guidance may improve navigation accuracy and procedural safety. In the present study, the in vivo performance of a novel remote controlled Robot Assisted Cardiac Navigation System (RACN) was evaluated in a porcine model. The navigation catheter and target sensor were advanced to the right atrium using fluoroscopic and intra-cardiac echo guidance. The target sensor was positioned at three target locations in the right atrium (RA) and the navigation task was completed by an experienced physician using both manual and RACN guidance. The navigation time, final distance between the catheter tip and target sensor, and variability in final catheter tip position were determined and compared for manual and RACN guided navigation. The experiments were completed in three animals and five measurements recorded for each target location. The mean distance (mm) between catheter tip and target sensor at the end of the navigation task was significantly less using RACN guidance compared with manual navigation (5.02 ± 0.31 vs. 9.66 ± 2.88, p = 0.050 for high RA, 9.19 ± 1.13 vs. 13.0 ± 1.00, p = 0.011 for low RA and 6.77 ± 0.59 vs. 15.66 ± 2.51, p = 0.003 for tricuspid valve annulus). The average time (s) needed to complete the navigation task was significantly longer by RACN guided navigation compared with manual navigation (43.31 ± 18.19 vs. 13.54 ± 1.36, p = 0.047 for high RA, 43.71 ± 11.93 vs. 22.71 ± 3.79, p = 0.043 for low RA and 37.84 ± 3.71 vs. 16.13 ± 4.92, p = 0.003 for tricuspid valve annulus. RACN guided navigation resulted in greater consistency in performance compared with manual navigation as evidenced by lower variability in final distance measurements (0.41 vs. 0.99 mm, p = 0.04). This study demonstrated the safety and feasibility of the RACN system for cardiac navigation. The results demonstrated that RACN performed comparably with manual navigation, with improved precision and consistency for targets located in and near the right atrial chamber. Copyright © 2011 John Wiley & Sons, Ltd.

  9. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  10. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  11. An evaluation of unisensory and multisensory adaptive flight-path navigation displays

    NASA Astrophysics Data System (ADS)

    Moroney, Brian W.

    1999-11-01

    The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)

  12. 78 FR 52941 - Cooperative Research and Development Agreement: Next Generation Arctic Navigational Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Development Agreement: Next Generation Arctic Navigational Safety Information System AGENCY: Coast Guard, DHS... technology approach to the ``Next Generation Arctic Maritime Navigational Safety Information System,'' which... their voyage risks, as they transit the remote and hostile waters of the U.S. Arctic Exclusive Economic...

  13. 77 FR 24933 - Hydrographic Services Review Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... navigation services issues for the Alaska/Arctic region such as: (1) The importance and need for quality and timely delivery of NOAA's navigation products, services, and information for the Alaska/Arctic region; (2..., services and information for the Alaska/Arctic region; (3) the use and need of navigation services to...

  14. The Neural Basis of Long-Distance Navigation in Birds.

    PubMed

    Mouritsen, Henrik; Heyers, Dominik; Güntürkün, Onur

    2016-01-01

    Migratory birds can navigate over tens of thousands of kilometers with an accuracy unobtainable for human navigators. To do so, they use their brains. In this review, we address how birds sense navigation- and orientation-relevant cues and where in their brains each individual cue is processed. When little is currently known, we make educated predictions as to which brain regions could be involved. We ask where and how multisensory navigational information is integrated and suggest that the hippocampus could interact with structures that represent maps and compass information to compute and constantly control navigational goals and directions. We also suggest that the caudolateral nidopallium could be involved in weighing conflicting pieces of information against each other, making decisions, and helping the animal respond to unexpected situations. Considering the gaps in current knowledge, some of our suggestions may be wrong. However, our main aim is to stimulate further research in this fascinating field.

  15. 33 CFR 72.01-30 - Temporary deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Temporary deficiencies. 72.01-30 Section 72.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-30 Temporary deficiencies. Temporary deficiencies...

  16. 33 CFR 72.01-30 - Temporary deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Temporary deficiencies. 72.01-30 Section 72.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-30 Temporary deficiencies. Temporary deficiencies...

  17. Parkinson's Disease: The Newest Advances

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Parkinson's Disease: The Newest Advances Past Issues / Summer 2006 Table ... number of genes that cause or contribute to Parkinson's disease (PD), as well as potential environmental risk factors. ...

  18. Preliminary description of the area navigation software for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    The development of new software implementation of this software on a microcomputer (MOS 6502) to provide high quality navigation information is described. This software development provides Area/Route Navigation (RNAV) information from Time Differences (TDs) in raw form using an elliptical Earth model and a spherical model. The software is prepared for the microcomputer based Loran-C receiver. To compute navigation infomation, a (MOS 6502) microcomputer and a mathematical chip (AM 9511A) were combined with the Loran-C receiver. Final data reveals that this software does indeed provide accurate information with reasonable execution times.

  19. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  20. Applying operations research to optimize a novel population management system for cancer screening.

    PubMed

    Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J

    2014-02-01

    To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management.

  1. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  2. 33 CFR 72.05-10 - Free distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Free distribution. 72.05-10 Section 72.05-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Light Lists § 72.05-10 Free distribution. Official copies are distributed free...

  3. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  4. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    PubMed Central

    May, Jody C.; McLean, John A.

    2017-01-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) are becoming preferred techniques for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements which are used to infer systems-level information. In this review, we describe multidimensional MS configurations as technologies which are big data drivers and discuss some new and emerging strategies for mining information from large-scale datasets. A discussion is included on the information content which can be obtained from individual dimensions, as well as the unique information which can be derived by comparing different levels of data. Finally, we discuss some emerging data visualization strategies which seek to make highly dimensional datasets both accessible and comprehensible. PMID:27306312

  5. Patients' experiences with navigation for cancer care.

    PubMed

    Carroll, Jennifer K; Humiston, Sharon G; Meldrum, Sean C; Salamone, Charcy M; Jean-Pierre, Pascal; Epstein, Ronald M; Fiscella, Kevin

    2010-08-01

    We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Patients' Experiences with Navigation for Cancer Care

    PubMed Central

    Carroll, Jennifer K.; Humiston, Sharon G.; Meldrum, Sean C.; Salamone, Charcy M.; Jean-Pierre, Pascal; Epstein, Ronald M.; Fiscella, Kevin

    2010-01-01

    Objective We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. Methods We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Results Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Conclusion Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Practice Implications Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. PMID:20006459

  7. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  8. Navigational Support in Lifelong Learning: Enhancing Effectiveness through Indirect Social Navigation

    ERIC Educational Resources Information Center

    Janssen, Jose; van den Berg, Bert; Tattersall, Colin; Hummel, Hans; Koper, Rob

    2007-01-01

    Efficient and effective lifelong learning requires that learners can make well informed choices from a vast amount of learning opportunities. This article proposes to support learners by drawing on principles of self-organization and indirect social navigation; by analysing choices made by learners who went before and feeding this information back…

  9. Cameras Improve Navigation for Pilots, Drivers

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Advanced Scientific Concepts Inc. (ASC), of Santa Barbara, California, received SBIR awards and other funding from the Jet Propulsion Laboratory, Johnson Space Center, and Langley Research Center to develop and refine its 3D flash LIDAR technologies for space applications. Today, ASC's NASA-derived technology is sold to assist with collision avoidance, navigation, and object tracking.

  10. 33 CFR 334.1127 - Naval Base Ventura County, Port Hueneme, California; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Base Ventura County, Port....1127 Naval Base Ventura County, Port Hueneme, California; restricted area. (a) The area. The waters... area unless permission is obtained in advance from the Commanding Officer of Naval Base Ventura County...

  11. 33 CFR 334.1127 - Naval Base Ventura County, Port Hueneme, California; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Base Ventura County, Port....1127 Naval Base Ventura County, Port Hueneme, California; restricted area. (a) The area. The waters... area unless permission is obtained in advance from the Commanding Officer of Naval Base Ventura County...

  12. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  13. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  14. Current status of endovascular catheter robotics.

    PubMed

    Lumsden, Alan B; Bismuth, Jean

    2018-06-01

    In this review, we will detail the evolution of endovascular therapy as the basis for the development of catheter-based robotics. In parallel, we will outline the evolution of robotics in the surgical space and how the convergence of technology and the entrepreneurs who push this evolution have led to the development of endovascular robots. The current state-of-the-art and future directions and potential are summarized for the reader. Information in this review has been drawn primarily from our personal clinical and preclinical experience in use of catheter robotics, coupled with some ground-breaking work reported from a few other major centers who have embraced the technology's capabilities and opportunities. Several case studies demonstrating the unique capabilities of a precisely controlled catheter are presented. Most of the preclinical work was performed in the advanced imaging and navigation laboratory. In this unique facility, the interface of advanced imaging techniques and robotic guidance is being explored. Although this procedure employs a very high-tech approach to navigation inside the endovascular space, we have conveyed the kind of opportunities that this technology affords to integrate 3D imaging and 3D control. Further, we present the opportunity of semi-autonomous motion of these devices to a target. For the interventionist, enhanced precision can be achieved in a nearly radiation-free environment.

  15. How the structure of Wikipedia articles influences user navigation.

    PubMed

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-02

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.

  16. How the structure of Wikipedia articles influences user navigation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-01

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.

  17. How the structure of Wikipedia articles influences user navigation

    PubMed Central

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-01

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable. PMID:28670171

  18. Continuing Efforts to Upgrade the Aeronautics Curriculum at Jacksonville University

    ERIC Educational Resources Information Center

    Terrell, Jerry L.; Merkt, Juan; Harrison, Jeffrey; Yates, Rhett

    2012-01-01

    The aviation industry is exceptionally dynamic. Advances in technology have enabled the industry to change drastically in a short period of time. The transition to jet propulsion advances in aerodynamics, avionics improvements, and introduction of revolutionary navigation systems have all occurred within the past 60 years. These advances have…

  19. Volunteer navigation partnerships: Piloting a compassionate community approach to early palliative care.

    PubMed

    Pesut, Barbara; Duggleby, Wendy; Warner, Grace; Fassbender, Konrad; Antifeau, Elisabeth; Hooper, Brenda; Greig, Madeleine; Sullivan, Kelli

    2017-07-03

    A compassionate community approach to palliative care provides important rationale for building community-based hospice volunteer capacity. In this project, we piloted one such capacity-building model in which volunteers and a nurse partnered to provide navigation support beginning in the early palliative phase for adults living in community. The goal was to improve quality of life by developing independence, engagement, and community connections. Volunteers received navigation training through a three-day workshop and then conducted in-home visits with clients living with advanced chronic illness over one year. A nurse navigator provided education and mentorship. Mixed method evaluation data was collected from clients, volunteer navigators, the nurse navigator, and other stakeholders. Seven volunteers were partnered with 18 clients. Over the one-year pilot, the volunteer navigators conducted visits in home or by phone every two to three weeks. Volunteers were skilled and resourceful in building connections and facilitating engagement. Although it took time to learn the navigator role, volunteers felt well-prepared and found the role satisfying and meaningful. Clients and family rated the service as highly important to their care because of how the volunteer helped to make the difficult experiences of aging and advanced chronic illness more livable. Significant benefits cited by clients were making good decisions for both now and in the future; having a surrogate social safety net; supporting engagement with life; and ultimately, transforming the experience of living with illness. Overall the program was perceived to be well-designed by stakeholders and meeting an important need in the community. Sustainability, however, was a concern expressed by both clients and volunteers. Volunteers providing supportive navigation services during the early phase of palliative care is a feasible way to foster a compassionate community approach to care for an aging population. The program is now being implemented by hospice societies in diverse communities across Canada.

  20. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  1. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  2. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  3. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  4. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  5. 33 CFR 181.703 - Information pamphlet: Contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information pamphlet: Contents... § 181.703 Information pamphlet: Contents. Unless otherwise specified in this subpart, each information pamphlet must contain the information specified in sections 33, 34 and 35 of UL 1123. [CGD 93-055, 61 FR...

  6. Fractal dimension and the navigational information provided by natural scenes.

    PubMed

    Shamsyeh Zahedi, Moosarreza; Zeil, Jochen

    2018-01-01

    Recent work on virtual reality navigation in humans has suggested that navigational success is inversely correlated with the fractal dimension (FD) of artificial scenes. Here we investigate the generality of this claim by analysing the relationship between the fractal dimension of natural insect navigation environments and a quantitative measure of the navigational information content of natural scenes. We show that the fractal dimension of natural scenes is in general inversely proportional to the information they provide to navigating agents on heading direction as measured by the rotational image difference function (rotIDF). The rotIDF determines the precision and accuracy with which the orientation of a reference image can be recovered or maintained and the range over which a gradient descent in image differences will find the minimum of the rotIDF, that is the reference orientation. However, scenes with similar fractal dimension can differ significantly in the depth of the rotIDF, because FD does not discriminate between the orientations of edges, while the rotIDF is mainly affected by edge orientation parallel to the axis of rotation. We present a new equation for the rotIDF relating navigational information to quantifiable image properties such as contrast to show (1) that for any given scene the maximum value of the rotIDF (its depth) is proportional to pixel variance and (2) that FD is inversely proportional to pixel variance. This contrast dependence, together with scene differences in orientation statistics, explains why there is no strict relationship between FD and navigational information. Our experimental data and their numerical analysis corroborate these results.

  7. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marine broadcast notice to mariners. 72.01-25 Section 72.01-25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to...

  8. 33 CFR 72.01-35 - Change of address.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Change of address. 72.01-35 Section 72.01-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-35 Change of address. Persons receiving Notices to...

