Science.gov

Sample records for advanced neutron capture

  1. Advances in Neutron Capture Therapy

    SciTech Connect

    Soloway, A.H.; Barth, R.F.; Carpenter, D.E.

    1993-12-31

    This volume contains the proceedings of the Fifth International Symposium on Neutron Capture Therapy held September 14--17, 1992 in Columbus, Ohio. Individual papers were separately abstracted and indexed for the database.

  2. Recent advances in neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  3. The Detector for Advanced Neutron Capture Experiments at LANSCE

    SciTech Connect

    Ullmann, J.L.; Reifarth, R.; Haight, R.C.; Hunt, L.; O'Donnell, J.M.; Rundberg, R.S.; Bredeweg, T.A.; Wilhelmy, J.B.; Fowler, M.M.; Vieira, D.J.; Wouters, J.M.; Strottman, D.D.; Kaeppeler, F.; Heil, M.; Chamberlin, E.P.

    2003-08-26

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4{pi} barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is being implemented.

  4. Detector for advanced neutron capture experiments at LANSCE

    SciTech Connect

    Ullmann, J. L.; Reifarth, R.; Haight, Robert C.; Hunt, L. F.; O'Donnell, J. M.; Bredeweg, T. A.; Wilhelmy, J. B.; Fowler, Malcolm M.; Vieira, D. J.; Wouters, J. M.; Strottman, D.; Kaeppeler, F.; Heil, M.; Chamberlin, E. P.

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  5. Enhancing the detector for advanced neutron capture experiments

    DOE PAGES

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O’Donnell, J. M.; Rusev, G.; Taddeucci, T. N; Ullmann, J. L.; et al

    2015-05-28

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  6. Enhancing the Detector for Advanced Neutron Capture Experiments

    NASA Astrophysics Data System (ADS)

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O'Donnell, J. M.; Rusev, G.; Taddeucci, T. N.; Ullmann, J. L.; Walker, C. L.

    2015-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  7. MCNP speed advances for boron neutron capture therapy

    SciTech Connect

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  8. The Detector for Advanced Neutron Capture Experiments: A 4{pi} BaF2 Detector for Neutron Capture Measurements at LANSCE

    SciTech Connect

    Ullmann, J.L.; Esch, E.-I.; Haight, R.C.; Hunt, L.; O'Donnell, J.M.; Reifarth, R.; Agvaanluvsan, U.; Alpizar, A.; Hatarik, R.; Bond, E.M.; Bredeweg, T.A.; Kronenberg, A.; Rundberg, R.S.; Vieira, D.J.; Wilhelmy, J.B.; Folden, C.M.; Hoffman, D.C.; Greife, U.; Schwantes, J.M.; Strottman, D.D.

    2005-05-24

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 162-element 4{pi} BaF2 array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as one milligram. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. The design and initial performance results of DANCE is discussed.

  9. Neutron capture reactions at DANCE

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (<~100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  10. Neutron capture reactions at DANCE

    SciTech Connect

    Bredeweg, T. A.

    2008-05-12

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  11. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  12. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  13. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  14. Preparation of a one-curie 171Tm target for the Detector for Advanced Neutron Capture Experiments (DANCE)

    SciTech Connect

    Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.; Vieira, David J.

    2008-05-15

    Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er. Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.

  15. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  16. Measurement of neutron capture on 136Xe

    NASA Astrophysics Data System (ADS)

    Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; O'Conner, T.; Kaufman, L. J.; Couture, A.; Ullmann, J. L.; Krtička, M.

    2016-09-01

    136Xe is a 0 ν β β decay candidate isotope, and is used in multiple experiments searching for this hypothetical decay mode. These experiments require precise information about neutron capture for their background characterization and minimization. Thermal and resonant neutron capture on 136Xe have been measured at the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to greater than 100 keV was incident on a gas cell filled with isotopically pure 136Xe. The relative neutron capture cross sections for neutrons at thermal energies and the first resonance at 2.154 keV have been measured, yielding a new absolute measurement of 0.238 ±0.019 b for the thermal neutron capture cross section. Additionally, the γ cascades for captures at both energies have been measured, and cascade models have been developed which may be used by 0 ν β β experiments using 136Xe.

  17. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  18. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  19. DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility.

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Mitchell, G.; Vieira, D.; Bredeweg, T.; Ullmann, J.; Jandel, M.; Couture, A.; Keksis, A.; Rundberg, R.; Wilhelmy, J.; O'Donnell, J.; Baramsai, B.; Haight, R.; Wouters, J.; Krticka, M.; Parker, W.; Becker, J.; Agvaanlusan, U.

    2009-10-01

    DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility. The absolute cross sections of the ^89Y(n,γ) reaction was measured for the first time ever in the neutron energy range of 10 eV -- 10 keV and improvements were made in the 10 -- 300 keV range. The error bars were significantly reduced and number of cross section points was increased since the past ^89Y(n,γ) experiments. The ^157Gd(n,γ) cross section was determined at En = 20 eV -- 300 keV by normalizing the experimental DANCE data to a well known resonance taken from the ENDF/B-VII library. Computer simulations of the ^157Gd(n,γ) cascades and DANCE pulse height function were made using DICEBOX and GEANT4 codes and simulated Esum and Eγ spectra are compared to the experimental DANCE data. Values of spin and photon strength function (PSF) of the ^157Gd(n,γ) resonances are provided in the range of En = 2 -- 300 eV using spin dependence upon a γ-ray multiplicity.

  20. Neutron Capture from 87Sr

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Raut, R.; Tonchev, A. P.; Tornow, W.; Baramsai, B.; Kelley, J. H.; Mitchell, G.; Bredeweg, T.; Couture, A.; Jandel, M.; O'Donnell, J.; Rundberg, R.; Ullmann, J. L.; Chyzh, A.; Kwan, E.

    2011-10-01

    The neutron-capture resonances of the reaction 87Sr(n , γ)88Sr are significant to nuclear astrophysics to estimate the neutron density during the s process, whose path is split by the branching nucleus 85Kr, and for a possible use of the 87Rb-87Sr chronometric pair to measure the age of our Galaxy. In addition, the γ rays of the product nucleus 88Sr are of importance to nuclear structure and the study of the pygmy resonance observed earlier in (γ ,γ') measurements. We report results from a neutron-capture experiment on 87Sr carried out with the 4 π BaF2 array, DANCE, at LANL. Spin values of neutron resonances have been deduced using the multiplicity and angular distributions of the cascade γ rays following the neutron capture. Work supported by the US Department of Energy under grants DE-FG02-97ER41033, DE-FG02-97ER41042, DE-FG02-97ER41041, and DE-FG52-06NA26155.

  1. Neutron capture cross section of Am241

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  2. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    NASA Astrophysics Data System (ADS)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  3. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  4. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  5. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    NASA Astrophysics Data System (ADS)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  6. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    SciTech Connect

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  7. Neutron Capture Cross Sections of 236U and 234U

    NASA Astrophysics Data System (ADS)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  8. Neutron Capture Cross Sections of 236U and 234U

    SciTech Connect

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Kronenberg, A.

    2006-03-13

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-{pi} solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  9. Advanced Telemetry Data Capturing

    SciTech Connect

    Paschke, G.A.

    2000-05-16

    This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

  10. Workshop on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  11. Benchmarking a surrogate reaction for neutron capture

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R.; Gibelin, J.; Phair, L.; Rodriguez-Vieitez, E.; Goldblum, B. L.; Swan, T.; Wiedeking, M.

    2010-01-15

    {sup 171,173}Yb(d,p{gamma}) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the {sup 171,173}Yb(d,p{gamma}) measurements agree with the neutron capture results within 15%.

  12. Neutron Capture Reactions on lu Isotopes at Dance

    NASA Astrophysics Data System (ADS)

    Roig, O.; Meot, V.; Daugas, J.-M.; Morel, P.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Wouters, J. M.

    2013-03-01

    The DANCE1 (Detector for Advanced Neutron Capture Experiments) array at LANSCE spallation neutron source in Los Alamos has been used to obtain the neutron radiative capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process.2,3 Three targets were used to perform these measurements. One was natural Lu foil of 31 mg/cm2 and the other two were isotope-enriched targets of 175Lu and 176Lu. Firstly, the cross sections were obtained by normalizing yield to a well-known cross section at the thermal neutron energy. Now, we want to obtain absolute cross sections of radiative capture through a precise neutron flux determination, an accurate target mass measurement and an efficiency determination of the DANCE array.

  13. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  14. Neutron capture therapy for melanoma

    SciTech Connect

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  15. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  16. Neutron-capture resonances for 82Se

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; Berman, B. L.

    1982-09-01

    Strong neturon-capture resonances for 82Se have been found at 3.63, 7.1, and 9.51 keV and weaker ones have been found at 0.58, 1.15, and possibly 13.54 and 16.5 keV. None was found at lower neutron energies; this absence of strong epithermal capture resonances invalidates the hypothesis that the depth dependence of the abundance ratio of 78Kr to 83Kr found in meteoritic studies owes its origin to anomalous 83Kr production by neutron capture on 82Se. Precise energies have been assigned to neutron-capture resonances up to 40 keV for all the other selenium isotopes as well. NUCLEAR REACTIONS 82Se, natSe(n, γ) neutron time of flight; resonance energies; abundance ratio of 78Kr to 83Kr.

  17. Neutron capture reactions on Lu isotopes at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Daugas, J.-M.; Haight, R. C.; Keksis, A. L.; Méot, V.; Morel, P.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Wouters, J. M.

    2010-03-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for the 175Lu and 176Lu isotopes with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  18. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O'Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory, North Carolina State

  19. An improved method for estimating the neutron background in measurements of neutron capture reactions

    NASA Astrophysics Data System (ADS)

    Žugec, P.; Bosnar, D.; Colonna, N.; Gunsing, F.

    2016-08-01

    The relation between the neutron background in neutron capture measurements and the neutron sensitivity related to the experimental setup is examined. It is pointed out that a proper estimate of the neutron background may only be obtained by means of dedicated simulations taking into account the full framework of the neutron-induced reactions and their complete temporal evolution. No other presently available method seems to provide reliable results, in particular under the capture resonances. An improved neutron background estimation technique is proposed, the main improvement regarding the treatment of the neutron sensitivity, taking into account the temporal evolution of the neutron-induced reactions. The technique is complemented by an advanced data analysis procedure based on relativistic kinematics of neutron scattering. The analysis procedure allows for the calculation of the neutron background in capture measurements, without requiring the time-consuming simulations to be adapted to each particular sample. A suggestion is made on how to improve the neutron background estimates if neutron background simulations are not available.

  20. Neutron capture in the r-process

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Mumpower, Matthew; Hix, William Raphael; Jones, K. L.

    2010-01-01

    Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

  1. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  2. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  3. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  4. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  5. Boron neutron capture therapy for cancer

    SciTech Connect

    Barth, R.E.; Soloway, A.H. ); Fairchild, R.G. State Univ. of New York, Stony Brook )

    1990-10-01

    Boron neutron capture therapy (BNCT) bring together two components that when kept separate have only minor effects on normal cells. The first component is a stable isotope of boron (boron 10) that can be concentrated in tumor cells. The second is a beam of low-energy neutrons that produces short-range radiation when absorbed, or captured, by the boron. The combination of these two conditions at the site of a tumor releases intense radiation that can destroy malignant tissues. BNCT is based on the nuclear reaction that occurs when boron 10 is irradiated with an absorbs neutrons. The neutrons that it takes up are called thermal, or slow, neutrons. They are of such low energy that they cause little tissue damage as compared with other forms of radiation such as protons, gamma rays and fast neutrons. When an atom of boron 10 captures a neutron, an unstable isotope, boron 11, forms. The boron 11 instantly fissions, yielding lithium 7 nuclei and energetic alpha particles. These heavy particles, which carry 2.79 million electron volts of energy, are a highly lethal form of radiation. If the treatment proceeds as intended, the destructive effects of the capture reaction would occur primarily in those cancer cells that have accumulated boron 10. Normal cells with low concentrations of boron would be spared.

  6. Chandra Captures Neutron Star Action

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  7. Neutron capture strategy and technique developments for GNEP

    SciTech Connect

    Couture, Aaron Joseph

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  8. Neutron-Resonance Capture Analysis of Materials

    SciTech Connect

    Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.

    1999-11-14

    Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.

  9. Neutron Capture Experiments on Unstable Nuclei

    SciTech Connect

    Schwantes, Jon M.; Sudowe, Ralf; Folden, Charles M., III; Nitsche, Heino; Hoffman, Darleane C.

    2005-01-15

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for

  10. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  11. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  12. Neutron capture by hook or by crook

    NASA Astrophysics Data System (ADS)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  13. Approach to magnetic neutron capture therapy

    SciTech Connect

    Kuznetsov, Anatoly A. . E-mail: spod@sky.chph.ras.ru; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.

  14. Neutron capture measurements for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, Rene

    2005-04-01

    Almost all of the heavy elements are produced via neutron capture reactions in a multitude of stellar production sites. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. Neutron captures measurements on heavy radioactive isotopes provide a unique opportunity to largely improve these physics components, and thereby address important questions of nuclear astrophysics. Such species are branch-points in the otherwise uniquely defined path of subsequent n-captures along the s-process path in the valley of stability. These branch points reveal themselves through unmistakable signatures recovered from pre-solar meteoritic grains that originate in individual element producing stars. Measurements on radioactive isotopes for neutron energies in the keV region represent a stringent challenge for further improvements of experimental techniques. This holds true for the neutron sources, the detection systems and the technology to handle radioactive material. Though the activation method or accelerator mass spectroscopy of the reaction products could be applied in a limited number of cases, Experimental facilities like DANCE at LANL, USA and n-TOF at CERN, Switzerland are addressing the need for such measurements on the basis of the more universal method of detecting the prompt capture gamma-rays, which is required for the application of neutron time-of-flight (TOF) techniques. With a strongly optimized neutron facility at the Rare Isotope Accelerator (RIA) isotopes with half-lives down to tens of days could be investigated, while present facilities require half-lives of a few hundred days. Recent neutron capture experiments on radioactive isotopes with relevance for nuclear astrophysics and possibilities for future experimental setups will be discussed during the talk.

  15. Direct-Semidirect Thermal Neutron Capture Calculations

    SciTech Connect

    Arbanas, G; Dietrich, F S; Kerman, A K

    2005-12-20

    A method for computing direct-semidirect (DSD) neutron radiative capture is presented and applied to thermal neutron capture on {sup 19}F, {sup 27}Al, {sup 28,29.30}Si, {sup 35,37}Cl, {sup 39,41}K, {sup 56}Fe, and {sup 238}U, in support of data evaluation effort at the O.R.N.L. The DSD method includes both direct and semidirect capture; the latter is a core-polarization term in which the giant dipole resonance is formed. We study the effects of a commonly used ''density'' approximation to the EM operator and find it to be unsatisfactory for the nuclei considered here. We also study the magnitude of semidirect capture relative to the pure direct capture. Furthermore, we compare our results with those obtained from another direct capture code (Tedca [17]). We also compare our results with those obtained from analytical expression for external capture derived by Lane and Lynn [3], and its extension to include internal capture [7]. To estimate the effect of nuclear deformation on direct capture, we computed direct thermal capture on {sup 238}U with and without imposition of spherical symmetry. Direct capture for a spherically symmetric {sup 238}U was approximately 6 mb, while a quadrupole deformation of 0.215 on the shape of {sup 238}U lowers this cross section down to approximately 2 mb. This result suggests that effects of nuclear deformation on direct capture warrant a further study. We also find out that contribution to the direct capture on {sup 238}U from the nuclear interior significantly cancels that coming from the exterior region, and hence both contributions must be taken into account. We reproduced a well known discrepancy between the computed and observed branching ratios in {sup 56}Fe(n,{gamma}). This will lead us to revisit the concept of doorway states in the particle-hole model.

  16. Neutron sources for a neutron capture therapy facility

    SciTech Connect

    Lennox, A.J.

    1993-04-01

    Recent advances in the development of boron pharmaceuticals have reopened the possibility of using epithermal neutrons to treat brain tumors containing boron-10. This paper summarizes the approaches being used to generate the neutron sources and identifies specific areas where more research and development are needed.

  17. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  18. Neutron capture cross section of {sup 241}Am

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-15

    The neutron capture cross section of {sup 241}Am for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665{+-}33 b. Our result is in good agreement with other recent measurements. Resonance parameters for E{sub n}<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. {gamma}{sub n} neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553{+-}7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  19. Design of multidirectional neutron beams for boron neutron capture synovectomy

    SciTech Connect

    Gierga, D.P.; Yanch, J.C.; Shefer, R.E.

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  20. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  1. Neutron transmission and capture of 241Am

    NASA Astrophysics Data System (ADS)

    Lampoudis, C.; Kopecky, S.; Plompen, A.; Schillebeeckx, P.; Wynants, R.; Gunsing, F.; Sage, C.; Bouland, O.; Noguere, G.

    2013-03-01

    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.

  2. Review of the fundamentals of the neutron-capture reaction

    SciTech Connect

    Chrien, R. E.

    1982-01-01

    Fifty years of research into the nature of the radiative capture reaction mechanisms is briefly summarized. A variety of such mechanisms is exploited to explain neutron capture over nine decades of neutron energy.

  3. Proton linacs for boron neutron capture therapy

    SciTech Connect

    Lennox, A.J. |

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in {approximately}4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented.

  4. Neutron Capture Experiments on Unstable Nuclei

    SciTech Connect

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  5. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  6. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  7. Non-Statistical Effects in Neutron Capture

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Bredeweg, T. A.; Guber, K. H.; Harvey, J. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, D.; Wouters, J. M.

    2009-01-01

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width (Γn0) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the Γn0 distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,α) measurements had revealed that the α strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 γ-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  8. Non-Statistical Effects in Neutron Capture

    SciTech Connect

    Koehler, Paul Edward; Bredeweg, t a; Guber, Klaus H; Harvey, John A; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, Dorothea; Wouters, J. M.

    2009-01-01

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({Gamma}n{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {Gamma}n{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 ?-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  9. Non-Statistical Effects in Neutron Capture

    SciTech Connect

    Koehler, P. E.; Guber, K. H.; Harvey, J. A.; Wiarda, D.; Bredeweg, T. A.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Reifarth, R.

    2009-01-28

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({gamma}{sub n}{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a {sup 147}Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {gamma}{sub n}{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C{sub 6}D{sub 6}{gamma}-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a {sup 95}Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  10. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %Iγ (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  11. Neutron Capture and Fission Measurements on Actinides at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Rodger; Gostic, Julie; Ullmann, John; Jandel, Marian; Bredeweg, Todd; Couture, Aaron; Lee, Hye Young; Haight, Robert; O'Donnell, John

    2011-10-01

    Neutron capture and fission measurements on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement build at LANL) together with PPAC (avalanche technique based fission tagging detector designed and fabricated at LLNL) were used to measure the prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf. These measured spectra together with the unfolded ones will be presented. The unfolding technique will be described. In addition the 238Pu(n , γ) cross section will be presented, which was measured using DANCE alone and also is the first such measurement in a laboratory environment. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Neutronic effects on tungsten-186 double neutron capture

    NASA Astrophysics Data System (ADS)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  13. Review of Livermore-Led Neutron Capture Studies Using DANCE

    SciTech Connect

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  14. Research needs for neutron capture therapy

    SciTech Connect

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  15. Neutron capture and (n,2n) measurements on 241Am

    SciTech Connect

    Vieira, D; Jandel, M; Bredeweg, T; Bond, E; Clement, R; Couture, A; Haight, R; O'Donnell, J; Reifarth, R; Ullmann, J; Wilhelmy, J; Wouters, J; Tonchev, A; Hutcheson, A; Angell, C; Crowell, A; Fallin, B; Hammond, S; Howell, C; Karowowski, H; Kelley, J; Pedroni, R; Tornow, W; Macri, R; Agvaanluvsan, U; Becker, J; Dashdorj, D; Stoyer, M; Wu, C

    2007-07-18

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.

  16. Assessment of ideal neutron beams for neutron capture therapy.

    PubMed

    Storr, G J

    1992-09-01

    The discrete-ordinates transport computer code DORT has been used to develop a two-dimensional cylindrical phantom model for use as a tool to assess beam design and dose distributions for boron neutron capture therapy. The model uses an S8 approximation for angular fluxes and a P3 Legendre approximation for scattering cross sections. A one-dimensional discrete-ordinates model utilizing the computer code ANISN was used to validate the energy-group structure used in the two-dimensional calculations. In the two-dimensional model the effects of varying basic parameters such as aperture width, neutron source energy, and tissue composition have been studied. Identical results were obtained when comparing narrow beam calculations to fine-mesh higher-order Sn treatments (up to S32), and with P5 cross sections. It is shown that, when the correct assessment volume is used, narrow beams will give little or no advantage for therapy even with an optimum-energy ideal neutron beam.

  17. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  18. Spectromicroscopy in Boron Neutron Capture Therapy Research

    NASA Astrophysics Data System (ADS)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  19. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  20. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  1. Boron thermal/epithermal neutron capture therapy

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the /sup 10/B(n, ..cap alpha..)/sup 7/Li reaction is approx. 10..mu.., or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor.

  2. Neutron capture measurement on 173Lu at LANSCE with DANCE detector

    NASA Astrophysics Data System (ADS)

    Theroine, C.; Ebran, A.; Méot, V.; Roig, O.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2013-06-01

    The (n,γ) cross section on the unstable 173Lu(t1/2 = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  3. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    SciTech Connect

    Theroine, C.; Ebran, A.; Meot, V.; Roig, O.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  4. Neutron induced capture and fission discrimination using calorimetric shape decomposition

    NASA Astrophysics Data System (ADS)

    Carrapiço, C.; Berthoumieux, E.; Dridi, W.; Gonçalves, I. F.; Gunsing, F.; Lampoudis, C.; Vaz, P.; n TOF Collaboration

    2013-03-01

    The neutron capture and fission cross-sections of 233U have been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 keV using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. In order to separate the contributions of neutron capture and neutron induced fission in the TAC, a methodology called Calorimetric Shape Decomposition (CSD) was developed. The CSD methodology is based on the study of the TAC's energy response for all competing reactions, allowing to discriminate between γ s originating from neutron induced fission and those from neutron capture reactions without the need for fission tagging or any additional detection system. In this article, the concept behind the CSD is explained in detail together with the necessary analysis to obtain the TAC's response to neutron capture and neutron induced fission. The discrimination between capture and fission contributions is shown for several neutron energies. A comparison between the 233U neutron capture and fission yield extraction with ENDF/B-VII v1. library data is also provided.

  5. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

  6. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  7. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  8. Advanced Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; Rodriquez, Miguel; Watts, John; Sabra, Mohammed; Kuznetsov, Evgeny

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  9. Cascade γ rays following capture of thermal neutrons on 113Cd

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Krtička, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Moody, W. A.; Mosby, S. M.; Ullmann, J. L.

    2013-11-01

    Intensity distributions of cascade γ-ray transitions following the capture of thermal neutrons by 113Cd have been measured at the Los Alamos Neutron Science Center for various γ-ray multiplicities. The experiment was carried out at the highly segmented 4π γ-ray calorimeter—Detector for Advanced Neutron Capture Experiments (DANCE). A measured two-dimensional spectrum of counts versus γ-ray energy versus γ-ray multiplicity, from the strongest resonance in the 113Cd(n,γ) reaction at 0.178 eV has been compared to predictions from the statistical model. The best representation of the γ-ray cascades following the capture of thermal neutrons on 113Cd is presented. The intensity distribution of these cascades is of great importance for estimates of response to thermal neutrons of devices that use natural or enriched cadmium.

  10. Experimental Neutron Capture Rate Constraint Far from Stability

    NASA Astrophysics Data System (ADS)

    Liddick, S. N.; Spyrou, A.; Crider, B. P.; Naqvi, F.; Larsen, A. C.; Guttormsen, M.; Mumpower, M.; Surman, R.; Perdikakis, G.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Dombos, A. C.; Lewis, R.; Mosby, S.; Nikas, S.; Prokop, C. J.; Renstrom, T.; Rubio, B.; Siem, S.; Quinn, S. J.

    2016-06-01

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on 69Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  11. Experimental Neutron Capture Rate Constraint Far from Stability.

    PubMed

    Liddick, S N; Spyrou, A; Crider, B P; Naqvi, F; Larsen, A C; Guttormsen, M; Mumpower, M; Surman, R; Perdikakis, G; Bleuel, D L; Couture, A; Crespo Campo, L; Dombos, A C; Lewis, R; Mosby, S; Nikas, S; Prokop, C J; Renstrom, T; Rubio, B; Siem, S; Quinn, S J

    2016-06-17

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  12. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  13. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  14. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  15. Experimental Neutron Capture Rate Constraint Far from Stability.