  9. 33 CFR 72.01-40 - Single copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Single copies. 72.01-40 Section 72.01-40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-40 Single copies. Single copies of the “Notice to...

  10. 33 CFR 72.05-5 - Sales agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sales agencies. 72.05-5 Section 72.05-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Light Lists § 72.05-5 Sales agencies. Each volume of the Light List is for sale...

  11. 33 CFR 72.01-40 - Single copies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Single copies. 72.01-40 Section 72.01-40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-40 Single copies. Single copies of the “Notice to...

  12. 33 CFR 72.05-5 - Sales agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sales agencies. 72.05-5 Section 72.05-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Light Lists § 72.05-5 Sales agencies. Each volume of the Light List is for sale...

  13. 33 CFR 72.01-10 - Notice to Mariners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Notice to Mariners. 72.01-10 Section 72.01-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-10 Notice to Mariners. (a) “Notice to Mariners” is...

  14. 33 CFR 72.01-35 - Change of address.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Change of address. 72.01-35 Section 72.01-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-35 Change of address. Persons receiving Notices to...

  15. 46 CFR 35.20-1 - Notice to mariners; aids to navigation-T/OCLB.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that vessels navigating oceans and coastwise and Great Lakes water shall have available in the... changes in aids to navigation and other marine information affecting the safety of navigation on oceans... Agency, National Ocean Service, and the U.S. Coast Guard. They include changes in aids to navigation and...

  16. Vision-Aided Context-Aware Framework for Personal Navigation Services

    NASA Astrophysics Data System (ADS)

    Saeedi, S.; Moussa, A.; El-Sheimy, N., , Dr.

    2012-07-01

    The ubiquity of mobile devices (such as smartphones and tablet-PCs) has encouraged the use of location-based services (LBS) that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS) in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc.) and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user's motion (changes of velocity and heading angle) estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF) has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  17. Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit

    PubMed Central

    Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken

    2013-01-01

    Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644

  18. Humanistic burden of disease for patients with advanced melanoma in Canada.

    PubMed

    Cheung, Winson Y; Bayliss, Martha S; White, Michelle K; Stroupe, Angela; Lovley, Andrew; King-Kallimanis, Bellinda L; Lasch, Kathryn

    2018-06-01

    Metastatic melanoma is a highly aggressive cancer, often striking in the prime of life. This study provides new information directly from advanced melanoma (stage III and IV) patients on how their disease impacts their health-related quality of life (HRQL). Twenty-nine in-depth, qualitative interviews were conducted with adult patients with advanced melanoma in Canada. A semi-structured interview guide was used. Interviews were transcribed verbatim and key concepts were identified using a grounded theory analytic approach. Many patients' journeys began with the startling diagnosis of an invasive disease and a vastly shortened life expectancy. By the time they reached an advanced stage of melanoma, these patients' overall functioning and quality of life had been greatly diminished by this quickly progressing cancer. The impact was described in terms of physical pain and disability, emotional distress, diminished interactions with friends and family, and burden on caregivers. Our findings provide evidence of signs, symptoms, and functional impacts of advanced melanoma. Signs and symptoms reported (physical, mental, and social) confirm and expand on those reported in the existing clinical literature. Primary care physicians should be better trained to identify melanomas early. Oncology care teams can improve on their current approaches for helping patients navigate treatment options, with information about ancillary services to mitigate disease impacts on HRQL, such as mental health and social supports, as well as employment or financial support services.

  19. Advancing cognitive engineering methods to support user interface design for electronic health records.

    PubMed

    Thyvalikakath, Thankam P; Dziabiak, Michael P; Johnson, Raymond; Torres-Urquidy, Miguel Humberto; Acharya, Amit; Yabes, Jonathan; Schleyer, Titus K

    2014-04-01

    Despite many decades of research on the effective development of clinical systems in medicine, the adoption of health information technology to improve patient care continues to be slow, especially in ambulatory settings. This applies to dentistry as well, a primary care discipline with approximately 137,000 practitioners in the United States. A critical reason for slow adoption is the poor usability of clinical systems, which makes it difficult for providers to navigate through the information and obtain an integrated view of patient data. In this study, we documented the cognitive processes and information management strategies used by dentists during a typical patient examination. The results will inform the design of a novel electronic dental record interface. We conducted a cognitive task analysis (CTA) study to observe ten general dentists (five general dentists and five general dental faculty members, each with more than two years of clinical experience) examining three simulated patient cases using a think-aloud protocol. Dentists first reviewed the patient's demographics, chief complaint, medical history and dental history to determine the general status of the patient. Subsequently, they proceeded to examine the patient's intraoral status using radiographs, intraoral images, hard tissue and periodontal tissue information. The results also identified dentists' patterns of navigation through patient's information and additional information needs during a typical clinician-patient encounter. This study reinforced the significance of applying cognitive engineering methods to inform the design of a clinical system. Second, applying CTA to a scenario closely simulating an actual patient encounter helped with capturing participants' knowledge states and decision-making when diagnosing and treating a patient. The resultant knowledge of dentists' patterns of information retrieval and review will significantly contribute to designing flexible and task-appropriate information presentation in electronic dental records. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. 78 FR 68077 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0194] Navigation Safety Advisory.... SUMMARY: The Navigation Safety Advisory Council (NAVSAC) will meet December 3-4, 2013, in Portsmouth... Rules of the Road; navigation regulations and equipment; routing measures; marine information; diving...

  1. 78 FR 18615 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0194] Navigation Safety Advisory.... SUMMARY: The Navigation Safety Advisory Council (NAVSAC) will meet April 10-11, 2013, in Arlington... Rules of the Road; navigation regulations and equipment; routing measures; marine information; diving...

  2. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  3. Perceived vs. measured effects of advanced cockpit systems on pilot workload and error: are pilots' beliefs misaligned with reality?

    PubMed

    Casner, Stephen M

    2009-05-01

    Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.

  4. 77 FR 67658 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... the Road, navigation regulations and equipment, routing measures, marine information, diving safety... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0212] Navigation Safety Advisory... Navigation Safety Advisory Council (NAVSAC) will meet on November 28 and 29, 2012 in Tampa, Florida, to...

  5. 76 FR 21772 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ..., routing measures, marine information, diving safety, and aids to navigation systems. Agenda The NAVSAC... discussion of autonomous unmanned vessels and discuss their implications for the Inland Navigation Rules. A... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0204] Navigation Safety Advisory...

  6. Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

    PubMed

    Frizera Neto, Anselmo; Gallego, Juan A; Rocon, Eduardo; Pons, José L; Ceres, Ramón

    2010-08-05

    The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  7. The cerebellum: a new key structure in the navigation system

    PubMed Central

    Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure

    2013-01-01

    Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515

  8. 33 CFR 72.01-15-72.01-20 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false [Reserved] 72.01-15-72.01-20 Section 72.01-15-72.01-20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners §§ 72.01-15—72.01-20 [Reserved] ...

  9. 33 CFR 72.01-15-72.01-20 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false [Reserved] 72.01-15-72.01-20 Section 72.01-15-72.01-20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners §§ 72.01-15—72.01-20 [Reserved] ...

  10. Wikipedia Entries as a Source of CAR Navigation Landmarks

    NASA Astrophysics Data System (ADS)

    Binski, N.; Zhang, L.; Dalyot, S.

    2016-06-01

    Car navigation system devices provide today with an easy and simple solution to the basic concept of reaching a destination. Although these systems usually achieve this goal, they still deliver a limited and poor sequence of instructions that do not consider the human nature of using landmarks during wayfinding. This research paper addresses the concept of enriching navigation route instructions by adding supplementary route information in the form of landmarks. We aim at using a contributed source of landmarks information, which is easy to access, available, show high update rate, and have a large scale of information. For this, Wikipedia was chosen, since it represents the world's largest free encyclopaedia that includes information about many spatial entities. A survey and classification of available landmarks is implemented, coupled with ranking algorithms based on the entries' categories and attributes. These are aimed at retrieving the most relevant landmark information required that are valuable for the enrichment of a specific navigation route. The paper will present this methodology, together with examples and results, showing the feasibility of using this concept and its potential of enriching navigation processes.

  11. Navigating Power and Politics: Women of Color Senior Leaders in Academe

    ERIC Educational Resources Information Center

    Huang, Belinda Jung-Lee

    2012-01-01

    The purpose of this study was to understand how women of color who are at the senior level of academe continue to advance while navigating and maneuvering through power and politics encountered in the organizational system. Although we know that there are few women of color at the senior level of administration, this qualitative study provided…

  12. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  13. The effects of age, spatial ability, and navigational information on navigational performance

    DOT National Transportation Integrated Search

    1995-12-01

    The purpose of the study reported here was to examine whether age and spatial ability are factors that influence a driver?s ability to navigate and to use navigational displays. These factors were examined because previous research suggests that spat...

  14. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  15. 33 CFR 125.29 - Insufficient information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Insufficient information. 125.29... VESSELS § 125.29 Insufficient information. (a)(1) If, in the judgment of the Commandant, an application does not contain sufficient information to enable him to satisfy himself that the character and habits...

  16. 33 CFR 136.3 - Information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Information. 136.3 Section 136.3... SOURCE; AND ADVERTISEMENT General § 136.3 Information. Anyone desiring to file a claim against the Fund may obtain general information on the procedure for filing a claim from the Director, National...

  17. 33 CFR 136.3 - Information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Information. 136.3 Section 136.3... SOURCE; AND ADVERTISEMENT General § 136.3 Information. Anyone desiring to file a claim against the Fund may obtain general information on the procedure for filing a claim from the Director National...

  18. 33 CFR 136.3 - Information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Information. 136.3 Section 136.3... SOURCE; AND ADVERTISEMENT General § 136.3 Information. Anyone desiring to file a claim against the Fund may obtain general information on the procedure for filing a claim from the Director, National...

  19. 33 CFR 136.3 - Information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Information. 136.3 Section 136.3... SOURCE; AND ADVERTISEMENT General § 136.3 Information. Anyone desiring to file a claim against the Fund may obtain general information on the procedure for filing a claim from the Director, National...

  20. 33 CFR 136.3 - Information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information. 136.3 Section 136.3... SOURCE; AND ADVERTISEMENT General § 136.3 Information. Anyone desiring to file a claim against the Fund may obtain general information on the procedure for filing a claim from the Director National...

  1. 33 CFR 125.29 - Insufficient information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Insufficient information. 125.29... VESSELS § 125.29 Insufficient information. (a)(1) If, in the judgment of the Commandant, an application does not contain sufficient information to enable him to satisfy himself that the character and habits...

  2. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  3. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  4. Selection of radio sources for Venus balloon-Pathfinder Delta-DOR navigation at 1.7 GHz

    NASA Technical Reports Server (NTRS)

    Liewer, K. M

    1986-01-01

    In order to increase the success rate of the Delta-DOR (Delta-Differential One-way Range) VLBI navigational support for the French-Soviet Venus Balloon and Halley Pathfinder projects, forty-four extragalactic radio sources were observed in advance of these projects to determine which were suitable for use as reference sources. Of these forty-four radio sources taken from the existing JPL radio source catalogue, thirty-six were determined to be of sufficient strength for use in Delta-DOR VLBI navigation.

  5. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.

    2007-01-01

    Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.

  6. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.

    2007-01-01

    Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.

  7. The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.

    PubMed

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel Robert; Namer-Furstenberg, Rinat; Amedi, Amir

    2014-01-01

    Mobility training programs for helping the blind navigate through unknown places with a White-Cane significantly improve their mobility. However, what is the effect of new assistive technologies, offering more information to the blind user, on the underlying premises of these programs such as navigation patterns? We developed the virtual-EyeCane, a minimalistic sensory substitution device translating single-point-distance into auditory cues identical to the EyeCane's in the real world. We compared performance in virtual environments when using the virtual-EyeCane, a virtual-White-Cane, no device and visual navigation. We show that the characteristics of virtual-EyeCane navigation differ from navigation with a virtual-White-Cane or no device, and that virtual-EyeCane users complete more levels successfully, taking shorter paths and with less collisions than these groups, and we demonstrate the relative similarity of virtual-EyeCane and visual navigation patterns. This suggests that additional distance information indeed changes navigation patterns from virtual-White-Cane use, and brings them closer to visual navigation.

  8. Establishing Common Cost Measures to Evaluate the Economic Value of Patient Navigation Programs

    PubMed Central

    Whitley, Elizabeth; Valverde, Patricia; Wells, Kristen; Williams, Loretta; Teschner, Taylor; Shih, Ya-Chen Tina

    2011-01-01

    Background Patient navigation is an intervention aimed at reducing barriers to healthcare for underserved populations as a means to reduce cancer health disparities. Despite the proliferation of patient navigation programs across the United States, information related to the economic impact and sustainability of these programs is lacking. Method Following a review of the relevant literature, the Health Services Research (HSR) cost workgroup of the American Cancer Society National Patient Navigator Leadership Summit met to examine cost data relevant to assessing the economic impact of patient navigation and to propose common cost metrics. Results Recognizing that resources available for data collection, management and analysis vary, five categories of core and optional cost measures were identified related to patient navigator programs, including, program costs, human capital costs, direct medical costs, direct non-medical costs and indirect costs. Conclusion(s) Information demonstrating economic as well as clinical value is necessary to make decisions about sustainability of patient navigation programs. Adoption of these common cost metrics are recommended to promote understanding of the economic impact of patient navigation and comparability across diverse patient navigation programs. PMID:21780096

  9. Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems

    DTIC Science & Technology

    2010-03-01

    improve its performance. In all of these cases, because information from two or more different navigation systems feeds into a navigation solution...GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS...M06 GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS Presented to the Faculty Department of

  10. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  11. Using language models to identify relevant new information in inpatient clinical notes.

    PubMed

    Zhang, Rui; Pakhomov, Serguei V; Lee, Janet T; Melton, Genevieve B

    2014-01-01

    Redundant information in clinical notes within electronic health record (EHR) systems is ubiquitous and may negatively impact the use of these notes by clinicians, and, potentially, the efficiency of patient care delivery. Automated methods to identify redundant versus relevant new information may provide a valuable tool for clinicians to better synthesize patient information and navigate to clinically important details. In this study, we investigated the use of language models for identification of new information in inpatient notes, and evaluated our methods using expert-derived reference standards. The best method achieved precision of 0.743, recall of 0.832 and F1-measure of 0.784. The average proportion of redundant information was similar between inpatient and outpatient progress notes (76.6% (SD=17.3%) and 76.7% (SD=14.0%), respectively). Advanced practice providers tended to have higher rates of redundancy in their notes compared to physicians. Future investigation includes the addition of semantic components and visualization of new information.

  12. Using Language Models to Identify Relevant New Information in Inpatient Clinical Notes

    PubMed Central

    Zhang, Rui; Pakhomov, Serguei V.; Lee, Janet T.; Melton, Genevieve B.

    2014-01-01

    Redundant information in clinical notes within electronic health record (EHR) systems is ubiquitous and may negatively impact the use of these notes by clinicians, and, potentially, the efficiency of patient care delivery. Automated methods to identify redundant versus relevant new information may provide a valuable tool for clinicians to better synthesize patient information and navigate to clinically important details. In this study, we investigated the use of language models for identification of new information in inpatient notes, and evaluated our methods using expert-derived reference standards. The best method achieved precision of 0.743, recall of 0.832 and F1-measure of 0.784. The average proportion of redundant information was similar between inpatient and outpatient progress notes (76.6% (SD=17.3%) and 76.7% (SD=14.0%), respectively). Advanced practice providers tended to have higher rates of redundancy in their notes compared to physicians. Future investigation includes the addition of semantic components and visualization of new information. PMID:25954438

  13. How the cerebellum may monitor sensory information for spatial representation

    PubMed Central

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  14. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  15. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  16. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  17. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  18. Strapdown cost trend study and forecast

    NASA Technical Reports Server (NTRS)

    Eberlein, A. J.; Savage, P. G.

    1975-01-01

    The potential cost advantages offered by advanced strapdown inertial technology in future commercial short-haul aircraft are summarized. The initial procurement cost and six year cost-of-ownership, which includes spares and direct maintenance cost were calculated for kinematic and inertial navigation systems such that traditional and strapdown mechanization costs could be compared. Cost results for the inertial navigation systems showed that initial costs and the cost of ownership for traditional triple redundant gimbaled inertial navigators are three times the cost of the equivalent skewed redundant strapdown inertial navigator. The net cost advantage for the strapdown kinematic system is directly attributable to the reduction in sensor count for strapdown. The strapdown kinematic system has the added advantage of providing a fail-operational inertial navigation capability for no additional cost due to the use of inertial grade sensors and attitude reference computers.

  19. ARTSN: An Automated Real-Time Spacecraft Navigation System

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Pollmeier, Vincent M.

    1996-01-01

    As part of the Deep Space Network (DSN) advanced technology program an effort is underway to design a filter to automate the deep space navigation process.The automated real-time spacecraft navigation (ARTSN) filter task is based on a prototype consisting of a FORTRAN77 package operating on an HP-9000/700 workstation running HP-UX 9.05. This will be converted to C, and maintained as the operational version. The processing tasks required are: (1) read a measurement, (2) integrate the spacecraft state to the current measurement time, (3) compute the observable based on the integrated state, and (4) incorporate the measurement information into the state using an extended Kalman filter. This filter processes radiometric data collected by the DSN. The dynamic (force) models currently include point mass gravitational terms for all planets, the Sun and Moon, solar radiation pressure, finite maneuvers, and attitude maintenance activity modeled quadratically. In addition, observable errors due to troposphere are included. Further data types, force and observable models will be ncluded to enhance the accuracy of the models and the capability of the package. The heart of the ARSTSN is a currently available continuous-discrete extended Kalman filter. Simulated data used to test the implementation at various stages of development and the results from processing actual mission data are presented.

  20. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  1. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  2. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  3. Spatial navigation by congenitally blind individuals.

    PubMed

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  4. Changes in Search Path Complexity and Length During Learning of a Virtual Water Maze: Age Differences and Differential Associations with Hippocampal Subfield Volumes

    PubMed Central

    Daugherty, Ana M.; Bender, Andrew R.; Yuan, Peng; Raz, Naftali

    2016-01-01

    Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19–75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1–2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1–2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. PMID:25838036

  5. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  6. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  7. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  8. Applying operations research to optimize a novel population management system for cancer screening

    PubMed Central

    Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J

    2014-01-01

    Objective To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. Materials and methods TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. Results TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Conclusions Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management. PMID:24043318

  9. Brain connectivity during encoding and retrieval of spatial information: individual differences in navigation skills.

    PubMed

    Sharma, Greeshma; Gramann, Klaus; Chandra, Sushil; Singh, Vijander; Mittal, Alok Prakash

    2017-09-01

    Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.

  10. Optic flow odometry operates independently of stride integration in carried ants.

    PubMed

    Pfeffer, Sarah E; Wittlinger, Matthias

    2016-09-09

    Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.

  11. CellLineNavigator: a workbench for cancer cell line analysis

    PubMed Central

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487

  12. Field evaluation of a wearable multimodal soldier navigation system.

    PubMed

    Aaltonen, Iina; Laarni, Jari

    2017-09-01

    Challenging environments pose difficulties for terrain navigation, and therefore wearable and multimodal navigation systems have been proposed to overcome these difficulties. Few such navigation systems, however, have been evaluated in field conditions. We evaluated how a multimodal system can aid in navigating in a forest in the context of a military exercise. The system included a head-mounted display, headphones, and a tactile vibrating vest. Visual, auditory, and tactile modalities were tested and evaluated using unimodal, bimodal, and trimodal conditions. Questionnaires, interviews and observations were used to evaluate the advantages and disadvantages of each modality and their multimodal use. The guidance was considered easy to interpret and helpful in navigation. Simplicity of the displayed information was required, which was partially conflicting with the request for having both distance and directional information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The orientation of homing pigeons (Columba livia f.d.) with and without navigational experience in a two-dimensional environment.

    PubMed

    Mehlhorn, Julia; Rehkaemper, Gerd

    2017-01-01

    Homing pigeons are known for their excellent homing ability, and their brains seem to be functionally adapted to homing. It is known that pigeons with navigational experience show a larger hippocampus and also a more lateralised brain than pigeons without navigational experience. So we hypothesized that experience may have an influence also on orientation ability. We examined two groups of pigeons (11 with navigational experience and 17 without) in a standard operant chamber with a touch screen monitor showing a 2-D schematic of a rectangular environment (as "geometric" information) and one uniquely shaped and colored feature in each corner (as "landmark" information). Pigeons were trained first for pecking on one of these features and then we examined their ability to encode geometric and landmark information in four tests by modifying the rectangular environment. All tests were done under binocular and monocular viewing to test hemispheric dominance. The number of pecks was counted for analysis. Results show that generally both groups orientate on the basis of landmarks and the geometry of environment, but landmark information was preferred. Pigeons with navigational experience did not perform better on the tests but showed a better conjunction of the different kinds of information. Significant differences between monocular and binocular viewing were detected particularly in pigeons without navigational experience on two tests with reduced information. Our data suggest that the conjunction of geometric and landmark information might be integrated after processing separately in each hemisphere and that this process is influenced by experience.

  14. Other ways of seeing: From behavior to neural mechanisms in the online “visual” control of action with sensory substitution

    PubMed Central

    Proulx, Michael J.; Gwinnutt, James; Dell’Erba, Sara; Levy-Tzedek, Shelly; de Sousa, Alexandra A.; Brown, David J.

    2015-01-01

    Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action. PMID:26599473

  15. New space technology advances knowledge of the remote polar regions. [Arctic and Antarctic regions

    NASA Technical Reports Server (NTRS)

    Macdonald, W. R.

    1974-01-01

    The application of ERTS-1 imagery is rapidly increasing man's knowledge of polar regions. Products compiled from this imagery at scales of 1:250,000, 1:500,000 and 1:1,000,000 are already providing valuable information to earth scientists working in Antarctica. Significant finds detected by these bench mark products were glaciological changes, advancement in ice fronts, discovery of new geographic features, and the repositioning of nunataks, islands, and ice tongues. Tests conducted in Antarctica have proven the feasibility of tracking Navy navigation satellites to establish ground control for positioning ERTS-1 imagery in remote areas. ERTS imagery coupled with satellite geodesy shows great promise and may prove to be the most practical and cost effective way to meet the small-scale cartographic requirements of the polar science community.

  16. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  17. Songlines and navigation in Wardaman and other Australian Aboriginal cultures

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Harney, Bill Yidumdum

    2014-07-01

    We discuss the songlines and navigation of the Wardaman people, and place them in context by comparing them with corresponding practices in other Aboriginal Australian language groups, using previously-unpublished information and also information drawn from the literature. Songlines are effectively oral maps of the landscape, enabling the transmission of oral navigational skills in cultures that do not have a written language. In many cases, songlines on the Earth are mirrored by songlines in the sky, enabling the sky to be used as a navigational tool, both by using it as a compass and by using it as a mnemonic.

  18. The University of Minnesota's Internet Gopher System: A Tool for Accessing Network-Based Electronic Information.

    ERIC Educational Resources Information Center

    Wiggins, Rich

    1993-01-01

    Describes the Gopher system developed at the University of Minnesota for accessing information on the Internet. Highlights include the need for navigation tools; Gopher clients; FTP (File Transfer Protocol); campuswide information systems; navigational enhancements; privacy and security issues; electronic publishing; multimedia; and future…

  19. The Rockefeller University Navigation Program: A Structured Multidisciplinary Protocol Development and Educational Program to Advance Translational Research

    PubMed Central

    Kost, Rhonda G.; Dowd, Kathleen A.; Hurley, Arlene M.; Rainer, Tyler‐Lauren; Coller, Barry S.

    2014-01-01

    Abstract The development of translational clinical research protocols is complex. To assist investigators, we developed a structured supportive guidance process (Navigation) to expedite protocol development to the standards of good clinical practice (GCP), focusing on research ethics and integrity. Navigation consists of experienced research coordinators leading investigators through a concerted multistep protocol development process from concept initiation to submission of the final protocol. To assess the effectiveness of Navigation, we collect data on the experience of investigators, the intensity of support required for protocol development, IRB review outcomes, and protocol start and completion dates. One hundred forty‐four protocols underwent Navigation and achieved IRB approval since the program began in 2007, including 37 led by trainee investigators, 26 led by MDs, 9 by MD/PhDs, 57 by PhDs, and 12 by investigators with other credentials (e.g., RN, MPH). In every year, more than 50% of Navigated protocols were approved by the IRB within 30 days. For trainees who had more than one protocol navigated, the intensity of Navigation support required decreased over time. Navigation can increase access to translational studies for basic scientists, facilitate GCP training for investigators, and accelerate development and approval of protocols of high ethical and scientific quality. PMID:24405608

  20. Image-based global registration system for bronchoscopy guidance

    NASA Astrophysics Data System (ADS)

    Khare, Rahul; Higgins, William E.

    2011-03-01

    Previous studies have shown that bronchoscopy guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. In the past, we presented an image-based bronchoscopy guidance system that has been extensively validated in live bronchoscopic procedures. However, this system cannot actively recover from adverse events, such as patient coughing or dynamic airway collapses. After such events, the bronchoscope position is recovered only by moving back to a previously seen and easily identifiable bifurcation such as the main carina. Furthermore, the system requires an attending technician to closely follow the physician's movement of the bronchoscope to avoid misguidance. Also, when the physician is forced to advance the bronchoscope across multiple bifurcations, the system is not able to detect faulty maneuvers. We propose two system-level solutions. The first solution is a system-level guidance strategy that incorporates a global-registration algorithm to provide the physician with updated navigational and guidance information during bronchoscopy. The system can handle general navigation to a region of interest (ROI), as well as adverse events, and it requires minimal commands so that it can be directly controlled by the physician. The second solution visualizes the global picture of all the bifurcations and their relative orientations in advance and suggests the maneuvers needed by the bronchoscope to approach the ROI. Guided bronchoscopy results using human airway-tree phantoms demonstrate the potential of the two solutions.

  1. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  2. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  3. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 2. System Functional Description and System Specification.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...

  4. Estimated benefits of connected vehicle applications : dynamic mobility applications, AERIS, V2I safety, and road weather management applications.

    DOT National Transportation Integrated Search

    2015-08-01

    Connected vehicles have the potential to transform travel as we know it by combining leading edge technologies advanced wireless communications, on-board computer processing, advanced vehicle-sensors, Global Positioning System (GPS) navigation, sm...

  5. A Knowledge Navigation Method for the Domain of Customers' Services of Mobile Communication Corporations in China

    NASA Astrophysics Data System (ADS)

    Wu, Jiangning; Wang, Xiaohuan

    Rapidly increasing amount of mobile phone users and types of services leads to a great accumulation of complaining information. How to use this information to enhance the quality of customers' services is a big issue at present. To handle this kind of problem, the paper presents an approach to construct a domain knowledge map for navigating the explicit and tacit knowledge in two ways: building the Topic Map-based explicit knowledge navigation model, which includes domain TM construction, a semantic topic expansion algorithm and VSM-based similarity calculation; building Social Network Analysis-based tacit knowledge navigation model, which includes a multi-relational expert navigation algorithm and the criterions to evaluate the performance of expert networks. In doing so, both the customer managers and operators in call centers can find the appropriate knowledge and experts quickly and exactly. The experimental results show that the above method is very powerful for knowledge navigation.