    PubMed

    Liddick, S N; Spyrou, A; Crider, B P; Naqvi, F; Larsen, A C; Guttormsen, M; Mumpower, M; Surman, R; Perdikakis, G; Bleuel, D L; Couture, A; Crespo Campo, L; Dombos, A C; Lewis, R; Mosby, S; Nikas, S; Prokop, C J; Renstrom, T; Rubio, B; Siem, S; Quinn, S J

    2016-06-17

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented. PMID:27367386

  16. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  17. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  18. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  19. Neutron capture therapy research in Australia.

    PubMed

    Allen, B J

    1989-01-01

    Neutron capture therapy research in Australia has continued to grow since the first Australia-Japan workshop in April, 1986. The support base has broadened and the wide range of contributing laboratories includes universities, research institutes, and hospitals. Considerable progress has been made in boron chemistry--an accurate boron assay technique has been developed, boron analogues of chlorpromazine and thiouracil have been synthesised or nearly so, and decaborane conjugation with monoclonal antibodies has been achieved to the required loadings. In vitro cell survival experiments are proceeding in the Moata reactor using human melanoma and mouse cell lines incubated with enriched boronophenylalanine and boron tetraphenyl porphyrins. Electron microscopy examination of radiation damaged morphology shows considerable differences between cell lines. Progress with the nude mouse human melanoma model has been slow because of the lack of a reliable in vivo melanotic melanoma line, and the B16 mouse line is found to be more efficacious. Tailored beam calculations for the 10 MW HIFAR reactor indicate the difficulty of obtaining a suitable therapeutic beam because of the generated gamma dose in the beam filters. A new approach to NCT utilises the enormous cross section of 157Gd and the induced-Auger effect which has been shown to cause double strand breaks in circular DNA.

  20. Lunar neutron capture as a tracer for regolith dynamics

    NASA Technical Reports Server (NTRS)

    Burnett, D. S.; Woolum, D. S.

    1974-01-01

    The Apollo 17 Lunar Neutron Probe Experiment measured both the boron-10 neutron capture rate and the uranium-235 neutron-induced fission rate as a function of depth. Cd absorption gave a measure of the neutron energy spectrum. Comparisons of the results are made with theory, and good agreement is obtained for the magnitudes and depth dependences of the capture rates. While the low-energy neutron spectrum at depth agrees with theory, the spectrum near the peak of the flux profile is harder than predicted. In light of these results, several alternatives for interpreting the magnitude and uniformity of the neutron capture data from lunar surface soil samples are outlined. While none of the alternatives can be unquestionably defended or discarded, a surface layer mixing model is discussed in detail.

  1. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  2. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

    2010-11-04

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  3. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-28

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  4. Neutron Capture Rates and r-PROCESS Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Surman, R. A.; Mumpower, M. R.; McLaughlin, G. C.; Sinclair, R.; Hix, W. R.; Jones, K. L.

    2013-03-01

    Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and β decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A ~ 80 and rare earth peaks.

  5. Neutron capture experiments with 4π DANCE Calorimeter

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Mitchel, G. E.; Walker, C. L.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J.; Vieira, D. J.; Agvaanluvsan, U.; Dashdorj, D.; Tseren, T.; Bečvář, F.; Krtička, M.

    2012-02-01

    In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  6. Sensitivity studies for the weak r process: neutron capture rates

    SciTech Connect

    Surman, R.; Mumpower, M.; Sinclair, R.; Jones, K. L.; Hix, W. R.; McLaughlin, G. C.

    2014-04-15

    Rapid neutron capture nucleosynthesis involves thousands of nuclear species far from stability, whose nuclear properties need to be understood in order to accurately predict nucleosynthetic outcomes. Recently sensitivity studies have provided a deeper understanding of how the r process proceeds and have identified pieces of nuclear data of interest for further experimental or theoretical study. A key result of these studies has been to point out the importance of individual neutron capture rates in setting the final r-process abundance pattern for a ‘main’ (A ∼ 130 peak and above) r process. Here we examine neutron capture in the context of a ‘weak’ r process that forms primarily the A ∼ 80 r-process abundance peak. We identify the astrophysical conditions required to produce this peak region through weak r-processing and point out the neutron capture rates that most strongly influence the final abundance pattern.

  7. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  8. Neutron capture therapy: Years of experimentation---Years of reflection

    SciTech Connect

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

  9. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    NASA Astrophysics Data System (ADS)

    Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Greife, U.; Haight, R. C.; Hatarik, R.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4π BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 μm thick Mylar foil.

  10. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    SciTech Connect

    Alpizar-Vicente, A. M.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4{pi} BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 {mu}m thick Mylar foil.

  11. Investigation of the Statistical Properties of Stable Eu Nuclei using Neutron-Capture Reactions

    SciTech Connect

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, III, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O'Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. The highly efficient DANCE (Detector for Advanced Neutron Capture Experiments) array coupled with the intense neutron beam at Los Alamos Neutron Science Center is used for the experiment. Stable Eu isotopes mass separated and electroplated on Be backings were used. Properties of well-resolved, strong resonances in two Eu nuclei are examined. The parameters for most of these resonances are known. Detailed multiplicity information for each resonance is obtained employing the high granularity of the DANCE array. The radiative decay cascades corresponding to each resonance are obtained in the experiment. The measurements are compared to simulation of these cascades which calculated with various models for the radiative strength function. Comparison between the experimental data and simulation provides an opportunity to investigate the average quantities.

  12. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    1998-09-01

    The radiative neutron capture by neutron-rich nuclei is estimated with an improved description of the electric giant dipole resonance. In addition, 3 major effects affecting the capture rates by exotic neutron-rich nuclei are studied. These concern the existence of a low-energy E1 pygmy resonance, the overestimate of the statistical predictions for resonance-deficient nuclei and the direct capture mechanism. The total (n,γ) reaction rates including these 3 effects are evaluated for 3100 neutron-rich nuclei and used in parametric r-process calculations to analyze their impact on the r-abundance distribution.

  13. An advanced neutron spectrometer for future manned exploration missions

    NASA Astrophysics Data System (ADS)

    Christl, Mark

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with lithium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators.

  14. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  15. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  16. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    SciTech Connect

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  17. Neutron capture and fission in /sup 254g/ Es

    SciTech Connect

    Halperin, J.; Bigelow, J.E.; O'Kelley, G.D.; Oliver, J.H.; Wiggins, J.T.

    1985-07-01

    Integral neutron capture and neutron fission cross sections have been measured for the 276-day /sup 254g/ Es. Thermal cross sections and resonance integrals were evaluated using a cadmium filter technique. Capture cross sections were determined from alpha-particle spectrum measurements following neutron irradiations with cobalt flux monitors. Fission cross sections were measured using fission track detection techniques with STTU monitors. The fission cross-section values compared favorably with an absorption cross-section determination from a burnout experiment of SVTEs-SVUEs. The integral neutron capture and fission cross sections determined for /sup 254g/ Es are: sigma /sub c/ /sup th/ = 28.3 + or - 2.5 and I /sub c/ = 18.2 + or - 1.5 b, and sigma /sub F/ /sup th/ = 1970 + or - 200 and I /sub F/ = 1200 + or - 250 b.

  18. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer. PMID:27461603

  19. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  20. Thermal-neutron capture for A=26-35

    SciTech Connect

    Chunmei, Z.; Firestone, R.B.

    2001-06-01

    The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time themanyexperimental data of the thermal-neutron captures have been measuredand published. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures for nuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

  1. Thermal-neutron capture for A=36-44

    SciTech Connect

    Chunmei, Z.; Firestone, R.B.

    2003-01-01

    The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the manyexperimental data of the thermal-neutron captures have been measured andpublished. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures fornuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

  2. Neutron capture rates on radioactive nuclides - DANCE

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Agvaanluvsan, U.; Alpizar-Vicente, A.; Bredeweg, T. A.; Esch, E.-I.; Greife, U.; Haight, R. C.; Hatarik, R.; Herwig, F.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2006-10-01

    The nucleosynthesis of the elements including their stellar sites is one of the most interesting nuclear physics challenges. Information on reaction rates for neutron induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes can provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements, which is illustrated at the example of the 151Sm(n,γ) reaction.

  3. Data evaluation methods and improvements to the neutron-capture γ-ray spectrum

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Summers, N. C.; Sleaford, B. W.; Revay, Zs.; Krtička, M.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J. E.; Nichols, A.; Szentmiklósi, L.

    2011-06-01

    Improved neutron-capture γ-ray spectra, not only of interest to the nuclear structure and reactions communities, are needed in a variety of applied and non-proliferation programs. This requires an evaluation of the existing experimental capture-γ data. Elemental neutron-capture data taken from direct measurements at the Budapest Reactor have been used to collate the Evaluated Gamma-ray Activation File, a database of capture γ-ray cross sections. These cross sections are then compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. The aim of this procedure is to obtain the total radiative neutron-capture cross section and confidently increase the number of levels and γ rays that can be assigned to a given isotope in the neutron data libraries. To achieve these goals and provide as complete information as possible in the neutron data libraries, it is also necessary to remain current with recent advances in nuclear structure physics and ensure that the latest data in the Evaluated Nuclear Structure Data File has been taken into consideration. This way an optimal level scheme can be derived by comparison with simulations and available experimental data. New information derived from this study can then be used to improve the nuclear structure and reactions databases with more-complete level schemes, and indeed, provide reliable and accurate input to a variety of applications which require this information. Recent results from neutron capture on the stable tungsten isotopes 182,183,184,186W are presented to illustrate the evaluation process.

  4. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    NASA Astrophysics Data System (ADS)

    Couture, A.; Agvaanluvsan, U.; Baker, J. D.; Bayarbadrahk, B.; Becker, J. A.; Bond, E.; Bredeweg, T. A.; Chyzh, A.; Dashdorj, D.; Fowler, M.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2009-03-01

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Los Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-π BaF2 scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.

  5. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    SciTech Connect

    Couture, A.; Bond, E.; Bredeweg, T. A.; Fowler, M.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Agvaanluvsan, U.; Becker, J. A.; Baker, J. D.; Bayarbadrahk, B.; Chyzh, A.; Dashdorj, D.; Reifarth, R.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Los Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.

  6. A New Neutron-Capture Detector for Coincidence Counting

    NASA Astrophysics Data System (ADS)

    Browne, Michael C.; Ensslin, Norbert; Geist, William H.; Ianakiev, Kiril; Mayo, Douglas; Russo, Phyllis A.; Sweet, Martin R.

    2000-04-01

    Quantities of special nuclear material (SNM) are measured by counting coincident neutrons. This technique relies on spontaneous fission, in which more than one neutron is released for most events. Neutron coincidence counting (NCC) uses thermal neutron detectors. A problem with measurements of impure materials is that the neutron count rate, which determines the accidental coincidence rate, can be dominated by uncorrelated neutrons. An elevated rate of accidental coincidences can destroy the detection sensitivity. By reducing the detector’s die-away time (t, the time it takes to detect a neutron), true coincidence events are registered more promptly and the accidental rate reduced proportionally. The t of current counters based on 3He proportional detectors is 50 ms. A new detector is being developed with a shorter t of 5 ms for NCC of impure SNM. It uses alternating layers of a scintillator/6Li powder mixture and ribbons of optical fiber for light transport. Neutrons are thermalized and then detected by capture on 6Li. The reaction products deposit energy in the scintillator. The light is transported by the fibers to photomultiplier tubes. However, the detector is sensitive to both gamma rays and neutrons. Separating the two is essential for successful operation. This paper presents a description and evaluation of the new detector. Pulse shape analysis is discussed for discrimination between gamma rays and neutrons.

  7. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  8. Progress on the europium neutron capture study using DANCE

    NASA Astrophysics Data System (ADS)

    Agvaanluvsan, U.; Becker, J. A.; Macri, R. A.; Parker, W.; Wilk, P.; Wu, C. Y.; Bredeweg, T. A.; Esch, E.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Mitchell, G. E.; Sheets, S.; Bečvář, F.; Krtička, M.

    2007-08-01

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of 151,153Eu targets were measured recently using a 4π γ-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for En = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The γ-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The γ-ray multiplicity distribution is found to be the same for different neutron energies for both 151Eu and 153Eu. The statistical simulation to model the γ-ray decay cascade is summarized.

  9. Neutron Induced Capture and Fission Processes on 238U

    NASA Astrophysics Data System (ADS)

    Oprea, Cristiana; Oprea, Alexandru

    2016-03-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit - Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn) processes.

  10. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  11. Measurement of Neutron Emissions from Nuclear Muon Capture

    NASA Astrophysics Data System (ADS)

    Alexander, Damien; AlCap Collaboration

    2015-10-01

    The AlCap collaboration is studying particle emission after muon capture on Al and Ti nuclei. Proton and neutron emission are an important source of accidental activity in the Mu2e and COMET experiments, which will search for charged lepton flavor violation (CLFV) in neutrino-less muon to electron conversion in the field of an atomic nucleus. A recent experiment was completed at the high intensity piE5 beamline at the Paul Scherrer Institute (PSI) focusing on neutron and gamma emissions from Al. AlCap expects to obtain the bound muon lifetime, the low-energy neutron spectrum, and the neutron emission rates per muon capture. The current state of the analysis will be presented. Funded in part by US DoE.

  12. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  13. An overview of DANCE: a 4II BaF[2] detector for neutron capture measurements at LANSCE.

    SciTech Connect

    Ullmann, J. L.

    2004-01-01

    The Detector for Advanced Neutron Capture experiments (DANCE) is a 162-element, 4{pi} BaF{sub 2} array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as 1 mg. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. Up to now, except for a few long-lived nuclides there are essentially no differential capture measurements on radioactive nuclei. The DANCE array is located at the Lujan Neutron Scattering Center at LANSCE, which is a continuous-spectrum neutron source with useable energies from below thermal to about 100 keV. Data acquisition is done with 320 fast waveform digitizers. The design and initial performance results, including background minimization, will be discussed.

  14. Neutron capture reactions near the N =82 shell-closure

    NASA Astrophysics Data System (ADS)

    Dutta, Saumi; Chakraborty, Dipti; Gangopadhyay, G.; Bhattacharyya, Abhijit

    2016-02-01

    Neutron capture cross sections have been calculated in nuclei near the N =82 neutron shell-closure. These nuclei are of astrophysical interest, participating in the s -process and the p -process. A semimicroscopic optical model has been used with the potential being obtained through folding the target density with the DDM3Y nucleon-nucleon interaction. Theoretical density values have been calculated using the relativistic mean-field approach. The calculated cross sections, as a function of neutron energy, agree reasonably well with experimental measurements. Maxwellian-averaged cross sections, important for astrophysical processes, have been calculated.

  15. Updates for Gadolinium neutron capture measurements at DANCE

    NASA Astrophysics Data System (ADS)

    Dashdorj, Dugersuren; Mitchell, G. E.; Baramsai, B.; Chankova, R.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Wu, C. Y.; Bredeweg, T.; Couture, A.; Haight, R.; Jandel, M.; O'Donnell, J.; Rundberg, R.; Wouters, J.; Ullmann, J.; Vieira, D.; Becvar, F.; Krticka, M.

    2007-10-01

    Neutron capture reactions for several isotopes of Gadolinium have been measured at DANCE array in Los Alamos Neutron Science Center. Progress on the analysis is discussed. The detector response function of DANCE array is presented in connection with the statistical gamma-ray decay cascade simulation. In the region of separated neutron resonances, the statistical gamma-ray decay cascade is simulated using the DICEBOX code. Various models for the photon strength function and level density are used as input. The output of simulations is compared with DANCE data.

  16. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  17. Experience of boron neutron capture therapy in Japan

    NASA Astrophysics Data System (ADS)

    Kanda, Keiji

    1997-02-01

    In Japan the boron neutron capture therapy has been applied to more than 200 patients, mostly brain tumors and some melanomas. For brain tumors, Kyoto University, Kyoto Prefectural University of Medicine, Tsukuba University and National Kagawa Children's Hospital accept patients, and for melanomas, Kobe University and Mishima Institute of Dermatological Research accept patients so far. Recently the heavy water facility of Kyoto University Reactor has been upgraded for epithermal neutron as well as thermal neutron irradiations, and for the patient treatment during the continuous operation of the KUR.

  18. Thermal Neutron Capture Cross Section of 22Ne

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Uberseder, E.; Petrich, D.; Käppeler, F.

    2009-01-01

    The radiative thermal neutron capture cross section of the astrophysically important 22Ne nucleus has been measured at the guided cold neutron beam of the Budapest Research Reactor. High-pressure gas-bottles filled with mixtures of enriched 22Ne and CH4 were used. The cross section was determined by means of the comparator method, and an improved decay-scheme obtained in this work. The new value for the thermal neutron cross section is 52.7±0.7 mb, 18% larger than the accepted value. The influence of the new cross section on the astrophysical reaction rate is under investigation.

  19. A capture-gated fast neutron detection method

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yang, Yi-Gang; Tai, Yang; Zhang, Zhi

    2016-07-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm × 1 cm × 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture γ-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register γ-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66% ± 1.22% has been achieved with a 40.4 cm × 40.4 cm × 20 cm overall detector volume. This detector can measure both neutrons and γ-rays simultaneously. A small detector (20.2 cm × 20.2 cm × 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutron yield of 1841 n/s from 50 cm away within 15 s measurement time. It also demonstrated a very low (<0.06%) false alarm rate for a 3.21×105 Bq 137Cs source. This detector offers a potential single-detector replacement for both neutron and the γ-ray detectors in RPM systems. Supported by National Natural Science Foundation of China (11175098, 11375095)

  20. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    SciTech Connect

    Lederer, C.; Giubrone, G.; Massimi, C.; Žugec, P.; Barbagallo, M.; Colonna, N.; Domingo-Pardo, C.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Tain, J.L.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bečvář, F.; and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  1. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  2. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  3. Thermal Neutron Capture onto the Stable Tungsten Isotopes

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.

    2012-02-01

    Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.

  4. Direct Neutron Capture Calculations with Covariant Density Functional Theory Inputs

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, Michael S.; Arbanas, Goran; Kozub, Ray L.

    2014-09-01

    Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Supported by the U.S. Dept. of Energy, Office of Nuclear Physics.

  5. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  6. Proceedings of the first international symposium on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Brownell, G.L.

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  7. [Liposomal boron delivery system for neutron capture therapy].

    PubMed

    Nakamura, Hiroyuki

    2008-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment based on the nuclear reaction of two essentially nontoxic species, (10)B and thermal neutrons. High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve efficient neutron capture therapy of cancers. This review focuses on the liposomal boron delivery system (BDS) as a recent promising approach that meets these requirements for BNCT. BDS involves two strategies: (1) encapsulation of boron in the aqueous core of liposomes and (2) accumulation of boron in the liposomal bilayer. Various boronated liposomes have been developed and significant boron accumulation into tumor tissue with high tumor/blood boron ratios has been achieved by BDS.

  8. Neutron capture measurements on unstable nuclei at LANSCE

    SciTech Connect

    Ullmann, J. L.; Haight, R. C.; Fowler, M. M.; Miller, G. G.; Rundberg, R. S.; Wilhelmy, J. B.

    1999-06-10

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  9. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  10. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  11. Clinical considerations for neutron capture therapy of brain tumors

    SciTech Connect

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr. )

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the United States in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should now be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam causes gamma rays to be generated when it interacts with tissue, we think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue. I look forward to the remainder of this Workshop, which will detail recent progress in the development of epithermal, as well as thermal, beams and new methods for tracking and measuring the uptake of boron in normal and tumor tissues. 10 references.

  12. Current status of fast-neutron-capture calculations

    SciTech Connect

    Gardner, D.G.

    1982-04-15

    This work is primarily concerned with the calculation of neutron capture cross sections and capture gamma-ray spectra, in the framework of the Hauser-Feshbach statistical model and for neutrons from the resonance region up to several MeV. An argument is made that, for applied purposes such as constructing evaluated cross-section libraries, nonstatistical capture mechanisms may be completely neglected at low energies and adequately approximated at high energies in a simple way. The use of gamma-ray strength functions to obtain radiation widths is emphasized. Using the reaction /sup 89/Y + n as an example, the problems encountered in trying to construct a case that could be run equivalently on two different nuclear reaction codes are illustrated, and the effects produced by certain parameter variations are discussed.

  13. Neutron capture by fissile and fertile actinide targets

    SciTech Connect

    Maslov, Vladimir M.

    2009-01-28

    For fissile actinide targets {sup 233}U, {sup 235}U and {sup 239}Pu the capture cross sections are strongly influenced by the target spin, fission transition states spectroscopy and fission/{gamma}-emission competition of the compound nuclides. The capture cross sections were obtained via a consistent description of fission and elastic/inelastic scattering, (n,{gamma}f) reaction being included.For neutron capture reactions on even-even U, Pu and Cm nuclei the methods, proven in case of {sup 232}Th(n,{gamma}) and {sup 238}U(n,{gamma}) data analysis are used. Calculated {sup 240}Pu(n,{gamma}) and {sup 244}Cm(n,{gamma}) reaction cross sections shapes are much similar to that, observed for the {sup 238}U(n,{gamma}) and {sup 232}Th(n,{gamma}) reactions. Differences are due to fission and neutron emission competition, which depends on the (Z,N)-composition of the compound nucleus.

  14. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  15. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations neutron capture dose enhancement was small in comparison to the (252)Cf fast neutron dose.

  16. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    SciTech Connect

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  17. Boronated antibodies and promazine derivatives for potential neutron capture therapy

    SciTech Connect

    Alam, F.; Soloway, A.H.; Barth, R.F.; Adams, D.M.; Mafune, N.

    1986-01-01

    The theoretical basis for boron neutron capture therapy (BNCT) derives from the irradiation of /sup 10/B with thermal neutrons, resulting in a fission reaction yielding /sup 7/Li and alpha particles. The fission products have short path lengths and high linear energy transfer (LET). Each component of this binary system, thermal neutrons and /sup 10/B, independently are nontumoricidal, but together they can be highly lethal. Success depends on localizing enough of the /sup 10/B (approx.20 ..mu..g/g of tumor) and delivering a requisite fluence of thermal neutrons (approx.10/sup 13/ n/cm/sup 9/) at the site of the tumor. This report describes the boronation of antibodies and the development of boron-containing promazine derivatives to selectively deliver /sup 10/B to tumor cells for BNCT.

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  20. Informing Neutron-Capture Rates through (d,p) Reactions on Neutron-Rich Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Manning, B.; Cizewski, J. A.; Kozub, R. L.; Ahn, S.; Allmond, J. M.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Howard, M. E.; Jones, K. L.; Liang, J. F.; Matos, M.; Nunes, F. M.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Ratkiewicz, A.; Schmitt, K. T.; Shapira, D.; Smith, M. S.; Titus, L.

    2014-03-01

    Level energies and spectroscopic information for neutron-rich nuclei provide important input for r-process nucleosynthesis calculations; specifically, the location and strength of single-neutron l = 1 states when calculating neutron-capture rates. Surman and collaborators have performed sensitivity studies to show that varying neutron-capture rates can significantly alter final r-process abundances. However, there are many nuclei important to the r-process that cannot be studied. Extending studies to more neutron-rich nuclei will help constrain the nuclear shell-model in extrapolating to nuclei even further from stability. The (d,p) reaction has been measured with radioactive ion beams of 126Sn and 128Sn to complete the set of (d,p) studies on even mass tin isotopes from doubly-magic 132 to stable 124Sn. Work supported in part by the U.S. Department of Energy and National Science Foundation.

  1. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  2. Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE

    SciTech Connect

    Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.; Glover, S. E.; Haight, R. C.; Kronenberg, A.; O'Donnell, J. M.; Pitcher, E. J.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wender, S. A.; Wouters, J. M.; Alpizar-Vicente, A.; Greife, U.; Hatarik, R.

    2005-05-24

    Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmuter system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.

  3. Proposed experiment to measure {gamma}-rays from the thermal neutron capture of gadolinium

    SciTech Connect

    Yano, Takatomi; Ou, I.; Izumi, T.; Yamaguchi, R.; Mori, T.; Sakuda, M.