  6. Here's an idea: ask the users! Young people's views on navigation, design and content of a health information website.

    PubMed

    Franck, Linda S; Noble, Genevieve

    2007-12-01

    Use of the internet to provide health information to young people is a relatively recent development. Few studies have explored young people's views on how they use internet health websites. This study investigated the navigation, design and content preferences of young people using the Children First for Health (CFfH) website. Young people from five secondary schools completed an internet site navigation exercise, website evaluation questionnaire and participated in informal discussions. Of the participants, 45 percent visited the website section aimed at older adolescents within their first two clicks, regardless of their age. There were conflicting preferences for design and strong preference for gender-specific information on topics such as appearance, relationships, fitness and sexual health. The findings indicate the importance of gaining young people's views to ensure that health information websites meet the needs of their intended audience. Cooperation from schools can facilitate the process of gaining young people's views on internet website navigation, design and content.

  7. Interface methods for using intranet portal organizational memory information system.

    PubMed

    Ji, Yong Gu; Salvendy, Gavriel

    2004-12-01

    In this paper, an intranet portal is considered as an information infrastructure (organizational memory information system, OMIS) supporting organizational learning. The properties and the hierarchical structure of information and knowledge in an intranet portal OMIS was identified as a problem for navigation tools of an intranet portal interface. The problem relates to navigation and retrieval functions of intranet portal OMIS and is expected to adversely affect user performance, satisfaction, and usefulness. To solve the problem, a conceptual model for navigation tools of an intranet portal interface was proposed and an experiment using a crossover design was conducted with 10 participants. In the experiment, a separate access method (tabbed tree tool) was compared to an unified access method (single tree tool). The results indicate that each information/knowledge repository for which a user has a different structural knowledge should be handled separately with a separate access to increase user satisfaction and the usefulness of the OMIS and to improve user performance in navigation.

  8. Unraveling the neural basis of insect navigation.

    PubMed

    Heinze, Stanley

    2017-12-01

    One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 76 FR 8628 - Safe, Efficient Use and Preservation of the Navigable Airspace; OMB Approval of Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-25002; Amendment No. 77-13] RIN 2120-AH31 Safe, Efficient Use and Preservation of the Navigable Airspace... on July 21, 2010, entitled Safe, Efficient Use and Preservation of the Navigable Airspace. DATES: The..., 2010, the final rule entitled Safe, Efficient Use and Preservation of the Navigable Airspace, was...

  10. Science on the Web: Secondary School Students' Navigation Patterns and Preferred Pages' Characteristics

    ERIC Educational Resources Information Center

    Dimopoulos, Kostas; Asimakopoulos, Apostolos

    2010-01-01

    This study aims to explore navigation patterns and preferred pages' characteristics of ten secondary school students searching the web for information about cloning. The students navigated the Web for as long as they wished in a context of minimum support of teaching staff. Their navigation patterns were analyzed using audit trail data software.…

  11. 33 CFR 169.215 - How must a ship transmit position reports?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How must a ship transmit position reports? 169.215 Section 169.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.215...

  12. 33 CFR 401.84 - Reporting of impairment or other hazard by vessels transiting within the Seaway.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting of impairment or other hazard by vessels transiting within the Seaway. 401.84 Section 401.84 Navigation and Navigable Waters... Regulations Information and Reports § 401.84 Reporting of impairment or other hazard by vessels transiting...

  13. Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation

    PubMed Central

    Erdem, Uğur M.; Ross, Robert S.; Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

    2013-01-01

    The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals. PMID:24305826

  14. 33 CFR 181.27 - Information displayed near hull identification number.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information displayed near hull... displayed near hull identification number. With the exception of the characters “US-”, which constitute the... the 12-character hull identification number (HIN), that information must be separated from the HIN by...

  15. Dramatic orientation shift of white-crowned sparrows displaced across longitudes in the high Arctic.

    PubMed

    Akesson, Susanne; Morin, Jens; Muheim, Rachel; Ottosson, Ulf

    2005-09-06

    Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.

  16. Changes in Search Path Complexity and Length During Learning of a Virtual Water Maze: Age Differences and Differential Associations with Hippocampal Subfield Volumes.

    PubMed

    Daugherty, Ana M; Bender, Andrew R; Yuan, Peng; Raz, Naftali

    2016-06-01

    Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19-75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1-2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1-2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?

    PubMed Central

    Wiegmann, Daniel D.; Hebets, Eileen A.; Gronenberg, Wulfila; Graving, Jacob M.; Bingman, Verner P.

    2016-01-01

    Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms. PMID:27014008

  18. Estimation of velocities via optical flow

    NASA Astrophysics Data System (ADS)

    Popov, A.; Miller, A.; Miller, B.; Stepanyan, K.

    2017-02-01

    This article presents an approach to the optical flow (OF) usage as a general navigation means providing the information about the linear and angular vehicle's velocities. The term of "OF" came from opto-electronic devices where it corresponds to a video sequence of images related to the camera motion either over static surfaces or set of objects. Even if the positions of these objects are unknown in advance, one can estimate the camera motion provided just by video sequence itself and some metric information, such as distance between the objects or the range to the surface. This approach is applicable to any passive observation system which is able to produce a sequence of images, such as radio locator or sonar. Here the UAV application of the OF is considered since it is historically

  19. Optical surgical navigation system causes pulse oximeter malfunction.

    PubMed

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  20. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-01-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  1. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  2. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter

    PubMed Central

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-01-01

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369

  3. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    PubMed

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  4. Information literacy as the foundation for evidence-based practice in graduate nursing education: a curriculum-integrated approach.

    PubMed

    Jacobs, Susan Kaplan; Rosenfeld, Peri; Haber, Judith

    2003-01-01

    As part of a system-wide initiative to advance evidence-based practice among clinicians, graduate students, and educators, the New York University Division of Nursing embarked on a curricular initiative to integrate components of information literacy in all core courses of the master's program. Increasing competency in information literacy is the foundation for evidence-based practice and provides nursing professionals with the skills to be literate consumers of information in an electronic environment. Competency in information literacy includes an understanding of the architecture of information and the scholarly process; the ability to navigate among a variety of print and electronic tools to effectively access, search, and critically evaluate appropriate resources; synthesize accumulated information into an existing body of knowledge; communicate research results clearly and effectively; and appreciate the social issues and ethical concerns related to the provision, dissemination, and sharing of information. In collaboration with the New York University Division of Libraries' Health Sciences Librarian, instructional modules in information literacy relevant to each of the 5 core nursing master's courses were developed, complemented by a Web-based tutorial: http://library.nyu.edu/research/health/tutorial. The Web site is multifaceted, with fundamentals for the beginner, as well as more complex content for the advanced user. Course assignments were designed to promote specific competencies in information literacy and strategies for evaluating the strength of the evidence found. A survey of information literacy competencies, which assessed students' knowledge, misconceptions, and use of electronic information resources, was administered when students entered the program and at 1-year intervals thereafter.

  5. Advanced approach for intraoperative MRI guidance and potential benefit for neurosurgical applications.

    PubMed

    Busse, Harald; Schmitgen, Arno; Trantakis, Christos; Schober, Ralf; Kahn, Thomas; Moche, Michael

    2006-07-01

    To present an advanced approach for intraoperative image guidance in an open 0.5 T MRI and to evaluate its effectiveness for neurosurgical interventions by comparison with a dynamic scan-guided localization technique. The built-in scan guidance mode relied on successive interactive MRI scans. The additional advanced mode provided real-time navigation based on reformatted high-quality, intraoperatively acquired MR reference data, allowed multimodal image fusion, and used the successive scans of the built-in mode for quick verification of the position only. Analysis involved tumor resections and biopsies in either scan guidance (N = 36) or advanced mode (N = 59) by the same three neurosurgeons. Technical, surgical, and workflow aspects were compared. The image quality and hand-eye coordination of the advanced approach were improved. While the average extent of resection, neurologic outcome after functional MRI (fMRI) integration, and diagnostic yield appeared to be slightly better under advanced guidance, particularly for the main surgeon, statistical analysis revealed no significant differences. Resection times were comparable, while biopsies took around 30 minutes longer. The presented approach is safe and provides more detailed images and higher navigation speed at the expense of actuality. The surgical outcome achieved with advanced guidance is (at least) as good as that obtained with dynamic scan guidance. (c) 2006 Wiley-Liss, Inc.

  6. Location-based information retrieval framework

    NASA Astrophysics Data System (ADS)

    Hariharan, Gurushyam; Mehta, Sandeep

    2003-03-01

    The recent advances in mobile communication technologies and their widespread use calls for a host of new value added services for the mobile user. In their current avatar, these deices are not more than mere communication equipments. Now consumer orientated, mobile, internet connected devices which are location aware (that are capable of determining and transmitting their current geographical location) are becoming available everywhere. The availability of internet access and location awareness in portable devices like cell phones, Personal Digital Assistants, etc. opens up a host of new opportunities for services which can en cash on the location of the user. Besides providing navigational information to the user, additional push down information can be sent to the user based on his profile and his preferences. The domain is wide and the number of applications is enormous. This paper presents a design and implementation of a basic location aware service.

  7. Navigational Efficiency of Nocturnal Myrmecia Ants Suffers at Low Light Levels

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Raderschall, Chloé A.

    2013-01-01

    Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available. PMID:23484052

  8. Lost in transportation: Information measures and cognitive limits in multilayer navigation.

    PubMed

    Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc

    2016-02-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.

  9. Lost in transportation: Information measures and cognitive limits in multilayer navigation

    PubMed Central

    Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc

    2016-01-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769

  10. 33 CFR 401.85 - Reporting of impairment or other hazard by vessels intending to transit the Seaway.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting of impairment or other hazard by vessels intending to transit the Seaway. 401.85 Section 401.85 Navigation and Navigable Waters... Regulations Information and Reports § 401.85 Reporting of impairment or other hazard by vessels intending to...

  11. An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment

    ERIC Educational Resources Information Center

    Shanklin, Teresa A.

    2012-01-01

    Complex navigation (e.g. indoor and outdoor environments) can be studied as a system-of-systems problem. The model is made up of disparate systems that can aid a user in navigating from one location to another, utilizing whatever sensor system or information is available. By using intelligent navigation sensors and techniques (e.g. RFID, Wifi,…

  12. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Technical Reports Server (NTRS)

    Culp, Robert D. (Editor); Bickley, George (Editor)

    1993-01-01

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study.

  13. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  14. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.

    PubMed

    Petrenko, Valery A; Gillespie, James W

    2017-03-01

    New phage-directed nanomedicines have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and evolution of phage display and phage nanobiotechnology. This review focuses on the progress made in the development of the cancer-targeted nanomaterials and discusses the trends in using phage as a bioselectable molecular navigation system. Areas covered: The merging of phage display technologies with nanotechnology in recent years has proved promising in different areas of medicine and technology, such as medical diagnostics, molecular imaging, vaccine development and targeted drug/gene delivery, which is the focus of this review. The authors used data obtained from their research group and sourced using Science Citation Index (Web of Science) and NCBI PubMed search resources. Expert opinion: First attempts of adapting traditional concepts of direct targeting of tumor using phage-targeted nanomedicines has shown minimal improvements. With discovery and study of biological and technical barriers that prevent anti-tumor drug delivery, a paradigm shift from traditional drug targeting to nanomedicine navigation systems is required. The advanced bacteriophage-driven self-navigation systems are thought to overcome those barriers using more precise, localized phage selection methods, multi-targeting 'promiscuous' ligands and advanced multifunctional nanomedicine platforms.

  15. Web party effect: a cocktail party effect in the web environment

    PubMed Central

    Gerbino, Walter

    2015-01-01

    In goal-directed web navigation, labels compete for selection: this process often involves knowledge integration and requires selective attention to manage the dizziness of web layouts. Here we ask whether the competition for selection depends on all web navigation options or only on those options that are more likely to be useful for information seeking, and provide evidence in favor of the latter alternative. Participants in our experiment navigated a representative set of real websites of variable complexity, in order to reach an information goal located two clicks away from the starting home page. The time needed to reach the goal was accounted for by a novel measure of home page complexity based on a part of (not all) web options: the number of links embedded within web navigation elements weighted by the number and type of embedding elements. Our measure fully mediated the effect of several standard complexity metrics (the overall number of links, words, images, graphical regions, the JPEG file size of home page screenshots) on information seeking time and usability ratings. Furthermore, it predicted the cognitive demand of web navigation, as revealed by the duration judgment ratio (i.e., the ratio of subjective to objective duration of information search). Results demonstrate that focusing on relevant links while ignoring other web objects optimizes the deployment of attentional resources necessary to navigation. This is in line with a web party effect (i.e., a cocktail party effect in the web environment): users tune into web elements that are relevant for the achievement of their navigation goals and tune out all others. PMID:25802803

  16. Web party effect: a cocktail party effect in the web environment.

    PubMed

    Rigutti, Sara; Fantoni, Carlo; Gerbino, Walter

    2015-01-01

    In goal-directed web navigation, labels compete for selection: this process often involves knowledge integration and requires selective attention to manage the dizziness of web layouts. Here we ask whether the competition for selection depends on all web navigation options or only on those options that are more likely to be useful for information seeking, and provide evidence in favor of the latter alternative. Participants in our experiment navigated a representative set of real websites of variable complexity, in order to reach an information goal located two clicks away from the starting home page. The time needed to reach the goal was accounted for by a novel measure of home page complexity based on a part of (not all) web options: the number of links embedded within web navigation elements weighted by the number and type of embedding elements. Our measure fully mediated the effect of several standard complexity metrics (the overall number of links, words, images, graphical regions, the JPEG file size of home page screenshots) on information seeking time and usability ratings. Furthermore, it predicted the cognitive demand of web navigation, as revealed by the duration judgment ratio (i.e., the ratio of subjective to objective duration of information search). Results demonstrate that focusing on relevant links while ignoring other web objects optimizes the deployment of attentional resources necessary to navigation. This is in line with a web party effect (i.e., a cocktail party effect in the web environment): users tune into web elements that are relevant for the achievement of their navigation goals and tune out all others.

  17. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    PubMed Central

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682

  18. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    PubMed

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  19. Learning to navigate the healthcare system in a new country: a qualitative study.

    PubMed

    Straiton, Melanie L; Myhre, Sonja

    2017-12-01

    Learning to navigate a healthcare system in a new country is a barrier to health care. Understanding more about the specific navigation challenges immigrants experience may be the first step towards improving health information and thus access to care. This study considers the challenges that Thai and Filipino immigrant women encounter when learning to navigate the Norwegian primary healthcare system and the strategies they use. A qualitative interview study using thematic analysis. Norway. Fifteen Thai and 15 Filipino immigrant women over the age of 18 who had been living in Norway at least one year. The women took time to understand the role of the general practitioner and some were unaware of their right to an interpreter during consultations. In addition to reliance on family members and friends in their social networks, voluntary and cultural organisations provided valuable tips and advice on how to navigate the Norwegian health system. While some women actively engaged in learning more about the system, they noted a lack of information available in multiple languages. Informal sources play an important role in learning about the health care system. Formal information should be available in different languages in order to better empower immigrant women.

  20. Bank erosion of navigation canals in the western and central Gulf of Mexico

    USGS Publications Warehouse

    Thatcher, Cindy A.; Hartley, Stephen B.; Wilson, Scott A.

    2011-01-01

    Erosion of navigation canal banks is a direct cause of land loss, but there has been little quantitative analysis to determine why certain major canals exhibit faster widening rates (indicative of erosion) than others in the coastal zones of Texas, Louisiana, Mississippi, and Alabama. We hypothesize that navigation canals exhibit varying rates of erosion based on soil properties of the embankment substrate, vegetation type, geologic region (derived from digital versions of state geologic maps), and the presence or absence of canal bank armaments (that is, rock rip-rap, concrete bulkheads, or other shoreline protection structures). The first objective of this project was to map the shoreline position and substrate along both banks of the navigation canals, which were digitized from 3 different time periods of aerial photography spanning the years of 1978/79 to 2005/06. The second objective was to quantify the erosion rates of the navigation canals in the study area and to determine whether differences in erosion rates are related to embankment substrate, vegetation type, geologic region, or soil type. To measure changes in shoreline position over time, transects spaced at 50-m (164-ft) intervals were intersected with shorelines from all three time periods, and an annual rate of change was calculated for each transect. Mean annual rates of shoreline change ranged from 1.75 m/year (5.74 ft/year) on the west side of the Atchafalaya River, La., where there was shoreline advancement or canal narrowing, to -3.29 m/year (-10.79 ft/year) on the south side of the Theodore Ship Channel, Ala., where there was shoreline retreat or erosion. Statistical analysis indicated that there were significant differences in shoreline retreat rates according to geologic region and marsh vegetation type, and a weak relationship with soil organic content. This information can be used to better estimate future land loss rates associated with navigation canals and to prioritize the location of restoration and erosion mitigation efforts. Combining all canals together, our results also showed that canal erosion rates have slowed in recent years, with an average canal widening rate of -0.99 m/year (-3.25 ft/year) for the 1996/98-2005/06 time period compared to -1.71 m/year (-5.61 ft/year) for the earlier 1978/79-1996/98 time period. Future research could focus on obtaining detailed vessel traffic information for individual canals, which is likely a factor that influences canal bank erosion rates.

  1. How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation.

    PubMed

    Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul

    2016-02-01

    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.

  2. Navigation of Time-Coded Data

    ERIC Educational Resources Information Center

    Fouse, Adam S.

    2013-01-01

    Advances in technology now make it possible to capture detailed multimodal data about real-world everyday activity. Researchers have taken advantage of these advances to address questions about activity in more systematic and precise ways. Along with exciting opportunities to record data in ways that were not possible before, there are also…

  3. Weaving Authenticity and Legitimacy: Latina Faculty Peer Mentoring

    ERIC Educational Resources Information Center

    Núñez, Anne-Marie; Murakami, Elizabeth T.; Gonzales, Leslie D.

    2015-01-01

    As an alternative to typical top-down mentoring models, the authors advance a conception of peer mentoring that is based on research about collectivist strategies that Latina faculty employ to navigate the academy. The authors advance recommendations for institutional agents to support mentoring for faculty who are members of historically…

  4. Magnetic compasses in insects

    USDA-ARS?s Scientific Manuscript database

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  5. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: ONAV entry knowledge requirements specification update

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    A revised version of expert knowledge for the onboard navigation (ONAV) entry system is given. Included is some brief background information together with information describing the knowledge that the system does contain.

  6. Sea turtles: navigating with magnetism.

    PubMed

    Lohmann, Kenneth J

    2007-02-06

    Young sea turtles use the Earth's magnetic field as a source of navigational information during their epic transoceanic migrations and while homing. A new study using satellite telemetry has now demonstrated for the first time that adult turtles also navigate using the Earth's magnetic field.

  7. Improving Early Palliative Care with a Scalable, Stepped Peer Navigator and Social Work Intervention: A Single-Arm Clinical Trial.

    PubMed

    Bekelman, David B; Johnson-Koenke, Rachel; Bowles, Daniel W; Fischer, Stacy M

    2018-02-20

    Patients with cancer could benefit from early primary (i.e., basic) palliative care. Scalable models of care delivery are needed. Examine the feasibility of a stepped peer navigator and social work intervention developed to improve palliative care outcomes. Single-arm prospective clinical trial. The peer navigator educated patients to advocate for pain and symptom management with their healthcare providers, motivated patients to pursue advance care planning, and discussed the role of hospice. The social worker saw patients with persistent psychosocial distress. Patients with advanced cancer at a VA Medical Center not currently in palliative care or hospice whose oncologist would not be surprised if the patient died in the subsequent year. Participation and retention rates, patient-reported symptoms and quality of life, advance directive documentation, patient satisfaction survey, and semistructured interviews. The participation rate was 38% (17/45), and 35% (7/17) completed final survey measures. Patients had stage IV (81%) and primarily genitourinary (47%) and lung (24%) malignancies. Median Eastern Cooperative Oncology Group performance status was 0. Patient-reported surveys indicated low distress (mean scores: Functional Assessment of Cancer Therapy-General, 75.3 [standard deviation {SD} 17.6]; Edmonton Symptom Assessment Scale symptom scores ranged from 1.6 to 3.8; Patient Health Questionnaire-9, 5.7 [SD 5.2]; and Generalized Anxiety Disorder-7, 2.8 [SD 4.1]). Of those who had not completed advance directives at baseline (n = 11, 65%), five completed them by the end of study (5/11, 45%). Patients who completed satisfaction surveys (n = 7) and interviews (n = 4) provided mixed reviews of the intervention. At a single site, a stepped peer navigator and social work palliative care study had several challenges to feasibility, including low patient-reported distress and loss to follow-up.

  8. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  9. How the Center for Public Partnerships and Research Navigates Complex Social Problems to Make a Collective Difference.

    PubMed

    Counts, Jacqueline; Gillam, Rebecca; Garstka, Teri A; Urbach, Ember

    2018-01-01

    The challenge of maximizing the well-being of children, youth, and families is recognizing that change occurs within complex social systems. Organizations dedicated to improving practice, advancing knowledge, and informing policy for the betterment of all must have the right approach, structure, and personnel to work in these complex systems. The University of Kansas Center for Public Partnerships and Research cultivates a portfolio of innovation, research, and data science approaches positioned to help move social service fields locally, regionally, and nationally. Mission, leadership, and smart growth guide our work and drive our will to affect positive change in the world.

  10. Navigating through translational research: a social marketing compass.

    PubMed

    Wharf Higgins, Joan

    2011-01-01

    When prominent health issues are chronic, rooted in complex behaviors, and influenced by cognitive, behavioral, social, cultural, economical, and environmental variables, layered and coordinated interventions are needed. Finding solutions that are valid, reliable, and transferable represents a daunting task for researchers. We know that converting science into action is critical for advancing health, but we have failed to appropriately disseminate evidenced-informed research to practitioners. The purpose of this article is to suggest that a social marketing framework can be the compass down this road less traveled in academic research. An experience developing an evaluation toolkit is described as an example of applying social marketing strategies to knowledge translation.

  11. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  12. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  13. Advancing cognitive engineering methods to support user interface design for electronic health records

    PubMed Central

    Thyvalikakath, Thankam P.; Dziabiak, Michael P.; Johnson, Raymond; Torres-Urquidy, Miguel Humberto; Acharya, Amit; Yabes, Jonathan; Schleyer, Titus K.

    2014-01-01

    Background Despite many decades of research on the effective development of clinical systems in medicine, the adoption of health information technology to improve patient care continues to be slow, especially in ambulatory settings. This applies to dentistry as well, a primary care discipline with approximately 137,000 practitioners in the United States. A critical reason for slow adoption is the poor usability of clinical systems, which makes it difficult for providers to navigate through the information and obtain an integrated view of patient data. Objective In this study, we documented the cognitive processes and information management strategies used by dentists during a typical patient examination. The results will inform the design of a novel electronic dental record interface. Methods We conducted a cognitive task analysis (CTA) study to observe ten general dentists (five general dentists and five general dental faculty members, each with more than two years of clinical experience) examining three simulated patient cases using a think-aloud protocol. Results Dentists first reviewed the patient’s demographics, chief complaint, medical history and dental history to determine the general status of the patient. Subsequently, they proceeded to examine the patient’s intraoral status using radiographs, intraoral images, hard tissue and periodontal tissue information. The results also identified dentists’ patterns of navigation through patient’s information and additional information needs during a typical clinician-patient encounter. Conclusion This study reinforced the significance of applying cognitive engineering methods to inform the design of a clinical system. Second, applying CTA to a scenario closely simulating an actual patient encounter helped with capturing participants’ knowledge states and decision-making when diagnosing and treating a patient. The resultant knowledge of dentists’ patterns of information retrieval and review will significantly contribute to designing flexible and task-appropriate information presentation in electronic dental records. PMID:24503391

  14. Laboratory complex for simulation of navigation signals of pseudosatellites

    NASA Astrophysics Data System (ADS)

    Ratushniak, V. N.; Gladyshev, A. B.; Sokolovskiy, A. V.; Mikhov, E. D.

    2018-05-01

    In the article, features of the organization, structure and questions of formation of navigation signals of pseudosatellites of the short - range navigation system based on the hardware-software complex National Instruments are considered. A software model that performs the formation and management of a pseudo-random sequence of a navigation signal and the formation and management of the format transmitted pseudosatellite navigation information is presented. The variant of constructing the transmitting equipment of the pseudosatellite base stations is provided.

  15. Metropolitan transportation management center : a case study : Georgia NaviGAtor : accurate and timely information to navigate Georgia roads

    DOT National Transportation Integrated Search

    1999-10-01

    The following case study provides a snapshot of Atlanta's NaviGAtor transportation management center. It follows the outline provided in the companion document, Metropolitan Transportation Management Center Concepts of Operation - A Cross Cutting Stu...

  16. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  17. Designing and evaluating symbols for electronic displays of navigation information : symbol stereotypes and symbol-feature rules

    DOT National Transportation Integrated Search

    2005-09-30

    There is currently no common symbology standard for the electronic display of navigation information. The wide range of display technology and the different functions these displays support makes it difficult to design symbols that are easily recogni...

  18. Communicating Navigation Data Inside the Cassini-Huygens Project: Visualizations and Tools

    NASA Technical Reports Server (NTRS)

    Wagner, Sean V.; Gist, Emily M.; Goodson, Troy D.; Hahn, Yungsun; Stumpf, Paul W.; Williams, Powtawche N.

    2008-01-01

    The Cassini-Huygens Saturn tour poses an interesting navigation challenge. From July 2004 through June 2008, the Cassini orbiter performed 112 of 161 planned maneuvers. This demanding schedule, where maneuvers are often separated by just a few days, motivated the development of maneuver design/analysis automation software tools. Besides generating maneuver designs and presentations, these tools are the mechanism to producing other types of navigation information; information used to facilitate operational decisions on such issues as maneuver cancellation and alternate maneuver strategies. This paper will discuss the navigation data that are communicated inside the Cassini-Huygens Project, as well as the maneuver software tools behind the processing of the data.