    2012-11-12

    Gadolinium-157 ({sup 157}Gd) has the largest thermal neutron capture cross section among any stable nuclei. The thermal neutron capture yields {gamma}-ray cascade with total energy of about 8 MeV. Because of these characteristics, Gd is applied for the recent neutrino detectors. Here, we propose an experiment to measure the multiplicity and the angular correlation of {gamma}-rays from the Gd neutron capture. With these information, we expect the improved identification of the Gd neutron capture.

  4. Research in Boron Neutron Capture Therapy at MIT LABA

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.; Howard, W.B.; Song, H.; Blackburn, B.; Binello, E.

    1997-02-01

    A 4.1 MeV tandem electrostatic accelerator designed for research into Boron Neutron Capture Therapy (BNCT) has recently been installed in the MIT Laboratory for Accelerator Beam Applications (LABA). This accelerator uses a very high current switch mode high voltage power supply in conjunction with a multi-cusp negative ion source to supply the multimilliampere current required for clinical BNCT applications. A number of individual research projects aimed at evaluating the potential of this accelerator design as a hospital-based neutron source for radiation therapy of both tumors and rheumatoid arthritis are described here. {copyright} {ital 1997 American Institute of Physics.}

  5. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  6. Zn-71 levels populated in neutron-capture-gamma reactions

    NASA Astrophysics Data System (ADS)

    Huchison, Andrew; Harker, Jessica; Walters, William B.; Waite, Mark; Paul, Rick

    2015-04-01

    The level structure of 71 Zn was studied via the capture-gamma reaction on a highly-enriched 70 Zn target at the NIST Center for Neutron Research NG-7 beam line. The neutron separation energy was determined to be 5832.5(5) keV. Low-spin levels populated in this reaction will be presented, compared with data from other measurements, and discussed. This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under Grant No. DE-FG02-94ER40834.

  7. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.

    PubMed

    Harrington, B V

    1989-01-01

    For the boron neutron capture therapy (NCT) of deep-seated metastatic melanoma, an epithermal (up to a few keV energy) neutron beam from a reactor horizontal facility could be useful if the inherent contamination from fast neutrons and gamma rays could be minimised. Calculations for ANSTO's 10 MW research reactor HIFAR have shown that, even though a filter material such as AlF3 attenuates the fast neutron dose, the beam quality improvement is counteracted by a relative increase in the gamma dose because of the gammas arising from neutron captures in the filter material, particularly the aluminium. The aluminium gammas, most of which arise from thermal neutron capture, are hard and cannot be attenuated by lead or bismuth without comparable attenuation of the epithermal neutron flux. Addition of an absorber such as 6Li to the AlF3 filter was investigated as a means of reducing the hard gamma dose, but the improvement in beam quality was small and at considerable cost to dose intensity. Dose characteristics calculations confirmed the superiority of a tangential beam over a radial beam with better results from an unfiltered tangential beam than from an AlF3 filter in a radial beam. This study showed conclusively that assessments of filter assemblies based on the effect of individual components on either the neutron or gamma dose in isolation are inadequate. In assessing any epithermal neutron filter, thermal neutron shield, and gamma shield combination, the total effect of each on the neutron, gamma, and boron-10 dose must be considered.

  8. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  9. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  10. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  11. Preparation of radioactive rare earth targets for neutron capture study

    SciTech Connect

    Miller, G. G.; Rogers, P. S. Z.; Palmer, P. D.; Dry, D. E.; Rundberg, R. S.; Fowler, Malcolm M.; Wilhelmy, J. B.

    2002-01-01

    The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.

  12. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  15. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  16. Modern alchemy: Fred Hoyle and element building by neutron capture

    NASA Astrophysics Data System (ADS)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  17. Two-neutron capture reactions and the r process

    NASA Astrophysics Data System (ADS)

    Bartlett, Amy; Görres, Joachim; Mathews, Grant J.; Otsuki, Kaori; Wiescher, Michael; Frekers, Dieter; Mengoni, Alberto; Tostevin, Jeffrey

    2006-07-01

    Rates for the He4(2n,γ)He6 and He6(α,n)Be9 reactions have been calculated, including both resonant and nonresonant contributions. The sequential two-neutron capture process on He4 has also been reevaluated on the basis of new experimental results. It is shown that a one-step dineutron capture reaction may enhance the sequential two-neutron reaction rate by several orders of magnitude. This opens the possibility that reaction flow through He4(2n,γ)He6(α,n)Be9 may occur in competition with the bottle-neck three-body reactions He4(2α,γ)C12 and the He4(αn,γ)Be9 that initiate the α process and provide seed nuclei for the r process. Here we explore the effect of such dineutron capture on r-process nucleosynthesis. We show that such reactions have little effect on the final abundance and would change only r-process abundances in an extremely neutron-rich low-temperature r process.

  18. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  19. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1990-01-01

    This document briefly describes recent advances in the author's laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies.

  20. Thermal neutron capture cross sections of the potassium isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krtička, M.; Révay, Zs.; Szentmiklosi, L.; Belgya, T.

    2013-02-01

    Precise thermal neutron capture γ-ray cross sections σγ for 39,40,41K were measured on a natural potassium target with the guided neutron beam at the Budapest Reactor. The cross sections were internally standardized using a stoichiometric KCl target with well-known 35Cl(n,γ) γ-ray cross sections [Révay and Molnár, Radiochimica ActaRAACAP0033-823010.1524/ract.91.6.361.20027 91, 361 (2003); Molnár, Révay, and Belgya, Nucl. Instrum. Meth. Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(03)01529-5 213, 32 (2004)]. These data were combined with γ-ray intensities from von Egidy [von Egidy, Daniel, Hungerford, Schmidt, Lieb, Krusche, Kerr, Barreau, Borner, Brissot , J. Phys. G. Nucl. Phys.JPHGBM0305-461610.1088/0305-4616/10/2/013 10, 221 (1984)] and Krusche [Krusche, Lieb, Ziegler, Daniel, von Egidy, Rascher, Barreau, Borner, and Warner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(84)90506-2 417, 231 (1984); Krusche, Winter, Lieb, Hungerford, Schmidt, von Egidy, Scheerer, Kerr, and Borner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(85)90429-4 439, 219 (1985)] to generate nearly complete capture γ-ray level schemes. Total radiative neutron cross sections were deduced from the total γ-ray cross section feeding the ground state, σ0=Σσγ(GS) after correction for unobserved statistical γ-ray feeding from levels near the neutron capture energy. The corrections were performed with Monte Carlo simulations of the potassium thermal neutron capture decay schemes using the computer code dicebox where the simulated populations of low-lying levels are normalized to the measured cross section depopulating those levels. Comparisons of the simulated and experimental level feeding intensities have led to proposed new spins and parities for selected levels in the potassium isotopes where direct reactions are not a significant contribution. We determined the total radiative neutron cross sections σ0(39K)=2.28±0.04 b, σ0(40K)=90±7 b, and σ0(41K)=1.62±0.03 b from the

  1. Advanced Docking System With Magnetic Initial Capture

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  2. Accelerator based epithermal neutron source for neutron capture therapy. Annual report, [October 1990--April 1991

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  3. Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, Michael J.; Barry, Devin P.; Burke, John A.; Drindak, Noel J.; Leinweber, Greg; Ballad, Robert V.; Slovacek, Rudy E.; Danon, Yaron; Block, Robert C.

    2005-05-24

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions.Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen-section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  4. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  5. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  6. Neutron Capture Cross Sections for the Re/Os Clock

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Wisshak, K.; Mengoni, A.; Cennini, P.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2005-05-24

    The radioactive decay of 187Re {yields} 187Os (t1/2 = 43 Gyr) is suited for dating the onset of heavy-element nucleosynthesis. The radiogenic contribution to the 187Os abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well-established {sigma}N systematics using the neighboring s-only isotope 186Os, provided the neutron-capture cross sections of both isotopes are known with sufficient accuracy. We report on a new set of experiments performed with a C6D6 detector array at the n{sub T}OF neutron spallation facility of CERN. The capture cross sections of 186Os, 187Os, and 188Os have been measured in the neutron-energy range between 1 eV and 1 MeV, and Maxwellian-averaged cross sections were deduced for the relevant thermal energies from kT=5 keV to 100 keV.

  7. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect

    Wang, Zhonglu

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured

  8. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    NASA Astrophysics Data System (ADS)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  9. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  10. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  11. Fission reactor neutron sources for neutron capture therapy--a critical review.

    PubMed

    Harling, Otto K; Riley, Kent J

    2003-01-01

    The status of fission reactor-based neutron beams for neutron capture therapy (NCT) is reviewed critically. Epithermal neutron beams, which are favored for treatment of deep-seated tumors, have been constructed or are under construction at a number of reactors worldwide. Some of the most recently constructed epithermal neutron beams approach the theoretical optimum for beam purity. Of these higher quality beams, at least one is suitable for use in high through-put routine therapy. It is concluded that reactor-based epithermal neutron beams with near optimum characteristics are currently available and more can be constructed at existing reactors. Suitable reactors include relatively low power reactors using the core directly as a source of neutrons or a fission converter if core neutrons are difficult to access. Thermal neutron beams for NCT studies with small animals or for shallow tumor treatments, with near optimum properties have been available at reactors for many years. Additional high quality thermal beams can also be constructed at existing reactors or at new, small reactors. Furthermore, it should be possible to design and construct new low power reactors specifically for NCT, which meet all requirements for routine therapy and which are based on proven and highly safe reactor technology.

  12. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  13. Advanced Neutron Source: The users' perspective

    SciTech Connect

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper.

  14. Production of Molybdenum-99 using Neutron Capture Methods

    SciTech Connect

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  15. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  16. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  17. Real-time dosimetry for boron-neutron capture therapy

    SciTech Connect

    Bliss, M.; Craig, R.A.; Reeder, P.L.; Sunberg, D.S.

    1994-09-01

    Epithermal/thermal boron neutron-capture therapy (BNCT) is promising treatment method for malignant tumors. Because the doses and dose rates for medical therapeutic radiation are very close to the normal tissue tolerance, small errors in radiation delivery can result in harmful overdoses. A substantial need exists for a device that will monitor, in real time, the radiation dose being delivered to a patient. Pacific Northwest Laboratory (PNL) has developed a scintillating glass optical fiber that is sensitive to thermal neutrons. The small size of the fibers offers the possibility of in vivo dose monitoring at several points within the radiation field. The count rate of such detectors can approach 10 MHz because the lifetime of the cerium activator is fast. Fluxes typical of those in BNCT (i.e., 10{sup 9} n/cm{sup 2}/sec) may be measured because of this potentially high count rate and the small diameter of the fiber.

  18. The heavy element yields of neutron capture nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1982-01-01

    Consideration of the contribution made to the abundances of the heavy element isotopes by the S- and R-processes of nucleosynthesis has led to the determination that the previous assumption concerning the exclusive alignment of isobars to one or the other of these processes is probably in error. If the relatively small odd and even mass number abundance fluctuations characterizing R-process abundances are always the case, as assumed by this study, S-process contributions to the abundances of R-process isobars are substantial, consistent with transient flashing episodes in the S-process neutron production processes. A smooth and monotonically-decreasing curve of the abundance of the S-process yields times the neutron capture cross-section versus mass number is therefore the primary tool for the separation of the abundances due to the two processes.

  19. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  20. Large animal normal tissue tolerance with boron neutron capture

    SciTech Connect

    Gavin, P.R.; Swartz, C.D. ); Kraft, S.L. ); Briebenow, M.L. ); DeHaan, C.E.

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA[sub 2]B[sub 12]H[sub 11]SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 [times] 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs.

  1. Observations of neutron-capture elements in the first stars

    NASA Astrophysics Data System (ADS)

    Beers, Timothy

    2014-09-01

    A considerable number of observational constraints on the nature of neutron-capture element production in the early Universe have been assembled over the past decade. For example, the neutron-capture element Sr has been detected in one of the lowest metallicity stars known, HE 1327-2326, with [Fe/H] = -5.7. While only upper limits on Sr and Ba are available for the handful of other stars known with [Fe/H] <-4.5, the presence of Sr in HE 1327-2326 indicates that at least one channel exists for the production of elements beyond the iron peak in the most metal-poor stars. Dedicated searches for highly r-process-enhanced stars (r-II stars; [r-element/Fe] > +1.0) have revealed a total of some 18 such objects, roughly one-third of which exhibit the so-called ``actinide boost'' phenomenon, with Th (and sometimes U) observed at levels that are significantly higher than expected for radioactive species that have existed for >12 Gyrs. The r-II stars occupy a relatively narrow range in metallicity, -3.3 <[Fe/H] <-2.8, which may be related to their astrophysical origin. Dedicated radial-velocity monitoring of a subset of the r-II stars has shown no preference for such stars to form as binary systems, indicating that the enhancement of their r-process elements most likely occurred due to pollution of their natal clouds. In order to better clarify the nature of the astrophysical site(s) of early neutron-capture production, and its relationship (if any) to the characteristic light-element pattern (e.g., of CNO) that is found for >40% of all stars with [Fe/H] <-3.5, new dedicated surveys are now being undertaken, which will be summarized in this talk.

  2. Improved Neutron Capture Gamma-Ray Data and Evaluation

    NASA Astrophysics Data System (ADS)

    Sleaford, B.; Basunia, Shamsuzzoha; Becvar, F.; Belgya, T.; Bernstein, L.; Choi, H.; Escher, J.; Firestone, R.; Genreith, C.; Gunsing, F.; Hurst, A.; Krticka, M.; Revay, Z.; Rossbach, M.; Summers, N.; Szentmiklosi, L.

    2014-09-01

    The neutron-capture reaction is of fundamental use in identifying and analyzing the gamma-ray spectrum from an unknown object as it gives a fingerprint of which isotopes are present. Many isotopes have capture gamma lines from 5-10 MeV potentially making them easier to detect against background lines. There are data gaps in the Evaluated Nuclear Data File (ENDF) libraries used by modeling codes (the actinides have no lines for example) and we are filling these with the Evaluated Gamma-ray Activation File (EGAF), using an IAEA atlas of reactor measured lines and cross sections for over 260 isotopes. For medium to heavy nuclei, the unresolved part of the gamma cascades is not measured and are modeled using the statistical nuclear structure code Dicebox [1,2]. ENDF libraries require cross sections for neutron energies up to 20 MeV and we plan to continue this approach through the resolved resonance region. The neutron-capture reaction is of fundamental use in identifying and analyzing the gamma-ray spectrum from an unknown object as it gives a fingerprint of which isotopes are present. Many isotopes have capture gamma lines from 5-10 MeV potentially making them easier to detect against background lines. There are data gaps in the Evaluated Nuclear Data File (ENDF) libraries used by modeling codes (the actinides have no lines for example) and we are filling these with the Evaluated Gamma-ray Activation File (EGAF), using an IAEA atlas of reactor measured lines and cross sections for over 260 isotopes. For medium to heavy nuclei, the unresolved part of the gamma cascades is not measured and are modeled using the statistical nuclear structure code Dicebox [1,2]. ENDF libraries require cross sections for neutron energies up to 20 MeV and we plan to continue this approach through the resolved resonance region. This work is performed in part under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344.

  3. Is (d,p{gamma}) a surrogate for neutron capture?

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Lesher, S. R.; Gibelin, J. D.; Phair, L. W.; Swan, T.

    2008-04-17

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured and compared with the neutron capture cross sections measured by Wisshak et al. The (d,p{gamma}) ratios were measured using an 18.5 MeV deuteron beam from the 88-Inch Cyclotron at LBNL. Preliminary results comparing the surrogate ratios with the known (n,{gamma}) cross sections are discussed.

  4. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  5. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  6. Improved monitoring system of neutron flux during boron-neutron capture therapy

    SciTech Connect

    Harasawa, S.; Nakamoto, A.; Hayakawa, Y.; Egawa, J.

    1981-10-01

    Continuous and simultaneous monitoring of neutron flux in the course of a boron-neutron capture operation on a brain tumor has been achieved using a new monitoring system. A silicon surface barrier diode mounted with /sup 6/LiF instead of the previously reported borax is used to sense neutrons. The pulse heights of /sup 3/H and ..cap alpha.. particles from /sup 6/Li(n, ..cap alpha..)/sup 2/H reaction are sufficiently high and well separated from noises due to ..gamma.. rays. The effect of pulse-height reduction due to the radiation damage of the diode thus becomes smaller, permitting continuous monitoring. The relative error of the monitoring is within 2% over 5 hr for a neutron-flux density of 2 x 10/sup 9/ n/cm/sup 2/ sec.

  7. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  8. Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-01-04

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  9. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  10. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  11. Thermal neutron capture cross sections and neutron separation energies for 23Na(n,γ)

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.; Belgya, T.

    2014-01-01

    Prompt thermal neutron capture γ-ray cross sections σγ were measured for the 23Na(n,γ) reaction with guided cold neutron beams at the Budapest Reactor. The 24Na γ-ray cross sections were internally standardized with a stoichiometric NaCl target by using standard 35Cl(n,γ)36Cl γ-ray cross sections. Transitions were assigned to levels in 24Na based primarily upon the known nuclear structure information from the literature, producing a nearly complete neutron capture decay scheme. The total radiative thermal neutron cross section σ0 was determined from the sum of prompt γ-ray cross section populating the ground state as 0.540 (3) b, and from the activation γ-ray cross sections for the decay of 24Na as 0.542 (3) b. The isomer cross section σ0 (23Nam, t1/2=20.20ms)=0.501(3) b and the 24Na neutron separation energy Sn=6959.352(18) keV were also determined in these experiments. New level spins and parities were proposed on the basis of new transition assignments and the systematics of reduced transition probabilities for the primary γ rays.

  12. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.

    PubMed

    Nigg, D W; Wemple, C A; Risler, R; Hartwell, J K; Harker, Y D; Laramore, G E

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  13. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy

    SciTech Connect

    Nigg, David W.; Wemple, Charles A.; Risler, Ruedi; Hartwell, John K.; Harker, Yale D.; Laramore, George E.

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  14. Boron neutron capture therapy for malignant melanoma: An experimental approach

    SciTech Connect

    Larsson, B.S.; Larsson, B.; Roberto, A. )

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  15. Neutron capture and stellar synthesis of heavy elements.

    PubMed

    Gibbons, J H; Macklin, R L

    1967-05-26

    The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements. PMID:17774043

  16. Carborane derivative development for boron neutron capture therapy. Final report

    SciTech Connect

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  17. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  18. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  19. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  20. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    SciTech Connect

    Nigg, David Waler

    2003-03-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use.

  1. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  2. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  3. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  4. Borehole parametric study for neutron induced capture gamma-ray spectrometry using the MCNP code.

    PubMed

    Shahriari, M; Sohrabpour, M

    2000-01-01

    The MCNP Monte Carlo code has been used to simulate neutron transport from an Am-Be source into a granite formation surrounding a borehole. The effects of the moisture and the neutron poison on the thermal neutron flux distribution and the capture by the absorbing elements has been calculated. Thermal and nonthermal captures for certain absorbers having resonance structures in the epithermal and fast energy regions such as W and Si were performed. It is shown that for those absorbers having large resonances in the epithermal regions when they are present in dry formation or when accompanied by neutron poisons the resonance captures may be significant compared to the thermal captures.

  5. Improved Neutron-Capture Element Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sterling, N. C.; Dinerstein, H. L.; Hwang, S.; Redfield, S.; Aguilar, A.; Witthoeft, M. C.; Esteves, D.; Kilcoyne, A. L. D.; Bautista, M.; Phaneuf, R.; Bilodeau, R. C.; Ballance, C. P.; McLaughlin, B.; Norrington, P. H.

    2009-09-01

    Spectroscopy of planetary nebulae (PNe) provides the means to investigate s-process enrichments of neutron(n)-capture elements that cannot be detected in Asymptotic Giant Branch (AGB) stars. However, accurate abundance determinations of these elements present a challenge. Corrections for unobserved ions can be large and uncertain, since in many PNe only one ion of a given n-capture element has been detected. Furthermore, the atomic data governing the ionization balance of these species are not well-determined, inhibiting the derivation of accurate ionization corrections. We present initial results of a program that addresses these challenges. Deep high-resolution optical spectroscopy of ~20 PNe has been performed to detect emission lines from trans-iron species including Se, Br, Kr, Rb and Xe. The optical spectral region provides access to multiple ions of these elements, which reduces the magnitude and importance of uncertainties in the ionization corrections. In addition, experimental and theoretical efforts are providing determinations of the photoionization cross sections and recombination rate coefficients of Se, Kr and Xe ions. These new atomic data will make it possible to derive robust ionization corrections for these elements. Together, our observational and atomic data results will enable n-capture element abundances to be determined with unprecedented accuracy in ionized nebulae.

  6. Neutron single particle structure in 131Sn and direct neutron capture cross sections.

    PubMed

    Kozub, R L; Arbanas, G; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Hatarik, R; Hix, W R; Jones, K L; Krolas, W; Liang, J F; Ma, Z; Matei, C; Moazen, B H; Nesaraja, C D; Pain, S D; Shapira, D; Shriner, J F; Smith, M S; Swan, T P

    2012-10-26

    Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates. PMID:23215181

  7. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  8. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  9. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  10. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.

  11. Astrophysical quests for neutron capture data of unstable nuclei

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    2016-11-01

    The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and to the s process, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies on the extremely short-lived neutron-rich nuclei constituting the ( n, γ) network of the r process are out of reach. On the contrary, the situation for the s -process is far advanced, as the reaction path of the s process from 12C to the Pb/Bi region is located within the valley of stability. Accordingly, a comprehensive database of experimental ( n, γ) cross sections has been established. While for many stable isotopes the necessary accuracy is still to be reached, reliable cross sections for the involved unstable isotopes are almost completely missing. Because of the intrinsic γ background of radioactive samples, successful time-of-flight measurements are depending on intense pulsed neutron sources. Such data are fundamental for our understanding of branchings in the s -process reaction path, which carry important model-independent information on neutron flux and temperature in the deep stellar interior.

  12. Scissors mode of Gd nuclei studied from resonance neutron capture

    NASA Astrophysics Data System (ADS)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvár, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Heil, M.; Jandel, M.; Käppeler, F.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-10-01

    Spectra of γ rays following the neutron capture at isolated resonances of stable Gd nuclei weremeasured. The objectives were to get new information on photon strength of 153,155-159Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength ΣB(M1)↑, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum ΣB(M1)↑ increases with A and for 157,159Gd it is significantly higher compared to 156,158Gd.

  13. PGNAA of human arthritic synovium for boron neutron capture synovectomy

    SciTech Connect

    Binello, E.; Yanch, J.C.; Shortkroff, S.

    1997-12-01

    Boron neutron capture synovectomy (BNCS), is a proposed new therapy modality for the treatment of rheumatoid arthritis, an autoimmune disease afflicting the joints. The synovium, which is the membrane lining the joint, becomes inflamed and represents the target tissue for therapy. When a joint is unresponsive to drug treatment, physical removal of the synovium, termed synovectomy, becomes necessary. Existing options include surgery and radiation synovectomy. BNCS has advantages over these options in that it is noninvasive and does not require the administration of radioactive substances. Previous studies have shown that the uptake of {sup 10}B by human arthritic synovium ex vivo is high, ranging from 194 to 545 ppm with an unenriched boron compound. While tissue samples remain viable up to 1 week, ex vivo conditions do not accurately reflect those in vivo. This paper presents results from experiments assessing the washout of boron from the tissue and examines the implications for in vivo studies.

  14. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  15. Uncertainties in Hauser-Feshbach Neutron Capture Calculations for Astrophysics

    SciTech Connect

    Bertolli, M.G. Kawano, T.; Little, H.

    2014-06-15

    The calculation of neutron capture cross sections in a statistical Hauser-Feshbach method has proved successful in numerous astrophysical applications. Of increasing interest is the uncertainty associated with the calculated Maxwellian averaged cross sections (MACS). Aspects of a statistical model that introduce a large amount of uncertainty are the level density model, γ-ray strength function parameter, and the placement of E{sub low} – the cut-off energy below which the Hauser-Feshbach method is not applicable. Utilizing the Los Alamos statistical model code CoH3 we investigate the appropriate treatment of these sources of uncertainty via systematics of nuclei in a local region for which experimental or evaluated data is available. In order to show the impact of uncertainty analysis on nuclear data for astrophysical applications, these new uncertainties will be propagated through the nucleosynthesis code NuGrid.

  16. Continuum quasiparticle random-phase approximation for astrophysical direct neutron capture reactions on neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Matsuo, Masayuki

    2015-03-01

    I formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random-phase approximation (QRPA). A focus is put on very-neutron-rich nuclei and low-energy neutron kinetic energy in the range from 1 keV to several MeV, which is relevant to the rapid neutron capture process of nucleosynthesis. I begin with the photoabsorption cross section and the E 1 strength function. Next, in order to apply the reciprocity theorem, I decompose the cross section into partial cross sections corresponding to different channels of one- and two-neutron emission decays of photo-excited states. A numerical example is shown for the photo-absorption of 142Sn and the neutron capture of 141Sn .

  17. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L. |; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  18. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  19. Gadolinium as an element for neutron capture therapy

    SciTech Connect

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-12-31

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  20. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    PubMed

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  1. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  2. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    SciTech Connect

    Broekman, J. D.; Nigg, D. W.; Hawthorne, M. F.

    2013-07-01

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  3. Investigation of the tungsten isotopes via thermal neutron capture

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Révay, Zs.; Szentmiklósi, L.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.

    2014-01-01

    Total radiative thermal neutron-capture γ-ray cross sections for the 182,183,184,186W isotopes were measured using guided neutron beams from the Budapest Research Reactor to induce prompt and delayed γ rays from natural and isotopically-enriched tungsten targets. These cross sections were determined from the sum of measured γ-ray cross sections feeding the ground state from low-lying levels below a cutoff energy, Ecrit, where the level scheme is completely known, and continuum γ rays from levels above Ecrit, calculated using the Monte Carlo statistical-decay code dicebox. The new cross sections determined in this work for the tungsten nuclides are σ0(182W)=20.5(14) b and σ11/2+(183Wm,5.2s )=0.177(18) b; σ0(183W)=9.37(38) b and σ5-(184Wm,8.33μs )=0.0247(55) b; σ0(184W)=1.43(10) b and σ11/2+(185Wm,1.67min)=0.0062(16) b; and, σ0(186W)=33.33(62) b and σ9/2+(187Wm,1.38μs)=0.400(16) b. These results are consistent with earlier measurements in the literature. The 186W cross section was also independently confirmed from an activation measurement, following the decay of 187W, yielding values for σ0(186W) that are consistent with our prompt γ-ray measurement. The cross-section measurements were found to be insensitive to choice of level density or photon strength model and only weakly dependent on Ecrit. Total radiative-capture widths calculated with dicebox showed much greater model dependence; however, the recommended values could be reproduced with selected model choices. The decay schemes for all tungsten isotopes were improved in these analyses. We were also able to determine new neutron-separation energies from our primary γ-ray measurements for the respective (n ,γ) compounds: 183W [Sn=6190.88(6) keV]; 184W [Sn=7411.11(13) keV]; 185W [Sn=5753.74(5) keV]; and, 187W [Sn=5466.62(7) keV].

  4. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

    2007-02-06

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental

  5. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2011-10-01

    The neutron capture process is considered as an alternative method for production of superheavy (SH) nuclei. Strong neutron fluxes might be provided by nuclear reactors and nuclear explosions in the laboratory frame and by supernova explosions in nature. All these cases are discussed in the paper. There are two gaps of short-lived nuclei (one is the well-known fermium gap and the other one is located in the region of Z=106-108 and N˜170) which impede the formation of SH nuclei by rather weak neutron fluxes realized at available nuclear reactors. We find that in the course of multiple (rather “soft”) nuclear explosions these gaps may be easily bypassed, and thus, a measurable amount of the neutron-rich long-living SH nuclei located at the island of stability may be synthesized. Existing pulsed reactors do not allow one to bypass these gaps. We formulate requirements for the pulsed reactors of the next generation that could be used for production of long-living SH nuclei. Natural formation of SH nuclei (in supernova explosions) is also discussed. The yield of SH nuclei relative to lead is estimated to be about 10-12, which is not beyond the experimental sensitivity for a search of SH elements in cosmic rays.

  6. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  7. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  8. Muon capture on the deuteron and the neutron-neutron scattering length

    NASA Astrophysics Data System (ADS)

    Marcucci, L. E.; Machleidt, R.

    2014-11-01

    Background: We consider the muon capture reaction μ-+2H→νμ+n +n , which presents a "clean" two-neutron (n n ) system in the final state. We study here its capture rate in the doublet hyperfine initial state (ΓD). The total capture rate for the muon capture μ-+3He→νμ+3H (Γ0) is also analyzed, although, in this case, the n n system is not so clean anymore. Purpose: We investigate whether ΓD (and Γ0) could be sensitive to the n n S -wave scattering length (an n), and we check on the possibility to extract an n from an accurate measurement of ΓD. Method: The muon capture reactions are studied with nuclear potentials and charge-changing weak currents, derived within chiral effective field theory. The next-to-next-to-next-to-leading-order chiral potential with cutoff parameter Λ =500 MeV is used, but the low-energy constant (LEC) determining an n is varied so as to obtain an n=-18.95 ,-16.0 ,-22.0 , and +18.22 fm. The first value is the present empirical one, while the last one is chosen such as to lead to a di-neutron bound system with a binding energy of 139 keV. The LEC's cD and cE, present in the three-nucleon potential and axial-vector current (cD), are constrained to reproduce the A =3 binding energies and the triton Gamow-Teller matrix element. Results: The capture rate ΓD is found to be 399 (3 ) s-1 for an n=-18.95 and -16.0 fm; and 400 (3 ) s-1 for an n=-22.0 fm. However, in the case of an n=+18.22 fm, the result of 275 (3 ) s-1 [ 135 (3 ) s-1 ] is obtained, when the di-neutron system in the final state is unbound (bound). The total capture rate Γ0 for muon capture on 3He is found to be 1494(15), 1491(16), 1488(18), and 1475(16) s-1 for an n=-18.95 ,-16.0 ,-22.0 , and +18.22 fm, respectively. All the theoretical uncertainties are due to the fitting procedure and radiative corrections. Conclusions: Our results seem to exclude the possibility of constraining a negative an n with an uncertainty of less than ˜±3 fm through an accurate

  9. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  10. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  11. Thermal Neutron Capture Cross Sections of 54,56,57Fe

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Szentmiklósi, L.; Gunsing, F.; Firestone, R. B.; Krticka, M.

    2013-03-01

    Radiative neutron capture has been measured on enriched 54,56,57Fe samples. Total thermal neutron capture cross sections were determined from the observed partial γ-ray cross sections. All of the total cross sections were found to be smaller than the recent evaluation, probably due to many weak unobserved contributions. The decay scheme of 55Fe from the capture reaction was substantially enlarged.

  12. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  13. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  14. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  15. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.

    PubMed

    Rogus, R D; Harling, O K; Yanch, J C

    1994-10-01

    During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10(n, alpha)Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique, the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

  16. Gamma spectrum following neutron capture in {sup 167}Er

    SciTech Connect

    Visser, D.; Khoo, T.L.; Lister, C.J.

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  17. Neutron Capture and Fission Measurements on Actinides at Dance

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Ullmann, J. L.; Bredeweg, T. A.; Jandel, M.; Couture, A. J.; O'Donnell, J. M.; Haight, R. C.; Lee, H. Y.

    2013-03-01

    The prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf have been measured using a highly granular 4π γ-ray calorimeter. Corrections were made for both energy and multiplicity distributions according to the detector response, which is simulated numerically using a model validated with the γ-ray calibration sources. A comparison of the total γray energy distribution was made between the measurement and a simulation by random sampling of the corrected γ-ray energy and multiplicity distributions through the detector response. A reasonable agreement is achieved between the measurement and simulation, indicating weak correlations between γ-ray energy and multiplicity. Moreover, the increasing agreement with increasing multiplicity manifests the stochastic aspect of the prompt γ decay in spontaneous fission. This calorimeter was designed for the study of neutron capture reactions and an example is given, where the238Pu(n, γ) measurement was carried out in the laboratory environment for the first time.

  18. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  19. Comparison of statistical model calculations for stable isotope neutron capture

    NASA Astrophysics Data System (ADS)

    Beard, M.; Uberseder, E.; Crowter, R.; Wiescher, M.

    2014-09-01

    It is a well-observed result that different nuclear input models sensitively affect Hauser-Feshbach (HF) cross-section calculations. Less well-known, however, are the effects on calculations originating from nonmodel aspects, such as experimental data truncation and transmission function energy binning, as well as code-dependent aspects, such as the definition of level-density matching energy and the inclusion of shell correction terms in the level-density parameter. To investigate these aspects, Maxwellian-averaged neutron capture cross sections (MACS) at 30 keV have been calculated using the well-established statistical Hauser-Feshbach model codes talys and non-smoker for approximately 340 nuclei. For the same nuclei, MACS predictions have also been obtained using two new HF codes, cigar and sapphire. Details of these two codes, which have been developed to contain an overlapping set of identically implemented nuclear physics input models, are presented. It is generally accepted that HF calculations are valid to within a factor of 3. It was found that this factor is dependent on both model and nonmodel details, such as the coarseness of the transmission function energy binning and data truncation, as well as variances in details regarding the implementation of level-density parameter, backshift, matching energy, and giant dipole strength function parameters.

  20. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  1. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  2. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  3. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1988-01-01

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  4. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.; Reifarth, R.; Rundberg, R. S.; Bredeweg, T. A.; Fowler, Malcolm M.; Miller, G. G.; Heil, M.; Käppeler, F.; Chamberlin, E. P.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  5. Neutron capture autoradiographic determination of 10B distributions and concentrations in biological samples for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Yanagie, Hironobu; Ogura, Koichi; Matsumoto, Toshio; Eriguchi, Masazumi; Kobayashi, Hisao

    1999-11-01

    It is necessary for effective boron neutron capture therapy (BNCT) to accumulate 10B atoms in the tumor cells. We prepared a cationic liposome entrapped 10B compound for the delivery system and examined the delivery capacity of 10B atoms to pancreatic cancer cell, AsPC-1, in vivo. It is required to achieve an accurate measurement of 10B distributions and concentrations in biological samples with a sensitivity in the ppm range for BNCT. We applied CR-39 (polyallyldiglycol carbonate) plastic track detectors to α-autoradiographic measurements of the 10B biodistribution in sliced whole-body samples of mice. To selectively desensitize undesirable proton tracks, we applied PEW (KOH+C 2H 5OH+H 2O) solution to the etching of CR-39 detector. The subsequent use of an alpha-track radiographic image analysis system enabled a discrimination between alpha tracks and recoiled proton tracks by the track size selection method. This enabled us to estimate quantitatively the distributions of 10B concentrations within the tissue sections by comparing with suitable standards.

  6. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  7. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  8. New compounds for neutron capture therapy (NCT) and their significance

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is approx. 10 ..mu..m, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed. (ERB)

  9. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  10. Exploration of direct neutron capture with covariant density functional theory inputs

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, M. S.; Arbanas, G.; Kozub, R. L.

    2015-04-01

    Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculated direct capture cross sections using nuclear structure information obtained from a covariant density functional theory as input for the fresco coupled reaction channels code. We investigated the impact of pairing, spectroscopic factors, and optical potentials on our results to determine a robust method to calculate cross sections of direct neutron capture on exotic nuclei. Our predictions agree reasonably well with experimental cross section data for the closed shell nuclei 16O and 48Ca, and for the exotic nucleus 36S . We then used this approach to calculate the direct neutron capture cross section on the doubly magic unstable nucleus 132Sn which is of interest for the astrophysical r-process.

  11. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    DOEpatents

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  12. Boron containing compounds and their preparation and use in neutron capture therapy

    DOEpatents

    Gabel, D.

    1992-09-01

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  13. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound.

    PubMed

    Mishima, Y; Ichihashi, M; Tsuji, M; Hatta, S; Ueda, M; Honda, C; Suzuki, T

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  14. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Tsuji, M.; Hatta, S.; Ueda, M.; Honda, C.; Suzuki, T.

    1989-05-01

    As pigment cells undergo melanoma genesis, accentuated melanogenesis concurrently occurs in principle. Subsequent to the understanding of intrinsic factors controlling both processes, we found our selective melanoma neutron capture therapy (NCT) using 10B-dopa (melanin substrate) analogue, 10B1-p-boronophenylalanine (10B1-BPA), followed by 10B(n, alpha)7Li reaction, induced by essentially harmless thermal neutrons, which releases energy of 2.33 MeV to 14 mu, the diameter of melanoma cells. In vitro/in vivo radiobiological analysis revealed the highly enhanced melanoma killing effect of 10B1-BPA. Chemical and prompt gamma ray spectrometry assays of 10B accumulated within melanoma cells after 10B1-BPA administration in vitro and in vivo show high affinity, e.g., 10B melanoma/blood ratio of 11.5. After successfully eradicating melanoma transplanted into hamsters with NCT, we advanced to preclinical studies using spontaneously occurring melanoma in Duroc pig skin. We cured three melanoma cases, 4.6 to 12 cm in diameter, by single neutron capture treatment. Complete disappearance of melanoma was obtained without substantial side effects. Acute and subacute toxicity as well as pharmacodynamics of 10B1-BPA have been studied in relation to therapeutic dosage requirements. Clinical radiation dosimetry using human phantom has been carried out. Further preclinical studies using human melanoma transplanted into nude mouse have been a useful model for obtaining optimal results for each melanoma type. We recently treated the first human melanoma patient with our NCT, using essentially the method for Duroc pig melanoma, and obtained similar regression time course leading to cure.

  15. Gamma-ray spectra from neutron capture on /sup 87/Sr

    SciTech Connect

    Sullivan, R.E.; Becker, J.A.; Stelts, M.L.

    1981-07-01

    The gamma-ray spectrum following neutron capture on /sup 87/Sr was measured at 3 neutron energies: E/sub n/ = thermal, 2 keV, and 24 keV. Gamma rays were detected in a three-crystal Ge(Li)-NaI-NaI pair spectrometer. Gamma-ray intensities deduced from these spectra by spectral unfolding are presented.

  16. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    SciTech Connect

    Bernhard Lauss; J.D. Bowman; R. Carlini; T.E. Chupp; W. Chen; S. Corvig; M. Dabaghyan; D. Desai; S.J. Freeman; T.R. Gentile; M.T. Gericke; R.C. Gillis; G.L. Greene; F.W. Hersman; T. Ino; T. Ito; G.L. Jones; M. Kandes; M. Leuschner; B. Lozowski; R. Mahurin; M. Mason; Y. Masuda; J. Mei; G.S. Mitchell; S. Muto; H. Nann; S.A. Page; S.I. Penttila; W.D. Ramsay; S. Santra; P.-N. Seo; E.I. Sharapov; T.B. Smith; W.M. Snow; W.S. Wilburn; V. Yuan; H. Zhu

    2005-10-24

    The NPD{gamma} experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the {gamma} emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ({pi} NN) coupling constant (line integral){sub {pi}}{sup l}.

  17. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  18. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  19. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Riley, K. J.; Binns, P. J.; Harling, O. K.

    2004-08-01

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  20. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2004-08-21

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  1. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Kotiluoto, Petri; Auterinen, Iiro; Savolainen, Sauli; Kouri, Mauri; Joensuu, Heikki

    2007-10-01

    Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria and adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.

  2. THE UBIQUITY OF THE RAPID NEUTRON-CAPTURE PROCESS

    SciTech Connect

    Roederer, Ian U.; Sneden, Christopher; Cowan, John J.; Karakas, Amanda I.; Kratz, Karl-Ludwig; Lugaro, Maria; Simmerer, Jennifer; Farouqi, Khalil

    2010-12-01

    To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =-1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique 'pure' r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r

  3. Neutron-Capture Kr-80 and Ar-36 in the Martian Atmosphere and Regolith

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Bogard, D. D.; Nyquist, L.; McKay, D. S.; Masarik, J.

    2001-01-01

    We calculate that approximately 10% of martian atmospheric Kr-80 formed by neutron capture on Mars in approx. 0.5 Ga. The regolith contains even larger amounts of n-capture Kr-80 and Ar-36, which may provide clues to the evolution of the martian regolith and atmosphere. Additional information is contained in the original extended abstract.

  4. Thermal neutron capture cross section for the K isomer {sup 177}Lu{sup m}

    SciTech Connect

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-15

    The thermal neutron radiative capture cross section for the K isomeric state in {sup 177}Lu has been measured for the first time. Several {sup 177}Lu{sup m} targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the {sup 178}Lu activity by {gamma}-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for {sup 177}Lu{sup m}. In addition, an indirect method leads to the determination of the {sup 177}Lu{sup g} neutron radiative capture cross section.

  5. Gamma-Ray Strength Function Method:. Away from Photoneutron Emission to Radiative Neutron Capture

    NASA Astrophysics Data System (ADS)

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Iwamoto, C.; Goriely, S.; Daoutidis, I.; Toyokawa, H.; Harada, H.; Kitatani, F.; Iwamoto, N.; Lui, Y. W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2013-03-01

    Radiative neutron capture cross sections are of direct relevance for the synthesis of heavy elements referred to as the s-process and the r-process in nuclear astrophysics and constitute basic data in the field of nuclear engineering. The surrogate reaction technique is in active use to indirectly determine radiative neutron capture cross sections for unstable nuclei. We have devised an indirect method alternative to the surrogate reaction technique on the basis of the γ-ray strength function (γSF), a nuclear statistical quantity that interconnects photoneutron emission and radiative neutron capture in the Hauser-Feshbach model calculation. We outline the γSF method and show applications of the method to tin, palladium, and zirconium isotopes. In the application of the γSF method, it is important to use γSF's that incorporate extra strengths of PDR and/or M1 resonance emerging around neutron threshold.

  6. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  7. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2001-01-01

    We have proposed the utilization of `hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  8. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  9. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  10. Scattering length measurements from radiative pion capture and neutron-deuteron breakup

    SciTech Connect

    Gibson, B.F.; Tornow, W. |; Carman, T.S.

    1997-07-01

    The neutron-neutron and neutron-proton {sup 1}S{sub 0} scattering lengths a{sub nn} and a{sub np}, respectively, were determined simultaneously from the neutron-deuteron breakup reaction. Their comparison with the recommended values obtained from two body reactions gives a measure of the importance of three-nucleon force effects in the three-nucleon continuum. In order to check on the result obtained for a{sub nn} from the two-body {pi}{sup {minus}}-d capture reaction, a new measurement was performed at LANL. Preliminary results of the three experiments are given.

  11. Measurement of the keV-neutron capture cross section and capture gamma-ray spectrum of isotopes around N=82 region

    SciTech Connect

    Katabuchi, Tatsuya; Igashira, Masayuki

    2012-11-12

    The keV-neutron capture cross section and capture {gamma}-ray spectra of nuclides with a neutron magic number N= 82, {sup 139}La and {sup 142}Nd, were newly measured by the time-of-flight method. Capture {gamma}-rays were detected with an anti-Compton NaI(T1) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The results were provided with our previous measurements of other nuclides around N= 82, {sup 140}Ce, {sup 141}Pr, {sup 143}Nd and {sup 145}Nd.

  12. Using the TREAT reactor in support of boron neutron capture therapy (BNCT) experiments: A feasibility analysis

    SciTech Connect

    Grasseschi, G.L.; Schaefer, R.W.

    1996-03-01

    The technical feasibility of using the TREAT reactor facility for boron neutron capture therapy (BNCT) research was assessed. Using one-dimensional neutronics calculations, it was shown that the TREAT core neutron spectrum can be filtered to reduce the undesired radiation (contamination) dose per desired neutron more effectively than can the core spectra from two prominent candidate reactors. Using two-dimensional calculations, it was demonstrated that a non-optimized filter replacing the TREAT thermal column can yield a fluence of desired-energy neutrons more than twice as large as the fluence believed to be required and, at the same time, have a contamination dose per desired neutron almost as low as that from any other candidate facility. The time, effort and cost required to adapt TREAT for a mission supporting BNCT research would be modest.

  13. A neutron resonance capture analysis experimental station at the ISIS spallation source.

    PubMed

    Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M

    2010-09-01

    Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample.

  14. Recent Advances in Carbon Capture with Metal-Organic Frameworks.

    PubMed

    Stylianou, Kyriakos C; Queen, Wendy L

    2015-01-01

    The escalating level of CO(2) in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO(2) emissions, however, the energy cost associated with post-combustion carbon capture process alone is ∼30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO(2). In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO(2) adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

  15. A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2011-02-16

    The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  16. A new MCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2010-12-14

    The existing MCNPX{trademark} PTRAC coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the isotopes that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and isotope). Here, the power of this tool is demonstrated using a detector design that has been developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile isotopes of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  17. A new NCNPX PTRAC coincidence capture file capability: a tool for neutron detector design

    SciTech Connect

    Evans, Louise G; Schear, Melissa A; Hendricks, John S; Swinhoe, Martyn T; Tobin, Stephen J; Croft, Stephen

    2011-01-13

    The existing Monte Carlo N-Particle (MCNPX) particle tracking (PTRAC) coincidence capture file allows a full list of neutron capture events to be recorded in any simulated detection medium. The originating event history number (e.g. spontaneous fission events), capture time, location and source particle number are tracked and output to file for post-processing. We have developed a new MCNPX PTRAC coincidence capture file capability to aid detector design studies. New features include the ability to track the nuclides that emitted the detected neutrons as well as induced fission chains in mixed samples before detection (both generation number and nuclide that underwent induced fission). Here, the power of this tool is demonstrated using a detector design developed for the non-destructive assay (NDA) of spent nuclear fuel. Individual capture time distributions have been generated for neutrons originating from Curium-244 source spontaneous fission events and induced fission events in fissile nuclides of interest: namely Plutonium-239, Plutonium-241, and Uranium-235. Through this capability, a full picture for the attribution of neutron capture events in the detector can be simulated.

  18. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1989-01-01

    This report describes accomplishments by this laboratory concerning development of high-resolution alpha-autoradiography design of an optimized epithermal neutron beam dosimetry and treatment planning Using Monte Carlo techniques development of a prompt-gamma {sup 10}B analysis facility.

  19. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    SciTech Connect

    Cieplicka-Oryńczak, N.; Fornal, B.; Szpak, B.; Leoni, S.; Bottoni, S.; Bazzacco, D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Bocchi, G.; France, G. de; Simpson, G.; Urban, W.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  20. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  1. Neutron capture effects in lunar gadolinium and the irradiation histories of some lunar rocks.

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1971-01-01

    The Gd isotopic composition in 19 lunar rock and soil samples from three Apollo sites is reported. The analytical techniques and the high precision mass spectrometric measurements are discussed. Enrichments in the Gd-158 oxide to G-157 oxide ratio due to neutron capture range up to 0.75%. Integrated 'thermal' neutron fluxes derived from the isotopic anomalies of Gd are compared with spallation Kr data from aliquot samples to construct a model which gives both average cosmic-ray irradiation depths and effective neutron exposure ages for some rocks. Rock 14310 is the first lunar sample where Kr anomalies due to resonance neutron capture in Br are observed. A Kr-81/Kr exposure age of 262 (plus or minus 7)m.y. is calculated for this rock.

  2. Stellar neutron capture rates for /sup 46/Ca and /sup 48/Ca

    SciTech Connect

    Kaeppeller, F.; Walter, G.; Mathews, G.J.

    1985-04-01

    Stellar neutron capture rates for /sup 46/Ca and /sup 48/Ca have been measured by the activation technique. Both kT = 25 keV Maxwellian-like incident neutron spectra and non-Maxwellian higher energy spectra have been utilized to study the possible role of individual capture resonances. Maxwellian-averaged (kT = 30 keV) cross sections of 5.7 +- 0.5 and 0.95 +- 0.09 mb are derived for /sup 46/Ca and /sup 48/Ca, respectively. The possibility of a neutron capture origin for /sup 46/Ca and /sup 48/Ca is discussed in the light of these new cross sections, as well as a mechanism for the production of the observed isotopic anomalies in inclusion EK-1-4-1 from the Allende meteorite.

  3. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  4. Review of measurement techniques for the neutron radiative-capture process

    SciTech Connect

    Poenitz, W.P.

    1981-07-01

    The experimental techniques applied in measurements of the neutron capture process are reviewed. The emphasis is on measurement techniques used in neutron capture cross section measurements. The activation technique applied mainly in earlier work has still its use in some cases, specifically for measurements of technologically important cross sections (/sup 238/U and /sup 232/Th) with high accuracy. Three major prompt neutron radioactive capture detection techniques have evolved: the total gamma radiation energy detection technique (mainly with large liquid scintillation detectors), the gamma-energy proportional detectors (with proportional counters or Moxon-Rae detectors), and the pulse-height weighting technique. These measurement techniques are generally applicable, however, shortcomings limit the achievable accuracy to a approx. = 5 to 15% uncertainty level.