  19. Navigator Accuracy Requirements for Prospective Motion Correction

    PubMed Central

    Maclaren, Julian; Speck, Oliver; Stucht, Daniel; Schulze, Peter; Hennig, Jürgen; Zaitsev, Maxim

    2010-01-01

    Prospective motion correction in MR imaging is becoming increasingly popular to prevent the image artefacts that result from subject motion. Navigator information is used to update the position of the imaging volume before every spin excitation so that lines of acquired k-space data are consistent. Errors in the navigator information, however, result in residual errors in each k-space line. This paper presents an analysis linking noise in the tracking system to the power of the resulting image artefacts. An expression is formulated for the required navigator accuracy based on the properties of the imaged object and the desired resolution. Analytical results are compared with computer simulations and experimental data. PMID:19918892

  20. Robot navigation research using the HERMIES mobile robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.

    1989-01-01

    In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less

  1. A mission executor for an autonomous underwater vehicle

    NASA Technical Reports Server (NTRS)

    Lee, Yuh-Jeng; Wilkinson, Paul

    1991-01-01

    The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission Executor is being constructed using CLIPS (C Language Integrated Production System) version 5.0. The Mission Executor is an expert system designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected that the executor will make informed decisions about the mission, taking into account the navigational path, the vehicle subsystem health, and the sea environment, as well as the specific mission profile which is downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language (COOL) embedded in CLIPS 5.0. Also, truth maintenance is applied to the knowledge base to keep configurations updated.

  2. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  3. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  4. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  5. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  6. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  7. 33 CFR 137.50 - Reviews of historical sources of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information. 137.50 Section 137.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...: STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES UNDER THE INNOCENT LAND-OWNER DEFENSE Standards and... insurance maps, building department records, chain of title documents, and land use records. (b) Historical...

  8. 33 CFR 137.50 - Reviews of historical sources of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information. 137.50 Section 137.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...: STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES UNDER THE INNOCENT LAND-OWNER DEFENSE Standards and... insurance maps, building department records, chain of title documents, and land use records. (b) Historical...

  9. 33 CFR 137.50 - Reviews of historical sources of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information. 137.50 Section 137.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...: STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES UNDER THE INNOCENT LAND-OWNER DEFENSE Standards and... insurance maps, building department records, chain of title documents, and land use records. (b) Historical...

  10. 33 CFR 137.50 - Reviews of historical sources of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information. 137.50 Section 137.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...: STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES UNDER THE INNOCENT LAND-OWNER DEFENSE Standards and... insurance maps, building department records, chain of title documents, and land use records. (b) Historical...

  11. 33 CFR 137.50 - Reviews of historical sources of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information. 137.50 Section 137.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...: STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES UNDER THE INNOCENT LAND-OWNER DEFENSE Standards and... insurance maps, building department records, chain of title documents, and land use records. (b) Historical...

  12. 77 FR 21989 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Requests 1. Title: Title 46 CFR Subchapter Q: Lifesaving, Electrical, Engineering and Navigation Equipment... following collection of information: 1625-0035, Title 46 CFR Subchapter Q: Lifesaving, Electrical, Engineering and Navigation Equipment, Construction and Materials & Marine Sanitation Devices (33 CFR part 159...

  13. Connectivism and Information Literacy: Moving from Learning Theory to Pedagogical Practice

    ERIC Educational Resources Information Center

    Transue, Beth M.

    2013-01-01

    Connectivism is an emerging learning theory positing that knowledge comprises networked relationships and that learning comprises the ability to successfully navigate through these networks. Successful pedagogical strategies involve the instructor helping students to identify, navigate, and evaluate information from their learning networks. Many…

  14. A Novel Navigation Paradigm for XML Repositories.

    ERIC Educational Resources Information Center

    Azagury, Alain; Factor, Michael E.; Maarek, Yoelle S.; Mandler, Benny

    2002-01-01

    Discusses data exchange over the Internet and describes the architecture and implementation of an XML document repository that promotes a navigation paradigm for XML documents based on content and context. Topics include information retrieval and semistructured documents; and file systems as information storage infrastructure, particularly XMLFS.…

  15. PandaEPL: a library for programming spatial navigation experiments.

    PubMed

    Solway, Alec; Miller, Jonathan F; Kahana, Michael J

    2013-12-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment.

  16. PandaEPL: A library for programming spatial navigation experiments

    PubMed Central

    Solway, Alec; Miller, Jonathan F.

    2013-01-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment. PMID:23549683

  17. Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Winternitz, Luke M.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolff, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. SEXTANT will be a first demonstration of in-space, autonomous, X-ray pulsar navigation (XNAV). Navigating using millisecond X-ray pulsars which could provide a GPS-like navigation capability available throughout our Solar System and beyond. NICER is a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station that was launched and installed in June of 2017. During NICER's nominal 18-month base mission, SEXTANT will perform a number of experiments to demonstrate XNAV and advance the technology on a number of fronts. In this work, we review the SEXTANT, its goals, and present early results from SEXTANT experiments conducted in the first six months of operation. With these results, SEXTANT has made significant progress toward meeting its primary and secondary mission goals. We also describe the SEXTANT flight operations, calibration activities, and initial results.

  18. Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Seubert, Jill; Bell, Julia

    2014-01-01

    NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.

  19. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  20. Patient Navigation Preferences for Adolescent and Young Adult Cancer Services by Distance to Treatment Location.

    PubMed

    Warner, Echo L; Fowler, Brynn; Pannier, Samantha T; Salmon, Sara K; Fair, Douglas; Spraker-Perlman, Holly; Yancey, Jeffrey; Randall, R Lor; Kirchhoff, Anne C

    2018-05-03

    To describe how distance to treatment location influences patient navigation preferences for adolescent and young adult (AYA) cancer patients and survivors. This study is part of a statewide needs assessment to inform the development of an AYA cancer patient and survivor navigation program. Participants were recruited from outpatient oncology clinics in Utah. Eligible participants had been diagnosed with cancer between ages 15-39 and had completed at least 1 month of treatment. Participants completed a semi-structured interview on preferences for patient navigation. Summary statistics of demographic and cancer characteristics were generated. Thematic content analysis was used to describe navigation preferences among participants classified as distance (≥20 miles) and local (<20 miles), to explain differences in their needs based on distance from their treatment center. The top three patient navigation needs were general information, financial, and emotional support. More local patients were interested in patient navigation services (95.2%) compared to distance participants (77.8%). Fewer local (38.1%) than distance participants (61.1%) reported challenges getting to appointments, and distance patients needed specific financial support to support their travel (e.g., fuel, lodging). Both local and distance patients desired to connect with a navigator in person before using another form of communication and wanted to connect with a patient navigator at the time of initial diagnosis. Distance from treatment center is an important patient navigation consideration for AYA cancer patients and survivors. After initially connecting with AYAs in person, patient navigators can provide resources remotely to help reduce travel burden.

  1. Early Warning and Early Action during the 2015-16 El Nino Event

    NASA Astrophysics Data System (ADS)

    Robertson, A. W.; Goddard, L. M.

    2016-12-01

    Strong El Niño events have a marked impact on regional climate worldwide through their influence on large-scale atmospheric circulation. As a result, seasonal climate forecasts show greater skill during El Niño events, which provide communities, governments and humanitarian agencies greater ability to plan and prepare. The scientific community has advanced considerably in the quality and content of information provided about El Niño and its impacts. As a result, society has become better aware of and engaged with this information. This talk will present some details on how we navigate the fine line between expectations and probabilistic forecasts, and how this information was used during the 2015-16 El Niño event. Examples are drawn from the health sector and food security community. Specific attention will be given to the importance of problem-focus and data availability in the appropriate tailoring of climate information for Early Warning/Early Action.

  2. Cooperative interactions between hippocampal and striatal systems support flexible navigation

    PubMed Central

    Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E

    2012-01-01

    Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411

  3. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance

    PubMed Central

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-01-01

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by “clock coasting” when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy. PMID:27187399

  4. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance.

    PubMed

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-05-12

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by "clock coasting" when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy.

  5. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  6. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  7. Navigating Graduate Study in Art Education

    ERIC Educational Resources Information Center

    Bain, Christina; Ulbricht, J.

    2004-01-01

    There once was a time when art teachers flocked to university campuses in the summer to advance their education and learn new art teaching methods in hopes of becoming better teachers in succeeding semesters. This was in the days when progressive teachers, principals, and legislators recognized the value of advanced education and rewarded teachers…

  8. Computers-for-edu: An Advanced Business Application Programming (ABAP) Teaching Case

    ERIC Educational Resources Information Center

    Boyle, Todd A.

    2007-01-01

    The "Computers-for-edu" case is designed to provide students with hands-on exposure to creating Advanced Business Application Programming (ABAP) reports and dialogue programs, as well as navigating various mySAP Enterprise Resource Planning (ERP) transactions needed by ABAP developers. The case requires students to apply a wide variety…

  9. Cross-Cultural Trust Networks and Advancing Education Equity in Place-Based Partnerships

    ERIC Educational Resources Information Center

    Banks, Amber Joy

    2017-01-01

    Research suggests that trust can be a foundational element for the success and sustainability of multi-organizational partnerships focused on advancing education equity in a particular neighborhood or region. As these place-based strategies gain popularity in the U.S., collaborators are increasingly required to navigate relationships where racial…

  10. Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-05-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  11. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  12. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  13. Present Practice of Using Nautical Depth to Manage Navigation Channels in the Presence of Fluid Mud

    DTIC Science & Technology

    2017-05-01

    material surfaces cannot be interpreted reliably unless other correlating information is developed. Surveying of fluid mud properties. At some locations...depth to manage navigation channels and ports requires a mud property that determines a navigability criteria, a practical method for surveying that...for managing navigation channels, (3) issues related to conducting hydrographic surveying in waterways with fluid mud bottoms, (4) the newest

  14. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  15. A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter

    PubMed Central

    Gao, Wei; Zhang, Ya; Wang, Jianguo

    2014-01-01

    The integrated navigation system with strapdown inertial navigation system (SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor's information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient. PMID:24434842

  16. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  17. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  18. 77 FR 17078 - Agency Information Collection Activities: Proposed Collection: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ..., including navigated patient data intake, VR-12 health status, patient navigator survey, patient navigator... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Agency... States Code, as amended by the Paperwork Reduction Act of 1995, Pub. L. 104-13), the Health Resources and...

  19. 76 FR 10373 - Agency Information Collection Activities: Proposed Collection: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... navigated patient data intake, VR-12 health status, patient navigator survey, patient navigator encounter... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Agency... States Code, as amended by the Paperwork Reduction Act of 1995, Pub. L. 104-13), the Health Resources and...

  20. 77 FR 53159 - Passenger Use of Portable Electronic Devices on Board Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... to navigation systems such as very high frequency (VHF) Omni Range (VOR) navigation systems. \\1\\ 14... navigation, communication, and surveillance radio receivers that may be susceptible at certain frequencies to... space by electromagnetic waves on specific radio frequencies that are used to communicate information...

  1. Navigating the Seas of Policy.

    ERIC Educational Resources Information Center

    Cunningham, Stephanie; Kennedy, Steve; McAlonan, Susan; Hotchkiss, Heather

    As the sun, moon, and stars helped sea captains to navigate, policy (defined as a formalized idea to encourage change) indicates general direction and speed but does not establish a specific approach to achieve implementation. Formal and informal policies have advantages and disadvantages. These are steps in navigating policy formation: identify…

  2. 46 CFR 167.65-45 - Notice to mariners; aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... do so is evidence of neglect of duty. It is desirable that nautical school ships navigating oceans... and other marine information affecting the safety of navigation on oceans and coastwise and the Great... coverage) are prepared jointly by the National Geospatial-Intelligence Agency, National Ocean Service, and...

  3. 75 FR 49408 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Bridges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Conforming Amendments, Bridges AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non... technical corrections to Coast Guard bridge and navigable waters regulations. This rule will have no... announces or gathers public opinion or other information regarding bridge matters, nor will it change the...

  4. The digital anatomist information system and its use in the generation and delivery of Web-based anatomy atlases.

    PubMed

    Brinkley, J F; Bradley, S W; Sundsten, J W; Rosse, C

    1997-12-01

    Advances in network and imaging technology, coupled with the availability of 3-D datasets such as the Visible Human, provide a unique opportunity for developing information systems in anatomy that can deliver relevant knowledge directly to the clinician, researcher or educator. A software framework is described for developing such a system within a distributed architecture that includes spatial and symbolic anatomy information resources, Web and custom servers, and authoring and end-user client programs. The authoring tools have been used to create 3-D atlases of the brain, knee and thorax that are used both locally and throughout the world. For the one and a half year period from June 1995-January 1997, the on-line atlases were accessed by over 33,000 sites from 94 countries, with an average of over 4000 "hits" per day, and 25,000 hits per day during peak exam periods. The atlases have been linked to by over 500 sites, and have received at least six unsolicited awards by outside rating institutions. The flexibility of the software framework has allowed the information system to evolve with advances in technology and representation methods. Possible new features include knowledge-based image retrieval and tutoring, dynamic generation of 3-D scenes, and eventually, real-time virtual reality navigation through the body. Such features, when coupled with other on-line biomedical information resources, should lead to interesting new ways for managing and accessing structural information in medicine. Copyright 1997 Academic Press.

  5. Citation Indexing and Threshold Concepts: An Essential Ah-Ha in Student Learning

    ERIC Educational Resources Information Center

    McLaughlin, Jeremy L.; Tucker, Virginia M.

    2017-01-01

    Understanding information organization is a key component to navigating digital library environments as an information professional. While traditionally thought of within the areas of assessment and evaluation, citation indexing is another form of organization and navigation, and learning about it can transform one's knowledge of the information…

  6. 46 CFR 78.05-1 - Duty of officers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Commander, 9th Coast Guard District, contain announcements and information on changes in aids to navigation and other marine information affecting the safety of navigation on the Great Lakes. These notices may be obtained free of charge, by making application to Commander, 9th Coast Guard District. (c) Weekly...