  5. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  6. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-03-01

    The isomeric ratio for the neutron capture reaction 176Lu(n,γ) on the Jπ= 5/2-, 761.7 keV, T1/2=32.8 ns level of 177mLu, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.

  7. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  8. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  9. On the capture of dark matter by neutron stars

    SciTech Connect

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub χ} ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub χ} ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ{sub χn} ∼ 10{sup −52} cm{sup 2} to σ{sub χn} ∼ 10{sup −57} cm{sup 2}, the dark matter self-interaction cross section limit is σ{sub χχ} ∼< 10{sup −33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  10. Measurements of Thermal Neutron Capture Cross Sections of 136Ce, 156Dy, and 168Yb

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, Y. D.; Sun, G. M.

    2014-05-01

    For several low abundance stable nuclei, the thermal neutron capture cross sections are not well measured, while the cross sections for isotopes with high abundances are already well measured. Our experiments, different from the commonly used method of using gold foil as reference, are performed using natural foils for which we know the relative abundances of all isotopes and thermal neutron capture cross sections. Therefore, we can obtain the cross sections of low abundance isotopes, which are not known well, by comparing the yields of gammas from the neutron captures by various isotopes in the foils. The advantage of this method is the cancellation of potential systematic errors from thermal neutron flux, flux profile, foil thickness, foil size, and irradiation time. We have measured the thermal capture cross sections of 136Ce, 156Dy, and 168Yb isotopes, using the high thermal neutron flux from the reactor HANARO at KAERI, and have obtained new cross section values of 7.64±0.63 barn for 136Ce, 14.8±2.0 barn for 156Dy, and 1335±43 barn for 168Yb.

  11. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    PubMed

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle. PMID:27058075

  12. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    PubMed

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  13. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  14. Neutron emission following muon capture in Ce-142, Ce-140, Ba-138, and Sn-120.

    NASA Technical Reports Server (NTRS)

    Lucas, G. R., Jr.; Martin, P.; Welsh, R. E.; Jenkins, D. A.; Powers, R. J.; Kunselman, A. R.; Miller, G. H.

    1973-01-01

    Branching ratios to excited nuclear states formed after muon capture have been measured with Ge(Li) detectors. The delayed gamma rays were observed in studies of muonic Ce-142, Ce-140, Ba-138, and Sn-120, using separated isotopes. The resulting isotopes formed indicate at least a 60% probability of neutron emission upon muon capture, with the most likely product resulting from single-neutron emission. No evidence for delayed proton emission with a probability higher than 2% was found. Using our more precise energies for the observed nuclear transitions, we present revised energy levels schemes for La-141, La-139, Cs-137, and In-119.

  15. Neutron Capture on 130Sn during r-Process Freeze-Out

    SciTech Connect

    Beun, Joshua; Blackmon, Jeffery C; Hix, William Raphael; Mclaughlin, Gail C; Smith, Michael Scott; Surman, Rebecca

    2009-01-01

    We examine the role of neutron capture on {sup 130}Sn during r-process freeze-out in the neutrino-driven wind environment of the core-collapse supernova. We find that the global r-process abundance pattern is sensitive to the magnitude of the neutron capture cross section of {sup 130}Sn. The changes to the abundance pattern include not only a relative decrease in the abundance of {sup 130}Sn and an increase in the abundance of {sup 131}Sn, but also a shift in the distribution of material in the rare earth and third peak regions.

  16. Neutron capture cross sections for /sup 86,87/Sr at Stellar temperatures

    SciTech Connect

    Bauer, R.W.; Mathews, G.J.; Becker, J.A.; Howe, R.E.

    1986-02-01

    Cross sections have been measured from 100 eV to 1 MeV by the neutron-time-of-flight technique. The capture events were recorded by detecting the prompt gamma-ray cascade with two C/sub 6/D/sub 6/ scintillators, and were normalized to standard gold cross sections. The background was determined experimentally by utilizing the ''black resonance'' technique. A /sup 6/Li-glass scintillator was used to monitor the neutron flux. A Maxwellian-averaged capture cross section at kT = 30 keV of 74 +- 3 mb for /sup 86/Sr, and 102 +- 4 mb for /sup 87/Sr. (LEW)

  17. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    NASA Astrophysics Data System (ADS)

    Agvaanluvsan, U.; Alpizar-Vicente, A.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Clement, R.; Esch, E.; Folden, C. M.; Hatarik, R.; Haight, R. C.; Hoffman, D. C.; Krtička, M.; Macri, R. A.; Mitchell, G. E.; Nitsche, H.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Sheets, S. A.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wilk, P.; Wouters, J. M.; Wu, C. Y.

    2006-03-01

    Radiative strength functions in 152,154Eu nuclei for γ-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for 151,153Eu targets. Properties of γ decay of neutron resonances in 152,154Eu nuclei are examined. The results of measurements are compared to outcome of simulation of γ cascades based on various models for the radiative strength function. Comparison between experimental data and simulation suggests existence of the low-energy resonance in these two nuclei.

  18. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  19. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    PubMed

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties.

  20. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    SciTech Connect

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M.

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  1. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  2. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  3. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  4. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy

    SciTech Connect

    Enger, Shirin A.; Rezaei, Arash; Munck af Rosenschoeld, Per; Lundqvist, Hans

    2006-01-15

    Restenosis is a major problem after balloon angioplasty and stent implantation. The aim of this study is to introduce gadolinium neutron capture brachytherapy (GdNCB) as a suitable modality for treatment of stenosis. The utility of GdNCB in intravascular brachytherapy (IVBT) of stent stenosis is investigated by using the GEANT4 and MCNP4B Monte Carlo radiation transport codes. To study capture rate, Kerma, absorbed dose and absorbed dose rate around a Gd-containing stent activated with neutrons, a 30 mm long, 5 mm diameter gadolinium foil is chosen. The input data is a neutron spectrum used for clinical neutron capture therapy in Studsvik, Sweden. Thermal neutron capture in gadolinium yields a spectrum of high-energy gamma photons, which due to the build-up effect gives an almost flat dose delivery pattern to the first 4 mm around the stent. The absorbed dose rate is 1.33 Gy/min, 0.25 mm from the stent surface while the dose to normal tissue is in order of 0.22 Gy/min, i.e., a factor of 6 lower. To spare normal tissue further fractionation of the dose is also possible. The capture rate is relatively high at both ends of the foil. The dose distribution from gamma and charge particle radiation at the edges and inside the stent contributes to a nonuniform dose distribution. This will lead to higher doses to the surrounding tissue and may prevent stent edge and in-stent restenosis. The position of the stent can be verified and corrected by the treatment plan prior to activation. Activation of the stent by an external neutron field can be performed days after catherization when the target cells start to proliferate and can be expected to be more radiation sensitive. Another advantage of the nonradioactive gadolinium stent is the possibility to avoid radiation hazard to personnel.

  5. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  6. Correlated γ rays following capture of thermal neutrons on 113Cd

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.; Krtička, M.

    2013-10-01

    Natural cadmium is often used as the shielding against thermal neutrons and component in detectors sensitive to neutrons, because of the large cross section of 113Cd for capture of neutrons with energies below 1 eV. Investigation of the neutron-capture γ rays from the 113Cd (n , γ) reaction is of importance for these applications. We report the intensity distributions of these cascade γ-ray transitions. The neutron-capture experiment on 113Cd has been carried out at LANL's LANSCE using the 4 π BaF2 DANCE array. The measured two-dimensional spectrum of counts vs. γ-ray energy vs. γ-ray multiplicity from the strongest resonance in the 113Cd (n , γ) reaction at 0.178 eV has been compared with predictions from the statistical model using the code DICEBOX. Work supported by the NNSA Office of Nonproliferation and Verification Research and Development performed under the Department of Energy contract DE-AC52-06NA25396.

  7. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; Van Winckel, H.; De Smedt, K.; Karakas, A. I.; Käppeler, F.

    2015-11-01

    Aims: We explore modifications to the current scenario for the slow neutron-capture process (the s-process) in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ≃-1.2) and low initial mass (≃ 1-1.5 M⊙) in the Large and Small Magellanic Clouds. Methods: We calculated the stellar evolution and nucleosynthesis for a 1.3 M⊙ star with [Fe/H] = -1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. Results: No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered, the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Conclusions: Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.

  8. Using {sup 171,173}Yb(d,p{gamma}) to Benchmark a Surrogate Reaction for Neutron Capture

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Lesher, S. R.; Gibelin, J.; Phair, L.; Swan, T.

    2009-03-10

    The {sup 171,173}Yb(d,p{gamma}) reactions have been measured to determine the efficacy of this reaction as a surrogate for neutron capture on radioactive nuclei. Preliminary results for the surrogate cross section ratios, with gating conditions that best mimic the spin distribution of neutron capture, reproduce the Wisshak et al., (n,{gamma}) cross section ratios within 15%.

  9. New measurement of θ13 via neutron capture on hydrogen at Daya Bay

    DOE PAGES

    F. P. An

    2016-04-21

    This article reports an improved independent measurement of neutrino mixing angle θ13 at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β-decays with the emitted neutron captured by hydrogen, yielding a data set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resultedmore » in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13 = 0.071 ± 0.011 in the three-neutrino-oscillation framework. As a result, the combination of this result with the gadolinium-capture result is also reported.« less

  10. Monte-Carlo Quantum Chemistry of Biogene Amines. Laser and Neutron Capture Effects

    SciTech Connect

    Glushkov, A. V.; Malinovskaya, S. V.; Khetselius, O. Yu.; Loboda, A. V.

    2009-03-09

    Monte-Carlo quantum calculation of the cluster consisting of the serotonine ST (histamine HM) molecules and 100 molecules of water is carried out. It is found that the zwitterion appears as expected to be strongly favoured with respect to neutral molecule. The perspective possibilities of laser and neutron capture action on different biomolecules are indicated.

  11. New Neutron-capture Measurements in 23 Open Clusters. I. The r-Process

    NASA Astrophysics Data System (ADS)

    Overbeek, Jamie C.; Friel, Eileen D.; Jacobson, Heather R.

    2016-06-01

    Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r-process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s-process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with cluster age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3-10) lines for each element. We find that the pure r-process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r- and s-process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ˜0.04 dex kpc-1. The mixed elements also appear to have nonlinear relationships with R GC.

  12. Neutron capture gamma-ray data and calculations for HPGe detector-based applications

    NASA Astrophysics Data System (ADS)

    McNabb, Dennis P.; Firestone, Richard B.

    2004-10-01

    Recently an IAEA Coordinated Research Project published an evaluation of thermal neutron capture gamma-ray cross sections, measured to 1-5% uncertainty, for over 80 elements [1] and produced the Evaluated Gamma-ray Activation File (EGAF) [2] containing nearly 35,000 primary and secondary gamma-rays is available from the IAEA Nuclear Data Section. We have begun an effort to model the quasi-continuum gamma-ray cascade following neutron capture using the approach outlined by Becvar et al. [3] while constraining the calculation to reproduce the measured cross sections deexciting low-lying levels. Our goal is to provide complete neutron capture gamma ray data in ENDF formatted files to use as accurate event generators for high-resolution HPGe detector based applications. The results will be benchmarked to experimental spectroscopic data and compared with existing gamma-decay widths and level densities. [1] Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA-TECDOC-DRAFT (December, 2003); http://www-nds.iaea.org/pgaa/tecdoc.pdf. [2] Evaluated Gamma-ray Activation File maintained by the International Atomic Energy Agency; http://www-nds.iaea.org/pgaa/. [3] F. Becvar, Nucl Instr. Meth. A417, 434 (1998).

  13. On-line neutron capture gamma analysis with a Ge detector

    NASA Astrophysics Data System (ADS)

    Uusitalo, Seppo; Lukander, Tuula

    Semiconductor gamma detectors are practicable in on-line neutron capture gamma ray analysis of ore concentrates, when heavy water and graphite are used as moderators. A suitable moderator geometry was found using Monte Carlo simulation. An experimental system was constructed and used to measure copper and nickel concentrate samples taken from the feed of a flash smelting furnace.

  14. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy.

    PubMed

    Tachikawa, Shoji; Miyoshi, Tatsuro; Koganei, Hayato; El-Zaria, Mohamed E; Viñas, Clara; Suzuki, Minoru; Ono, Koji; Nakamura, Hiroyuki

    2014-10-21

    closo-Dodecaborate-encapsulating liposomes were developed as boron delivery vehicles for neutron capture therapy. The use of spermidinium as a counter cation of closo-dodecaborates was essential not only for the preparation of high boron content liposome solutions but also for efficient boron delivery to tumors.

  15. Thermal neutron capture cross section of the radioactive isotope 60Fe

    NASA Astrophysics Data System (ADS)

    Heftrich, T.; Bichler, M.; Dressler, R.; Eberhardt, K.; Endres, A.; Glorius, J.; Göbel, K.; Hampel, G.; Heftrich, M.; Käppeler, F.; Lederer, C.; Mikorski, M.; Plag, R.; Reifarth, R.; Stieghorst, C.; Schmidt, S.; Schumann, D.; Slavkovská, Z.; Sonnabend, K.; Wallner, A.; Weigand, M.; Wiehl, N.; Zauner, S.

    2015-07-01

    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60Fe with a half-life of 2.60 ×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60Fe has to be understood reliably. Methods: An 60Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226 (-0.049+0.044) b . An upper limit of σRI<0.50 b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between k T =10 and 100 keV illustrates that the s -wave part of the direct capture component can be neglected.

  16. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  17. New Neutron-capture Measurements in 23 Open Clusters. I. The r-Process

    NASA Astrophysics Data System (ADS)

    Overbeek, Jamie C.; Friel, Eileen D.; Jacobson, Heather R.

    2016-06-01

    Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r-process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s-process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with cluster age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3–10) lines for each element. We find that the pure r-process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r- and s-process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ˜0.04 dex kpc‑1. The mixed elements also appear to have nonlinear relationships with R GC.

  18. Monte-Carlo Quantum Chemistry of Biogene Amines. Laser and Neutron Capture Effects

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Malinovskaya, S. V.; Khetselius, O. Yu.; Loboda, A. V.

    2009-03-01

    Monte-Carlo quantum calculation of the cluster consisting of the serotonine ST (histamine HM) molecules and 100 molecules of water is carried out. It is found that the zwitterion appears as expected to be strongly favoured with respect to neutral molecule. The perspective possibilities of laser and neutron capture action on different biomolecules are indicated.

  19. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  20. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  1. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  2. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  3. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions. PMID:15524972

  4. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  5. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  6. Two-step γ cascades following thermal neutron capture in Gd,157155

    NASA Astrophysics Data System (ADS)

    Valenta, S.; Bečvář, F.; Kroll, J.; Krtička, M.; Tomandl, I.

    2015-12-01

    Spectra of two-step γ cascades following neutron capture in Gd,157155 are measured using the two-Ge-detector facility installed at the thermal neutron beam of the research reactor LVR-15 at Řež. The main objective of this experiment is to obtain new information on photon strength functions, with the emphasis on the role of M 1 scissors-mode vibration. An analysis of accumulated γ -ray spectra, made within the statistical model, leads to the conclusion that the scissors mode significantly affects γ decay of all states of studied nuclei. Experimental data are compared to photon strength functions deduced from other experiments. Agreement of our results with those obtained from DANCE measurement of γ spectra following resonance neutron capture is obtained.

  7. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  8. DIANE: Advanced system for mobile neutron radiology

    NASA Astrophysics Data System (ADS)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  9. Coupled-Channel Computation of Direct Neutron Capture on Non-Spherical Nuclei

    NASA Astrophysics Data System (ADS)

    Arbanas, Goran; Thompson, Ian; Escher, Jutta; Nunes, Filomena; Elster, Charlotte; Zhang, Shi-Sheng

    2014-09-01

    Models of direct neutron capture of neutrons have so far accounted for the effects of non-spherical nuclei either in the incoming wave functions (via non-spherical optical model potentials), or in the final bound states (via non-spherical real potential wells), but not in both. Since it is known that spherical optical potentials do not give a good reproduction of low energy neutron-scattering observables of deformed nuclei, we have performed calculations in which the initial and final states are both treated in a self-consistent, non-spherical-nucleus picture. We have done this in the coupled-channels model of nuclear reactions implemented in the FRESCO code by using the same deformation-length for the couplings to the rotational-band states in the incoming and the final state configurations. We compute direct capture using this method for even-mass calcium isotopes 40 , 42 , 44 , 46 , 48Ca to study the effect across the two closed neutron shells, for neutron-rich even-mass tin isotopes relevant to models of astrophysical nucleosynthesis, and for 56Fe that is an important structural material used in nuclear applications. Models of direct neutron capture of neutrons have so far accounted for the effects of non-spherical nuclei either in the incoming wave functions (via non-spherical optical model potentials), or in the final bound states (via non-spherical real potential wells), but not in both. Since it is known that spherical optical potentials do not give a good reproduction of low energy neutron-scattering observables of deformed nuclei, we have performed calculations in which the initial and final states are both treated in a self-consistent, non-spherical-nucleus picture. We have done this in the coupled-channels model of nuclear reactions implemented in the FRESCO code by using the same deformation-length for the couplings to the rotational-band states in the incoming and the final state configurations. We compute direct capture using this method for even

  10. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  11. Neutron-capture Element Abundances in Magellanic Cloud Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Mashburn, A. L.; Sterling, N. C.; Madonna, S.; Dinerstein, Harriet L.; Roederer, I. U.; Geballe, T. R.

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6–1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5–0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2–3 M ⊙ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2–0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances. This paper includes data obtained with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile, and with the Gemini-South Telescope at Cerro Pachon, Chile.

  12. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-12-31

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies ({approximately} 20 keV) by relatively thin layers of PbF{sub 2} and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin ({approximately} 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils.

  13. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  14. Commercial Clinical Application of Boron Neutron Capture Therapy

    SciTech Connect

    N /A

    1999-09-03

    CRADA No. 95-CR-09 among the LITCO--now Bechtel BWXT Idaho, LLC; a private company, Neutron Therapies Limited Liability Company, NTL formerly Ionix Corporation; and Washington State University was established in 1996 to further the development of BNCT. NTL has established a laboratory for the synthesis, under US FDA approved current Good Manufacturing Practices (cGMP) guidelines, of key boron intermediates and final boron agents for BNCT. The company has focused initially on the development of the compound GB-10 (Na{sub 2}B{sub 10}H{sub 10}) as the first boron agent of interest. An Investigational New Drug (IND) application for GB-10 has been filed and approved by the FDA for a Phase I human biodistribution trial in patients with non-small cell lung cancer and glioblastoma multiforme at UW under the direction of Professor Keith Stelzer, Principal Investigator (PI). These trials are funded by NTL under a contract with the UW, Department of Radiation Oncology, and the initial phases are nearing completion. Initial results show that boron-10 concentrations on the order of 100 micrograms per gram (100 ppm) can be achieved and maintained in blood with no indication of toxicity.

  15. Spectrum evaluation at the filter-modified neutron irradiation field for neutron capture therapy in Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2004-10-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor (KUR-HWNIF) was updated in March 1996, mainly to improve the facility for neutron capture therapy (NCT). In this facility, neutron beams with various energy spectra, from almost pure thermal to epithermal, are available. The evaluation of the neutron energy spectra by multi-activation-foil method was performed as a series of the facility characterization. The spectra at the normal irradiation position were evaluated for the combinations of heavy-water thickness of the spectrum shifter and the open-close condition of the cadmium and boral filters. The initial spectra were made mainly using a two-dimensional transport code, and the final spectra were obtained using an adjusting code. For the verification of the evaluated spectra, simulation calculations using a phantom were performed on the assumption of NCT-clinical-irradiation conditions. It resulted that the calculated data for the depth neutron-flux distributions were in good agreement with the experimental ones.

  16. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.

    PubMed

    Zamenhof, R G; Clement, S D; Harling, O K; Brenner, J F; Wazer, D E; Madoc-Jones, H; Yanch, J C

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces (with RBE weighting) a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction. With parallel-opposed lateral irradiation, the planar advantage depth contour for this beam

  17. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  18. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  19. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  20. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  1. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  2. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  3. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  4. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  5. Radiative Capture Cross Sections of 139La(n, γ) for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Ureche, Adriana; Hurst, Aaron M.; Goldblum, Bethany L.; Vujic, Jasmina; Firestone, Richard B.; Basunia, Shamsuzzoha; Revay, Zsolt; Szentmiklosi, Laszlo; Belgya, Tamas; Summers, Neil C.; Bernstein, Lee A.; Bleuel, Darren L.; Escher, Jutta E.; Sleaford, Bradley W.; Krticka, Milan

    2014-09-01

    A set of partial-production neutron-capture γ-ray cross sections corresponding to the 139La (n , γ) reaction were measured at the Budapest Research Reactor using a supermirror-guided near-thermal neutron beam. Absolute values for these quantities were obtained through an internal-standardization procedure where the observed γ-ray intensities were normalized to well-known comparator 35Cl(n , γ) transitions using a LaCl3 . 7H2 O standard. These measurements have been used, together with statistical-model predictions calculated using the Monte Carlo program DICEBOX to simulate the thermal-capture γ-ray cascade, to evaluate the decay scheme of the compound nucleus 140La. An independent measurement of the total radiative thermal neutron-capture cross section, σ0, has also been determined; our preliminary result σ0 = 8 . 51 (43) b, is consistent with earlier literature. The total mean capture-state width is currently being investigated and may provide further insight into the validity of the Brink hypothesis in γ decay.

  6. A simple method for the analysis of neutron resonance capture spectra

    SciTech Connect

    Clarijs, Martijn C.; Bom, Victor R.; Eijk, Carel W. E. van

    2009-03-15

    Neutron resonance capture analysis (NRCA) is a method used to determine the bulk composition of various kinds of objects and materials. It is based on analyzing direct capture resonance peaks. However, the analysis is complicated by scattering followed by capture effects in the object itself. These effects depend on the object's shape and size. In this paper the new Delft elemental analysis program (DEAP) is presented which can automatically and quickly analyze multiple NRCA spectra in a practical and simple way, yielding the elemental bulk composition of an object, largely independent of its shape and size. The DEAP method is demonstrated with data obtained with a Roman bronze water tap excavated in Nijmegen (The Netherlands). DEAP will also be used in the framework of the Ancient Charm project as data analysis program for neutron resonance capture imaging (NRCI) experiments. NRCI provides three-dimensional visualization and quantification of the internal structure of archaeological objects by performing scanning measurements with narrowly collimated neutron beams on archaeological objects in computed tomography based experimental setups. The large amounts (hundreds to thousands) of spectra produced during a NRCI experiment can automatically and quickly be analyzed by DEAP.

  7. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    SciTech Connect

    Aoki, Misa; Ishimaru, Yuhri; Aoki, Wako; Wanajo, Shinya

    2014-05-02

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; “weak r-process” and “main r-process”. A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  8. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    SciTech Connect

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O'Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Radiative strength functions in {sup 152,154}Eu nuclei for {gamma}-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. Properties of resonances in these two nuclei are examined. The measurements are compared to simulation of cascades performed with various models for the radiative strength function. Comparison between experimental data and simulation suggests an existence of the low-energy resonance in these two nuclei.

  9. Measurement of Parity-Violating Neutron Capture Gamma Asymmetries at Low-Energies

    SciTech Connect

    Barron-Palos, L.; Bowman, James D; Fomin, Nadia; Greene, G. L.; Penttila, Seppo I

    2009-01-01

    A sensitive measurement of parity-violating (PV) observables in few-nucleon systems can shed light on our current understanding of the hadronic weak interaction at low momentum transfers. Theoretical models describe the nucleon-nucleon weak interaction at low energies with 6 parameters that need, in principle, to be determined in the same number of independent experiments. In this context, a series of experiments with cold neutrons are being proposed and developed. Particularly, experiments that aim to measure the parity-violating asymmetry in the distribution of the gamma-rays emitted in the capture of polarized neutrons by protons and deuterium, will be discussed in this paper.

  10. Feasibility study on pinhole camera system for online dosimetry in boron neutron capture therapy.

    PubMed

    Katabuchi, Tatsuya; Hales, Brian; Hayashizaki, Noriyosu; Igashira, Masayuki; Khan, Zareen; Kobayashi, Tooru; Matsuhashi, Taihei; Miyazaki, Koichi; Ogawa, Koichi; Terada, Kazushi

    2014-06-01

    The feasibility of a pinhole camera system for online dosimetry in boron neutron capture therapy (BNCT) was studied. A prototype system was designed and built. Prompt γ-rays from the (10)B(n,α)(7)Li reaction from a phantom irradiated with neutrons were detected with the prototype system. An image was reconstructed from the experimental data. The reconstructed image showed a good separation of the two borated regions in the phantom. The counting rates and signal-to-noise ratio when using the system in actual BNCT applications are also discussed.

  11. The measurements of parity violation in resonant neutron-capture reactions

    SciTech Connect

    Sharapov, E.I.; Popov, Y.P. ); Wender, S.A.; Seestrom, S.J.; Bowman, C.D. ); Postma, H. ); Gould, C.R. ); Wasson, A. )

    1990-01-01

    The study of parity violation in total (n,{gamma}) cross sections on {sup 139}La and {sup 117}Sn targets was performed at the LANSCE pulsed neutron source using longitudinally polarized neutrons and a BaF{sub 2} detector. The effect of parity nonconservation in the {sup 139}La(n,{gamma}) reaction for the resonance at E{sub n}=0.73 eV was confirmed. New results for p-wave resonances in the {sup 117}Sn(n, {gamma}) reaction were obtained. A comparison between the capture and transmission techniques is presented. 12 refs., 5 figs., 1 tab.

  12. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  13. Experimental evaluation of boron neutron capture therapy of human breast carcinoma implanted on nude mice

    NASA Astrophysics Data System (ADS)

    Bose, Satya Ranjan

    2000-06-01

    An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large

  14. a New Method for Neutron Capture Therapy (nct) and Related Simulation by MCNP4C Code

    NASA Astrophysics Data System (ADS)

    Shirazi, Mousavi; Alireza, Seyed; Ali, Taheri

    2010-01-01

    Neutron capture therapy (NCT) is enumerated as one of the most important methods for treatment of some strong maladies among cancers in medical science thus is unavoidable controlling and protecting instances in use of this science. Among of treatment instances of this maladies with use of nuclear medical science is use of neutron therapy that is one of the most important and effective methods in treatment of cancers. But whereas fast neutrons have too destroyer effects and also sake of protection against additional absorbed energy (absorbed dose) by tissue during neutron therapy and also naught damaging to rest of healthy tissues, should be measured absorbed energy by tissue accurately, because destroyer effects of fast neutrons is almost quintuple more than gamma photons. In this article for neutron therapy act of male's liver has been simulated a system by the Monte Carlo method (MCNP4C code) and also with use of analytical method, thus absorbed dose by this tissue has been obtained for sources with different energies accurately and has been compared results of this two methods together.

  15. Sublethal and potentially lethal damage repair on thermal neutron capture therapy

    SciTech Connect

    Utsumi, H.; Ichihashi, M.; Kobayashi, T.; Elkind, M.M. )

    1989-07-01

    Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.

  16. Enhancement of dark matter capture by neutron stars in binary systems.

    PubMed

    Brayeur, Lionel; Tinyakov, Peter

    2012-08-10

    We study the capture of dark matter particles by neutron stars in close binary systems. By performing a direct numerical simulation, we find that there is a sizable amplification of the rate of dark matter capture by each of the companions. In the case of the binary pulsar PSR J1906+0746 with the orbital period of 4 hours the amplification factor is approximately equal to 3.5. This amplification can be attributed to the energy loss by dark matter particles resulting from their gravitational scattering off moving companions.

  17. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  18. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays.

    PubMed

    Abdul-Majid, Samir

    2013-04-01

    Wax deposition in pipelines can be very costly for plant operation in oil industry. New techniques are needed for allocation and thickness determination of wax deposits. The timely removal of wax can make large saving in operational cost. Neutron back diffusion and neutron capture gamma rays were used in this study to measure paraffin, asphalt and polyethylene deposition thicknesses inside pipes and to enable simultaneous determination of scale and pipe corrosion. It was possible to determine a thickness change of less than one mm in 2 min. It was also possible to detect localized scale from a small region of the pipe of approximately 2 cm in diameter. Although experiments were performed in lab, the system can be made portable for field applications.

  19. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays.

    PubMed

    Abdul-Majid, Samir

    2013-04-01

    Wax deposition in pipelines can be very costly for plant operation in oil industry. New techniques are needed for allocation and thickness determination of wax deposits. The timely removal of wax can make large saving in operational cost. Neutron back diffusion and neutron capture gamma rays were used in this study to measure paraffin, asphalt and polyethylene deposition thicknesses inside pipes and to enable simultaneous determination of scale and pipe corrosion. It was possible to determine a thickness change of less than one mm in 2 min. It was also possible to detect localized scale from a small region of the pipe of approximately 2 cm in diameter. Although experiments were performed in lab, the system can be made portable for field applications. PMID:23410615

  20. Validating (d,p gamma) as a Surrogate for Neutron Capture

    SciTech Connect

    Ratkiewicz, A.; Cizewski, J.A.; Pain, S.D.; Adekola, A.S.; Burke, J.T.; Casperson, R.J.; Fotiades, N.; McCleskey, M.; Burcher, S.; Shand, C.M.; Austin, R.A.E.; Baugher, T.; Carpenter, M.P.; Devlin, M.; Escher, J.E.; Hardy, S.; Hatarik, R.; Howard, M.E.; Hughes, R.O.; Jones, K.L.; Kozub, R.L.; Lister, C.J.; Manning, B.; O’Donnell, J.M.; Peters, W.A.; Ross, T.J.; Scielzo, N.D.; Seweryniak, D.; Zhu, S.; Schwengner, R.; Zuber, K.

    2015-05-28

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate for (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.

  1. {sup 33}S for Neutron Capture Therapy: Nuclear Data for Monte Carlo Calculations

    SciTech Connect

    Porras, I.; Sabaté-Gilarte, M.; Praena, J.; Quesada, J.M.; Esquinas, P.L.

    2014-06-15

    A study of the nuclear data required for the Monte Carlo simulation of boron neutron capture therapy including the {sup 33}S isotope as an enhancer of the dose at small depths has been performed. In particular, the controversy on the available data for the {sup 33}S(n, α) cross section will be shown, which motivates new measurements. In addition to this, kerma factors for the main components of tissue are calculated with the use of fitting functions. Finally, we have applied these data to a potential neutron capture treatment with boron and sulfur addition to tissue in which part of the hydrogen atoms are replaced by deuterium, which improves the procedure.

  2. Validating (d,p gamma) as a Surrogate for Neutron Capture

    DOE PAGES

    Ratkiewicz, A.; Cizewski, J.A.; Pain, S.D.; Adekola, A.S.; Burke, J.T.; Casperson, R.J.; Fotiades, N.; McCleskey, M.; Burcher, S.; Shand, C.M.; et al

    2015-05-28

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate formore » (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.« less

  3. Radiative capture of fast neutrons by /sup 165/Ho and /sup 238/U

    SciTech Connect

    McDainels, D K; Varghese, P; Drake, D M; Arthur, E; Lindholm, A; Bergqvist, I; Krumlinde, J

    1982-04-01

    Radiative capture of fast neutrons by the deformed nuclei /sup 165/Ho and /sup 238/U was measured over the 7- to 15-MeV incident neutron energy range. The ..gamma..-ray detector was a large NaI(T1) anti-Compton spectrometer, and time-of-flight techniques were used to suppress background. The total radiative capture cross section exhibits an energy dependence that clearly indicates the importance of the direct-semidirect reaction mechanism. Theoretical calculations compare favorably with experimental observations. However, the shapes of the observed ..gamma..-ray spectra differ from those calculated, indicating problems in estimating the distribution of single-particle strength for these deformed nuclei.

  4. 238U Neutron Capture Cross Section Measurements at the GELINA Facility

    NASA Astrophysics Data System (ADS)

    Lampoudis, C.; Kopecky, S.; Becker, B.; Gunsing, F.; Schillebeeckx, P.; Wynants, R.

    2014-05-01

    A set of neutron capture experiments based on the time-of-flight technique were performed in order to determine the 238U capture cross section in the unresolved resonance region. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the uranium sample. The analysis of the experimental data is based on the total energy principle applied in combination with the pulse height weighting technique. The experimental details along with the analysis process are described. The first results in the resolved resonance region are presented and their validity provide a solid base to extend the analysis and extract the average cross section in the keV region.

  5. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    SciTech Connect

    Hatarik, R; Bersntein, L; Burke, J; Cizewski, J; Gibelin, J; Lesher, S; O'Malley, P; Phair, L; Swan, T

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratios of these nuclei.

  6. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  7. Validating (d,pγ) as a surrogate for neutron capture

    SciTech Connect

    Ratkiewicz, A.; Cizewski, J. A.; Pain, S. D.; Adekola, A. S.; Burke, J. T.; Casperson, R. J.; Fotiadis, Nikolaos; McCleskey, M.; Burcher, S.; Shand, C. M; Austin, R. A. E.; Baugher, T.; Carpenter, M. P.; Devlin, Matthew James; Escher, J. E.; Hardy, S.; Hatarik, R.; Howard, M. E.; Hughes, R. O.; Jones, K. L.; Kozub, R. L.; Lister, C. J.; Manning, B.; O'Donnell, John M.; Peters, W. A.; Ross, T. J.; Scielzo, N. D.; Seweryniak, D.; Zhu, S.

    2015-02-13

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate for (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.

  8. Neutron Capture Elements in the Open Cluster Chemical Abundance & Mapping (OCCAM) Survey

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Hearty, Fred R.; Majewski, Steven R.; Zasowski, Gail; Sdss /Apogee-1, III

    2015-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. The high-resolution (R=22,500), near-infrared (H-band) APOGEE-1 survey allows for cluster membership probability determination and analysis of light and iron-peak elements. Neutron capture elements, however, prove to be elusive in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we conducted a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. We present results based on prominent resonance lines for Eu, La, Ba, and Ce in the ~5400-6750 AA range using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.

  9. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    SciTech Connect

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  10. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  11. Case numbers for a randomized clinical trial of boron neutron capture therapy for Glioblastoma multiforme.

    PubMed

    Sander, Anja; Wosniok, Werner; Gabel, Detlef

    2014-06-01

    Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible. PMID:24373823

  12. Neutron capture radiography: a technique for isotopic labelling and analytical imaging with a few stable isotopes.

    PubMed

    Thellier, Michel; Ripoll, Camille

    2006-06-19

    NCR (neutron capture radiography) may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others) and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  13. Analytical sensitivities and energies of thermal neutron capture gamma rays II

    USGS Publications Warehouse

    Senftle, F.E.; Moore, H.D.; Leep, D.B.; El-Kady, A.; Duffey, D.

    1971-01-01

    A table of the analytical sensitivities of the principal lines in the thermal neutron capture gamma-ray spectrum from 0 to 3 MeV has been compiled for most of the elements. A tabulation of the full-energy, single-escape, and double-escape peaks has also been made according to energy. The tables are useful for spectral interpretation and calibration. ?? 1971.

  14. Analytical sensitivities and energies of thermal-neutron-capture gamma rays

    USGS Publications Warehouse

    Duffey, D.; El-Kady, A.; Senftle, F.E.

    1970-01-01

    A table of the analytical sensitivities of the principal lines in the thermal-neutron-capture gamma ray spectrum has been compiled for most of the elements. In addition a second table of the full-energy, single-escape, and double-escape peaks has been compiled according to energy for all significant lines above 3 MeV. Lines that contrast well with adjacent lines are noted as prominent. The tables are useful for spectral interpretation and calibration. ?? 1970.

  15. The calculation of neutron capture gamma-ray yields for space shielding applications

    NASA Technical Reports Server (NTRS)

    Yost, K. J.

    1972-01-01

    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.

  16. Exposure ages and neutron capture record in lunar samples from Fra Mauro.

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1972-01-01

    Cosmic-ray exposure ages of Apollo 14 rocks and rock fragments obtained by the Kr81-Kr83 method range from 27 to 700 m.y. Rock 14321, collected near the Cone crater rim, is one of the many approximately 27 m.y. old ejecta which were reported at the Third Lunar Science Conference. All the other rocks have considerably higher exposure ages. Isotopic anomalies from neutron capture in gadolinium, bromine, and barium are used to obtain information on the lunar neutron spectrum at various depths below the lunar surface. The flux ratio of resonance and slow (less than 0.3 eV) neutrons is found to be nearly constant in the topmost approximately 100 g/sq cm.

  17. Distortion of pulse-height spectra of neutron capture gamma rays

    SciTech Connect

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2006-03-13

    A distortion of pulse-height spectra of neutron capture {gamma}-rays caused by {gamma}-flash at neutron time-of-flight (TOF) measurement using a pulse neutron source has been investigated. Pulses from C6D6 detectors accumulated by flash-ADC were processed with both traditional analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of {gamma}-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse-height spectra of the two data-collecting modes. The magnitude of the correction factor depends on the time, which passed after {gamma}-flash, and has complicated time dependence with a changing sign.

  18. Advances in Neutron Spectroscopy with Deuterated Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Febbraro, Michael; Pain, Steve; Becchetti, Frederick

    2015-10-01

    Deuterated organic scintillators have shown promise as neutron detectors for nuclear science as well as applications in nuclear non-proliferation and safeguards. In particular, they can extract neutron spectra without the use of neutron time-of-flight measurement (n-ToF) utilizing spectrum unfolding techniques. This permits the measure of cross sections of bound and unbound states with high efficiency and angular coverage. In the case of measurements with radioactive ion beams where low beam intensities limit long path n-ToF, short path n-ToF can be used to discriminate neutrons of interest from room return and background neutrons. This presentation will provide recent advances with these types of detectors. Digital pulse-shape discrimination using fast waveform digitizers, spectrum unfolding methods for extraction of neutron spectra, and a new safer deuterated-xylene formulation EJ-301D will be discussed. In addition, experimental results from measurements of discrete and continuous neutron spectra which illustrate the advantage of these detectors for certain applications in nuclear physics research and nuclear security will be shown. This work is supported by NSF and DOE.

  19. The radiobiological principles of boron neutron capture therapy: a critical review.

    PubMed

    Hopewell, J W; Morris, G M; Schwint, A; Coderre, J A

    2011-12-01

    The radiobiology of the dose components in a BNCT exposure is examined. The effect of exposure time in determining the biological effectiveness of γ-rays, due to the repair of sublethal damage, has been largely overlooked in the application of BNCT. Recoil protons from fast neutrons vary in their relative biological effectiveness (RBE) as a function of energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this dose component. Protons from the neutron capture reaction in nitrogen have not been studied but in practice protons from nitrogen capture have been combined with the recoil proton contribution into a total proton dose. The relative biological effectiveness of the products of the neutron capture reaction in boron is derived from two factors, the RBE of the short range particles and the bio-distribution of boron, referred to collectively as the compound biological effectiveness factor. Caution is needed in the application of these factors for different normal tissues and tumors. PMID:21543233

  20. Investigation of 186Re via radiative thermal-neutron capture on 185Re

    NASA Astrophysics Data System (ADS)

    Matters, D. A.; Lerch, A. G.; Hurst, A. M.; Szentmiklósi, L.; Carroll, J. J.; Detwiler, B.; Révay, Zs.; McClory, J. W.; McHale, S. R.; Firestone, R. B.; Sleaford, B. W.; Krtička, M.; Belgya, T.

    2016-05-01

    Partial γ -ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n ,γ ) 186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n ,γ )36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746 keV were combined with a modeled probability of ground-state feeding from levels above Ec to arrive at a total cross section of σ0=111 (6 ) b for radiative thermal-neutron capture on 185Re. A comparison of modeled discrete-level populations with measured transition intensities led to proposed revisions for seven tentative spin-parity assignments in the adopted level scheme for 186Re. Additionally, 102 primary γ rays were measured, including 50 previously unknown. A neutron-separation energy of Sn=6179.59 (5 ) keV was determined from a global least-squares fit of the measured γ -ray energies to the known 186Re decay scheme. The total capture cross section and separation energy results are comparable to earlier measurements of these values.

  1. Study of Neutron-Capture Element Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Li, Hongjie; Shen, Xiaojing; Liang, Shuai; Cui, Wenyuan; Zhang, Bo

    2013-02-01

    This work describes a study of elemental abundances for 30 metal-poor stars whose chemical abundances provide excellent information for setting constraints on models of neutron-capture processes. Based on the abundances of main r- and weak r-process stars, the abundance patterns of main r-process and weak r-process are obtained. The two r-process component coefficients are defined to determine the relative contributions from individual neutron-capture process to abundances of metal-poor stars. Based on the component coefficients, we find that metal-poor stars BD+42621 and HD 4306 are also weak r-process stars, which means that the abundance pattern produced by weak r-process is stable. All metal-poor star abundances contain the contributions of both main r-process and weak r-process. The elements produced by weak r-process have increased along with Fe over the polluted history. Most of the metal-poor star abundances do not follow the pattern observed in the solar system, but there is a small fraction that do. For the low-[Sr/Fe] star BD-185550 ([Sr/Fe] lsim -1), neutron-capture element abundances can be explained by the mixture of two r-process components. Since lighter elements in this star cannot be fitted by the two components, the abundance pattern of P-component is estimated from those abundances.

  2. The search for the site of the r-process. [rapid neutron capture in stellar nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Cameron, A. G. W.; Truran, J. W.; Sneden, Christopher

    1986-01-01

    A number of sites have been suggested for the r-process, including neutronized cores of exploding supernovae, jets of neutronized matter ejected from the collapse of rotating magnetized stellar cores, the helium and carbon zones of stars undergoing supernova explosions, and helium core flashes in low-mass stars. Despite much work and many advances in nuclear physics, the site or sites of the r-process is still unknown. Observations of metal-poor stars in the halo of the Galaxy indicate r-process production early in the history of the Galaxy and provide important constraints on galactic nucleosynthesis. Further observations of metal-poor stars, along with advances in understanding the nuclear properties of neutron-rich nuclei and improved astrophysical models of stars in the late stages of evolution, should help to identify the site of the r-process.

  3. Capturing the electromagnetic counterparts of binary neutron star mergers through low-latency gravitational wave triggers

    NASA Astrophysics Data System (ADS)

    Chu, Q.; Howell, E. J.; Rowlinson, A.; Gao, H.; Zhang, B.; Tingay, S. J.; Boër, M.; Wen, L.

    2016-06-01

    We investigate the prospects for joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). For BNS mergers associated with short duration gamma-ray bursts (SGRBs), we for the first time evaluate the feasibility of rapid EM follow-ups to capture the prompt emission, early engine activity, or reveal any potential by-products such as magnetars or fast radio bursts. To achieve our goal, we first simulate a population of coalescing BNSs using realistic distributions of source parameters and estimate the detectability and localization efficiency at different times before merger. We then use a selection of facilities with GW follow-up agreements in place, from low-frequency radio to high-energy γ-ray to assess the prospects of prompt follow-up. We quantify our assessment using observational SGRB flux data extrapolated to be within the horizon distances of the advanced GW interferometric detectors LIGO and Virgo and to the prompt phase immediately following the binary merger. Our results illustrate that while challenging, breakthrough multimessenger science is possible with EM follow-up facilities with fast responses and wide fields-of-view. We demonstrate that the opportunity to catch the prompt stage (<5 s) of SGRBs can be enhanced by speeding up the detection pipelines of both GW observatories and EM follow-up facilities. We further show that the addition of an Australian instrument to the optimal detector network could possibly improve the angular resolution by a factor of 2 and thereby contribute significantly to GW-EM multimessenger astronomy.

  4. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report, 1990

    SciTech Connect

    Zamenhof, R.G.

    1990-12-31

    This document briefly describes recent advances in the author`s laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies.

  5. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor.

    PubMed

    Endo, S; Onizuka, Y; Ishikawa, M; Takada, M; Sakurai, Y; Kobayashi, T; Tanaka, K; Hoshi, M; Shizuma, K

    2004-01-01

    Microdosimetric single event spectrum in a human body simulated by an acrylic phantom has been measured for the clinical BNCT field at the Kyoto University Reactor (KUR). The recoil particles resulting from the initial reaction and subsequent interactions, namely protons, electrons, alpha particles and carbon nuclei are identified in the microdosimetric spectrum. The relative contributions to the neutron dose from proton, alpha particles and carbon are estimated to be about 0.9, 0.07 and 0.3, respectively, four depths between 5 and 41 mm. We estimate that the dose averaged lineal energy, yD decreased with depth from 64 to 46 keV microm(-1). Relative biological effectiveness (RBE) of this neutron field using a response function for the microdosimetric spectrum was estimated to decrease from 3.6 to 2.9 with increasing depth. PMID:15353723

  6. Krypton and xenon in Apollo 14 samples - Fission and neutron capture effects in gas-rich samples

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C.; Morgan, C.

    1975-01-01

    Gas-rich Apollo 14 breccias and trench soil are examined for fission xenon from the decay of the extinct isotopes Pu-244 and I-129, and some samples have been found to have an excess fission component which apparently was incorporated after decay elsewhere and was not produced by in situ decay. Two samples have excess Xe-129 resulting from the decay of I-129. The excess is correlated at low temperatures with excess Xe-128 resulting from neutron capture on I-127. This neutron capture effect is accompanied by related low-temperature excesses of Kr-80 and Kr-82 from neutron capture on the bromine isotopes. Surface correlated concentrations of iodine and bromine are calculated from the neutron capture excesses.

  7. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.

    PubMed

    Schatz, H; Gupta, S; Möller, P; Beard, M; Brown, E F; Deibel, A T; Gasques, L R; Hix, W R; Keek, L; Lau, R; Steiner, A W; Wiescher, M

    2014-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, β(-) decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This 'Urca' mechanism has been studied in the context of white dwarfs and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface. PMID:24291788

  8. A capture-gated neutron calorimeter using plastic scintillators and 3He drift tubes

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L; Spaulding, Randy J; Bacon, Jeffrey D; Borozdin, Konstantin N; Chung, Kiwhan; Clark, Deborah J; Green, Jesse A; Greene, Steven J; Hogan, Gary E; Jason, Andrew; Lisowski, Paul W; Makela, Mark F; Mariam, Fessaha G; Miyadera, Haruo; Murray, Matthew M; Saunders, Alexander; Wysocki, Frederick J; Gray, Frederick E

    2010-01-01

    A segmented neutron calorimeter using nine 4-inch x 4-inch x 48-inch plastic scintillators and sixteen 2-inch-diameter 48-inch-long 200-mbar-{sup 3}He drift tubes is described. The correlated scintillator and neutron-capture events provide a means for n/{gamma} discrimination, critical to the neutron calorimetry when the {gamma} background is substantial and the {gamma} signals are comparable in amplitude to the neutron signals. A single-cell prototype was constructed and tested. It can distinguish between a {sup 17}N source and a {sup 252}Cf source when the {gamma} and the thermal neutron background are sufficiently small. The design and construction of the nine-cell segmented detector assembly follow the same principle. By recording the signals from individual scintillators, additional {gamma}-subtraction schemes, such as through the time-of-flight between two scintillators, may also be used. The variations of the light outputs from different parts of a scintillator bar are less than 10%.

  9. Strong neutrino cooling by cycles of electron capture and decay in neutron star crusts

    SciTech Connect

    Schatz, Hendrik; Gupta, Sanjib; Moeller, Peter; Beard, Mary; Brown, Edward; Deibel, A. T.; Gasques, Leandro; Hix, William Raphael; Keek, Laurens; Lau, Rita; Steiner, Andrew M; Wiescher, Michael

    2013-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs13 and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models1, 2 computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  10. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  11. Neutron capture and total cross sections for /sup 48/Ca: astrophysical implications

    SciTech Connect

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Macklin, R.L.

    1984-01-01

    Attempts to understand abundance anomalies of the Ca isotopes in the Allende meteorite via the n..beta..-process require 30-keV Maxwellian averaged capture cross sections. Experimental data on /sup 48/Ca in this energy region of astrophysical significance is important since a single resonance in this vicinity could dominate the capture cross section. Neutron capture and total cross section measurements have been performed at ORELA on a 9.97-g sample of CaCO/sub 3/, enriched to 96% /sup 48/Ca, over the energy ranges 10 eV to 500 keV (sigma/sub ..gamma../) and 10 keV to 4MeV (sigma/sub T/). Only two small resonances were found for /sup 48/ Ca in the 30-keV energy region (at 19.3 and 106.9 keV) and those only in capture. Their contribution to the 30-keV-averaged cross section is only 50 ..mu..b compared to 1.0 mb calculated from direct capture. The p-wave strength and large d/sub 5/2/ strength observed above 150 keV do not contribute significantly to the 30 keV capture.

  12. Thermal neutron capture gamma rays from sulfur isotopes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Raman, S.; Carlton, R. F.; Wells, J. C.; Jurney, E. T.; Lynn, J. E.