  7. Combining path integration and remembered landmarks when navigating without vision.

    PubMed

    Kalia, Amy A; Schrater, Paul R; Legge, Gordon E

    2013-01-01

    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.

  8. Combining Path Integration and Remembered Landmarks When Navigating without Vision

    PubMed Central

    Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.

    2013-01-01

    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742

  9. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

  10. Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.

    PubMed

    Buckley, Matthew G; Smith, Alastair D; Haselgrove, Mark

    2014-03-01

    An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional-extradimensional shift experiments, designed to examine the interaction of landmark and geometric features of the environment in a virtual navigation task. In Experiments 1 and 2, participants were first required to find a hidden goal using information provided by the shape of the arena or landmarks integrated into the arena boundary (Experiment 1) or within the arena itself (Experiment 2). Participants were then transferred to a different-shaped arena that contained novel landmarks and were again required to find a hidden goal. In both experiments, participants who were navigating on the basis of cues that were from the same dimension that was previously relevant (intradimensional shift) learned to find the goal significantly faster than participants who were navigating on the basis of cues that were from a dimension that was previously irrelevant (extradimensional shift). This suggests that shape information does not hold special status when learning about an environment. Experiment 3 replicated Experiment 2 and also assessed participants' recognition of the global shape of the navigated arenas. Recognition was attenuated when landmarks were relevant to navigation throughout the experiment. The results of these experiments are discussed in terms of associative and non-associative theories of spatial learning.

  11. Flight assessment of a data-link-based navigation-guidance concept

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1983-01-01

    With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.

  12. Steering intermediate courses: desert ants combine information from various navigational routines.

    PubMed

    Wehner, Rüdiger; Hoinville, Thierry; Cruse, Holk; Cheng, Ken

    2016-07-01

    A number of systems of navigation have been studied in some detail in insects. These include path integration, a system that keeps track of the straight-line distance and direction travelled on the current trip, the use of panoramic landmarks and scenery for orientation, and systematic searching. A traditional view is that only one navigational system is in operation at any one time, with different systems running in sequence depending on the context and conditions. We review selected data suggesting that often, different navigational cues (e.g., compass cues) and different systems of navigation are in operation simultaneously in desert ant navigation. The evidence suggests that all systems operate in parallel forming a heterarchical network. External and internal conditions determine the weights to be accorded to each cue and system. We also show that a model of independent modules feeding into a central summating device, the Navinet model, can in principle account for such data. No central executive processor is necessary aside from a weighted summation of the different cues and systems. Such a heterarchy of parallel systems all in operation represents a new view of insect navigation that has already been expressed informally by some authors.

  13. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  14. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  15. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  16. Evaluating CoLiDeS + Pic: The Role of Relevance of Pictures in User Navigation Behaviour

    ERIC Educational Resources Information Center

    Karanam, Saraschandra; van Oostendorp, Herre; Indurkhya, Bipin

    2012-01-01

    CoLiDeS + Pic is a cognitive model of web-navigation that incorporates semantic information from pictures into CoLiDeS. In our earlier research, we have demonstrated that by incorporating semantic information from pictures, CoLiDeS + Pic can predict the hyperlinks on the shortest path more frequently, and also with greater information scent,…

  17. Using a 'value-added' approach for contextual design of geographic information.

    PubMed

    May, Andrew J

    2013-11-01

    The aim of this article is to demonstrate how a 'value-added' approach can be used for user-centred design of geographic information. An information science perspective was used, with value being the difference in outcomes arising from alternative information sets. Sixteen drivers navigated a complex, unfamiliar urban route, using visual and verbal instructions representing the distance-to-turn and junction layout information presented by typical satellite navigation systems. Data measuring driving errors, navigation errors and driver confidence were collected throughout the trial. The results show how driver performance varied considerably according to the geographic context at specific locations, and that there are specific opportunities to add value with enhanced geographical information. The conclusions are that a value-added approach facilitates a more explicit focus on 'desired' (and feasible) levels of end user performance with different information sets, and is a potentially effective approach to user-centred design of geographic information. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less

  19. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  20. Frequency standards requirements of the NASA deep space network to support outer planet missions

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Chao, C. C.

    1974-01-01

    Navigation of Mariner spacecraft to Jupiter and beyond will require greater accuracy of positional determination than heretofore obtained if the full experimental capabilities of this type of spacecraft are to be utilized. Advanced navigational techniques which will be available by 1977 include Very Long Baseline Interferometry (VLBI), three-way Doppler tracking (sometimes called quasi-VLBI), and two-way Doppler tracking. It is shown that VLBI and quasi-VLBI methods depend on the same basic concept, and that they impose nearly the same requirements on the stability of frequency standards at the tracking stations. It is also shown how a realistic modelling of spacecraft navigational errors prevents overspecifying the requirements to frequency stability.

  1. Applicability of Deep-Learning Technology for Relative Object-Based Navigation

    DTIC Science & Technology

    2017-09-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing...possible selections for navigating an unmanned ground vehicle (UGV) is through real- time visual odometry. To navigate in such an environment, the UGV...UGV) is through real- time visual odometry. To navigate in such an environment, the UGV needs to be able to detect, identify, and relate the static

  2. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  3. Dr Google and the consumer: a qualitative study exploring the navigational needs and online health information-seeking behaviors of consumers with chronic health conditions.

    PubMed

    Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne

    2014-12-02

    The abundance of health information available online provides consumers with greater access to information pertinent to the management of health conditions. This is particularly important given an increasing drive for consumer-focused health care models globally, especially in the management of chronic health conditions, and in recognition of challenges faced by lay consumers with finding, understanding, and acting on health information sourced online. There is a paucity of literature exploring the navigational needs of consumers with regards to accessing online health information. Further, existing interventions appear to be didactic in nature, and it is unclear whether such interventions appeal to consumers' needs. Our goal was to explore the navigational needs of consumers with chronic health conditions in finding online health information within the broader context of consumers' online health information-seeking behaviors. Potential barriers to online navigation were also identified. Semistructured interviews were conducted with adult consumers who reported using the Internet for health information and had at least one chronic health condition. Participants were recruited from nine metropolitan community pharmacies within Western Australia, as well as through various media channels. Interviews were audio-recorded, transcribed verbatim, and then imported into QSR NVivo 10. Two established approaches to thematic analysis were adopted. First, a data-driven approach was used to minimize potential bias in analysis and improve construct and criterion validity. A theory-driven approach was subsequently used to confirm themes identified by the former approach and to ensure identified themes were relevant to the objectives. Two levels of analysis were conducted for both data-driven and theory-driven approaches: manifest-level analysis, whereby face-value themes were identified, and latent-level analysis, whereby underlying concepts were identified. We conducted 17 interviews, with data saturation achieved by the 14th interview. While we identified a broad range of online health information-seeking behaviors, most related to information discussed during consumer-health professional consultations such as looking for information about medication side effects. The barriers we identified included intrinsic barriers, such as limited eHealth literacy, and extrinsic barriers, such as the inconsistency of information between different online sources. The navigational needs of our participants were extrinsic in nature and included health professionals directing consumers to appropriate online resources and better filtering of online health information. Our participants' online health information-seeking behaviors, reported barriers, and navigational needs were underpinned by the themes of trust, patient activation, and relevance. This study suggests that existing interventions aimed to assist consumers with navigating online health information may not be what consumers want or perceive they need. eHealth literacy and patient activation appear to be prevalent concepts in the context of consumers' online health information-seeking behaviors. Furthermore, the role for health professionals in guiding consumers to quality online health information is highlighted.

  4. Health search engine with e-document analysis for reliable search results.

    PubMed

    Gaudinat, Arnaud; Ruch, Patrick; Joubert, Michel; Uziel, Philippe; Strauss, Anne; Thonnet, Michèle; Baud, Robert; Spahni, Stéphane; Weber, Patrick; Bonal, Juan; Boyer, Celia; Fieschi, Marius; Geissbuhler, Antoine

    2006-01-01

    After a review of the existing practical solution available to the citizen to retrieve eHealth document, the paper describes an original specialized search engine WRAPIN. WRAPIN uses advanced cross lingual information retrieval technologies to check information quality by synthesizing medical concepts, conclusions and references contained in the health literature, to identify accurate, relevant sources. Thanks to MeSH terminology [1] (Medical Subject Headings from the U.S. National Library of Medicine) and advanced approaches such as conclusion extraction from structured document, reformulation of the query, WRAPIN offers to the user a privileged access to navigate through multilingual documents without language or medical prerequisites. The results of an evaluation conducted on the WRAPIN prototype show that results of the WRAPIN search engine are perceived as informative 65% (59% for a general-purpose search engine), reliable and trustworthy 72% (41% for the other engine) by users. But it leaves room for improvement such as the increase of database coverage, the explanation of the original functionalities and an audience adaptability. Thanks to evaluation outcomes, WRAPIN is now in exploitation on the HON web site (http://www.healthonnet.org), free of charge. Intended to the citizen it is a good alternative to general-purpose search engines when the user looks up trustworthy health and medical information or wants to check automatically a doubtful content of a Web page.

  5. 76 FR 37351 - Information Collection Being Reviewed by the Federal Communications Commission Under Delegated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... required to obtain written permission from the Coast Guard in the area where radio-navigation/radio-location devices are located. This rule insures that no hazard to marine navigation will result from the grant of applications for non-selectable transponders and shore based radio- navigation aids. The Coast...

  6. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel-in-the-sky display and being guided by a Category I LAAS, it is technically feasible to reduce the runway spacing to 1100 ft. If a Category I LAAS and an "intelligent auto-pilot" that executes both the approach and emergency escape maneuver are used, the technically achievable required runway spacing is reduced to 750 ft. Both statements presume full aircraft state information, including position, velocity, and attitude, is being reliably passed between aircraft at a rate equal to or greater than one Hz.

  7. Mental "Space" Travel: Damage to Posterior Parietal Cortex Prevents Egocentric Navigation and Reexperiencing of Remote Spatial Memories

    ERIC Educational Resources Information Center

    Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-01-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…

  8. 33 CFR 154.1041 - Specific response information to be maintained on mobile MTR facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be maintained on mobile MTR facilities. 154.1041 Section 154.1041 Navigation and Navigable Waters... maintained on mobile MTR facilities. (a) Each mobile MTR facility must carry the following information as... respond to a discharge from the mobile MTR facility. (3) List of the appropriate persons and agencies...

  9. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  10. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  11. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  12. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  13. About | DOE Data Explorer

    Science.gov Websites

    skip to main content DDE Toggle Navigation Home About DDE FAQs DOE Data ID Service Data ID Service Data ID Service Workshops Contact Us dataexplorer Search For Terms: + Advanced Search × Advanced /Simulations Figures/Plots Genome/Genetics Data Interactive Data Map(s) Multimedia Numeric Data Specialized Mix

  14. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  15. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  16. A medical digital library to support scenario and user-tailored information retrieval.

    PubMed

    Chu, W W; Johnson, D B; Kangarloo, H

    2000-06-01

    Current large-scale information sources are designed to support general queries and lack the ability to support scenario-specific information navigation, gathering, and presentation. As a result, users are often unable to obtain desired specific information within a well-defined subject area. Today's information systems do not provide efficient content navigation, incremental appropriate matching, or content correlation. We are developing the following innovative technologies to remedy these problems: 1) scenario-based proxies, enabling the gathering and filtering of information customized for users within a pre-defined domain; 2) context-sensitive navigation and matching, providing approximate matching and similarity links when an exact match to a user's request is unavailable; 3) content correlation of documents, creating semantic links between documents and information sources; and 4) user models for customizing retrieved information and result presentation. A digital medical library is currently being constructed using these technologies to provide customized information for the user. The technologies are general in nature and can provide custom and scenario-specific information in many other domains (e.g., crisis management).

  17. Navigation domain representation for interactive multiview imaging.

    PubMed

    Maugey, Thomas; Daribo, Ismael; Cheung, Gene; Frossard, Pascal

    2013-09-01

    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives toward rich multimedia applications, it requires the design of novel representations and coding techniques to solve the new challenges imposed by the interactive navigation. In particular, the encoder must prepare a priori a compressed media stream that is flexible enough to enable the free selection of multiview navigation paths by different streaming media clients. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server generally cannot transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits us to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image (color and depth data) and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Because of these unique properties, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services.

  18. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Preliminary ascent knowledge requirements

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The preliminary version of expert knowledge for the Onboard Navigation (ONAV) Ground Based Expert Trainer Ascent system for the space shuttle is presented. Included is some brief background information along with the information describing the knowledge the system will contain. Information is given on rules and heuristics, telemetry status, landing sites, inertial measurement units, and a high speed trajectory determinator (HSTD) state vector.

  19. The use of interactive graphical maps for browsing medical/health Internet information resources

    PubMed Central

    Boulos, Maged N Kamel

    2003-01-01

    As online information portals accumulate metadata descriptions of Web resources, it becomes necessary to develop effective ways for visualising and navigating the resultant huge metadata repositories as well as the different semantic relationships and attributes of described Web resources. Graphical maps provide a good method to visualise, understand and navigate a world that is too large and complex to be seen directly like the Web. Several examples of maps designed as a navigational aid for Web resources are presented in this review with an emphasis on maps of medical and health-related resources. The latter include HealthCyberMap maps , which can be classified as conceptual information space maps, and the very abstract and geometric Visual Net maps of PubMed (for demos). Information resources can be also organised and navigated based on their geographic attributes. Some of the maps presented in this review use a Kohonen Self-Organising Map algorithm, and only HealthCyberMap uses a Geographic Information System to classify Web resource data and render the maps. Maps based on familiar metaphors taken from users' everyday life are much easier to understand. Associative and pictorial map icons that enable instant recognition and comprehension are preferred to geometric ones and are key to successful maps for browsing medical/health Internet information resources. PMID:12556244

  20. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  1. Vision for navigation: What can we learn from ants?