    1985-07-01

    We have carried out a systematic investigation of γ rays after thermal neutron capture by all stable sulfur isotopes (32S, 33S, 34S, and 36S). The measurements were made at the internal target facility at the Los Alamos Omega West Reactor. We detected a larger number of γ rays: ~100 in 33S, ~270 in 34S, ~60 in 35S, and ~15 in 37S. Before developing detailed level schemes, we culled and then consolidated the existing information on energies and Jπ values for levels of these nuclides. Based on the current data, we have constructed detailed decay schemes, which imply that there are significant populations of 26 excited states in 33S, 70 states in 34S, 20 states in 35S, and 7 states in 37S. By checking the intensity balance for these levels and by comparing the total intensity of primary transitions with the total intensity of secondary γ rays feeding the ground state, we have demonstrated the relative completeness of these decay schemes. For strongly populated levels, the branching ratios based on the current measurements are generally better than those available from previous measurements. In all four cases, a few primary electric dipole (E1) transitions account for a large fraction of the capture cross section for that particular nuclide. To understand and explain these transitions, we have recapitulated and further developed the theory of potential capture. Toward this end, we reviewed the theory relating off-resonance neutron capture to the optical-model capture. We studied a range of model-dependent effects (nature and magnitude of imaginary potential, surface diffuseness, etc.) on the potential capture cross section, and we have shown how experimental data may be analyzed using the expression for channel capture suitably modified by a factor that takes into account the model-dependent effects. The calculations of cross sections for most of the primary transitions in the sulfur isotopes are in good agreement with the data. Some discrepancies for weaker

  13. Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer

    SciTech Connect

    Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc.; Longhino, Juan; Perona, Marina; Calzetta, Osvaldo; Blaumann, Herman; Rebagliati, Raul Jimenez; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2007-11-15

    Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

  14. Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach

    NASA Astrophysics Data System (ADS)

    Wehmeyer, B.; Pignatari, M.; Thielemann, F.-K.

    2015-09-01

    For the origin of heavy rapid neutron capture process (r-process) elements, different sources have been proposed, e.g. core-collapse supernovae or neutron star mergers. Old metal-poor stars carry the signature of the astrophysical source(s). Among the elements dominantly made by the r-process, europium (Eu) is relatively easy to observe. In this work we simulate the evolution of Eu in our Galaxy with the inhomogeneous chemical evolution (ICE) model, and compare our results with spectroscopic observations. We test the most important parameters affecting the chemical evolution of Eu: (a) for neutron star mergers the coalescence time-scale of the merger (tcoal) and the probability to experience a neutron star merger event after two supernova explosions occurred and formed a double neutron star system (PNSM) and (b) for the subclass of magnetorotationally driven supernovae (`Jet-SNe'), their occurrence rate compared to standard supernovae (PJet-SN). We find that the observed [Eu/Fe] pattern in the Galaxy can be reproduced by a combination of neutron star mergers and Jet-SNe as r-process sources. While neutron star mergers alone seem to set in at too high metallicities, Jet-SNe provide a cure for this deficiency at low metallicities. Furthermore, we confirm that local inhomogeneities can explain the observed large spread in the Eu abundances at low metallicities. We also predict the evolution of [O/Fe] to test whether the spread in α-elements for inhomogeneous models agrees with observations and whether this provides constraints on supernova explosion models and their nucleosynthesis.

  15. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  16. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  17. Improved Neutron-Capture Element Abundances in Planetary Nebulae from Multi-Wavelength Spectroscopy and New Atomic Data

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Dinerstein, H. L.; Hwang, S.; Redfield, S.; Aguilar, A.; McLaughlin, B.; Esteves, D.; Kilcoyne, A. L. D.; Ballance, C. P.; Norrington, P. H.; Bautista, M.; Witthoeft, M. C.; Kallman, T. R.

    2007-12-01

    The accurate determination of neutron(n)-capture element abundances in planetary nebulae (PNe) provides valuable information regarding s-process nucleosynthesis and convective dredge-up in PN progenitor stars. Sterling & Dinerstein (2007, ApJS, in press, astro-ph/0706.1074) determined the abundances of the n-capture elements Se and Kr in 120 PNe to accuracies of a factor of two or three. The abundance uncertainties arose primarily from: (1) the detection of only one ion of each element, leading to large and uncertain ionization correction factors (ICFs); and (2) the lack of atomic data governing the Se and Kr ionization balance. We present preliminary results from a study that aims to improve the accuracy of n-capture element abundances in PNe, utilizing new observational measurements and atomic data determinations. We have obtained deep, high resolution optical spectra of 12 s-process enriched PNe selected from the sample of Sterling & Dinerstein, in order to search for emission lines of additional Se and Kr ions as well as other n-capture elements (e.g., Br and Xe). These measurements allow multiple ions of trans-iron elements to be detected, which reduces the uncertainties in the ICFs and consequently in the derived elemental abundances. In addition, we discuss ongoing calculations of photoionization cross-sections and recombination rate coefficients of Se, Kr, and Xe ions using the atomic structure codes AUTOSTRUCTURE (Badnell 1986, J. Phys. B, 19, 3827) and DARC (Ballance & Griffin 2006, J. Phys. B, 40, 3617). These calculations are complemented by absolute photoionization cross-section measurements performed at the Advanced Light Source synchrotron radiation facility. The new atomic data enable accurate ICFs to be derived for these elements, with the aid of photoionization models. We will use these results to determine the abundances of n-capture elements in PNe more accurately than previously possible, and to study the details of s-process nucleosynthesis in

  18. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    PubMed

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  19. Do electron-capture supernovae make neutron stars?. First multidimensional hydrodynamic simulations of the oxygen deflagration

    NASA Astrophysics Data System (ADS)

    Jones, S.; Röpke, F. K.; Pakmor, R.; Seitenzahl, I. R.; Ohlmann, S. T.; Edelmann, P. V. F.

    2016-09-01

    Context. In the classical picture, electron-capture supernovae and the accretion-induced collapse of oxygen-neon white dwarfs undergo an oxygen deflagration phase before gravitational collapse produces a neutron star. These types of core collapse events are postulated to explain several astronomical phenomena. In this work, the oxygen deflagration phase is simulated for the first time using multidimensional hydrodynamics. Aims: By simulating the oxygen deflagration with multidimensional hydrodynamics and a level-set-based flame approach, new insights can be gained into the explosive deaths of 8-10 M⊙ stars and oxygen-neon white dwarfs that accrete material from a binary companion star. The main aim is to determine whether these events are thermonuclear or core-collapse supernova explosions, and hence whether neutron stars are formed by such phenomena. Methods: The oxygen deflagration is simulated in oxygen-neon cores with three different central ignition densities. The intermediate density case is perhaps the most realistic, being based on recent nuclear physics calculations and 1D stellar models. The 3D hydrodynamic simulations presented in this work begin from a centrally confined flame structure using a level-set-based flame approach and are performed in 2563 and 5123 numerical resolutions. Results: In the simulations with intermediate and low ignition density, the cores do not appear to collapse into neutron stars. Instead, almost a solar mass of material becomes unbound from the cores, leaving bound remnants. These simulations represent the case in which semiconvective mixing during the electron-capture phase preceding the deflagration is inefficient. The masses of the bound remnants double when Coulomb corrections are included in the equation of state, however they still do not exceed the effective Chandrasekhar mass and, hence, would not collapse into neutron stars. The simulations with the highest ignition density (log 10ρc = 10.3), representing the case

  20. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  1. Delivery of (10)boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy.

    PubMed

    Obayashi, Shigeki; Kato, Itsuro; Ono, Koji; Masunaga, Shin-Ichiro; Suzuki, Minoru; Nagata, Kenji; Sakurai, Yoshinori; Yura, Yoshiaki

    2004-05-01

    Boron neutron capture therapy (BNCT) is a unique radiation therapy in which boron compounds are trapped into tumor cells. To determine the biodistribution of boronophenylalanine (BPA) in nude mice carrying oral squamous cell carcinoma (SCC), BPA was administered at a dose of 250 mg/kg body weight intraperitoneally. Two hours later, (10)B concentration in the tumor was 15.96 ppm and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 6.44, 4.19, 4.68 and 4.56, respectively. Two hours after the administration of borocaptate sodium (BSH) at a dose of 75 mg/kg body weight, (10)B concentration in the tumor was 3.61 ppm, and tumor/blood, tumor/tongue, tumor/skin and tumor/bone (10)B concentration ratios were 0.77, 1.05, 0.60 and 0.59, respectively. When cultured oral SCC cells were incubated with BPA or BSH for 2 h and then exposed to thermal neutrons, the proportion of survival cells that were capable of forming cell colonies decreased exponentially, depending on (10)B concentration. BPA-mediated BNCT was more efficient than BSH-mediated BNCT. Addition of boron compounds in the cell suspension during neutron irradiation enhanced the cell-killing effect of the neutrons. These results indicate that BPA is more selectively incorporated into human oral SCC as compared with normal oral tissues, and that both extra- and intra-cellular BPA contribute to the cell-killing effect of BNCT. BPA may be a useful boron carrier for BNCT in the treatment of advanced oral SCC.

  2. Neutron capture and total cross sections for /sup 48/Ca: Astrophysical implications

    SciTech Connect

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Macklin, R.L.

    1985-01-15

    Attempts to understand abundance anomalies of the Ca isotopes in the Allende meteorite via the n..beta..-process require 30-keV Maxwellian averaged capture cross sections. Experimental data on /sup 48/Ca in this energy region of astrophysical significance is important since a single resonance in this vicinity could dominate the caputre cross section. Neutron capture and total cross section measurements have been performed at ORELA on a 9.97-g sample of CaCO/sub 3/, enriched to 96% /sup 48/Ca, over the energy ranges 10 eV-500 keV (sigma..gamma..) and 10 keV-4 MeV (sigmaT). Only two small resonances were found for /sup 48/Ca in the 30-keV energy region (at 19.3 and 106.9 keV) and those only in capture. Their contribution to the 30-keV-averaged cross section is only 50 ..mu..b compared to 1.0 mb calculated from direct capture. The p-wave strength and large d/sub 5/2/ strength observed above 150 keV do no contribute significantly to the 30 keV capture.

  3. Technical aspects of boron neutron capture therapy at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Rorer, D.C.; Patti, F.J.; Liu, H.B.; Reciniello, R.; Chanana, A.D.

    1997-07-01

    The Brookhaven Medical Research Reactor, BMRR, is a 3 MW heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies. Early BNL work in Boron Neutron Capture Therapy (BNCT) used a beam of thermal neutrons for experimental treatment of brain tumors. Research elsewhere and at BNL indicated that higher energy neutrons would be required to treat deep seated brain tumors. Epithermal neutrons would be thermalized as they penetrated the brain and peak thermal neutron flux densities would occur at the depth of brain tumors. One of the two BMRR thermal port shutters was modified in 1988 to include plates of aluminum and aluminum oxide to provide an epithermal port. Lithium carbonate in polyethylene was added in 1991 around the bismuth port to reduce the neutron flux density coming from outside the port. To enhance the epithermal neutron flux density, the two vertical thimbles A-3 (core edge) and E-3 (in core) were replaced with fuel elements. There are now four fuel elements of 190 grams each and 28 fuel elements of 140 grams each for a total of 4.68 kg of {sup 235}U in the core. The authors have proposed replacing the epithermal shutter with a fission converter plate shutter. It is estimated that the new shutter would increase the epithermal neutron flux density by a factor of seven and the epithermal/fast neutron ratio by a factor of two. The modifications made to the BMRR in the past few years permit BNCT for brain tumors without the need to reflect scalp and bone flaps. Radiation workers are monitored via a TLD badge and a self-reading dosimeter during each experiment. An early concern was raised about whether workers would be subject to a significant dose rate from working with patients who have been irradiated. The gamma ray doses for the representative key personnel involved in the care of the first 12 patients receiving BNCT are listed. These workers did not receive unusually high exposures.

  4. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  5. Design of Real-time Neutron Radiography at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Hao, Lijie; Wu, Meimei; Wei, Guohai; Wang, Yu; Liu, Yuntao; Sun, Kai; Chen, Dongfeng

    A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is below 2.4 e/pixel. It is capable of providing images with much higher resolution and sensitivity at high frame rate. With optimized optical design and custom-built lens, the capture of quantitative information may be greatly enhanced. The maximum photon received by detector is calculated to be 2.1 × 103/pixel, while the camera resolution is 0.2 mm at 30 fps according to the expected flux (5 × 107 n/cm2/s) at the sample position.

  6. Approaching complete low-spin spectroscopy of 210Bi with a cold-neutron capture reaction

    NASA Astrophysics Data System (ADS)

    Cieplicka-Oryńczak, N.; Fornal, B.; Leoni, S.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Szpak, B.; Ur, C.; Urban, W.

    2016-05-01

    The low-spin structure of the 210Bi nucleus was investigated in the neutron capture experiment 209Bi(n ,γ )210Bi performed at ILL Grenoble at the PF1B cold-neutron facility. By using the EXILL multidetector array, consisting of 46 high-purity germanium crystals, and γ γ -coincidence technique, 64 primary γ rays were observed (40 new) and a total number of 70 discrete states (33 new) were located below the neutron binding energy in 210Bi. The analysis of the angular correlations of γ rays provided information about transitions multipolarities, which made it possible to confirm most of the previously known spin-parity assignments and helped establish new ones. The obtained experimental results were compared to shell-model calculations involving one-valence-proton, one-valence-neutron excitations outside the 208Pb core. It has been found that while up to the energy of ˜2 MeV each state observed in 210Bi has its calculated counterpart; at higher excitation energies some levels cannot be described by the valence particle couplings. These states may arise from couplings of valence particles to the 3- octupole phonon of the doubly magic 208Pb core and may serve as a testing ground for models which describe single particle-phonon excitations.

  7. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  8. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  9. Neutron capture surrogate reaction on 75As in inverse kinematics using (d,pγ)

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Cizewski, J. A.; Hatarik, R.; O'Malley, P. D.; Jones, K. L.; Schmitt, K.; Moazen, B. H.; Chae, K. Y.; Pittman, S. T.; Kozub, R. L.; Vieira, D.; Jandel, M.; Wilhelmy, J. B.; Matei, C.; Escher, J.; Bardayan, D. W.; Pain, S. D.; Smith, M. S.

    2010-03-01

    The 75As(d,pγ) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV γ-ray from 76As in coincidence with ejected protons, from exciting 76As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover γ-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the 75As experiment, and the efficacy and future plans of the (d,pγ) surrogate campaign in inverse kinematics, are discussed.

  10. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    SciTech Connect

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.

  11. Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))

    SciTech Connect

    Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S

    2009-11-09

    The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.

  12. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  13. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  14. Preparation of thin arsenic and radioarsenic targets for neutron capture studies

    SciTech Connect

    Fassbender, Michael E

    2009-01-01

    A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As (As-75). Thin (2.5 mg {center_dot} cm{sup -2}) coherent, smooth layers of the metalloid on Ti foils (2.5 {micro}m thickness) were obtained. Electrodeposits served as targets for {sup 75}As(n,{gamma}) {sup 76}As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective {sup 73}As(n,{gamma}) {sup 74}As experiments are planned for the near future, and {sup 73}As targets will be prepared in a similar fashion utilizing the introduced electrodeposition method. The preparation of an {sup 73}As (half-life 80.3 d) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF).

  15. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  16. Neutron-capture Cl-36, Ca-41, Ar-36, and Sm-150 in large chondrites: Evidence for high fluences of thermalized neutrons

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Bansal, B. M.; Garrison, D. H.; Wiesmann, H.; Herzog, G. F.; Albrecht, A. A.; Vogt, S.; Klein, J.

    1995-01-01

    We have measured significant concentrations of Cl-36, Ca-41, Ar-36 from decay of Cl-36, and Sm-150 produced from the capture of thermalized neutrons in the large Chico L6 chondrite. Activities of Cl-36 and Ca-41, corrected for a high-energy spallogenic component and a terrestrial age of approximately 50 ka, give average neutron-capture production rates of 208 atoms/min/g-Cl and 1525 atoms/min/kg-Ca, which correspond to thermal neutron (n) fluxes of 6.2 n/sq cm/s and 4.3 n/sq cm/s, respectively. If sustained for the approximately 65 Ma single-stage, cosmic ray exposure age of Chico, these values correspond to thermal neutron fluences of approximately 1.3 x 10(exp 16) and 0.8 x 10(exp 16) n/sq cm for Cl-36 and Ca-41, respectively. Stepwise temperature extraction of Ar in Chico impact melt shows Ar-36/Ar-38 ratios as large as approximately 9. The correlation of high Ar-36/Ar-38 with high Cl/Ca phases in neutron-irradiated Chico indicates that the excess Ar-36 above that expected from spallation is due to decay of neutron-produced Cl-36. Excess Ar-36 in Chico requires a thermal neutron fluence of 0.9-1.7 x 10(exp 16) n/sq cm. Decreases in Sm-149/Sm-152 due to neutron-capture by Sm-149 correlate with increases in Sm-150/Sm-152 for three samples of Chico, and one of the Torino H-chondrite. The 0.08% decrease in Sm-149 shown by Chico corresponds to a neutron fluence of 1.23 x 10(exp 16) n/sq cm. This fluence derived from Sm considers capture of epithermal neutrons and effects of chemical composition on the neutron energy distribution. Excess Ar-36 identified in the Arapahoe, Bruderheim, and Torino chondrites and the Shallowater aubrite suggest exposure to neutron fluences of approximately 0.2-0.2 x 10(exp 16) n/sq cm. Depletion of Sm-149 in Torino and the LEW86010 angrite suggest neutron fluences of 0.8 x 10(exp 16) n/sq cm and 0.25 x 10(exp 16) n/sq cm, respectively. Neutron fluences of approximately 10(exp 16) n/sq cm in Chico are almost as large as those previously

  17. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  18. Neutron Capture Rates near A=130 which Effect a Global Change to the r-Process Abundance Distribution

    SciTech Connect

    Surman, Rebecca; Beun, Joshua; Mclaughlin, Gail C; Hix, William Raphael

    2009-01-01

    We investigate the impact of neutron capture rates near the A=130 peak on the r-process abundance pattern. We show that these capture rates can alter the abundances of individual nuclear species, not only in the region of A=130 peak but also throughout the abundance pattern. We discuss in general the nonequilibrium processes that produce these abundance changes and determine which capture rates have the most significant impact.

  19. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium.

    PubMed

    Morris, G M; Coderre, J A; Hopewell, J W; Micca, P L; Rezvani, M

    1994-08-01

    The effects of boron neutron capture irradiation employing either BPA or BSH as neutron capture agents has been assessed using the dorsal skin of Fischer 344 rats. Pharmacokinetic studies, using prompt gamma spectrometry, revealed comparable levels of boron-10 (10B) in blood and skin after the intravenous infusion of BSH (100 mg/kg body wt.). The 10B content of blood (12.0 +/- 0.5 micrograms/g) was slightly higher than that of skin (10.0 +/- 0.5 micrograms/g) after oral dosing with BPA. Biphasic skin reactions were observed after irradiation with the thermal neutron beam alone or in combination with BPA or BSH. The time of onset of the first phase of the skin reaction, moist desquamation, was approximately 2 weeks. The time at which the second-wave skin reaction, dermal necrosis, became evident was dose-related and occurred after a latent interval of > or = 24 weeks, well after the acute epithelial reaction had healed. The incidence of both phases of skin damage was also dose-related. The radiation doses required to produce skin damage in 50% of skin sites (ED50 values) were calculated from dose-effect curves and these values were used to determine relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for both moist desquamation and dermal necrosis. It was concluded on the basis of these calculations that the microdistribution of the two neutron capture agents had a critical bearing on the overall biological effect after thermal neutron activation. BSH, which was possibly excluded from the cytoplasm of epidermal cells, had a low CBE factor value (0.56 +/- 0.06) while BPA, which may be selectively accumulated in epidermal cells had a very high CBE factor (3.74 +/- 0.7). For the dermal reaction, where vascular endothelial cells represent the likely target cell population, the CBE factor values were comparable, at 0.73 +/- 0.42 and 0.86 +/- 0.08 for BPA ad BSH, respectively.

  20. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    PubMed

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.

  1. Boron neutron capture therapy as new treatment for clear cell sarcoma: trial on different animal model.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-06-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS.

  2. Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase.

    PubMed

    Haselsberger, K; Radner, H; Pendl, G

    1998-09-11

    Boron neutron capture therapy (BNCT) represents a highly promising therapeutic alternative for the treatment of the most common malignant brain tumor, glioblastoma multiforme. Both the efficacy and safety of BNCT are greatly dependent on the pattern of 10B biodistribution. The present study investigates the influence of systemic hyaluronidase applied in combination with Na2B12H11SH (BSH), a boron carrier used in current clinical trials. The application of hyaluronidase was associated with a statistically significant improvement in the tumor/blood boron concentration ratio which suggests that hyaluronidase is capable of enhancing the therapeutic potential of BSH.

  3. Drug delivery system design and development for boron neutron capture therapy on cancer treatment.

    PubMed

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-06-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,l-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. PMID:24447933

  4. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  5. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  6. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  7. Levels of 188Re nucleus populated in thermal neutron capture reaction

    NASA Astrophysics Data System (ADS)

    Běrziņš, J.; Krasta, T.; Simonova, L.; Balodis, M.; Bondarenko, V.; Jentschel, M.; Urban, W.; Tomandl, I.

    2016-03-01

    Levels of 188Re populated in thermal neutron capture reaction with enriched 187Re targets have been studied. Single γ-ray spectrum of 188Re, measured with the high-resolution crystal diffraction spectrometer GAMS5, as well as γγ-coincidence experiments performed with high efficiency Ge detectors, allowed to develop model-independent level scheme of the doubly-odd 188Re nucleus up to ˜ 1.5 MeV excitation energy. Analysis of the established 188Re level scheme in terms of the quasiparticle-plus-rotor model indicates coexistence of axially-deformed and triaxial structures in the energy range above 400 keV.

  8. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    SciTech Connect

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  9. LaBr3(Ce) gamma-ray detector for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Smirnova, M.; Shmanin, E.; Galavanov, A.; Shustov, A.; Ulin, S.; Vlasik, K.; Dmitrenko, V.; Novikov, A.; Orlov, A.; Petrenko, D.; Shmurak, S.; Uteshev, Z.

    2016-02-01

    Results of developing of a gamma-ray detector based on LaBr3(Ce) scintillation crystal for neutron capture therapy are presented. An energy resolution of the detector measured by photomultiplier tube Hamamatsu R6233-100 is showed. It was 2.93% for gamma line 662 keV from a source 137Cs. For radiative capture gamma line of isotope 10B (478 keV) and annihilation line (511 keV) the values were 3.33 and 3.24% respectively. Data analysis of gamma spectra for an estimation of energy resolution threshold required for visual identification gamma lines 478 and 511 keV was made.

  10. One-arm Spiral Instability in Hypermassive Neutron Stars Formed by Dynamical-Capture Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; East, William E.; Pretorius, Frans; Shapiro, Stuart L.

    2016-03-01

    Using general-relativistic hydrodynamical simulations, we show that merging binary neutron stars can form hypermassive neutrons stars that undergo the one-arm spiral instability. We study the particular case of a dynamical capture merger where the stars have a small spin, as may arise in globular clusters, and focus on an equal-mass scenario where the spins are aligned with the orbital angular momentum. We find that this instability develops when post-merger fluid vortices lead to the generation of a toroidal remnant - a configuration whose maximum density occurs in a ring around the center-of-mass - with high vorticity along its rotation axis. The instability quickly saturates on a timescale of ~ 10 ms, with the m = 1 azimuthal density multipole mode dominating over higher modes. The instability also leaves a characteristic imprint on the post-merger gravitational wave signal that could be detectable if the instability persists in long-lived remnants. This work was supported by the Simons Foundation and NSF Grants PHY-1305682, PHY-1300903, and NASA Grant NNX13AH44G. Computational resources were provided by XSEDE/TACC under Grants TG-PHY100053, TG-MCA99S008, and the Orbital cluster at Princeton Univers.

  11. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  12. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  13. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  14. Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: 10B concentration predictions and dosimetric consequences.