    PubMed

    Graham, Paul; Philippides, Andrew

    2017-09-01

    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. Aeronautics Technology Possibilities for 2000: Report of a workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.

  3. Advanced Communication Architectures and Technologies for Missions to the Outer Planets

    NASA Technical Reports Server (NTRS)

    Bhasin, K.; Hayden, J. L.

    2001-01-01

    Missions to the outer planets would be considerably enhanced by the implementation of a future space communication infrastructure that utilizes relay stations placed at strategic locations in the solar system. These relay stations would operate autonomously and handle remote mission command and data traffic on a prioritized demand access basis. Such a system would enhance communications from that of the current direct communications between the planet and Earth. The system would also provide high rate data communications to outer planet missions, clear communications paths during times when the sun occults the mission spacecraft as viewed from Earth, and navigational "lighthouses" for missions utilizing onboard autonomous operations. Additional information is contained in the original extended abstract.

  4. Three-dimensional imaging technology offers promise in medicine.

    PubMed

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  5. Framework and prototype for a secure XML-based electronic health records system.

    PubMed

    Steele, Robert; Gardner, William; Chandra, Darius; Dillon, Tharam S

    2007-01-01

    Security of personal medical information has always been a challenge for the advancement of Electronic Health Records (EHRs) initiatives. eXtensible Markup Language (XML), is rapidly becoming the key standard for data representation and transportation. The widespread use of XML and the prospect of its use in the Electronic Health (e-health) domain highlights the need for flexible access control models for XML data and documents. This paper presents a declarative access control model for XML data repositories that utilises an expressive XML role control model. The operational semantics of this model are illustrated by Xplorer, a user interface generation engine which supports search-browse-navigate activities on XML repositories.

  6. Area navigation implementation for a microcomputer-based LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    Engineering performed to make LORAN-C a more useful and practical navigation system for general aviation is described. Development of new software, and implementation of this software on a (MOS6502) microcomputer to provide high quality practical area navigation information directly to the pilot and considered. Flight tests were performed specifically to examine the efficacy of this new software. Final results were exceptionally good and clearly demonstrate the merits of this new LORAN-C area navigation system.

  7. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation frommore » the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.« less

  8. Method, accuracy and limitation of computer interaction in the operating room by a navigated surgical instrument.

    PubMed

    Hurka, Florian; Wenger, Thomas; Heininger, Sebastian; Lueth, Tim C

    2011-01-01

    This article describes a new interaction device for surgical navigation systems--the so-called navigation mouse system. The idea is to use a tracked instrument of a surgical navigation system like a pointer to control the software. The new interaction system extends existing navigation systems with a microcontroller-unit. The microcontroller-unit uses the existing communication line to extract the needed 3D-information of an instrument to calculate positions analogous to the PC mouse cursor and click events. These positions and events are used to manipulate the navigation system. In an experimental setup the reachable accuracy with the new mouse system is shown.

  9. BOREAS Level-0 C-130 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Newcomer, Jeffrey A.; Domingues, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    The level-0 C-130 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions over the BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. Various portions of the navigation data were collected at 1, 10, and 30 Hz. The level-0 C-130 navigation data collected for BOREAS in 1994 were improved over previous years in that the C-130 onboard navigation system was upgraded to output inertial navigation parameters every 1/30th of a second (i.e., 30 Hz). This upgrade was encouraged by users of the aircraft scanner data with the hope of improving the relative geometric positioning of the collected images.

  10. Culturally targeted patient navigation for increasing african americans' adherence to screening colonoscopy: a randomized clinical trial.

    PubMed

    Jandorf, Lina; Braschi, Caitlyn; Ernstoff, Elizabeth; Wong, Carrie R; Thelemaque, Linda; Winkel, Gary; Thompson, Hayley S; Redd, William H; Itzkowitz, Steven H

    2013-09-01

    Patient navigation has been an effective intervention to increase cancer screening rates. This study focuses on predicting outcomes of screening colonoscopy for colorectal cancer among African Americans using different patient navigation formats. In a randomized clinical trial, patients more than 50 years of age without significant comorbidities were randomized into three navigation groups: peer-patient navigation (n = 181), pro-patient navigation (n = 123), and standard (n = 46). Pro-patient navigations were health care professionals who conducted culturally targeted navigation, whereas peer-patient navigations were community members trained in patient navigation who also discussed their personal experiences with screening colonoscopy. Two assessments gathered sociodemographic, medical, and intrapersonal information. Screening colonoscopy completion rate was 75.7% across all groups with no significant differences in completion between the three study arms. Annual income more than $10,000 was an independent predictor of screening colonoscopy adherence. Unexpectedly, low social influence also predicted screening colonoscopy completion. In an urban African American population, patient navigation was effective in increasing screening colonoscopy rates to 15% above the national average, regardless of patient navigation type or content. Because patient navigation successfully increases colonoscopy adherence, cultural targeting may not be necessary in some populations.

  11. Concurrent 3-D sonifications enable the head-up monitoring of two interrelated aircraft navigation instruments.

    PubMed

    Towers, John; Burgess-Limerick, Robin; Riek, Stephan

    2014-12-01

    The aim of this study was to enable the head-up monitoring of two interrelated aircraft navigation instruments by developing a 3-D auditory display that encodes this navigation information within two spatially discrete sonifications. Head-up monitoring of aircraft navigation information utilizing 3-D audio displays, particularly involving concurrently presented sonifications, requires additional research. A flight simulator's head-down waypoint bearing and course deviation instrument readouts were conveyed to participants via a 3-D auditory display. Both readouts were separately represented by a colocated pair of continuous sounds, one fixed and the other varying in pitch, which together encoded the instrument value's deviation from the norm. Each sound pair's position in the listening space indicated the left/right parameter of its instrument's readout. Participants' accuracy in navigating a predetermined flight plan was evaluated while performing a head-up task involving the detection of visual flares in the out-of-cockpit scene. The auditory display significantly improved aircraft heading and course deviation accuracy, head-up time, and flare detections. Head tracking did not improve performance by providing participants with the ability to orient potentially conflicting sounds, suggesting that the use of integrated localizing cues was successful. Conclusion: A supplementary 3-D auditory display enabled effective head-up monitoring of interrelated navigation information normally attended to through a head-down display. Pilots operating aircraft, such as helicopters and unmanned aerial vehicles, may benefit from a supplementary auditory display because they navigate in two dimensions while performing head-up, out-of-aircraft, visual tasks.

  12. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  13. Autonomous formation flying based on GPS — PRISMA flight results

    NASA Astrophysics Data System (ADS)

    D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio

    2013-01-01

    This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.

  14. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  15. Vegetation Versus Man-Made Object Detection from Imagery for Unmanned Vehicles in Off-Road Environments

    DTIC Science & Technology

    2013-05-01

    saliency, natural scene statistics 1. INTRODUCTION Research into the area of autonomous navigation for unmanned ground vehicles (UGV) has accelerated in...recent years. This is partly due to the success of programs such as the DARPA Grand Challenge1 and the dream of driverless cars ,2 but is also due to the...NOTES 14. ABSTRACT There have been several major advances in autonomous navigation for unmanned ground vehicles in controlled urban environments in

  16. Visual Navigation Constructing and Utilizing Simple Maps of an Indoor Environment

    DTIC Science & Technology

    1989-03-01

    places are con- nected to eachother , so that the robot may plan routes. On a more advanced level. navigation nmay require an understanding of the meaning...two vertical lines, suitably separated from eachother . through which it tries to lead the robot. CHAPTER 1. L’TRODUCTION 14 1.4 Context of the Project...the observer will have no trouble in determining where the wall is. A robot, with far less processing power than humans have. might be able determine

  17. CNAV: A Unique Approach to a Web-Based College Information Navigator at Gettysburg College.

    ERIC Educational Resources Information Center

    Martys, Michael; Redman, Don; Huff, Alice; Czar, Dave; Mullane, Pat; Bennett, Joseph; Getty, Robert

    In 1997, Gettysburg College (Pennsylvania) deployed the CNAV (College Navigation) Web tool to allow the students' and the entire college community the ability to better navigate through its college's curricular, co-curricular, and extracurricular offerings. CNAV is unique because, rather than treating the Web as a series of static pages, it treats…

  18. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  19. 33 CFR 207.300 - Ohio River, Mississippi River above Cairo, Ill., and their tributaries; use, administration, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... reported to the nearest lock. The report shall include information as to the number of loose barges, their... of the progress being made in bringing the barges under control so that he can initiate whatever...

  20. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  1. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  2. 33 CFR 207.300 - Ohio River, Mississippi River above Cairo, Ill., and their tributaries; use, administration, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... reported to the nearest lock. The report shall include information as to the number of loose barges, their... of the progress being made in bringing the barges under control so that he can initiate whatever...

  3. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  4. 33 CFR 207.300 - Ohio River, Mississippi River above Cairo, Ill., and their tributaries; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... reported to the nearest lock. The report shall include information as to the number of loose barges, their... of the progress being made in bringing the barges under control so that he can initiate whatever...

  5. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  6. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  7. 76 FR 24837 - Regulated Navigation Area; Columbus Day Weekend, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... establishing an RNA, as described in paragraph 34(g) of the Instruction. We seek any comments or information... regulated navigation area (RNA) on Biscayne Bay in Miami, Florida. The RNA would be enforced annually on the... Rickenbacker Causeway Bridge. All vessels within the RNA would be: Required to transit the regulated navigation...

  8. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  9. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  10. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  11. Vision-based mobile robot navigation through deep convolutional neural networks and end-to-end learning

    NASA Astrophysics Data System (ADS)

    Zhang, Yachu; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Kong, Lingqin; Liu, Lingling

    2017-09-01

    In contrast to humans, who use only visual information for navigation, many mobile robots use laser scanners and ultrasonic sensors along with vision cameras to navigate. This work proposes a vision-based robot control algorithm based on deep convolutional neural networks. We create a large 15-layer convolutional neural network learning system and achieve the advanced recognition performance. Our system is trained from end to end to map raw input images to direction in supervised mode. The images of data sets are collected in a wide variety of weather conditions and lighting conditions. Besides, the data sets are augmented by adding Gaussian noise and Salt-and-pepper noise to avoid overfitting. The algorithm is verified by two experiments, which are line tracking and obstacle avoidance. The line tracking experiment is proceeded in order to track the desired path which is composed of straight and curved lines. The goal of obstacle avoidance experiment is to avoid the obstacles indoor. Finally, we get 3.29% error rate on the training set and 5.1% error rate on the test set in the line tracking experiment, 1.8% error rate on the training set and less than 5% error rate on the test set in the obstacle avoidance experiment. During the actual test, the robot can follow the runway centerline outdoor and avoid the obstacle in the room accurately. The result confirms the effectiveness of the algorithm and our improvement in the network structure and train parameters

  12. 14 CFR 171.23 - Requests for IFR procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.23... beacon facility that he owns must submit the following information with that request: (1) A description...

  13. Lay Navigator Model for Impacting Cancer Health Disparities

    PubMed Central

    Meade, Cathy D.; Wells, Kristen J.; Arevalo, Mariana; Calcano, Ercilia R.; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G.

    2014-01-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were: 1) use of bilingual lay navigators with familiarity of communities they served; 2) provision of training, education and supportive activities; 3) multidisciplinary clinical oversight that factored in caseload intensity; and 4) well-developed partnerships with community clinics and social service entities. Deconstruction of health care system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex health care systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum. PMID:24683043

  14. Lay navigator model for impacting cancer health disparities.

    PubMed

    Meade, Cathy D; Wells, Kristen J; Arevalo, Mariana; Calcano, Ercilia R; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G

    2014-09-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were the following: (1) use of bilingual lay navigators with familiarity of communities they served; (2) provision of training, education, and supportive activities; (3) multidisciplinary clinical oversight that factored in caseload intensity; and (4) well-developed partnerships with community clinics and social service entities. Deconstruction of healthcare system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex healthcare systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum.

  15. Task-Based Navigation of a Taxonomy Interface to a Digital Repository

    ERIC Educational Resources Information Center

    Khoo, Christopher S. G.; Wang, Zhonghong; Chaudhry, Abdus Sattar

    2012-01-01

    Introduction: This is a study of hierarchical navigation; how users browse a taxonomy-based interface to an organizational repository to locate information resources. The study is part of a project to develop a taxonomy for an library and information science department to organize resources and support user browsing in a digital repository.…

  16. From Resource-Adaptive Navigation Assistance to Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg

    In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.

  17. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  18. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Visual Odometry for Autonomous Deep-Space Navigation

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Visual Odometry fills two critical needs shared by all future exploration architectures considered by NASA: Autonomous Rendezvous and Docking (AR&D), and autonomous navigation during loss of comm. To do this, a camera is combined with cutting-edge algorithms (called Visual Odometry) into a unit that provides accurate relative pose between the camera and the object in the imagery. Recent simulation analyses have demonstrated the ability of this new technology to reliably, accurately, and quickly compute a relative pose. This project advances this technology by both preparing the system to process flight imagery and creating an activity to capture said imagery. This technology can provide a pioneering optical navigation platform capable of supporting a wide variety of future missions scenarios: deep space rendezvous, asteroid exploration, loss-of-comm.

  20. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

Top