    PubMed

    Kiger, W S; Palmer, M R; Riley, K J; Zamenhof, R G; Busse, P M

    2003-01-01

    A two-compartment open model has been developed for predicting 10B concentrations in blood following intravenous infusion of the L-p-boronophenylalanine-fructose complex in humans and derived from pharmacokinetic studies of 24 patients in Phase I clinical trials of boron neutron capture therapy. The 10B concentration profile in blood exhibits a characteristic rise during the infusion to a peak of approximately 32 microg/g (for infusion of 350 mg/kg over 90 min) followed by a biexponential disposition profile with harmonic mean half-lives of 0.32 +/- 0.08 and 8.2 +/- 2.7 h, most likely due to redistribution and primarily renal elimination, respectively. The mean model rate constants k12, k21, and k10 are (mean +/- SD) 0.0227 +/- 0.0064 min(-1), 0.0099 +/- 0.0027 min(-1), 0.0052 +/- 0.0016 min(-1), respectively, and the central compartment volume of distribution V1 is 0.235 +/- 0.042 L/kg. In anticipation of the initiation of clinical trials using an intense neutron beam with concomitantly short irradiations, the ability of this model to predict, in advance, the average blood 10B concentration during brief irradiations was simulated in a retrospective analysis of the pharmacokinetic data from these patients. The prediction error for blood boron concentration and its effect on simulated dose delivered for each irradiation field are reported for three different prediction strategies. In this simulation, error in delivered dose (or, equivalently, neutron fluence) for a given single irradiation field resulting from error in predicted blood 10B concentration was limited to less than 10%. In practice, lower dose errors can be achieved by delivering each field in two fractions (on two separate days) and by adjusting the second fraction's dose to offset error in the first.

  15. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT. PMID:27548011

  16. Detector-Response Correction of Two-Dimensional γ-Ray Spectra from Neutron Capture

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-01

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.

  17. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  18. Homogeneous immunoconjugates for boron neutron-capture therapy: design, synthesis, and preliminary characterization.

    PubMed

    Guan, L; Wims, L A; Kane, R R; Smuckler, M B; Morrison, S L; Hawthorne, M F

    1998-10-27

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 10(3) boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here.

  19. Homogeneous immunoconjugates for boron neutron-capture therapy: Design, synthesis, and preliminary characterization

    PubMed Central

    Guan, Lufeng; Wims, Letitia A.; Kane, Robert R.; Smuckler, Mark B.; Morrison, Sherie L.; Hawthorne, M. Frederick

    1998-01-01

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 103 boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here. PMID:9789066

  20. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  1. Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture

    DOE PAGES

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-28

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. Themore » detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.« less

  2. Neutron Capture Elements in the Open Cluster Chemical Abundance & Mapping (OCCAM) Survey

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Hearty, Fred R.

    2016-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. The high-resolution (R=22,500), near-infrared (H-band) APOGEE-1 survey allows for cluster membership probability determination and analysis of light and iron-peak elements. Neutron capture elements, however, prove to be elusive in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we conducted a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. We present results for ten open clusters using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph. We see abundance trends for Ba II, La II and Eu II that are consistent with Galactic abundance patterns for these elements. Ce II appears to be slightly enhanced in all program stars with a median value of ~0.1 dex and a spread of 0.5 dex for the entire sample.

  3. Neutron-Capture Nucleosynthesis and the Chemical Evolution of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Shingles, Luke J.

    2015-09-01

    Elements heavier than iron are almost entirely produced in stars through neutron captures and radioactive decays. Of these heavy elements, roughly half are produced by the slow neutron-capture process (s-process), which takes place under extended exposure to low neutron densities. Most of the s-process production occurs in stars with initial masses between roughly 0.8 and 8 solar masses (Msun), which evolve through the Asymptotic Giant Branch (AGB) phase. This thesis explores several topics related to AGB stars and the s-process, with a focus on comparing theoretical models to observations in the literature on planetary nebulae, post-AGB stars, and globular cluster stars. A recurring theme is the uncertainty of carbon-13-pocket formation, which is crucial for building accurate models of s-process nucleosynthesis. We first investigated whether neutron-capture reactions in AGB stars are the cause of the low sulphur abundances in planetary nebulae and post-AGB stars relative to the interstellar medium. Accounting for uncertainties in the size of the partial mixing zone that forms carbon-13 pockets and the rates of neutron-capture and neutron-producing reactions, our models failed to reproduce the observed levels of sulphur destruction. From this, we concluded that AGB nucleosynthesis is not the cause of the sulphur anomaly. We also discovered a new method to constrain the extent of the partial mixing zone using neon abundances in planetary nebulae. We next aimed to discover the stellar sites of the s-process enrichment in globular clusters that have inter- and intra-cluster variation, with the examples of M4 (relative to M5) and M22, respectively. Using a new chemical evolution code developed by the candidate, we tested models with stellar yields from rotating massive stars and AGB stars. We compared our model predictions for the production of s-process elements with abundances from s-poor and s-rich populations. We found that rotating massive stars alone do not

  4. Using (d,pγ) as a Surrogate for Neutron Capture with ^75As

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Cizewski, J. A.; Hatarik, R.; O'Malley, P.; Vieira, D. J.; Jandel, M.; Wilhelmy, J. B.; Matei, C.; Bardayan, D. W.; Smith, M. S.; Pain, S. D.; Jones, K. L.; Moazen, B. H.; Chae, K. Y.; Kozub, R. L.; Shriner, J.; Blackmon, J. C.

    2008-10-01

    Arsenic is used as a radiochemical neutron fluence detector for nuclear reactions and other applications. The abundances of the residual isotopes ^73,74As allow one to calculate the total neutron activity through (n,2n) or (n,γ) reactions along the isotopic network chain. The neutron capture reaction cross sections used for these calculations cannot be directly measured for the radioactive isotopes, but the (d,pγ) reaction as a surrogate for the (n,γ) reaction can be measured. An experiment at Oak Ridge National Laboratory using As beams in inverse kinematics and a deuterated target will first measure the ^75As(d,pγ) reaction with stable beam to test the efficacy of our surrogate experimental techniques. With a tight geometry, eight ORRUBA silicon-strip detectors will detect recoil protons in coincidence with γ-rays detected by four high-purity segmented Ge clover detectors. Status and future goals for the As(d,pγ) surrogate campaign will be presented.

  5. Neutron capture production rates of cosmogenic 60Co, 59Ni and 36Cl in stony meteorites

    NASA Technical Reports Server (NTRS)

    Spergel, M. S.; Reedy, R. C.; Lazareth, O. W.; Levy, P. W.

    1986-01-01

    Results for neutron flux calculations in stony meteoroids (of various radii and compositions) and production rates for Cl-36, Ni-59, and Co-60 are reported. The Ni-59/Co-60 ratio is nearly constant with depth in most meteorites: this effect is consistent with the neutron flux and capture cross section properties. The shape of the neutron flux energy spectrum, varies little with depth in a meteorite. The size of the parent meteorite can be determined from one of its fragments, using the Ni-59/Co-60 ratios, if the parent meteorite was less than 75 g/cm(2) in radius. If the parent meteorite was larger, a lower limit on the size of the parent meteorite can be determined from a fragment. In C3 chondrites this is not possible. In stony meteorites with R less than 50 g/cm(2) the calculated Co-60 production rates (mass less than 4 kg), are below 1 atom/min g-Co. The highest Co-60 production rates occur in stony meteorites with radius about 250 g/cm(2) (1.4 m across). In meteorites with radii greater than 400 g/cm(2), the maximum Co-60 production rate occurs at a depth of about 175 g/cm(2) in L-chondrite, 125 g/cm(2) in C3 chrondrite, and 190 g/cm(2) in aubrites.

  6. Monte Carlo model for neutron capture prompt gamma-ray analysis of coal in transmission geometry

    SciTech Connect

    Yuan, R.Y.

    1984-01-01

    In order to relate the detector response to the elemental concentration, a great number of elaborate experimental standards are needed. It is tedious and curbs, among other factors, the wider use of the neutron capture prompt gamma-ray analysis (NCPGRA). A Monte Carlo model therefore has been developed to predict the photopeak detector response at all elemental concentrations of interest in the host matrix simultaneously, and an experimental system which simulates the on-line analysis of coal on a conveyor belt has been built to test this model and increase the extent of its readiness for industrial application. Variance reduction techniques, including an expected value technique followed by Russian Roulette, are used extensively to reduce computation effort. Each of the various shielding components of the analyzer is considered with respect to both neutron transport and prompt gamma-ray attenuation. Further, the free gas model is employed to simulate thermal neutron interaction. Results of this Monte Carlo model are generally in good agreement with photopeak detector responses on those major and minor elements measurable by NCPGRA in coal, and the agreement is excellent on the variation in detector response with elemental concentration for sulfur and titanium. Therefore, it gives high confidence in the validity of the Monte Carlo model. The model is thus expected to be generally useful for calibrating NCPGRA analyzers in transmission geometry.

  7. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  8. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    SciTech Connect

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  9. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    PubMed Central

    2013-01-01

    Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213

  10. Tetrakis(p-Carboranylthio-Tetrafluorophenyl)Chlorin (TPFC): Application for Photodynamic Therapy and Boron Neutron Capture Therapy

    PubMed Central

    HIRAMATSU, RYO; KAWABATA, SHINJI; TANAKA, HIROKI; SAKURAI, YOSHINORI; SUZUKI, MINORU; ONO, KOJI; MIYATAKE, SHIN-ICHI; KUROIWA, TOSHIHIKO; HAO, ERHONG; VICENTE, M. GRAÇA H.

    2015-01-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC’s applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm2) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 1012 n/cm2) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37–43 days). PMID:25546823

  11. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  12. Potential for boron neutron capture enhancement of Cf-252 brachytherapy treatment of localized tumors

    SciTech Connect

    Schroy, C.B.; Beach, J.L.; Goud, S.N.; Feola, J.M.; Maruyama, Y.; Blue, J.W.

    1986-01-01

    Cultured Chinese hamster cells were irradiated with californium-252 neutrons and gamma rays at dose rates of 148 cGy/h and 68 cGy/h, respectively. Survival curves were obtained with and without 60 ..mu..g/ml of boron-10 in the culture medium. When the data were fitted to the linear-quadratic model of cell survival it was found that boron increased ..cap alpha.. (the 'single-hit' parameter) by 32% and decreased ..beta.. (the ''double-hit'' parameter) by 8%. The ..cap alpha../..beta.. ratio increased to 4.34 Gy in the presence of boron from 3.03 Gy in its absence. This translated to an 8% reduction in californium dose needed to effect 10% cell survival. It is concluded that there may be a sufficiently high thermal neutron fluence present during californium brachytherapy for boron-neutron capture dose augmentation to be feasible. Treatment of inoperable solid local tumors would be of possible benefit.

  13. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    PubMed

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  14. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  15. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams.

    PubMed

    Riley, K J; Binns, P J; Ali, S J; Harling, O K

    2004-05-21

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm(-3) of boron carbide or 210 mg cm(-3) of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 +/- 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  16. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  17. Experience with fast neutron therapy for locally advanced sarcomas

    SciTech Connect

    Salinas, R.; Hussey, D.H.; Fletcher, G.H.; Lindberg, R.D.; Martin, R.G.; Peters, L.J.; Sinkovics, J.G.

    1980-03-01

    Between October 1972 and April 1978, 34 patients with locally advanced sarcomas were treated with fast neutrons using the Texas A and M variable energy cyclotron. The clinical material included 29 patients with soft tissue sarcomas, 4 with chondrosarcomas, and one with an osteosarcoma. The best results were achieved for patients with soft tissue sarcomas; 69% (20/29) had local control of their tumor. Only one of 4 patients with chondrosarcomas was classified as having local tumor control, and one patient with osteosarcoma had persistent disease. With most fractionation schedules, local tumor control was superior for patients who received doses greater than 6500 rad/sub eq/ (2100 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). The incidence of major complications was notably increased when maximum radiation doses of 7500 rad/sub eq/ or greater were administered (2400 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). In patients who underwent subsequent surgery, healing was satisfactory if the maximum radiation dose was limited to 4500 to 5500 rad/sub eq/(1450 to 1775 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons).

  18. Neutron Cross Section Covariances: Recent Workshop and Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Oblozinsky, Pavel

    2008-10-01

    The recent Workshop on Neutron Cross Section Covariances, organized by BNL and attended by more than 50 scientists, responded to demands of many user groups, including advanced reactor systems, for uncertainty and correlation information. These demands can be explained by considerable progress in advanced neutronics simulation that probe covariances and their impact on design and operational margins of nuclear systems. The Workshop addressed evaluation methodology, recent evaluations as well as user's perspective, marking era of revival of covariance development that started some two years ago. We illustrate urgent demand for covariances in the case of advanced reactor systems, including fast actinide burner under GNEP, new generation of power reactors, Gen-IV, and reactors under AFCI. A common feature of many of these systems is presence of large amount of minor actinides and fission products that require improved nuclear data. Advanced simulation codes rely on quality input, to be obtained by adjusting the data library, such as the new ENDF/B-VII.0, by considering integral experiments as currently pursued by GNEP. To this end the nuclear data community is developing covariances for formidable amount of 112 materials (isotopes).

  19. Melanogenesis investigation leading to selective melanoma neutron capture therapy and diagnosis.

    PubMed

    Mishima, Y

    1994-11-01

    Basic investigation into the nature of melanin monomer and polymer synthesis in pigment cells has revealed many of the new underlying factors involved in its regulation and control by three melanogenesis-related genes, tyrosinase, TRP-1 and TRP-2, and other non-tyrosinase glycoproteins. Pigment cells can undergo clinically and biologically recognizable progressive multi-step carcinogenesis. Generally parallel to this progressive cancerization is accentuated melanogenesis. Using this accentuated melanogenesis to develop a specific diagnosis and cure for melanoma (Mm) has long been a challenge. However, until recently, no success was achieved. As an example, attempting to utilize the fact that dopa accumulates as a melanin substrate within Mm cells, hybrid compounds of dopa and cytotoxic drugs were developed. However, these compounds were found to have severe systemic side effects and were therefore unusable. Another newer Mm treatment involves high energy radiation such as fast neutrons. But this is quite non-selective, killing both the target cancer and the normal surrounding tissue. Since 1972, I have developed the idea of coupling the high energy releasing system of thermal neutron irradiation with the non-toxic 10B-dopa analogue, 10B1-L-p-boronophenylalanine (10B1-L-BPA). Thermal neutrons are essentially harmless, but, after specific absorption by 10B, release high LET alpha-particles and 7Li-atoms with an energy of 2.33 MeV up to a distance of 14 mu, the diameter of Mm cells, thus selectively killing them without damaging surrounding normal tissue. After the synthesis of 10B1-L-BPA, exhaustive in vitro and in vivo radiological studies on its enhanced killing effect were done to develop optimal Mm Boron Neutron Capture Therapy (NCT).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Parity Violation in Neutron-Proton Capture -- The NPD Gamma Experiment

    SciTech Connect

    Gericke, M. T.; Bowman, James D; Greene, G. L.; Penttila, Seppo I; Collaboration, NPDGamma

    2009-01-01

    The NPDGamma collaboration has recently completed the first phase of a measurement to determine the size of the weak nucleon-nucleon interaction from cold neutron capture on a liquid hydrogen target. In the framework of the nearly 30 year old DDH model [B. Desplanques, J.F. Donoghue, B.R. Holstein, Annals of Physics 124 (1980) 449], the measured process is explained in terms of the weak pion-nucleon coupling, while the framework of modern effective field theory parameterizes the measured process in terms of the {sup 3}S{sub 1}-{sup 3}P{sub 1}, long range transition (essentially the Danilov parameter {rho}{sub t}) [S.L. Zhu et al., Nuclear Physics A 748 (2005) 435; C.-P. Liu, Phys. Rev. C 75 (2007) 065501]. The couplings in terms of either model are directly proportional to the parity violating up-down asymmetry in the angular distribution of gamma rays with respect to the neutron spin direction in the reaction {rvec n} + p {yields} d + {gamma}. The asymmetry has a predicted size of 5 x 10{sup -8} and the aim of the NPDGamma collaboration is to measure it to 20%. The first phase of the measurement was completed at the Los Alamos National Laboratory Neutron Science Center Spallation Source with a preliminary result of (-1.1 {+-} 2.1 stat. {+-} 0.2 sys.) x 10{sup -7}. Here, we report on the measurements and the results obtained so far. The experiment is currently being installed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, for the remainder of its run time.

  1. Radiobiology of boron neutron capture therapy: Problems with the concept of relative biological effectiveness

    SciTech Connect

    Coderre, J.A.; Makar, M.S.

    1990-01-01

    The radiation dose delivered to cells in vitro or vivo during boron neutron capture therapy (BNCT) is a mixture of photons, fast neutrons and heavy charged particles from the interaction of neutrons with nitrogen and born. The concept of relative biological effectiveness (RBE) had been developed to allow comparison of the effects of these radiations with the effects of standard photon treatments such as 250 kVp x-rays or {sup 60}Co gamma rays. The RBE value for all of these high linear energy transfer radiations can vary considerably depending upon the experimental conditions and endpoint utilized. The short range of the particles from the {sup 10}B(n,{alpha}) {sup 7}Li reaction make the precise subcellular location of the {sup 10}B atom of critical importance. The microscopic distribution of the {sup 10}B has a decided effect on the dosimetry. Monte Carlo simulations have shown that, at the cellular level, there is a profound difference in the probability of cell kill depending on the location of the {sup 10}B relative to the nucleus. Different boron-delivery agents will almost certainly have different distribution patterns at the subcellular level. The effect of BNCT with the amino acid p-boronophenylalanine (BPA) was compared with the effect of 250 kVp x-rays on a pigmented B16 melanoma subclone, both in vitro and in vivo. Generally accepted RBE values were applied to the relevant components of the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam, however, there were still discrepancies when the resulting dose response curves were compared with the response to 250 kVp x-rays.

  2. Noble gas excimer scintillation following neutron capture in boron thin films

    SciTech Connect

    McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2014-04-14

    Far-ultraviolet scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ({sup 10}B(n,α){sup 7}Li) in {sup 10}B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick {sup 10}B film was 14 000 for xenon, 11 000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of {sup 10}B(n,α){sup 7}Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the {sup 10}B(n,α){sup 7}Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker {sup 10}B thin films due to higher average energy loss of the {sup 10}B(n,α){sup 7}Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14% and 16%. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.

  3. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    PubMed

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data

  4. Review of the Advanced Neutron Source (ANS) materials irradiation facilities

    SciTech Connect

    Goland, A.N. )

    1991-03-01

    The purpose of the workshop was to document as accurately as possible the present and future needs for neutron irradiation capacity and facilities as related to the design of the Advanced Neutron Source (ANS) which will be the next generation steady-state research reactor. The report provides the findings and recommendations of the working group. After introductory and background information is presented, the discussion includes the status of the ANS design, in particular in-core materials irradiation facilities design and important experimental parameters. The summary of workshop discussions describes a survey of irradiation-effects research community and opportunities for ex-core irradiation facilities. 20 refs., 2 figs., 4 tabs. (MHB)

  5. Advanced Neutron Source Reactor thermal analysis of fuel plate defects

    SciTech Connect

    Giles, G.E.

    1995-08-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

  6. Fast neutron irradiation for advanced tumors in the pelvis

    SciTech Connect

    Battermann, J.J.; Breur, K.

    1981-08-01

    Since the end of 1975, fast neutron irradiation has been used in the Antoni van Leeuwenhoek Hospital for the treatment of advanced tumors, which had no prospect of cure by other treatment modalities. Fifty-nine patients were irradiated in the pelvic area, 22 for inoperable bladder cancer, 25 for rectal and 12 for gynecological cancer. Treatments were given 5 times per week with a 14 MeV d + T neutron generator. Persisting complete tumor regression was achieved in 11 of 22 bladded patients, 14 of 25 rectum patients and 6 of 12 gynecological patients. Because of unfavorable beam characteristics, 15 of 59 (25%) treated patients had severe radiation-induced intestinal and skin complications.

  7. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  8. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  9. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  10. A new fuel loading design for the Advanced Neutron Source

    SciTech Connect

    Gehin, J.C.; Renier, J.P.; Worley, B.A.

    1994-06-01

    A new fuel loading design has been developed for the Advanced Neutron Source Reactor. In this reactor the combination of a small core volume and high power results in a very high power density. Using a direct optimization procedure the thermal-hydraulic margins for oxide temperature drop, centerline temperature and incipient boiling (and thus critical heat flux) were maximized to increase the limiting thermal power from 298 MW to 346 MW compared to the previous fuel grading, while maintaining the desired peak reflector thermal flux.

  11. Iodine neutron capture therapy: A new generation of radiotherapy for the thyroid

    SciTech Connect

    Ahmed, K.F.; Stephens, A.G.; Spall, R.D.; Brey, R.R.; Bennion, J.S.

    1997-12-01

    An innovative technique is being pursued that takes advantage of noninvasive, in situ neutron capture therapy concepts for treating hyperthyroidism and thyroid carcinoma. Present treatment techniques include surgical removal of the thyroid or, more frequently, the oral administration of {sup 131}I. Therapeutic applications of {sup 131}I are complicated by the unavoidable and undesirable exposure of ancillary body organs, protracted treatment times due to long effective half-life, and less than ideal radiation emission characteristics, i.e., low-effective energy available for deposition in the target organ. These problems are mitigated through the use of {sup 128}I. Table I provides pertinent radiological characteristics for a comparison of {sup 131}I with {sup 128}I.

  12. Effect of boron neutron capture therapy for recurrent anaplastic meningioma: an autopsy case report.

    PubMed

    Kawaji, Hiroshi; Miyatake, Shin-Ichi; Shinmura, Kazuya; Kawabata, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    A 70-year-old woman died of systemic metastasis from anaplastic meningioma and underwent autopsy. The patient underwent twice total removal of the right sphenoid ridge meningioma 2 years ago. The tumor recurred 3 times, and then stereotactic radiotherapy was employed. Boron neutron capture therapy (BNCT) was performed for the fourth local recurrence and an additional new lesion. Proliferative activity of the newly developed meningioma, which had been treated with BNCT only, was significantly lower than that of untreated metastatic liver tumor, as well as that of the meningioma specimen obtained at the second surgery. Our pathological findings demonstrated, for the first time, the therapeutic effect of BNCT on anaplastic meningioma at an early stage (2.5 months).

  13. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  14. Heavy-baryon chiral perturbation theory approach to thermal neutron capture on {sup 3}He

    SciTech Connect

    Lazauskas, Rimantas; Park, Tae-Sun

    2011-03-15

    The cross section for radiative thermal neutron capture on {sup 3}He ({sup 3}He+n{yields}{sup 4}He+{gamma}; known as the hen reaction) is calculated based on heavy-baryon chiral perturbation theory. The relevant M1 operators are derived up to next-to-next-to-next-to-leading order (N{sup 3}LO). The initial and final nuclear wave functions are obtained from the rigorous Faddeev-Yakubovski equations for five sets of realistic nuclear interactions. Up to N{sup 3}LO, the M1 operators contain two low-energy constants, which appear as the coefficients of nonderivative two-nucleon contact terms. After determining these two constants using the experimental values of the magnetic moments of the triton and {sup 3}He, we carry out a parameter-free calculation of the hen cross section. The results are in good agreement with the data.

  15. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  16. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    SciTech Connect

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay; Kumar, Manjeet; Thakur, Anup

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  17. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. ); Packer, S. . Div. of Ophthalmology)

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.

  18. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  19. Advanced Two-Dimensional Thermal Neutron Detectors for Scattering Studies

    SciTech Connect

    Fried, J.; Harder, J.; Mahler, G.J.; Makowiecki, D.S.; Mead, J.A.; Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    2002-11-18

    Advances in neutron scattering studies will be given a large boost with the advent of new spallation and reactor sources at present under consideration or construction. An important element for future experiments is a commensurate improvement in neutron detection techniques. At Brookhaven, a development program is under way for greatly increasing the angular coverage, rate capability and resolution of detectors for scattering studies. For example, a curved detector with angular coverage of 120{sup o} by 15{sup o} has recently been developed for protein crystallography at a spallation source. Based on neutron detection using {sup 3}He, the detector has the following major, new attributes: eight identical proportional wire segments operating in parallel, a single gas volume with seamless readout at segment boundaries, parallax errors eliminated in the horizontal plane by the detector's appropriate radius of curvature, high-throughput front-end electronics, position decoding based on high performance digital signal processing. The detector has a global rate capability greater than 1 million per second, position resolution less than 1.5 mm FWHM, timing resolution about 1 {micro}s, efficiency of 50% and 90% at 1{angstrom} and 4 {angstrom} respectively, and an active area 1.5 m x 20 cm.

  20. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    SciTech Connect

    Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.

    1994-04-01

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values.